
Migrating inheritance-based applications
into components

Nicolás Passerini, Gabriela Arévalo

Universidad Nacional de Quilmes, Bernal, Argentina
npasserini@gmail.com, garevalo@unq.edu.ar

Abstract. Inheritance is one of the most important object-oriented mechanisms,
allowing code reuse and a conceptual hierachical modelling of a given domain.
However, as a white-box reuse mechanism, it introduces hidden (implicit) cou-
pling between classes in a hierarchy. This problem makes understanding and
maintenance difficult to grasp.
Actual approaches (such as Gamma’s) propose object composition over class in-
heritance as reuse mechanism to obtain better object-oriented design. However
the migration of a class-based application (or just some software artifacts) from
inheritance to composition paradigms is not trivial. To our knowledge, there are
only a few approaches that can deal with this problem, but there is no formal
language-independent analysis of a transformation algorithm that guarantees the
exact same behavior of a system once the migration strategies have been applied.
Thus, this paper presents some initial results in designing a refactoring approach
for a class hierarchy by analyzing the dependencies between the classes involved
in the inheritance relationship in a class-based system, and how they can be trans-
formed to obtain a better structure of the class hierarchy, focusing on getting com-
ponents with offered- and required-services in component-based system. Based
on this study, our main goal in this approach is to develop a (semi)automatic
language-independent algorithm using refactoring-based strategies which allows
the user to transform an inheritance relationship between a set of classes into an
association between two independent components with well defined interfaces.

1 Introduction

All software systems are exposed to changes during their lifecycle [6]. Many companies
are facing the fact that most of the changes cannot be predicted (unanticipated changes),
because they are driven by the market or emerging trends and technologies. Various ap-
proaches have been proposed to solve this problem, such as component-based software
development (CBSD) [7] that proposes to build applications out of validated and sub-
stitutable and reusable components. This component-based view of software is also one
of the keys to the transition to the service-oriented paradigm (SOP) and software as a
service approaches. Even when the CBSD and SOP approaches are useful in building
applications, most of existing applications are implemented in class-based languages,
where the main building mechanisms are the inheritance and the polymorphism. Know-
ing all the advantages that CBSD and SOP approaches have with components as black-
box mechanism, we believe that it is worth to develop migration strategies that allow

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 827

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15775601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the developers to transform the inheritance-based application into a component-based
one. However, the identification of the components in an existing object-oriented appli-
cation is not trivial, because the object-oriented building mechanisms generate strong
hidden coupling between the software entities in a system. Even with well-designed ap-
plications, these implicit mechanisms make the understanding of the original structure
(module, packages, classes) difficult to maintain, and their transformation to support
evolution into component-based approaches results as a hard task.

The goal of our research is the design of an approach to the development of refactoring-
based strategies to remodularize and extract software entities focusing on migrating an
application from an inheritance to a component-based system. To achieve this goal,
in this paper we present some initial results in the analysis of dependencies between
classes in a system, and our initial steps to design an algorithm that (semi-)automatically
perform the extraction of the entities from the source-code of object-oriented systems.

The paper is structured as: section 2 describes our approach for the refactoring, first
in general and then subsequent sections 2.2 to 2.6 detail each step of the proposed
algorithm. Section 3 describes related works and section 4 presents our conclusions.

2 Inheritance to Composition: Our Approach

Inheritance is one of the most important object-oriented mechanisms, allowing code
reuse and a conceptual hierachical modelling of a given domain. Inheritance combined
with other object-oriented mechanisms, such as overriding, method cancellations, en-
capsulation and polymorphism can make class hierarchies difficult to understand, be-
cause unexpected and implicit behavior based-dependencies can appear. One of these
difficulties is the use of inheritance for implementation reuse (subclassing) possibly vi-
olating subclassing contracts from structural and behavioral viewpoints [1]. To illustrate
our concepts, we use an example of some classes in Collection class hierarchy devel-
oped in Pharo1. In Figure 1, the class Dictionary inherits from HashedCollection.
Dictionary elements can only be removed by their key values, so the method #remove:
inherited from HashedCollection is cancelled in the class. From a structural view-
point, inheritance is used with implementation purposes, and it forces the developers
to cancel inherited methods. From the behavioral viewpoint, they are incomparable
because this hierarchy does not repect the Liskov-Substitution Principle [5]. In order
to solve this code smell, Fowler proposes to use delegation instead [2]. The proposed
refactoring strategy is described as follows:

