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Abstract 

In this article, a study for investigating the effects of replacing the aggregate of self-

compacting concrete by blast furnace slag has been carried out. Different mixes have been 

made by substituting the fine and coarse aggregates. The fracture energy, the tensile 

strength and the compressive strength have been tested. The remaining properties of self-

compacting, or the absence of them, have been observed.  

This research can find goals such as decreasing the price of aggregates, reducing the 

industrial waste and attenuating the rate of consumption of natural resources. 

The results show that the self-compacting property is gradually lost as the slag content is 

increased, so – when the ratio of replacement is low – the concrete keeps the self-

consolidating properties. However, these losses affect to the mechanical properties. 
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1. Introduction 

Blast furnace slag (BFS) is a nonmetallic industrial by-product, formed in blast furnaces with 

the melting of the iron ore, producing molten pig iron [1]. More than 500 million tons of blast 

furnace slag (BFS) are produced every year worldwide [2]. The blast furnace slag can be 

granulated slag (GBFS) or air-cooled slag (ACBFS). Granulated slag is cooled rapidly by 

using water, resulting in a vitreous slag, while air-cooled slag is slowly cooled by ambient air. 

The air-cooled slag solidificates and crystallizes, creating a rock-like slag [3]. 

The main use of blast furnace slag is cement production [4], which can be done by using 

granulated slag, but BFS can be used also as any other additive to concrete or as part of 

alkali activated materials [5] in the form of GBFS or ACBFS. Today, in the European cement 

regulations, there are 14 types of cement containing blast furnace slag [4]. 

In Spain, the 70% of slag produced in 2014 is recycled. However, the remaining 30% wasted 

- that represent half million of a tone – is deposited in landfills due to unknowledge about the 

recycling opportunities of this material [6]. Blast furnace slag can be used also in road 

construction [4], which is it main use in the USA. In there, in 2012, 68.6% of the ACBFS was 

used as road base, road surface layers and asphalt concrete, whereas only 13.1% of the 

ACBFS was used as aggregate replacement for concrete in the USA [7]. However, the 

demand for concrete has increased rapidly due to the development of industrialization and 

urbanization in the last decades. It is estimated that the world demands over 10 billion tons 

per annum of construction aggregates [8]. 

The use of blast furnace slag in the production of concrete can have economical motivations 

– acquiring blast furnace slag as a waste industrially generated is cheaper than obtaining 

natural aggregates from a quarry. Moreover, the reuse of blast furnace slag has implications 

in the enviromental preservation and promotes a sustainable development. In this way, is 
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important to investigate the use of slag in the production of concrete, either as an aggregate 

or as a binder [4]. 

The convenience of slag usage as aggregate in concrete will depend on the properties that 

have to be achieved, in fresh and hardened states. In this way, according with some authors 

[9], the concrete produced with blast furnace slag has more workability when fresh, facilitating 

the vibration and making a better compaction with less entrapped air. When investigating 

hardened properties, some researchs assure that a 50% replacement of cement with blast 

furnace slag can improve the mechanical properties and durability of concrete [10]. On the 

opposite, blast furnace slag replacing cement provokes lower strength during the early days 

due to a low initial rate of hydration [4]. This handicap can be fixed by the usage of chemical 

activators, by increasing its specific surface or by raising its temperature [11]. Consequently, 

depending on the application of the concrete, as well as on climate conditions, the rate of 

cement replacement by blast furnace slag will be different. 

However, the depletion of the natural aggregates as well as the consumption of large 

amounts of energy on the production, transportation, and use of raw materials, should be 

considered when producing concrete [12]. With this consideration, the use of ACBFS as 

aggregate in concrete, must be taken into account. 

According to [1], “during the past two decades, a series of studies have been undertaken to 

understand the behavior of concrete containing ACBFS aggregates [13–15]. These studies 

have shown that ACBFS aggregate concrete (SAC) has a great potential to be a feasible 

alternative to natural aggregate concrete (NAC) in the construction industry”. 

