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Abstract. Membrane Computing and Brane Calculi are two recent com-
putational paradigms in the framework of Natural Computing. They are 
based on the study of the structure and functioning of living cells as living 
organisms able to process and generate information. In this paper we give 
a short introduction to both areas and point out some open research lines.

1 Introduction

Natural Computing studies new computational paradigms inspired from various
well known natural phenomena in physics, chemistry and biology. This paper is
devoted to a new field in Natural Computing: The study of the structure and
functioning of cells as living organisms able to process and generate information.

The starting point is the fact that the cell is the smallest living thing, and at
the same time it is a marvellous machinery, with a complex structure, an intricate
inner activity self-regulated in a quite efficient way. Assuming that cells can be
seen as computational devices, two different branches of Natural Computing can
be found in the literature: Membrane Computing and Brane Calculi.

The notions of membrane investigated in these new paradigms of computa-
tion are abstract entities which try to mimic some features of the functioning
of membranes in living cells. The basic function of biological membranes is to
define compartments and to relate compartments to their environment, includ-
ing neighbouring compartments. The currently accepted model of the membrane
structure is the so-called fluid-mosaic model, proposed in 1972 by S. Singer and
G. Nicholson. According to this model, a membrane is a phospholipid bilayer
in which protein molecules (as well as other molecules) are totally or partially
embedded.

The first paradigm of computation we present is Membrane Computing. It
was introduced by Gh. Păun in [22] under the assumption that the processes
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taking place in the compartmental structure of a living cell can be interpreted as
computations. The devices of this model are called P systems. Roughly speaking,
a P system consists of a membrane structure, in the compartments of which one
places multisets of objects which evolve according to given rules in a synchronous
nondeterministic maximally parallel manner.

The second one, Brane Calculi was introduced by L. Cardelli in [9] on the
assumption that in living cells membranes are not merely containers, but they
are highly dynamic entities that actively participate in the cell life. In this way,
computation happens on the membrane, not inside it.

The paper is organised as follows: Section 2 is devoted to a brief presentation
of Membrane Computing. In a similar way, a short introduction to Brane Calculi
is presented in Section 3. The paper ends with some final remarks.

2 Membrane Computing

Membrane Computing1 starts with the explicit goal of abstracting computing
models from the structure and the functioning of a living cell. The literature
of the domain is very large (already in 2003, Thompson Institute for Scientific
Information, ISI, has qualified the initial paper as “fast breaking” and the domain
as “emergent research front in computer science” – see http://esi-topics.com)
and it progresses rather rapidly, so that the presentation here is quite general.

The basic idea is to consider a distributed and parallel computing device,
structured like a cell, by means of a hierarchical arrangement of membranes
which delimit compartments where various chemicals (we call them objects)
evolve according to local reaction rules. The objects can be described by sym-
bols or by strings of symbols from a given alphabet. These objects can also pass
through membranes, under the control of specific rules. Because the chemicals
from the compartments of a cell are swimming in an aqueous solution, the data
structure we consider is that of a multiset – a set with multiplicities associated
with its elements. Also, in close analogy with what happens in a cell, the reaction
rules are applied in a parallel manner. This means that in each computational
step a maximal (multi)set of nondeterministically chosen rules is applied.

The membrane structure of a P system is a hierarchical arrangement of mem-
branes (understood as three dimensional vesicles), embedded in a skin mem-
brane, the one which separates the system from its environment. A membrane
without any membrane inside is called elementary. Each membrane defines a
region. For an elementary membrane this is the space enclosed by it, while the
region of a non-elementary membrane is the space in-between the membrane
and the membranes directly included in it. Membranes are labelled. Each region
contains a multiset of objects, and a set of (evolution) rules. The objects are
represented by symbols from a given alphabet. Typically, an evolution rule from
region r is of the form ca → cbinj doutdhere, and it “says” that a copy of the

1 A layman-oriented introduction can be found in [30], a comprehensive presentation
can be found in [23] and further updated bibliography in [34]. A presentation of
applications can be found in [14].



object a, in the presence of a copy of the catalyst c (this is an object which is
never modified, it only assists the evolution of other objects), is replaced by a
copy of the object b and two copies of the object d. Moreover, the copy of b has
to enter “immediately” the inner membrane of region r labelled by j (hence to
enter region j), one copy of object d is sent out through the membrane of region
r, and one copy of d remains in region r. Note that the considered evolution rule
can be applied in the region r only if this region includes the membrane j.