– Implement Dictionary as a direct subclass of Object2.
– Add an instance variable named delegate in the modified class Dictionary

and initialize it as a HashedCollection instance.
– Change each method defined in the modified class Dictionary, replacing self- or

super-sends with messages to delegate.

1 http://www.pharo-project.org
2 Pharo is a single-inheritance-based system. Object is the root class of the system

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 828

– For each method defined in all superclasses of the original Dictionary (i. e.
HashedCollection or Collection) used by a client class and not redefined
in Dictionary, add a simple delegating method.

Figure 4 shows the refactored class hierarchy with the refactored class Dictionary.

Even though the refactoring proposed by Fowler is a useful guide, the algorithm is diffi-
cult to implement because we have to take care of the implicit dependencies determined
by the message calls between classes to ensure that the resulting code maintains the ex-
act same behaviour as the original implementation. Following we detail our algorithm
and we analyze all the issues related to the classes and methods that must be refactored.

Object

printOn:
fullPrintString:
stepIn:

Collection

allSatisfy:
do:
add:
remove:
removeAll:
printOn:
printNameOn:

HashedCollection

findElementOrNil:
scanFor:

Dictionary

at:ifAbsent:
do:
add:
remove:
scanFor:

^ String streamContents: [:s | self printOn: s]

^ self step

self subclassResponsibility

self do: [:each | (aBlock value: each) ifFalse: [^ false]].
^ true

aCollection == self ifTrue: [^self removeAll].
aCollection do: [:each | self remove: each].
^ aCollection

super printOn: aStream

index := self scanFor: anObject.
index > 0 ifTrue: [^index].
self error: ’There is no free space in this set!’.

^((array at: (self findElementOrNil: key)
 ifNil: [aBlock]
 ifNotNil: [:assoc | assoc]) value.

self shouldNotImplement

Fig. 1. Inheritance to Delegation Refactoring –
Original class Hierarchy

Object

printOn:
fullPrintString:
stepIn:

Collection

allSatisfy:
do:
add:
remove:
removeAll:
printOn:
printNameOn:

HashedCollection

findElementOrNil:
scanFor:

Dictionary

at:ifAbsent:
do:
add:
remove:
scanFor:

Fig. 2. Initial Code Base.

An important remark is that even when our algorithm is based on Fowler’s work, our
approach goes a step further. The refactoring operations of changing the methods’ def-
inition of the refactored class implies more than simply using delegation mechanism,
and this is explained in detail in last steps of the algorithm.

2.1 Refactoring Algorithm: Outline

The goal of our approach is to develop an algorithm to extract a class from a class hier-
archy, preserving the exact original behavior. To illustrate our algorithm we use a small
example to explain the main concerns to be affected. Thus, our algorithm analyzes the

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 829

dependencies between the classes in the hierarchy, focusing on the self and super sends
that invoke methods defined in a different class than the one where the message send is
done. When we refactor the class hierarchy, we will modify the lookup chain of these
message sends, so we have to modify each method definition in order to ensure that the
same code as in the original implementation. Just to mention some problems, one prob-
lematic case is that when we remove the Dictionary and reimplement it as a direct
subclass of Object, we are virtually removing HashedCollection and Collection
(intermediate superclasses between Object and Dictionary). Another problematic
case is when methods defined in Object and inherited by Dictionary invoke, via
self sends, methods defined in the removed superclasses. Finally, an inherited method
defined in HashedCollection could invoke, via a self send, an overriden method in
the subclass Dictionary.