The goal of this research is to investigate the effects of adding air-cooled blast furnace slag 

(from now on, recycled aggregate) in substitution of the natural aggregate on the properties 

of the self consolidating concrete. Some concretes samples have been made in order to test 

their compressive and tensile strength, to study how the fracture proccess happens and to 
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see how the bilineal tension softening diagram changes as the slag content increases. It is 

used both coarse and fine aggregate, and the effect of each one of them is studied separated 

and mixed. 
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2. Materials and methods 

2.1 Materials 

For the production of the different compositions studied in this work, several components 

have been used. The cement used was CEM-II/B-L 32,5N, fabricated according with EN 

197-1[16].  The superplasticizer used was MasterGlenium 355C and MasterGlenium ACE 

325. The fabrication of it has been done according with the European Standard EN 934-2 

[17]. 

The natural fine aggregate (NFA) used was siliceous sand, while the natural coarse 

aggregate (NCA) used is was lime-filled. The recycled coarse aggregate (RCA) and the 

recycled fine aggregate (RFA) was all air-cooled blast furnace slag (ACBFS). The chemical 

composition of all of them is shown in Table 1. The measured density of NFA was 2.65g/cm3, 

the density of NCA was 2.66 g/cm3 and the density of ACBFS was 2.7 g/cm3. The similarity 

between densities make this ACBFS to be an appropiate replacement of this aggregate. 
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Table 1. Chemical compositions. 

As can be seen in Table 1, ACBFS is essentially a limestone material with a high content of 

SiO2 which make it composition to be an intermediate composition between the ones of NFA 

and NCA. Due to that, with low ratio replacements of slag, the global composition of concrete 

will not vary too much. However, it is important to remark that the mixes with NCA and fine 

ACBFS replacing the NFA will be mostly limestoned, while the composition with NFA and 

coarse ACBFS replacing NCA will be siliceous. A mix with only ACBFS will have a similar 

composition than a mix fabricated with both natural aggregates coarse and fine. The NCA 

has a large content of CaCO3 which appears in Table 1 as CaO plus loss in ignition. 

The measured granulometry of each aggregate used is shown in Figure 1. 

Component Cement NFA NCA ACBFS 

SiO2 20.96 95.6 0.013 28.12 

Al2O3 5.74 2.41 0.064 9.12 

Fe2O3 2.46 0.08 0.016 0.42 

MnO 0.10 - - - 

MgO 1.50 0.02 - 6.06 

CaO 60.89 0.09 55.743 51.14 

Na2O 0.36 0.28 - 0.19 

K2O 0.73 1.49 - 0.54 

TiO2 0.28 0.04 - 0.76 

P2O5 0.17 - - - 

SO3 1.11 - - 1.77 

MnO2 - - - 0.41 

BaO - - - 0.11 

Loss on ignition 5.2 0.2 43.997 1.47 
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Figure 1. Granulometry of aggregates 

 

As can be seen, the coarse slag is slightly smaller than the natural coarse aggregate. On 

the other hand, the fine slag is similar to the natural fine aggregate. This means that the 

range of particle size is narrower in the mixes where slag replaces natural aggregates.  

As can be seen in Figure 2, the shape of coarse slag aggregate is different than the shape 

of natural coarse aggregate. Indeed, coarse slag grains show irregularities and cavities, 

while natural coarse grains have smoothen surface which lets a higher compaction. 

 

Figure 2. Coarse slag aggregate (left). Coarse natural aggregate (right) 
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2.2 Compositions 

Five different kinds of concrete were produced. The fabrication of the mixes has been done 

according with the specifications in the European standard EN 12390-2 [18]. The 

components used for each composition are shown in Table 2.  

Composition 

Material 

I II III IV V 

Cement (kg) 386 

Water (L) 194 

Fine natural agg (kg) 1040 520 1040 -- 520 

Fine recycled agg (kg) -- 520 -- 1040 520 

Coarse natural agg (kg) 693 693 346.5 -- 346.5 

Coarse recycled agg (kg) -- -- 346.5 693 346.5 

Superplasticizer (L) 3.3 

Table 2. Composition of mixtures per m3 of concrete 

For each of the different compositions were produced 21 litres, which were casted into four 

specimens of 4.4 litres each with prismatic form. The concrete prisms were cured under 

water for 42 days, higher than 28 days, so it can be considered that the strengthen process 

was fully completed. The temperature of the water was 20ºC.. 

