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Abstract

We study the dynamics of dark solitons in an incoherently pumped exciton-polariton con-
densate by means of a system composed by a generalized open-dissipative Gross-Pitaevskii
equation for the polaritons’ wavefunction and a rate equation for the exciton reservoir den-
sity. Considering a perturbative regime of sufficiently small reservoir excitations, we use the
reductive perturbation method, to reduce the system to a Korteweg-de Vries (KdV) equa-
tion with linear loss. This model is used to describe the analytical form and the dynamics
of dark solitons. We show that the polariton field supports decaying dark soliton solutions
with a decay rate determined analytically in the weak pumping regime. We also find that
the dark soliton evolution is accompanied by a shelf, whose dynamics follows qualitatively
the effective KdV picture.
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1. Introduction

The experimental realization of Bose-Einstein condensates (BECs) of exciton-polaritons
[1, 2, 3, 4], namely hybrid light-matter quasiparticles emerging in the regime of strong
coupling, has triggered the emergence of an exciting research field, where both quantum
and nonequilibrium dynamics are present [5, 6]. From a mathematical point of view, since
these systems are intrinsically lossy and, hence, need to be continuously replenished, they
are described by specifically tailored damped-driven variants of the Gross-Pitaevskii (GP)
equation [7, 8, 9, 10, 11] (see also discussion in the review [6]). It is important to point
out that the Hamiltonian variant of this model is widely used in the context of atomic
BECs [12, 13, 14], where it can successfully describe, under experimentally relevant con-
ditions, the statics and dynamics of BECs, as well as a plethora of nonlinear phenomena
emerging in this context [15] (see also the reviews [16, 17, 18]). Similarly, in the context of
polariton condensates, versions of an open-dissipative GP model describing an incoherently
pumped polariton BEC coupled to the exciton reservoir [7, 8, 9] were successfully used in
the theoretical description of a number of seminal experiments reporting, e.g., the formation
of quantized vortices [19, 20, 21] (see also the very recent work of Ref. [22]) and dark soli-
tons [23, 24, 25, 26, 27, 28] (see also the experiment reported in Ref. [29] and the theoretical
work of Ref. [9] related to experiments [23, 24, 25, 26]).

Dark solitons and their dynamics in polariton superfluids, which is the theme of this
paper, have been studied in various works [30, 31, 32, 33, 34, 35, 36, 37]. In particular,
in Refs. [30, 31, 32], dark solitons were analyzed in polariton condensates coherently and
resonantly driven by a pumping laser. On the other hand, in Refs. [33, 34], a simplified
Ginzburg-Landau type model [10, 11] was used to analyze one-dimensional and ring dark
solitons, respectively, in the presence of nonresonant pumping. In the same case (of non-
resonant pumping), and using the model of Refs. [7, 8, 9], which involves the coupling of
polaritons to the exciton reservoir, dark polariton solitons were analyzed using an adiabatic
approximation [35] and variational techniques [36, 37]. Here, we consider the problem of
dark polariton soliton dynamics, and adopt the model of Refs. [7, 8, 9], which is perhaps the
most customary approach to describe an incoherently pumped exciton-polariton BEC. This
model is a generalization of the open-dissipative GP equation for the macroscopic wavefunc-
tion of the polariton condensate, by couplind it to a rate equation for the exciton reservoir
density. Assuming that this system is quasi one-dimensional (1D), e.g., a 1D microcavity [27]
or a nanowire [38], and in the uniform pumping regime, we consider a perturbative approach
for the reservoir excitations. Under these assumptions, we show that it is possible to study
this system analytically, by employing the reductive perturbation method [39]. In partic-
ular, using this approach, we derive an effective Korteweg-de Vries (KdV) equation with
linear loss; generalizing the pertinent result relevant to the Hamiltonian case of quasi-1D
atomic BECs, where small-amplitude dark solitons obey an effective KdV equation (see the
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reviews [16, 17] and references therein). In the small-amplitude limit under consideration,
we show that —in the weak pumping regime— the linear loss coefficient in the KdV equation
results in a decay rate of the dark soliton which is twice as large compared to the one found
in Ref. [35] for large-amplitude dark solitons.