Summarizing our approach, we need first to identify different methods that can be po-
tential problems to preserve the original behavior and then specify which are the differ-
ent steps that the algorithm should perform.

Regarding how to organize the code analysis, we have to calculate the set of all methods
that could be invoked as a result of a message sent to a Dictionary object, both from
an external client or internally via self- or super-sends. This code base is divided in three
groups. The first group own-group contains all the methods defined in the Dictionary
class. The second group named inherited-group contains the methods defined in the
superclasses of Dictionary excluding Object, in our example the methods belong
to the classes HashedCollection and Collection. Finally the methods in the code
base coming from Object (and its superclases, if any) will conform the object-group.

The goal of the algorithm is to identify all the refactoring operations that the devel-
oper should implement to get the changes done, this means that the algorithm does not
perform any changes in the code when running. We define an algorithm in 5 steps.

– Step 1: We analyze the code and we calculate the initial code base.
– Step 2: We will clean-up the code base, removing cancelled methods and other

typical problems arised from the inadequate use of inheritance.
– Step 3: We decide the needed delegating methods to be added to the target class.

The final two steps deal with the modifications on the self- and super-sends in the
code base.

– Step 4: We change self- and super-sends in the own-group, using the delegate
where needed.

– Step 5: We analyze self-messages in the inherited-group.

2.2 Initial Code Base

In this step we filter the methods of the to-be-refactored hierarchy, keeping only those
that have to be analyzed in the next steps of the algorithm. We discard all the meth-
ods that could never called as response to a message sent to an instance of the to-be-
refactored class (in our example, Dictionary). This is performed in three stages. In
the first stage we identify the set of methods defined in the to-be-refactored class or any

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 830

of its superclasses. In the second stage we discard all the overriden methods. When a
method is defined in more than one class in the hierarchy, we keep only the one defined
in the most specific class. When executing this action on Dictionary we found 598
methods (this could change in different versions of Pharo).

The first two stages identify the set of methods that can be called by a client class of
the Dictionary or as result of a self send. We mean by a client class, one that is not
contained in the same class hierarchy of Dictionary. In the third stage we identify the
methods that can be called as result of a super send. We search in the methods containing
super-sends in their bodies, then lookup the method that is invoked as response to these
messsages sends and add those methods, (that could be previously discarded, because
they fulfil previous conditions) to the code base. As these new added methods could also
contain super-sends, we have to repeat recursively this action until no new methods are
found. In the Dictionary hierarchy we found only one example of super-send.

Figure 2 depicts the initial code base. This is only a representation of our working
model, no actual code refactoring is done. We have discarded all overriden methods,
except Object�#printOn:, which is invoked by a super-send in #printNameOn:

from class Collection

2.3 Clean up the code base

The inadequate use of inheritance makes the class understand messages that are incon-
sistent with the semantics of the represented domain concept. For example, Hashed-
Collection implements method remove:, which class Dictionary inherits, due to
the inheritance relationship. However, this behavior should not be in the Dictionary,
because dictionaries remove their elements using the keys associated to the stored val-
ues. Thus, elements are removed from a Dictionary using the method removeKey:.
Before performing the refactoring, we must detect those unwanted methods and remove
them from the code base.

We have detected four kinds of unwanted messages. The most explicit kind of unwanted
methods are the cancelled methods3. The second kind of unwanted methods are the ab-
stract methods that were not overriden in the subclasses. This situation could also be
considered as a mistake of the developer of the to-be-refactored class, but we prefer
to assume that the initial code is correct, and that the method was left unimplemented
intentionally. Therefore we consider it as unwanted. In a dynamically typed language as
Smalltalk, the programmer is not forced to make abstract methods as concrete ones in
the subclasses, hence it is possibly to find, in an abstract class, messages sends which
have no concrete implementation. If the (concrete) subclass does not provide an imple-
mentation for this messages, we consider them as unwanted too4. Finally, we have to
lookup the code base for methods that call any discarded message, and discard them

3 In Smalltalk, the method cancellation is implemented using the message self
shouldNotImplement as the only message sent in the body of the cancelled method

4 This methods will not be found in the code base, because there is no implementation of them,
still they have to be taken into account in order to discard the senders of this messages.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 831

too. Again, as this final action discarded new methdos, the senders of these messages
have to be removed too, repeating this action until no new methods are found.