During the mixing proccess of each type of concrete, it was observed how the paste and 

aggregate flew properly in the compositions I, II and III, as it happens in self-consolidating 

concrete. However, mixture IV had lost self-consolidating properties (see Figure 3). Due to 

the fact that composition IV has the lowest range in size particle, it was a mixture that 

demanded more water [19-21]. Following this idea, a fifth sample was done based on 

composition IV but with a higher content of water. The composition of this sample is named 

IV.b. 
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To the composition I was made the Flow Table Test for determine the self consolidating 

properties and the consistency of fresh concrete, this test is define in the European Standard 

EN 12350-5 [22]. The time until reaching the spread diameter was less than a minute and 

the diameters of the final shape were 70 centimeters (the longest one) and 62 centimeters 

(the shortest one). Both of them are perpendicular to each other. Also, it could be checked 

that there was no seggregation, as can be seen in Figure 4. This displacement of the 

aggregates happened in all the directions, and they moved as much as the cement paste, 

as can be seen in Figure 4. 

 

 

 

 

 

 

The specimens have a prismatic form. These prisms were 44 centimeters long, and with a 

Figure 3. Mixture I (left) and Mixture IV (right) 

Figure 4. Flow Table Test 
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squared cross section of 10 centimeters each side. 

Considering that the self-consolidating properties are lost when recycled aggregate is added 

in high proportions, it was assumed that mix V was not going to be self-consolidating also, 

so composition V had an extra-consolidation done. This extra-consolidation was executed 

with a vibrating table for 1 minute.  
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3. Methods 

3.1 Density test 

The first test done to each mix was to obtain its density. The density was calculated as mass 

per volume unit. Both units – mass and volume – were measured in hardened samples. For 

each composition, all samples were tested and the average data was calculated. 

3.2 Compression test 

Compressive strength is the most usually measured mechanical property of a concrete. 

Considering that concrete is a material with a good behaviour under compressive loads, the 

quality of a concrete can be measured by the compressive strength. Moreover, generally, a 

concrete with a higher compressive strength will have better mechanical properties and more 

durability. 

The compression test is defined by the European Standard EN 12390-3 [23]. Cubic 

specimens with faces of 10 cm long in each side suffer a increasing compressive load applied 

in the top face until the fracture of the material happens. Four specimens were tested for 

each mix. The compression was applied on a top face and a bottom face, letting the lateral 

faces free for displacements in all the directions. The velocity of the test is controlled by the 

displacement of the top face, which gets strained at a pace of 0.5mm/min. When 

compressive strength (fc) is reached, the cube collapses and the test finishes. The maximum 

load applied to the cube before reaching the collapse, is the value of fc for this sample. 

The displacement of the top face and the load applied to the specimen were recorded each 

0.2 seconds. 

3.3 Barcelona test 

Barcelona test, also known as double-punch test, let to know the tensile strength of concrete 
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(ft). This test is defined according to the specifications in the Spanish Standard UNE-83515 

[24], which assign this test for fibre-reinforced concrete. However, according with previous 

authors [25], this test is also valid for mass concrete. 

Cylindrical steel punches with a height of 20 mm and a diameter of 25 mm were placed at 

the centre of the top and the bottom surfaces of the specimen. The specimens used were 

cubic with faces of 10 cm long in each side. Four different samples for each kind of concrete 

have been tested. 

The displacement of the metallic cylinder over the top face and the load applied to the 

concrete specimen were recorded each 0.2 seconds. 

During the test, the cylinders suffer compression against the surfaces where they were 

colocated, until they penetrate on the concrete specimens. This penetration provokes a 

tension state inside the concrete, until the specimen gets broken. In this point, the maximum 

tensile stress (ft) that the concrete can support, is reached. 

Once the maximum load applied for breaking the specimen is known, the ft can be measured 

by the formula of Chen and Yuan [26]. 

3.4 Three-point bending test 

This test was done in order to measure the fracture energy according to the work-of-

fracture method of RILEM. The fracture energy of concrete is an important parameter in the 

analysis of the mechanical behaviour of concrete structures [27]. 

The test was done directly on the initial prism specimens, with a length of 44 cm and squared 

bases of 10 cm long in each side. Before doing this test, a notch is done to the concrete. This 

notch goes parallel to the bases, with 5 centimeters of depth, and cuts completely a lateral 

face of the prism. The notch is done in the center of the prism, separated the same length 

(22 cm) to each base. The lateral length of each prism is 10 centimeters, so the ratio between 
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depth of the notch by total depth of the specimens was 0.5. In the middle cross section with 

the notch, the remainig area uncutted has a height of 5 cm and is 10 cm wide. This brings to 

a ligament area of 50 cm2. 