Membrane systems are synchronous, in the sense that a global clock is as-
sumed. In each time unit a transformation of a configuration of the system takes
place by applying the rules in each region, in a nondeterministic and maximally
parallel manner. This means that the objects to evolve and the rules governing
this evolution are chosen in a nondeterministic way; this choice is “exhaustive”
in the sense that, after the choice was made, no rule can be applied anymore in
the same evolution step (there are not enough objects available anymore for any
rule to be applied now – this is the maximality of application). In this way, one
gets transitions between the configurations of the system. A maximal sequence
of transitions is called a computation. A configuration is halting if no rule is
applicable in any region. A computation is halting if it reaches a halting con-
figuration. The result of a (halting) computation is the number of objects sent
(through the skin membrane) to the environment during the computation.

Many variants/extensions of this very basic model sketched above are dis-
cussed in the literature.

2.1 Variants of the Basic Model

Here we will briefly mention a few variants of the basic model. For instance,
there are a number of ways of weakening the programming power provided by
inj: to only indicate in (an object associated with this command has to enter
any adjacently lower membrane; the choice of a membrane to enter is nondeter-
ministic), to associate electrical charges both with objects and with membranes
(a polarised object will enter the region of any adjacently lower membrane of the
opposite polarisation; the polarisation of objects and of membranes may change
during the computation).

Coming closer to the trans-membrane transfer of molecules, we can consider
purely communicative systems, based on the three classes of such transfer known
in the biology of membranes: uniport, symport, and antiport. Symport refers to
the transport where two molecules pass together through a membrane in the
same direction, antiport refers to the transport where two molecules pass through
a membrane simultaneously, but in opposite directions, while the case when a
molecule does not need a “partner” for a passage is referred to as uniport.

Another important extension is to consider a priority relation among rules.
Furthermore, we can have rules for handling membranes (creating, destroying,
dividing, merging, etc.), the rules can have promoters or inhibitors, their use
can be regulated by a priority relation, the permeability of membranes can be
controlled by the used rules and so on and so forth, either with a biological or with
a mathematical motivation. In short, we abstract as much as possible/necessary,



in order to obtain a mathematical model which is intended to be (i) minimalistic
(as elegant as possible, containing as restricted ingredients as possible), but
(ii) without losing the biological inspiration (hence remaining as “realistic” as
possible), with (iii) good computability properties (as powerful as possible and
as efficient as possible).

2.2 Computational Power and Efficiency

Many classes of P systems, combining various ingredients described above, are
capable of simulating Turing machines, hence they are computationally complete.
Note that in the case when we deal with P systems which compute numbers,
we consider Turing machines as number recognisers; in the case of string-objects
we can obtain the family of languages which are recognised by Turing machines
(the recursively enumerable languages). Always, the proofs of results of this type
are constructive, and this has the important consequence from the computability
point of view that we can get universal (hence programmable) P systems: starting
from a universal Turing machine, we get an equivalent universal P system.

The computational power is one of the important questions to be dealt with
when defining a new computing model. The other fundamental question concerns
the computational efficiency.

One of the explicit goals of various branches of natural computing is to find
ways to address computationally hard problems (typically, NP-complete prob-
lems) in order to solve them (in a strict sense or in a probabilistic sense) in a
feasible (that is, in polynomial) time. The rules of a P system are used in parallel,
that is, in each membrane all objects evolve simultaneously, and, in turn, at the
level of the system all membranes evolve simultaneously. This is a good degree of
parallelism, which, however, is not sufficient to devise polynomial time solutions
to NP-complete problems (unless P = NP). However, biology suggests opera-
tions with membranes which, sometimes surprisingly, make possible polynomial
(often linear) solutions to NP-complete problems. Among these operations, the
most investigated so far in membrane computing have been membrane division
and membrane creation.

We do not enter here into details, but we refer, e.g., to the chapter from [14]
devoted to this topic. Anyway, these results are of a clear theoretical interest
(new characterisations of the standard complexity classes were given, as well
as a characterisation of the relation P = NP problem, intriguing borderlines
between efficiency and non-efficiency were found – with many challenging open
problems still waiting to be considered).