Table 1 shows the discarded methods found in the class Dictionary. A total of 10
methods were found, including two of them that were selected twice because they fullfil
several conditions. For clarity, only a subset of these methods has been included in the
class diagrams of the Figure 3.

Cancelled methods 2 #remove:ifAbsent: #remove:
Abstract non-overriden methods 2 #remove:ifAbsent: #remove:
Sent non-implemented methods 2 #readFrom: #step
Methods sending improper messages 6 #removeAllFoundIn: #removeAll:

#removeAllSuchThat: #stepAt:in:
#stepIn: #readFromString:

Table 1. Discarded methods in Dictionary hierarchy

Object

printOn:
fullPrintString:
stepIn:

Collection

allSatisfy:
do:
add:
remove:
removeAll:
printOn:
printNameOn:

HashedCollection

findElementOrNil:
scanFor:

Dictionary

at:ifAbsent:
do:
add:
remove:
scanFor:

Fig. 3. Final code base with discarded methods removed.

2.4 Add needed delegating methods

In the original implementation, the to-be-refactored class inherits all the methods of its
superclasses. But the refactored class has now Object as it superclass and then it will
not understand all the messages implemented in its former superclasses and not over-
riden in the original class itself. In our specific case, the refactored class Dictionary
will not understand the inherited methods defined in classes Collection and HashedCollection.
Therefore, we have to analyze each of these messages and decide if we need the refac-
tored class continue understanding them to keep the polymorphism of the class.

We have identified several strategies to deal with this problem. In a statically typed lan-
guage, this could be achieved using of any of the explicitly defined types of the refac-
tored class. Even when the explicit type information is an important tool to compute the
required messages more accurately, but it also is a limitation if the refactored class has
to be kept polymorphic to any other class in the system. Kegel [3] provides a solution of
this problem in Java . He looks for an existing defined common interface or super-
class between refactored classes in order to allow polymorphism. In dynamically typed

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 832

languages, such as any language built on top of Smalltalk polymorphism is achieved
just by understanding the same messages, so we can avoid some of these problems.
Nevertheless, the lack of explicit type information makes an automatic computation of
the needed interface for the refactored class more difficult to get: we should compute it
via a type inference algorithm, and this is the first strategy we identify. Another possible
strategy is to provide a user interface, which lets the programmer to decide which of the
available methods have to be included.

In our approach, we choose to take all of the methods in the superclass as part of the
new public interface of the refactored class, and provide delegating methods for all
of them. When we refer to delegating methods, we mean by a method with the same
name which sends the message (with the same name) to the created delegate instance
variable. Figure 4 shows the structure of the recent created methods in the refactored
Dictionary. This solution provides the simplest refactoring and minimizes its behav-
ioral change, which is a desired feature in an automatic refactoring. Our algorithm is
implemented using the last described strategy, but can be adapted to integrate new ones
(as we described previously).

Object

Collection

HashedCollection

Dictionary
delegate
at:ifAbsent:
do:
add:
scanFor:
findElementOrNil:

... delegate
 findElementOrNil: ...

^ delegate
 allSatisfy: aBlock

delegate

Fig. 4. Modifications to the Dictionary class.

Object

Collection

HashedCollection

findElementOrNil:
scanFor:

Dictionary
delegate
at:ifAbsent:
do:
add:
scanFor:
findElementOrNil:

DictionaryDelegate
dictionary
do:
add:
scanFor:

dictionary do: aBlock

dictionary add: anObject

dictionary scanFor: anObject

delegate

dictionary

Fig. 5. Final state of the refactor.