The notch is collocated looking downwards, so the face cut by it will be called the bottom 

face from now on, and in the opposite– the top face – will be where the load is applied. Since 

the modifications proposed by Guinea et al. [28-30] has been followed, the bending test is 

done compensating the self weight – some rubber bands were holding the prism for this. 

The load is applied on the top face of it, in the center of that face, exactly over the notch, with 

a cylinder parallel to the bases of the prism. The load applied provokes displacements and 

strains, which are measured along with the value of the load. There is a record of data for 

each 0.25 seconds. In that way, there are four measurings taken each second for each of 

the four following magnitudes: the load applied to the top face, displacement of that face, 

strain of the bottom face according with a reference taken on the top face and the aperture 

of the notch in the bottom face. 

There are two different stages in the test: firstly, the load applied is increased by making 

constant the increment of the displacement of the top face, which increases 0.2 mm each 

minute, until the load reaches a value of 0.2 kN. After this point, there is a second stage 

where the evolution of the test is controlled by the speed of opening of the bottom part of the 

notch, until the aperture of the notch has increased in 1mm since the beginning of the test. 

In this moment, the test finishes. When the aperture of the notch reaches 1 milimeter, there 

is a crack that can be seen going from the front of the notch to the top face. When the rubber 

bands are removed, the prism breaks following the route marked by the crack. 

All prisms have been tested, so the final results for each material can be taken by an average 

of more than one sample (four samples as much), making it possible to discard the results 

of any test done wrongly. 
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3.5 Bilinear softening curve 

With the results of the bending test, some parameters can be obtained with an iteration 

proccess. By using the real softening curve (which correlates Load and Notch widening), the 

Elastic modulus and the ft can be calculated. Also, three more data (a1, a2 and b2) which 

define the slopes of two straight lines (a1, a2) and the zero crossing of one of this lines with 

vertical axis in the diagram (b2). With this five data, it can be represented the bilinear 

approximation of the theorical correlation mentioned before – Load-Notch widening – as can 

be seen in Figure 5. The final result is a three-line graph that represent some of the main 

properties of each concrete in a very simple way, just with linear correlations. 

 

Figure 5. Load (F) – Notch opening (d) bilineal correlation  
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4. Results 

4.1 Density test 

The results obtained are shown in the Table 3. 

Mix I II III IV IV.b V 

Density (kg/m3) 2.28 2.21 2.17 1.97 2.15 2.31 

% standard deviation 0.98% 1.88% 2.64% 1.22% -- 2.63% 

Table 3. Density of mixtures 

As can be seen in Table 3, the adition of slag leads to a decrease in density. Cement and 

water content have not changed between different mixtures and density of different 

aggregates is quite similar, so density depends mostly in porosity. Mix II, where replacement 

of aggregate is equal to 50% of fine aggregate, shows a decrease of 3% in density, while the 

replacement of 50% in the coarse aggregate shows a decrease of 5% in density, when 

compared with composition I. In fact, mix II has a slightly higher granulometry that explains 

the higher porosity which causes this decrease on density, meanwhile mix III is made with 

coarse slag aggregate, which – as could be seen in Figure 2 – had irregularities and cavities 

in the surface of the grains, causing the lower density on the mixture when compared with 

mix I. Moreover, a wider particle size distribution causes a higher packing density and 

decreases water demand, while a narrower particle size distribution gives higher hydration 

rates for equal specific surface area [19-21]. Mix III has a narrower particle size distribution, 

however the proportional amount of water was not changed between different mixes, which 

provokes a decrease in density. 

However, the density of composition IV, which had a full replacement of aggregate by slag, 

is 13.5% lower than density of composition I, and the absolute data was 1.97 kg/m3, which 

is extremely low compared with an average concrete density. This matches with the 
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excessive porosity that it showed in Figure 3. The variation of density between mixes I and 

IV are an emphasis of the variation of density between mixes I and II or mixes I and III. All 

the reasons why density was lower in mix II and in mix III have a combinated effect in mix IV. 

