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Abstract. Complexity metrics are useful measurements to ascertain the
quality of software. However, the metrics are only applied and isolated in
one specific development phase and they can not trace the quality (and
the evolution) of the same software artifacts in all development phases
within the context of the software lifecycle. In this paper, we propose a
methodology to use a traceable metric to measure software artifacts from
requirements to implementation in a system. We validate our approach
on transactions defined in use cases and implemented in source code.
Some initial results show that our approach can solve the problem of
tracing software artifacts during the software development process.

1 Introduction

UML models provide a useful means to have a controlled (clean) process from
requirements to implementation levels for developers during software develop-
ment. The most known models are Use-Case Model, Analysis Model, Design
Model and Implementation Model [8]. These models are not independent one
from each other, but they keep different relationships between them. For exam-
ple, the Use Case Model describes the proposed functionality of a target system.
The Analysis Model describes the structure of the system or application, detail-
ing the logical implementation of the functional requirements identified in the
Use Case Model. The Design model builds on the Analysis Model by describing
in detail the structure of the system and how the system will be implemented.
Finally, the Implementation Model represents the physical composition of the
implementation in terms of subsytems and implementation elements (directories
and files, including source code, data and executable files).

Even when we have described briefly all the models, we observe that there
are (implicit) dependencies that tightly link one model to another one. These
dependencies are named traces [6]. They can be defined through the historical
or process relationships between elements that represent the same concept in
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the different models. We consider them as implicit because there are no rules to
derive the dependencies from one model to another one.

However, the possibility of tracing different elements and their relationships
between the models is important mainly in software maintenance. During this
phase, the software engineers must cope with changes in a system (for example,
due to new user needs or new platforms). These changes can affect entities in
the implementation or in any intermediate products of a system. But in any
development level, the modelled entities are not just a lonely set of software
artifacts, but they result from a mapping of high/low level entities designed
in another model. For example, if we consider the design and implementation
levels, a Java class in a package in a system is the low level representation of
a modelled class of the class diagram of the system. Any change can generate
improvements or errors, and the developers should be able to (forth and back)
track them. But the process of tracing is not trivial because these dependencies
(between entities) are implicit.

During software development, we apply different metrics on software elements
and relationships to measure different attributes of the software. Specifically in
case of size or complexity metrics, which provides a measurement to a specific
internal product feature in the target software, we have specific metrics for each
particular model or phase of a system lifecycle. Briefly, Function Points (FP) [4]
are applied to models during modeling/requirements phase, Use case Points [9],
Transactions and Paths [15] are based on Use case Models, Chidamber-Kemerer’s
[7] metrics are design-oriented, cyclomatic complexity [11] is graph-oriented and
Lines of code is code-oriented. Even when the choice of metrics models is wide,
there are no metrics that could be applied and traced through the complete
process of software development (from requirements to implementation).

The application of specific metrics for each development phase is a drawback
to track the evolution of the software elements and relationships in a system. In
other words, the developers can define and measure the requirements during the
first stages of an application development. They can also calculate requirements
size and complexity [15], but these metrics will be only kept as information of this
development phase, because it implies a particular characteristic (in our case,
requirements) in a specific model. However, software engineers must have a global
view of the system, and must be able to identify each software element (and its
characteristics) from requirements to implementation phases. It is important for
them to know if they were implemented (or not), decomposed in other software
components, integrated in an existing one and its size and complexity, just to
mention some.

To cope with this requirement, we develop an approach based on two met-
rics proposed in Robiolo et al. work [15, 10]: Number of Transactions (nT ) and
Number of Paths (nP). They are based on use cases and computed from textual
descriptions of use cases and UML Models (e.g., secuencial diagram, which is a
design model). nT is the number of transactions in the use case identified from
the actor stimulus in the text by the verbs, i.e. the actor actions interacting with
the system. nP is the number of paths of a transaction of the use case textual
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description. Each transaction has a main path, which is the textual description of
the regular interaction between the actor and the system, and alternative paths,
which are identified by the IF . . . THEM expression. Thus, the computation of
nP in use case textual description is based on the same idea that MacCabe com-
plexity [11] when applied to code, so each IF . . . THEM expression adds 1 to the
complexity computation. Summarizing, nT measures the use case size and nP,
the transaction complexity

In this paper, we show how both metrics can be calculated in source code,
and we show how the traceability of the metrics helps to understand how the
different requirements were implemented in a target application, and which are
the explicit differences between requirements in terms of models and source code.

This paper is structured as follows: Section 2 details our approach to analyze
the source code to obtain the metrics in the system. Section 3 presents the case
study, the obtained measurements and analysis of the results. Section 4 cites
some related work, and finally Section 5 presents some conclusions and future
work.