2.5 Apply delegations

In this step we analyze in detail all the methods that were selected in Section 2.3. We
analyze those self sends in the own- or object-group that invoke methods defined in the
inherited-group. In our example, this means that we analyze any method that belongs
to the Object or to the Dictionary that makes a self send to a method defined in any
of the superclass Collection and HashedCollection. The objective is to change
the receiver of these messages sends, using instance variable delegate instead of
self or super. This analysis could become complex in a large hierarchy chain if we

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 833

do not have correct analysis tools. Our strategy is to compute the intergroup message
sends, of the whole set of methods that could be invoked of the to-be-refactored class.
We consider a self- or super-sends as member of the intergroup when the message
yields the invocation of a method belonging to a different group than the method where
the message-send is done. For example, Figure 1 shows that the message-send self

findElementOrNil: in Dictionary�#at:ifAbsent: belongs to the own-group
and yields the invoked method HashedCollection�#findElementOrNil:, which
belongs to the inherited-group.

With the computation of message-sends belonging to the intergroup , we have to ana-
lyze separately the message-sends of the own-group and those ones of the object-group.
In the object-group we have two limitations. Firstly, we do not want to change code in
Object. Second, we do not have access to the delegate. Then, for each self-send
originated in the methods of the object-group, we have to provide a delegating method
in the refactored class, even if it has been discarded in the previous step. In the own-
group we can also take advantage of the selected delegating methods, if a method be-
longing to the intergroup uses a method that was selected to create a delegating method
in the refactored class, then no change is needed. Finally, in the case of super-sends
in the own-group5. we choose to delegate them always. Table 2 summarizes the ac-
tions of this step, while Figure 4 shows the resulting methods. As an example, method
#at:ifAbsent a former reference to self findElementOrNil: has been changed
to delegate findElementOrNil:

Group Receiver Should be delegated? Example
own self When delegating method is not

created
self findElementOrNil:

in Dictionary�#at:put:
own super Allways no examples in Dictionary hierarchy.

object self Never. Delegating method must
be created.

self printOn:
in Object�#fullPrintString

Table 2. Actions taken for intergroup messages

2.6 Self-messages in the inherited group

A self-send of a message in a method of the inherited-group could yield an invocation
of a method in the own-group. This means that a method of the classes Collection
or HashedCollection could call a method defined in the Dictionary. This is a
very useful property of inheritance-based systems, enabling design patterns such as
Template Method. This mechanism also makes the communication between the code in
the superclass and its subclasses bi-directional.

5 Super-send of the message in the object-group cannot be intergroup

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 834

A complete replacement of class hierarchy with a single delegation can only be achieved
in languages which provide a delegation mechanism where the metavariable self all-
ways points to the delegator and not to the method receiver [4]. This kind of delegation
is frequently found in prototype-based object-oriented languages such as Self[8], but
rather uncommon in class-based languages. In order to make our strategy as language-
independent as possible, we prefer to avoid the usage of this kind of features. To achieve
it, we need to provide a counter-delegation mechanism, that will enable the code in the
inherited-group to continue forwarding messages to the own-group, as in the original
inheritance-based implementation.

The implementation of counter-delegation is rather tricky if we keep our objective of
avoid changing the superclasses. A common strategy is to create a counter-delegating
class. The new class will have the same superclass as our original class, allowing to
override its methods, modifying its behaviour without changing it. It will also have a
delegator field, which points to the main object, an instance of the refactored class.
In this strategy, the delegate field of the refactored class will not point to an instance
of its former superclass, but to an instance to the new counter-delegating class. By doing
so, the two objects will know each other, enabling the bi-directional communication as
needed. Figure 5 shows the refactored classes.