This excess of porosity was tried to be corrected by adding more water to the mix, which 

corrected the density by increasing it a 9%, which means having a density 6% lower than 

mixture I. 

With this information, we can sentence that a full replacement of aggregate by blast furnace 

slag, affects to density. 

However, mix V did not show any porosity. Therefore, mixes I and V have very similar 

densities. The difference of density in mix V is only around 1.5% in relation to mix I, which 

suggests that the self consolidation of mix I worked as good as the vibration. Aggregates in 

mix V are smaller than aggregates in mix I, which explains the slightly less porosity that it 

have. 

4.2 Compressive strength 

The result obtained on this test consist on the nominal stress produced by the maximum load 

applied to the specimen, when it is supposed a uniform distribution of the stresses. 

The results are shown in Table 4. 

Material I II III IV IV.b V 

fc (MPa) 41.16 26.48 26.83 11.82 27.89 56.69 

% standard deviation 4.5% 7.9% 20.2% 12% 
-- 

4.2% 

Table 4. Results of Compression Test 

It can be seen that the concrete made with both coarse and fine slag replacing half of the 

aggregate has better compressive properties when vibrated than the self-compacting 
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concrete made only with natural aggregate – this improvement is over the 35%. Therefore, 

it can be assured that fewer costs in the material can create a significantly better material, 

but assuming the renounce of a self-consolidating concrete, which can be an interesting fact 

considering the increasingly concern of the waste of materials. 

Without vibration, the slag provokes a descent on the compressive strength when compared 

with the mix made only with natural aggregate. If the replacement of aggregate is not 

accompanied with an extra vibration, the fc of concrete is reduced by 35% when the amount 

of replaced aggregate is 50% of one of the two kinds of aggregates. There is no evidence of 

difference between replacing coarse aggregate or fine aggregate. This descent is situated 

around the 70% when all the aggregate is replaced. The excess of porosity reflected in a 

lower density is a cause for having less compressive strength in a concrete [31]. 

The sample of composition IV.b, which was made by adding an extra quantity of water to the 

mix, was tested also for checking its compressive strength, resulting in a sample with a value 

for the fc of 27.89 MPa, more than twice the value of the average of sample IV. This fact can 

lead us to considerate that the replacement of aggregate by slag should be done along with 

a higher use of water. 

4.3 Tensile strength 

When Barcelona test is applied to concrete without fibres, the ft can be obtained by applying 

the formula proposed by Chen and Yuan [26]. This formula uses geometrical parameters of 

the test and the maximum load applied before the concrete cube breaks. 

The average maximum load and ft obtained with this test for each kind of concrete Is shown 

in the Table 5. 

Material I II III IV IV.b V 

Maximum load (N) 81175 71250 69550 20016 32500 80325 
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ft [26] (MPa) 3.32 2.91 2.84 0.67 1.32 3.28 

% standard deviation 4.8% 3.0% 12% 13.9% -- 15.3% 

Table 5. Results of Barcelona Test 

As a conclussion, we can say that the addition of slag creates concretes with lower tensile 

strength. This reduction is located between 12% and 14% when only 50% of one of the kind 

of natural aggregates is replaced (mixtures II and III). When the replacement of aggregate is 

total and the amount of water added does not change, the ft falls down an 80%. The external 

appearance of this mix, suggested that it could not be used for structural usage, and the low 

data of ft reached is a hard evidence of this. 

However, this composition improves its properties notably by adding more water to the mix. 

When the replacement of aggregates by slag is superior than it in mixes II and III, but the 

concrete is vibrated, the ft remains in similar values than that obtained with just natural 

aggregates. 

4.4 Fracture energy 

The results from three-point bending tests are shown in curves correlating the load applied 

with the vertical displacement produced in the bottom face (face with the notch) of the prism. 

The area covered by this graph is the so-called work-of-fracture. In Figure 6, the average 

Load-displacement curve for each material is shown. 
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Figure 6. Load  - Vertical displacement for different mixtures 

 

The average fracture energy per area for each material (GF) and the maximum load reached 

for each concrete is shown in Table 6. As said before, the uncutted area in the cross section 

with the notched has 50 cm2. 