The KdV model is used to describe the analytical form and the dynamics of dark soliton
solutions supported in the polariton condensate. It is also found that the evolution of the
dark soliton is accompanied by the emergence of a shelf: this is a linear wave, in the form
of a long propagating tail adjacent to the soliton, which arises naturally in the case of
dissipative KdV solitons [40, 41, 42, 43, 44], as well as dissipative nonlinear Schrödinger
(NLS) dark solitons [46, 47]. Our analytical predictions are in fairly good agreement with
direct numerical simulations.

The paper is organized as follows. In Sec. 2 we present the model and apply the reductive
perturbation method to derive the effective KdV equation. Next, in Sec. 3, we discuss the
form and evolution of dark solitons and present results of direct numerical simulations.
Finally, in Sec. 4, we summarize our findings and discuss interesting directions for future
studies.

2. The model and its analytical consideration

2.1. The open-dissipative Gross-Pitaevskii model

We consider an incoherently, far off-resonantly pumped exciton-polariton condensate
in an 1D setting. In the framework of mean-field theory, this system can be described
by means of a generalized open-dissipative GP equation for the macroscopic wavefunction
Ψ(x, t) of the polariton condensate coupled to a rate equation for the exciton reservoir
density nR(x, t) [7, 8, 9]:

i~
∂Ψ

∂t
= − ~

2

2M

∂2Ψ

∂x2
+ gC |Ψ|2Ψ+ gRnRΨ+

i~

2
(RnR − γC)Ψ, (1)

∂nR

∂t
= P (x, t)− (γR +R|Ψ|2)nR. (2)

Here, M is the effective mass of lower polaritons, gC is the polaritons’ interaction strength,
gR is the condensate coupling to the reservoir, R is the rate of stimulated scattering from the
reservoir to the condensate, γC and γR are the polariton and exciton loss rates, respectively,
while P (x, t) is the exciton creation rate determined by the laser pumping profile. Note that
in such a 1D setting, the transverse profiles of the densities |Ψ|2 and nR are assumed to be
Gaussian, of width d, determined by the thickness of the nanowire; as a result, parameters
gC, gR and R assume a quasi-1D form, i.e., (gC,R, R) → (gC,R, R)/

√
2πd [36, 48], similarly

to the situation occurring in the context of quasi-1D atomic BECs [14]. It should also be
pointed out that, in the above model, the polariton condensate is characterized by a repulsive
(defocusing) nonlinearity, inherited from the repulsively interacting excitons [5, 6].

The system of Eqs. (1)-(2) can be expressed in a dimensionless form as follows: measuring
x in units of the healing length ξ = ~/

√
MgCnC (where nC is a characteristic value of the
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condensate density), t in units of t0 = ξ/cS = ~/gCnC (where cS =
√

gCnC/M is the speed
of sound), and densities |Ψ|2 and nR in units of nC . Then, Eqs. (1)-(2) take the form:

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x2
+ |Ψ|2Ψ+ gRnRΨ+

i

2
(RnR − γC)Ψ, (3)

∂nR

∂t
= P (x, t)− (γR +R|Ψ|2)nR, (4)

where gR and R are measured in units of gC and gC/~, respectively, γC and γR are measured
in units of 1/t0, while the laser pump P (x, t) is measured in units of nC/t0.

We now use the Madelung transformation Ψ =
√
ρ exp(iϕ), with ρ, ϕ ∈ R, and separate

real and imaginary parts to derive from Eqs. (3)-(4) the following real-valued system:

∂ρ

∂t
+

∂

∂x

(

ρ
∂ϕ

∂x

)

− (RnR − γC)ρ = 0, (5)

∂ϕ

∂t
+ ρ+

1

2

(

∂ϕ

∂x

)2

− 1

2
ρ−1/2

(

∂2ρ1/2

∂x2

)

+ gRnR = 0, (6)

∂nR

∂t
− P + (γR +Rρ)nR = 0. (7)

Next, we consider the case of a continuous-wave (cw) and spatially and temporally uni-
form pumping, i.e., P (x, t) = P0, and seek for a homogeneous steady-state solution of the
system (5)-(7) of the form:

ρ = ρ0, nR = n0, ϕ = −µt, (8)

where the unknown condensate and reservoir densities, ρ0 and n0, as well as the chemical
potential µ, are determined as follows. First, Eq. (5) provides the reservoir density:

n0 =
γC
R

. (9)

Using the above result, Eq. (6) leads to an equation connecting the chemical potential with
the condensate density:

µ = ρ0 +
gRγC
R

. (10)

Finally, employing Eq. (9), Eq. (7) provides the condensate density:

ρ0 =
1

γC

(

P0 − P
(th)
0

)

, where P
(th)
0 ≡ γRγC

R
. (11)

Obviously, the inequality P0 > P
(th)
0 must hold, so that the density ρ0 is positive. In other

words, the condensate emerges only if the uniform pump P0 exceeds the threshold value
P

(th)
0 . This result, as well as the form of the steady state solution of Eqs. (9)–(11), are in

accordance with the analysis of Ref. [7] (see also Ref. [35]). Here, it is also relevant to note

that, having introduced P
(th)
0 , it is convenient to rewrite the equilibrium condensate density
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as ρ0 = (γR/R)α, where the parameter α expresses the relative deviation of the uniform

pumping P0 from the threshold value P
(th)
0 , namely:

α =
P0

P
(th)
0

− 1 > 0. (12)

We now consider the physically relevant situation where the reservoir is able to adiabati-
cally follow the condensate dynamics, i.e., γC ≪ γR [7]. To quantitatively define the relative
magnitude of the polariton and exciton loss rates, we introduce a formal small parameter,
0 < ǫ ≪ 1 and assume that γC = ǫγ̃C , where γ̃C , as well as γR, are taken to be of order
O(1). Furthermore, it is assumed that the scattering rate, R, of reservoir particles into
the condensate, as well as the relative deviation of the pumping from the threshold, α, are
sufficiently small [35], i.e., R = ǫR̃ and α = ǫα̃ [where R̃ and α̃ are of order O(1)]. Thus,
the relative magnitude (and smallness) of all physical parameters involved in the problem,
defined through the formal small parameter ǫ, is summarized as follows:

α = ǫα̃, γC = ǫγ̃C , R = ǫR̃, γR = O(1), gR = O(1). (13)

It is worth mentioning that, under the above assumptions, all steady state parameters,
namely the densities ρ0 and n0, the pump threshold P

(th)
0 , as well as the chemical potential

µ, are of order O(1).

2.2. Reductive perturbation method and Korteweg-de Vries equation

Next, considering a perturbative regime of sufficiently small reservoir excitations, we will
use the reductive perturbation method [39] to determine small-amplitude and slowly-varying
modulations of the steady state. We thus seek solutions of Eqs. (5)–(7) in the form of the
asymptotic expansions:

ρ = ρ0 + ǫρ1(X, T ) + ǫ2ρ2(X, T ) + · · · , (14)

ϕ = −µt + ǫ1/2ϕ1(X, T ) + ǫ3/2ϕ2(X, T ) + · · · , (15)

nR = n0 + ǫ2n1(X, T ) + ǫ3n2(X, T ) + · · · , (16)

where the unknown real functions ρj , ϕj and nj (j = 1, 2, . . .) depend on the slow variables:

X = ǫ1/2(x− vt), T = ǫ3/2t, (17)

with v being an unknown velocity, to be determined self-consistently at a later stage of our
analysis (see below). We now substitute the expansions (14)–(16) into Eqs. (5)–(7), and
taking into account the scaling of the parameters [cf. Eq. (13)], we equate terms of the same
order in ǫ, and obtain the following results.

At leading order in ǫ, namely at orders O(ǫ3/2) and O(ǫ), Eqs. (5)-(6) lead, respectively,
to the following linear system:

−v
∂ρ1
∂X

+ ρ0
∂2ϕ1

∂X2
= 0, (18)

−v
∂ϕ1

∂X
+ ρ1 = 0. (19)
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Its compatibility condition is the algebraic equation:

v2 = ρ0, (20)

which determines the velocity v of the linear excitations propagating on top of the cw
background, also referred to as the speed of sound v. In addition, Eq. (7), at the leading
order in ǫ, i.e., at order O(ǫ2), leads to the equation:

n1 = − γ̃C
γR

ρ1, (21)

connecting the reservoir density n1 to the polariton density ρ1. Obviously, once ρ1 is found,
then ϕ1 and n1 can be respectively derived from Eqs. (18), (19), and (21). We thus proceed
to the next order in ǫ, and derive from Eqs. (5) and (6), at orders O(ǫ5/2) and O(ǫ2)
respectively, the following nonlinear equations:

∂ρ1
∂T

− v
∂ρ2
∂X

+ ρ0
∂2ϕ2

∂X2
+

∂

∂X

(

ρ1
∂ϕ1

∂X

)

= 0, (22)

∂ϕ1

∂T
− v

∂ϕ2

∂X
+ ρ2 +

1

2

(

∂ϕ1

∂X

)2

− 1

4ρ0

∂2ρ1
∂X2

+ gRn1 = 0. (23)

The compatibility condition for the above equations can be found as follows. First, use
Eq. (19), as well as Eq. (21) to express ∂ϕ1/∂x and n1 in terms of q1. Next, differentiate
Eq. (23) once with respect to X , multiply by v, and add to the resulting equation Eq. (22).
The compatibility condition for Eq. (22)-(23) is the above mentioned algebraic equation (20),
together with the following KdV equation:

∂ρ1
∂T

− vgRγ̃C
2γR

∂ρ1
∂X

+
3

2v
ρ1

∂ρ1
∂X

− v

8ρ0

∂3ρ1
∂X3

= 0, (24)

At the present order of approximation, the above model does not incorporate dissipative
terms. The lowest order for such term appears in Eq. (5), and has the form −ǫ3α̃γRn1, i.e.,
it is a term of order O(ǫ3). Then, to take into account this term, we may modify Eq. (22)
by adding to its right-hand side the additional term ǫ1/2α̃γRn1. This, in turn, amounts to
incorporating the term −(ǫ1/2/2)α̃γ̃Cρ1 to the right-hand side of the KdV Eq. (24). To this
end, taking into regard this modification, we proceed by expressing the KdV equation in its
standard dimensionless form [49]. First, we apply to Eq. (24) the Galilean transformation
X = χ+[(vgRγ̃C)/(2γR)]T to remove the first-order spatial derivative term. Next, employing
the scale transformations τ = −(v/8ρ0)T and ρ1 = (1/2)u, we obtain:

∂u

∂τ
− 6u

∂u

∂χ
+

∂3u

∂χ3
= Γu, (25)

where Γ = 4ǫ1/2α̃γ̃Cρ0/v. Notice that the above equation is, in fact, a KdV equation with
linear loss. This model plays a key role in our analysis; it is used below to determine both the
analytical form and the dynamics of approximate (small-amplitude) dark soliton solutions
that can be supported in polariton superfluids.
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3. Dynamics of dark solitons

3.1. Analytical results

Based on the connection between the open dissipative GP model (3)-(4) and the KdV
Eq. (25), we can use solutions of the latter to construct approximate solutions of the original
problem. Thus, if u satisfies Eq. (25) then:

Ψ ≈
√

ρ0 +
1

2
ǫu exp

(

−iµt + i
ǫ1/2

2v

∫ χ

−∞

udχ′

)

, (26)

nR ≈ n0 − ǫ
γC
2γR

u. (27)

Let us now examine separately the cases with Γ = 0 and Γ 6= 0. In the former (lossless)
case, Γ = 0, Eq. (25) becomes the completely integrable KdV equation, which possesses the
single-soliton solution, u = us, given by [49]:

us(Z) = −2κ2sech2(Z), Z = κ[χ− η(τ)], (28)

where κ is a free parameter linking the soliton’s amplitude to its velocity, η(τ) = 4κ2τ+η0 is
the soliton center (with the constant η0 denoting the initial soliton location), and dη/dτ =
4κ2 is the soliton velocity in the (χ, τ) reference frame. Thus, in this case, up to order O(ǫ),
the macroscopic wavefunction Ψ of the polariton condensate and the exciton density nR,
can be expressed in terms of the original (dimensionless) coordinates x and t and physical
parameters as follows:

Ψ ≈
√

ρ0 − ǫκ2sech2(Z) exp

(

−iµt− i
ǫ1/2κ√

ρ0
tanh(Z)

)

, (29)

nR ≈ n0 + ǫκ2γC
γR

sech2(Z), (30)

Z = ǫ1/2κ

{

x−√
ρ0

[(

1− γCgR
2γR

)

− ǫ
κ2

2ρ0

]

t− x0

}

, (31)

where x0 is the initial soliton position, and we have considered, without loss of generality,
right-going waves with v =

√
ρ0. Clearly, the solution (26) has the form of a sech-shaped

density dip, with a tanh-shaped phase jump across the density minimum, and it is thus a
dark soliton. On the other hand, the exciton density (27) follows the form of an anti-dark
soliton soliton, i.e., it has a sech2 hump shape on top of the background, at the location of
the dark polariton soliton, and asymptotes (for x → ±∞) to the equilibrium density n0.