2 Our Approach

As mentioned previously, we need to calculate two metrics: Number of Trans-
actions (nT ) and Number of Paths (nP) starting from source code using the
concept of complexity metrics. We must remark that our approach is mainly
based on object-oriented languages.

The starting point is the identification of a transaction in source code. To
map the definition of a transaction based on use cases into code, the key aspect
was to identify the method(s) that implement the actor’ stimulus in the source
code. As the identified method(s) is (are) entry points to the system, we name
them as access-points. As a transaction is made up of a set of sequential method
calls, the access-point is the method that is not called but it calls other method.
Thus, the nT is the number of access-points.

Once we identified the access-points of the systems, the complexity of a trans-
action is computed in terms of number of the paths of the transaction where the
access-point(s) is(are) the starting point(s). Each transaction has a principal
path, built with the chain of method calls from the starting point to the end of
the transaction, and alternatives paths (AP), which are identified by the if-then
expressions. This definition of transaction is similar to the one suggested in [18],
which makes cyclomatic complexity easy to compute, where each alternative
path adds one to the complexity of the principal path whose complexity is also
1. In terms of formulas, if a transaction T has a chain of methods calls m1 ...
mk, then

nP (T ) = 1 + AP(starting point method) +
k∑
1

CC(mi)− k (1)
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if AP (starting point method) = 0 (i.e. the access point method has no alter-
native paths), then the formula will remain as in [18], where k is the number of
methods calls, CC(mi) is the cyclomatic complexity metric of the method mi.

As said previously, the identification of transactions in source code is not
trivial. Therefore, we developed an approach consisting of 5 steps:

1. Mapping from Source Code to a Metamodel. Our goal is not to link our
approach to a specific object-oriented programming language. Thus, instead
of analyzing the source code itself, we generate a model of the source code
to keep our analysis independent of the target source code. Our case study
is implemented in Java, so we chose Recoder to generate the model of the
source code. Recoder is a Java framework for source code metaprogramming
aimed to deliver a sophisticated infrastructure for many kinds of Java
analysis and transformation tools [3]. This framework parses all the source
code and generates a Abstract Syntax Tree (AST) for each Java file in the
system. The set of trees then are a highly detailed syntactic model, where
no information is lost. They represent the model of the analyzed source code.

2. Computation of Mc Cabe Complexity of Methods. As we base our compu-
tation of the nP based on the Mc Cabe Complexity, we calculate it for
each method in the model, represented by its Abstract Syntax Tree (AST)
generated by Recoder.

3. Reducing the Recoder model. Even when Recoder tool provides complete
information regarding the target source code, we need a reduced model
of the source code to make further analysis step easier. Specifically this
reduced model only keeps the information regarding method calls (to detect
the access points to build the transactions) of the generated Abstract
Syntax Trees (AST). Thus, we only keep the information of classes,
methods, attributes, method calls (including constructors) and inheritance
relationships, and the corresponding Mc Cabe complexity of all the methods.

4. Computation of McCabe complexity of Methods. . As we base our computa-
tion of the nP based on the McCabe Complexity, we calculate it for each
method in the reduced model, represented by its Abstract Syntax Tree
(AST) generated by Recoder.

5. Mapping reduced model to logic facts. In order to detect access points, the
reduced model of the source code is mapped as logical facts using CLIPS
[2], which is a productive development and delivery expert system tool
which provides a complete environment for the construction of rules and/or
object-based expert systems. Thus, any interpretation regarding the target
model is simplified to writing logic rules. This logic model of the source
code is used to infer more useful information of the system.
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6. Adding lost inheritance characteristics. With Recorder, we just analyzed
the object- oriented model from a syntactic viewpoint. But we have to
consider semantic relationships, such as inheritance relationships that
have influence in the computation of nP. Specifically, we have to add
logical facts to the model that show that a subclass B of a class A, can
answer a call of a method m, which is implemented in the superclass
and not overwritten in B. Also, other level of inheritance have to be
considered: i.e. if a class A is superclass of class B, and class B is superclass
of class C. As the transitive inheritance information of C is a subclass
of A is lost, it is added as new logical facts in the model generated by CLIPS.

7. Detecting access points. The detection of the access points to build the trans-
actions is designed with logic rules implemented in CLIPS. The rules are the
following ones:
(a) Class A has a method m as an access point, if m is defined in class A, class

A implements the interface ActionListener, and the signature of m is
void actionPerformed (java.awt.event.ActionEvent).

(b) Class A which implements main(String[]) as static method.
(c) Other rules for the specific implementation environment, added manu-

ally.