Material I II III IV V 

Maximum load (N) 1847 1861 1728 966 1831 

GF (N/m) 51.28 51.28 56.7 75.29 46.47 

% standard deviation of GF 19.4% 10.3% 16.5% 10.2% 33.8% 

Table 6. Results of Bending Test 

According with previous authors [28-30], the specific fracture energy of each mix can be 

calculated by the method RILEM with some modifications. The RILEM method needs various 

ratios of depth of the notch and does not consider the compensation of self weight. The 

fracture energy obtained is not a real constant on the material because it depends on the 

size of the sample. With this modifications, the fracture energy is calculated as the area 
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covered by the curves shown in Figure 6 plus an extra area that can not be measured when 

the self-weight is compensated, which correspond to the asymptotic area. This extra area 

can be estimated by adjusting the tail of the load-displacement curve [32]. Taking a point (δu) 

in the right-side of the curve – where the test was stopped – and considering the load in this 

point (P’(δu)) to be fictionally 0, the non-measured work of fracture that can not be measured 

directly is considered to be 
2·𝐴

δu
, where A is the value that gives a best approximation of the 

shape of the curve at the left of δu, when this shape is calculated as an hyperbole 𝑃′ = 𝐴 ·

(
1

δ2
−

1

δ𝑈
2 ), where δ is the displacement and P’ is the load depending on displacement and 

taking as a virtual reference P’(δu)=0. 

As shown in Table 6, the GF of mixtures I and II is equal, meanwhile the substitution of coarse 

aggregate leads to a increase in the GF, being this increasement of 10.5%. With the highest 

usage of slag (mixture IV), when it replaces all the natural aggregate, the GF reaches its top, 

increasing a 47% more than concrete with natural aggregate. 

The average GF obtained for mixture V is the lowest of all mixtures, which maybe shows that 

this concrete has less ductility. The GF is a 9% lower than in the reference concrete, however 

the deviation calculated of the different samples which have been tested is too high (33.8%), 

which shows hesitation over this data. 

One aspect to take in account is the fact that mixtures with lower GF has a higher maximum 

load. All curves of the different samples vary from sharped to wider. As can be seen in Figure 

6, the highest peak loads are obtained with a lower vertical displacement, and as the peaks 

of the curves gets lower, they tend to be more to the right. The extreme situation is mix IV, 

which despite having a maximum load of around 50% of the maximum loads of the other 

mixes, it covers a wider area, with the pre-peak curve less vertical and the decrease of post-

peak curve softer. 
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4.5 Bilinear softening curve 

The bilinear approximation of the real softening curve (Bilinear softening curve) presents the 

average results for each mixture shown in Table 7. 

Material I II III V 

ft 3.09 3.36 2.81 3.37 

a1 39.9 40.2 30.8 39.4 

a2 0.42 1.79 0.92 2.18 

b2 0.100 0.199 0.149 0.193 

E 29181 25412 24651 25627 

Table 7. Parameters for Bilinear softening curve. 

The load-displacement curve obtained in bending test for mix IV is very different of the curve 

that should be obtained for an adequate concrete. The non-linearity of pre-peak part of the 

curve and the similarity between the two slopes in the post-peak zone made it impossible to 

find a bilinear softening curve with a low enough tolerance. 

For all the other mixes, bilinear softening curve are shown in Figure 7. It can be observed 

that slag aggregate causes always a disminution on the value of the modulus of elasticity. 

This disminution varies between 12.9%, 15.5% and 12.2% for mixes II, III and V respectively. 

The similarity between mixes II and V remains in the other parameters, making both curves 

very similar one to the other. The mix III, however, shows a shorter peak (lower ft) and a more 

horizontal slope at the right of the peak, meaning that mix III is a weaker material in the elastic 

phase but more energy is needed for the propagation of the cracking [33]. Tensile failure in 

concrete can be caused by tensile failure of aggregates or by cracking in the surface between 

aggregate and cement paste [34]. Considering this, the size of aggregates in mix III was 

smaller than in mixes I, II and V, and this make shorter the route for propagation of cracking 



26 

 

between surfaces of aggregates. For this reason, the cracking in mix III grows following an 

irregular path and avoiding the aggregates, while in mixes I, II and V – with larger aggregates 

– this path would be much longer so the cracking is produced following a straighter route, 

cutting the aggregates (so it is necessary a higher ft) but once they are cut, having an easier 

and shorter growth of fracture. 