Next, we turn to the Γ 6= 0 case to study the role of the linear loss on the soliton
dynamics. First we note that, as is known, the KdV equation was first derived to describe
the evolution of shallow water waves [49]. Nevertheless, in the case where the water’s depth
is nonuniform, the KdV incorporates an effective dissipative perturbation of the form Γu,
as in the case of Eq. (25), with Γ being proportional to the (small) gradient of the water’s
depth [40]. Interestingly, in our case, Γ is connected with parameters characterizing the open-
dissipative nature of the problem (such as the polariton loss rate γC), a fact establishing an
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interesting connection of the polariton superfluids problem with the one of shallow water
waves.

The problem of the KdV soliton dynamics in the case Γ 6= 0 has been analyzed in the
past in various works, using a perturbed inverse scattering transform (IST) theory [41, 42]
and asymptotic expansion methods [43, 44] (see also the review [45]). The main results of
the analyses reported in these works are as follows. For sufficiently small Γ [as in our case,
where Γ = O(ǫ1/2)], the solution of Eq. (25) can be expressed in the form:

u(χ, τ) = us(Z; κ) + δu(Z, τ), (32)

where us and δu denote, respectively, the soliton and the radiative components of the solu-
tion. The soliton component has the functional form given in Eq. (28), but the parameters
setting the amplitude and velocity of the soliton, κ and dη/dτ , become functions of time.
In particular, their evolution is given by the expressions:

κ(τ) = κ(0) exp

(

2

3
Γτ

)

,
dη

dτ
= 4κ2(τ) +

Γ

3κ(τ)
, (33)

with the second of the above equations leading to the result:

η(τ) =
1

2κ(0)

{

6κ3(0)

Γ

[

exp

(

4

3
Γτ

)

− 1

]

−
[

exp

(

−2

3
Γτ

)

− 1

]}

+ η0, (34)

where once again η0 denotes the initial soliton position. The evolution equation (33) indicates
that the dark soliton’s amplitude decays exponentially in time: indeed, the exponential law
exp(2Γτ/3), when transformed back in the original time takes the form exp(−t/t⋆), where
the soliton decay rate t⋆ is given by:

t⋆ =
3

αγC
t0 =

3

γC

P
(th)
0

P0 − P
(th)
0

t0, (35)

where t0 is the characteristic time scale for the system introduced in Sec. 2. It is observed
that the soliton’s decay rate in the weak pumping regime depends on the decay rate γC
of the polariton condensate, as well as the relative deviation α of the uniform pumping P0

from the threshold value P
(th)
0 . This decay rate is twice as large compared to the one found

in Ref. [35]. This means that the small-amplitude dark solitons hereby predcited predicted
decay faster than the large-amplitude ones considered in Ref. [35].

In the present case of Γ 6= 0, there exists also the radiation component δu, which is
emitted by the soliton under the action of the perturbation. This component has the form
of a shelf, whose generation was studied by means of the IST perturbation theory and
asymptotic expansion techniques [41, 42, 43, 44]. According to these works, the structure
of the shelf can be found in a closed analytical form which, however, is cumbersome to be
presented here. Instead, we present the asymptotic form of the shelf:

δu ≈
− 2Γ

3κ(τ)
Z2 exp(−2Z), Z ≫ 1,

− Γ
3κ(τ)

[1 + 2Z2 exp(2Z)] , −Z ≫ 1.
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Figure 1: Propagation of the polariton wavefunction modulus, for ǫ = 0.01. The dashed (white) line shows
the theoretical prediction of our model for the position of the soliton center (where the density is minimum),
for the same initial profile.