8. Building Transactions using access points. The previous step identified the
access points of the target program. We have to use them to build the trans-
actions on the source code. As a first step, we identify which are the trans-
actions in the different analyzed use cases. Once we have identified them, we
can have different mapping strategies:
(a) A transaction with a unique access point.
(b) A transaction with multiple access points: For example, in a form with

different fields, a piece of code is executed whenever the user fills in one.
However, the transaction ends when all the fields were filled in.

(c) Several transactions with the same access point. A transaction can be
an alternative path inside the code, that is executed starting from an
access point, which is common to several transactions.

9. Computation of the nP of each identified transaction. Once we have
identified the transactions, we compute the complexity of them based on
the number of paths of the method calls, as said previously in this section.

3 Case Study

To validate our approach, we use a specification of an ATM System [1] to validate
the presented approach. We chose this case study because it is a middle-sized
one, it was developed by third parties and we have the textual descriptions of
the use cases and the Java source code. Table 1 shows the traceability between
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two models: use case model and code model. Use case model is represented
by the name of use cases and the actor’s actions identified in use case textual
descriptions, which are identified in the use case transaction. Code model is
represented by Java classes, and the access points, that are identified in code
using logic rules in the reduced Recorder model. The nT identified from code is
27; however, the nT in use case model is 21. Table 2 shows the use case names, the
measurements values of nP obtained manually on use cases and automatically
on source code. The latter ones are calculated as follows: We apply the formula
1 to each transaction that was identified by the access point and mapped to the
use case. Finally, the nP of each use case transaction were summed up.

Use Case Model Use Case Model Code Model Code Model

UC Actor’s actions of UC T UC Access point

System Shutdown turns off atm.ATM (performShutdown)

System Startup enter (Startup) atm.ATM (performStartup)

Session insert, enter (Session) atm.Session (performSession)

Deposit Transaction Accept atm.transaction.Deposit (complete Transaction)

Deposit Transaction Choose D atm.transaction.Deposit (getSpecificsFromCustomer)

Inquiry Transaction Choose I atm.transaction.Inquiry (complete Transaction)

Inquiry Transaction Choose I atm.transaction.Inquiry (getSpecificsFromCustomer)

Transaction Choose T atm.transaction.Transaction (performTransaction)

Transfer Transaction Choose Tr atm.transaction.Transfer (complete Transaction)

Transfer Transaction Choose Tr atm.transaction.Transfer (getSpecificsFromCustomer)

Withdrawal Transaction Choose W atm.transaction.Withdrawal (complete Transaction)

Withdrawal Transaction Choose W atm.transaction.Withdrawal (getSpecificsFromCustomer)

Invalid Pin Extension re-enter atm.transaction.Transaction (performinvalid PIN)

Transaction not specified ATMMainE (actionPerformed)

Transaction not specified simulation.ATMPanel.72. . . 09 (actionPerformed)

System Startup enter (Startup) simulation.BillsPanel.26. . . 84 (actionPerformed)

Session Insert simulation.CardPanel.61. . . 43 (actionPerformed)

Transaction not specified simulation.LogPanel.45. . . 72 (actionPerformed)

Transaction not specified simulation.LogPanel.45. . . 63 (actionPerformed)

Session Insert simulation.SimCardReader. . . (actionPerformed)

Deposit Transaction Accept simulation.SimEnvelopeAc. . . (actionPerformed)

Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all) simulation.SimKeyboard. . . 08 (actionPerformed)

Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all) simulation.SimKeyboard. . . 09 (actionPerformed)

Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all) simulation.SimKeyboard. . . 38 (actionPerformed)

Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all) simulation.SimKeyboard. . . 74 (actionPerformed)

System Startup, System Shutdown turns on, turns off simulation.SimOperatorPanel. (actionPerformed)

Transaction not specified simulation.SimReceiptPrinter. (actionPerformed)

Table 1. Class, Access Point, Use Case and Transaction identified in a Traceability
Relationship

Analysis of the Results. From Table 1, we can observe that our hypothesis
that there is a dependency between transactions at use case level and source code
level is confirmed. Thus, we consider that the transaction is traceable. However,
the traceability relationship between transactions at use case level and code level
is not one to one, but it is zero to many. This means that a code transaction
may be not defined at the use case level, and that a use case transaction may be
decomposed in more than one transaction at the code level. But when analyzing
the results, we do not keep traces between paths at use case level and at code
level (as we do in transactions), because an alternative path is not identified as
a requirement unit, as the requeriment unit is defined by a principal path. Even
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when we could find traces between paths, so far the information is not relevant
in our analysis.