 

Figure 7. Bilinear tension softening diagram 

According with some authors [36], the value of a2 is a result of the aggregate interlock 

which is primarily governed by the maximum size and texture of the coarse aggregate 

used in the concrete mix. As mentioned before, the texture of the coarse slag is 

different, with more irregularities, than the texture of the coarse natural aggregate. 

Moreover, the mixes with slag have a higher slope in a2, resulting in a concrete with 

lower ductility. However, this influence also appears in mix II, which does not have 

coarse slag but fine slag, suggesting that texture in fine slag can also has an effect on 

the value of a2. The behaviour of parameter a1 is governed by the micro-cracking [35], 
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which is a property related with the ratio water/cement. This ratio was mantained in 

mixes I, II, III and V, which explains the similarity of a1 values. 

The pre-peak phase depends on two of the properties of concrete: elastic modulus and 

tensile strength. As can be seen in Figure 8, mix I is the most rigid mix, but a replacement on 

fine aggregates can increase tensile strength, even if this mixes are less rigid. Coarse slag – 

with irregular shape, more porous and with smaller grains – creates a material with a lower 

tensile strength and less rigidity.  

 

Figure 8 – Pre-peak phase. Bilinear tension softening curve 

Ahead of the crack, there is a zone where material is being in tension and all the deterioration 

mechanisms to produce the cracking of concrete are produced. This zone is called Fracture 

Process Zone (FPZ) and it size is related with the ductility of the material – the larger this 

area is, the more ductility has the material. However, it is not simple to calculate the size of 

it. Associated with this magnitude, the characteristic length (lch) of a material is considered to 

be proportional to the size of FPZ [32]. A longer lch means a larger FPZ, and lch is calculated 

with the formula 𝑙𝑐ℎ =
𝐸𝑐∗𝐺𝐹𝑇

𝑓𝑐𝑡
2   [35]. lch values are shown in Table 8. 
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Material I II III V 

lch 165.3 120.2 182.8 147 

Table 8. Characteristic length (mm) 

As it was mentioned before, mixtures with a higher ft tend to be mixtures with a lower GF. 

Considering that lch is proportional to GF and inverse to ft, mixture III – which had previously 

the highest value of GF between the mixtures with bilinear correlation calculated – is now 

the mixture with a higher value of lch, which means the more ductil of them. lch value is 

directly related with maximum coarse aggregate size [35], but for mixes I and II, the 

maximum coarse aggregate is the same, so the depletion of value produced, of around 

27%, suggests that fine slag produces concretes with lower ductility than natural fine 

aggregate. The lch of mixture V is between the values for mixture II and mixture III, probably 

influentiated by the reasons that make lch of II gets lower and also the reasons that make lch 

of mixture III higher. Moreover, the lower lch correspond to the sharper curves mentioned 

before, meanwhile the longest lch are related with the widest curves. 

With the parameters obtained for Bilineal Softening Curve of mix III, the Load-CMOD curve 

of these mix would be the dotted line represented on Figure 9. The real curve obtained with 

the data test is represented also as comparison. 
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Figure 9. Experimental curve and curve calculated with method of RILEM modificated for mix III 

 

  

0

400

800

1200

1600

2000

0 0,2 0,4 0,6 0,8 1 1,2

Lo
ad

 (
N

)

CMOD (mm)

Experimental

Calculated



30 

 

5. Conclusions 

The results of this research show that blast furnace slag is not an appropiate material for 

replacing the totality of aggregate needed in the production of self-compacting concrete. 

However, it is an interesting partial substitute that in certain doses maintain the self-

compactibility properties of the concrete. For non self-compacting concretes, the blast 

furnace slag conservate and even can improve the mechanical properties of concrete made 

with natural aggregates. 

The substitution of aggregate can not be total if the slag concrete is not going to be vibrated. 

Even with partial substitutions, not close to a full replacement, the mechanical properties are 

substantially lost. If there is an option for vibrating the concrete or if the substitution is made 

in low amounts (less than 25% of total aggregate), the mechanical properties resultant are 

still high enough for structural purposes. 

All this, along with the enviromental advantages that usage of blast furnace slag shows, make 

it a interesting material in the production of self-compacting concrete for low replacements. 
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