It is worth mentioning of introducing again inheritance is a conflict with our original
goal. The new generated subclass is much simpler than the original one, with only
counter-delegating methods. The main objective of the refactoring is not to avoid the
use of inheritance at all, but to decouple the code in the original class from the code in
its superclasses, providing a clean view of the dependencies between them. In languages
with nested classes such as Java, the counter-delegating class could be encapsulated into
the main refactored class by making it private[3]. If language-independence were not
an issue, a broader range of solutions become available if we take advantage of features
like full delegation (as found in prototype-based languages), nested classes, multiple
inheritance or traits. In this work, we stated as an objective to develop a language-
independent refactoring, so we need to avoid using language-specific features.

3 Related Work

Due to space limitations, we just mention the most recent work that is close to our ap-
proach. Kegel and Steiman [3] define an inheritance-to-delegation refactoring in Java,
making a distinction between delegation, which allows open recursion and forwarding,
which not; the latter being more simple but applicable in fewer cases. The open recur-
sion problem is solved by creating a reverse-delegating subclass, other solutions (like
trait-based) to the open are not considered. The work is based on a strongly-typed en-
vironment with explicitly-typed variables; therefore direct knowledge of the refactored
class interface is available. On the down side, the strongly-typed language imposes
some restrictions on the aplicability of the refactoring, as the refactored class will could
not be used polimorphically with its former superclass and siblings, unless an explicit
supertype is given by implementing a shared interface. According to their work,
type inference is needed to make this refactoring. However, the typing rules of Java

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 835

impose the presence of many dead methods, which could be avoided in a dinamically-
typed language as Smalltalk. Also, cancelled methods are not considered at all, nor the
refactoring where the original superclass is abstract.

4 Conclusions and Future Work

In this paper we have shown the initial steps of our research in the design refactoring
strategies for remodularization of the object-oriented applications focusing on migra-
tion of an inheritance to a component-based application. We have mainly focused on
the migration of a class in an existing class hierarchy to improve its definition and avoid
subclassing problems. We have observed several improvements that can be done in our
approach. We just mention some of them. We can use type inference to know which of
the inherited methods should be effectively be invoked by a client class, or we can also
use traits to improve the class definition.

References

1. Arévalo, G., Ducasse, S., Gordillo, S.E., Nierstrasz, O.: Generating a catalog of unanticipated
schemas in class hierarchies using formal concept analysis. Information & Software Technol-
ogy 52(11), 1167–1187 (2010)

2. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison Wesley (1999)

3. Kegel, H., Steimann, F.: Systematically refactoring inheritance to delegation in java. In: Pro-
ceedings of the 30th international conference on Software engineering. pp. 431–440. ICSE
’08, ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1368088.
1368147

4. Lieberman, H.: Using prototypical objects to implement shared behavior in object ori-
ented systems. In: Proceedings OOPSLA ’86, ACM SIGPLAN Notices. vol. 21, pp.
214–223 (Nov 1986), http://web.media.mit.edu/˜lieber/Lieberary/
OOP/Delegation/Delegation.htmlhttp://reference.kfupm.edu.sa/
content/u/s/using_prototypical_objects_to_implement__76339.pdf

5. Liskov, B., Wing, J.M.: A new definition of the subtype relation. In: Nierstrasz, O. (ed.) Pro-
ceedings ECOOP ’93. LNCS, vol. 707, pp. 118–141. Springer-Verlag, Kaiserslautern, Ger-
many (Jul 1993), http://link.springer.de/link/service/series/0558/
tocs/t0707.htm

6. Parnas, D.L.: Software aging. In: Proceedings of the16th ICSE ’94. pp. 279–287. IEEE Com-
puter Society, Los Alamitos CA (1994)

7. Szyperski, C.A.: Component Software. Addison Wesley (1998)
8. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Proceedings OOPSLA ’87, ACM

SIGPLAN Notices. vol. 22, pp. 227–242 (Dec 1987)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 836