Table 2 shows an important difference between nP (UC) and nP (Code),
the value of nP(Code) are higher than the values of nP (UC) . There are also
differences between use case transaction and code transactions. This result can
be considered normal because the level of detail of developers is different when
they work in requirements phase and programming phase.
Discussion. Regarding the methodology, the most difficult aspect was the iden-
tification of the access points in the source code to build the transactions, because
it is based on rules that we have built. In this paper, we limit the number of rules,
but analyzing other case studies, other ones can be added to refine the results.
Moreover, the developed methodology to identify a transaction in source code
is complex. The reason of this problem is that the implementation environment
does not provide facilities to trace elements from requirements to code. Also the
fact that the use case model is informal results a disadvantage of the tracing
detection and metrics calculation.

Use case name nP (UC) nP (Code)+ k

System Startup Use Case 2 18

System Shutdown Use Case 1 8

Session Use Case 4 81

Transaction Use Case 4 94

Withdrawal Trasaction Use Case 2 33

Deposit Trasaction Use Case 3 115

Transfer Trasaction Use Case 1 52

Inquiry Trasaction Use Case 1 17

Invalid Pin Extension 3 85
Table 2. Path measured on UC and Code

4 Related Work

Several authors have dealt with the traceability issue in different contexts, such
as databases information, maintaining, requirements or analysis, although none
cope with tracing metric from requirement to code. Pfleger et al. [14] cope with
processing measurements because they are more difficult to track, as they often
require traceability from one product or activity to another one. They argue
that in this case, databases of traceability information are needed, coupled with
software to track and analyze progress. Moreover, Murray and Shahabuddin [12]
point out that in the flight software in an Earth-orbiting science instrument
named Aquarius they have institutional requirements on software development
that include requirements traceability. Requirements must be traced from source
requirements, and down to both verification scenarios and implementing design
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elements. They need to be able to produce traceability matrices for planning and
review purposes, which they do easily from the use case descriptions, with their
embedded requirement trace information, using Perl.

Paul et al. [13] present approaches needed for current software metrics
database environments to achieve efficient execution and management of large
projects. They proposed a combination of critical metrics and analytic tools that
can enable highly efficient and cost effective management of large and complex
software projects. Concerning changes in requirements metrics, they require con-
siderable effort to determine the extent of necessary revisions. These measures
include requirements traceability and requirements stability metrics, which point
out that the database requirement traceability will be another extension of our
work.

Shepperd [16] investigates the various existing metrics for system component
size. An alternative metric is proposed, based upon the traceability of functional
requirements from a specification to design. It is suggested that the multidimen-
sional model is more effective at identifying problem modules than any single
metric.

Antoniol et al. [5] presents a method to establish and maintain traceability
links between subsequent releases of an object-oriented (OO) software system.
Maintaining traceability links between subsequent releases of a software system
is important to evaluate version deltas, to highlight effort/code delta inconsis-
tencies, and to assess the change history. This can help in planning the future
steps of evolution and evaluating the reliability and cost of changes before the
actual intervention takes place. The method recovers an as is design from C++
software releases, compares recovered designs at the class interface level, and
helps the user to deal with inconsistencies by pointing out regions of code where
differences are concentrated. Results as well as examples of applications to the
visualization of the traceability information and to the estimation of the size of
changes during maintenance are reported in the paper. Although, the maintain-
ability aspect is out of the scope of this paper is a topic to be included in our
future works.

Visaggio [17] proposes a metric for expressing the entropy of a software sys-
tem and for assessing the quality of its organization from the perspective of
impact analysis. The metric is called structural information and is based on a
model dependency descriptor. The metric is characterized by its independence
from the method of building the system and the architectural styles which rep-
resent it at the various levels of abstraction. It takes into account both the
structure of the components at all levels of abstraction and the structure de-
rived from the links between the different levels of abstraction. Even though it
uses the concept of internal and external traceability, it may be replaced by only
one direction dependency or mutual. Also the definition of internal traceability
does not match with the UML definition of traceability used in this paper.
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5 Conclusions and Future Work

In this paper, we have presented an approach and our initial validation to detect
and measure the complexity of traceable transactions from requirements (use
cases) to implementation (source code) of a target software system. With our
initial experiments, we have shown that our metrics (nP and nT ) are useful
to evaluate if the requirements were implemented or not, and how they were
implemented. Thus, we can offer the developers a trace view from requirements
to code. Even when the results are promising, there are still some future work.
We want to analyze if there is a correlation between nP measured in use cases
and in source code. We want also to test our approach in other object-oriented
languages to see if we need to adapt the methodology in other case studies.
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