Notice that at the times κ−2(0) ≪ τ ≪ Γ−1 (recall that κ(0) is the initial soliton amplitude)
the form of the shelf is even simpler [45]: in the region 0 < χ < D(τ) ≡

∫ τ

0
4κ2(τ ′)dτ ′, the

wave field is approximately uniform, namely:

δu ≈ − Γ

3κ(τ)
, (36)

while outside this region u may be set equal to zero. Here, the initial coordinate of the
soliton is χ0 = 0, while D(τ) is the distance traveled by the soliton up to the moment τ , and
κ(τ) evolves in time according to Eq. (33). The above asymptotic result leads —according
to Eq. (26)— to a simple estimation of the shelf amplitude in terms of the original variables,
namely:

|Ψ|2 − ρ0 ≈
2

3
ǫ3/2

α̃γ̃C
κ(τ)

√
ρ0
. (37)

Thus, under the action of the perturbation, the original soliton changes speed and shape, and
forms a shelf —namely a long, almost constant (sufficiently far away from the soliton) tail
accompanying the soliton, at the end of which there are small oscillations in time and space.
Notice that the emergence of the shelf in the problem under consideration, is in accordance
with the analysis of Ref. [46]: in this work, a multiscale boundary layer perturbation theory
was used to show that shelves appear generically when dark solitons evolve under the action
of dissipative perturbations (see also Ref. [47] for an analysis on dark solitons and shelves
in nonlocal media).

3.2. Numerical results

Next, we test the validity of our approximations and analytical results by means of
direct numerical simulations for the system of Eqs. (3)-(4). Our aim is to compare these
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Figure 2: Initial (left panels) and final (right panels) (t = 100) polariton wavefunction modulus (top
panels) and reservoir exciton density (bottom), for ǫ = 0.01. The solid (blue) and dashed (red) lines show,
respectively, the numerical and the theoretical predictions of our model, for the same initial profile, namely
the KdV soliton.

results with our analytic predictions presented above. For simplicity, in our simulations,
all quantities with tildes have been set equal to one, so that our initial data depend on a
sole parameter, namely the small parameter ǫ. Since our approach relies on a perturbation
expansion, we expect results for relatively smaller values of ǫ to give a better agreement.

A series of illustrative results are shown in Figs. 1–4. In particular, Fig. 1 depicts, for
ǫ = 0.01, the full evolution of the polariton’s wavefunction modulus. Here, it is observed
that the analytical prediction for the soliton trajectory, corresponding to the dashed (red)
line, closely follows the numerical result. In addition, to further verify our estimates for the
soliton’s decay rate and velocity, we depict in Fig. 2 the initial (left) and final (right) profiles
for |Ψ| (top panels) and nR (bottom panels), in the same case of ǫ = 0.01. We also depict
in the panels, shown with a dashed (red) line, the prediction of our reductive perturbation
theory. For this value of the small parameter, the two are nearly indistinguishable.

Next, we use a relatively large value of the small parameter, namely ǫ = 0.1. As was to be
expected, the deviations for the same duration of the propagation are more evident. First,
the contour plot for this scenario, depicted in Fig. 3, shows again a fairly good agreement
between our model and the numerics of the full equations, at least up to t ≈ 50. Nevertheless,
as it is shown in Fig. 4, where the initial and final (at t = 100) snapshots for |Ψ| and nR−n0

are depicted, the analytic results underestimate the speed (but only by a few percent) and
overestimate the strength of the peaks (by some 15%).

For the the same case of ǫ = 0.1, Fig. 5 depicts the emergence and evolution of the shelf.
It is clear that, in accordance to our analytical predictions based on the KdV theory, the
shelf is on top of the background density, and its front propagates in the direction opposite
to that of the soliton, at roughly the same speed. It is observed that the shape of the shelf
becomes flatter as it propagates, and at the end of the shelf, small oscillations are clearly
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Figure 3: Same as in Fig. 1 for ǫ = 0.1.
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Figure 5: Linear radiation (shelf) of the polariton wavefunction modulus at t = 50 (solid blue line) and
t = 50 (dashed red line), for ǫ = 0.1. The ‘dips’ of the main dark soliton pulses can be clearly observed.

observed, which is the typical scenario in the KdV dynamics [41, 42, 43, 44]. Thus, the
results of our simulations are in a qualitative agreement with the effective KdV picture.
Nevertheless, we should note that the prediction of Eq. (37) fails to quantitatively capture
the size of the shelf (the analytical estimate is about an order of magnitude larger than the
numerical result), a fact that can be attributed to the asymptotic nature of the analytical
prediction.

As a final illustration we report the results for a scenario corresponding to physically
attainable parameter values – cf., e.g., data presented in Ref. [8]. First we note that both
parameters g̃R and R are not very well known: the first is frequently set to zero, while
the second can be made to vary (for instance, by playing with the size of the confinement,
or width of the quantum well). Here we select values of gR = 0.005meV · µm2 and ~R =
0.005meV · µm2, together with gc = 3gR = 0.015meV · µm2, ~γR = 4×~γC = 2meV. From
these, and the choice nC = 2×1014m−2, and for the case of ǫ = 0.1, the scaled (tilde) values
are α̃ = 1, g̃R = 0.33, γ̃C = 1.67, γ̃R = 0.67, and R̃ = 3.33. For these parameters, the result
of the evolution of the dark soliton is shown in Fig. 6. As we can see, the agreement between
the numerical evolution and the KdV approximation is again fairly good, even for this more
stringent value of ǫ. Notice that only the initial and final profiles are shown, but this level
of agreement is maintained throughout the course of the numerical simulation.

4. Conclusions

We have studied an open dissipative mean-field model for exciton-polariton condensates.
In particular, the considered system is composed of a generalized open-dissipative Gross-
Pitaevskii equation, describing the macroscopic wavefunction of an incoherently pumped
polariton condensate, coupled to a rate equation for the exciton reservoir density. Con-
sidering a uniform pumping, and assuming that the polariton loss rate and the rate of the
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Figure 6: Same as Fig.4, but for parameters g̃R = 0.33, γ̃C = 1.67, γ̃R = 0.67, and R̃ = 3.33.

stimulated scattering into the condensate are sufficiently small, we have analyzed the regime
of weak pumping.

Using a perturbative approach, we have derived an effective KdV equation with linear
loss. This KdV model was used to describe the analytical form and the dynamics of ap-
proximate dark soliton solutions that can be supported in exciton-polariton condensates.
Thus, it was found that the polariton field supports a decaying dark soliton, with a decay
rate depending on the physical parameters of the problem, such as the polariton decay rate
and the relative deviation of the uniform pumping from its threshold value. It was also
found that the evolution of the dark soliton is accompanied by a shelf, whose emergence and
subsequent dynamics are in qualitative agreement with the KdV picture. The analytical
findings were found to be in fairly good agreement with the direct numerical simulations,
even for the case of a relatively large value of the formal small parameter.

It would be interesting to extend our considerations to multi-dimensional and multi-
component (spinor) polariton superfluid settings —see, e.g. Refs. [50, 51] and Refs. [52, 37]
for work on spin dynamics of dark polariton solitons. In this setting, a quite relevant in-
vestigation would concern the existence of spinorial, vortex-free dark solitonic structures
in such systems; notice that such states are known to exist in single-component Gross-
Pitaevski/nonlinear Schrödinger systems, where small-amplitude dark solitonic structures
obey effective Kadomtsev-Petviashvilli (KP) equations —see, e.g., the review [53] and ref-
erences therein. It should also be interesting to use the methodology devised in this work
to study other models that are used in the context of open dissipative systems, such as the
Lugiato-Lefever equation [54] describing dissipative dynamics in optical resonators, and also
supports —in the defocusing regime— dark solitons [55].
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Szymanska, R. André, J.L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature
443, 409 (2006).

[2] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007).
[3] W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N.

Kumada, T. Fujisawa, and Y. Yamamoto, Nature 450, 529 (2007).
[4] H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, Y. Yamamoto, Phys. Rev. Lett. 99, 126403 (2007).
[5] H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).
[6] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[7] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).
[8] M. Wouters, I. Carusotto, and C. Ciuti, Phys. Rev. B 77, 115340 (2008).
[9] S. Pigeon, I. Carusotto, and C. Ciuti, Phys. Rev. B 83, 144513 (2011).
[10] J. Keeling, N.G. Berloff, Phys. Rev. Lett. 100, 250401 (2008).
[11] M. O. Borgh, J. Keeling, and N. G. Berloff, Phys. Rev. B 81, 235302 (2010).
[12] C. J. Pethick and H. Smith, BoseEinstein Condensation in Dilute Gases (Cambridge University Press,

Cambridge, 2002).
[13] L. P. Pitaevskii and S. Stringari, BoseEinstein Condensation (Oxford University Press, Oxford, 2003).
[14] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, The Defocusing Nonlinear
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