2.3 Applications

As mentioned above, Membrane Computing was initiated having as primary
goals computability in general, and Natural Computing in particular, without
aiming to faithfully model biological facts in such a way as to provide a modelling
framework for the use of biologists. However, after significantly developing at
the theoretical level, the domain started to be useful for biological and medical
applications.



For example, the modelling of some dynamical systems, where we are not
interested in halting configurations, but in the evolution of the process itself (see
[34] and the corresponding chapter from [14]).

Another important application field is the study of processes related to cancer.
We only mention the simulation of p53 protein pathways control (the interaction
between proteins p53 and MdM2) through a P system, as carried out by Y.
Suzuki and his co-workers (details can be found in [14]), and the modelling of
EGFR (epidermal growth factor receptor) signalling network [31].

A very promising application is the study of approximate algorithms for hard
optimisation problems (see [20]). These algorithms can be considered as high
level (distributed and dynamically evolving their structure during the computa-
tion) evolutionary algorithms. The strategy has been checked for the travelling
salesman problem and the results were more than encouraging.

Besides applications in biology, membrane computing has also been considered
in other areas, such as computer graphics [33], cryptography [19], modelling in a
uniform way parallel architectures [12], economics [25,26], etc. Some theoretical
applications of (notions and ideas central to) P systems has also been considered
in several papers: to artificial life [18], for simulating the photosynthesis [21], to
linguistics [2], etc.

3 Brane Calculi

In recent years, the modeling and analysis of the biological matter has attracted
the interest of the researchers in the area of concurrent process calculi.

Indeed, a network of biochemical cells can be seen as a computing machinery,
made of processing agents which interact and cooperate to achieve a common
goal. This informal description applies to concurrent system as well, hence it
is natural to use techniques from the concurrency theory field to study the be-
haviour of biological cells.

Particularly promising is the use of process calculi, which are formalisms used
to describe concurrent and mobile systems. Process calculi are equipped with a
formal semantics describing their behaviour, and plenty of tools for the static
and dynamic analysis of systems have been produced. These tools can therefore
be used in the field of biological organisms, as well.

Starting from the seminal work of Buss and Fontana [17] on the use of a pro-
cess calculus for the modeling of biological entities, the field has been fruitfully
explored by other research groups, either by using existing calculi or by defining
new, biologically inspired calculi (see, e.g., [29,28,13,32,15,27], just to mention a
few).

Brane Calculi [9] are a family of process calculi proposed for modeling the
behavior of biological membranes. In a process algebraic setting, Brane Calculi
represent an evolution of BioAmbients [32], a variant of Mobile Ambients [10]
based on a set of biologically inspired primitives of interaction. The main novelty
of Brane calculi consists in the fact that the active entities reside on membranes,
and not inside membranes.



While Membrane Computing is now a well-established research field, Brane
Calculi can be considered to be a newborn, rather unexplored research field. In
the following, we present a brief overview of the calculi, as well as of the main
existing (and ongoing) works.

In [9] two basic instances of Brane Calculi are defined: the Phago/Exo/Pino
(PEP) and the Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process of
incorporating external material into a cell by engulfing it with the cell membrane)
and exocytosis (the reverse process). A relevant feature of such primitives is
bitonality, a property ensuring that there will never be a mixing of what is inside a
membrane with what is outside, although external entities can be brought inside
if safely wrapped by another membrane.

As endocytosis can engulf an arbitrary number of membranes, it turns out
to be a rather uncontrollable process. Hence, it is replaced by two simpler op-
erations: phagocytosis, that is engulfing of just one external membrane, and
pinocytosis, that is engulfing zero external membranes.

The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito).

Because membrane fission is an uncontrollable process that can split a mem-
brane at an arbitrary place, it is replaced by two simpler operations: budding,
that is splitting off one internal membrane, and dripping, that consists in split-
ting off zero internal membranes.

An encoding of the MBD primitives in PEP is provided in [9].
In [6] we provided a stronger separation result between PEP and MBD.
On the one hand, we showed that PEP is a Turing powerful language, by

providing a deterministic encoding of Random Access Machines (a Turing–
equivalent formalism).

On the other hand, we proved that the existence of a divergent (i.e., infinite)
computation is a decidable property in MBD. This means that there exist no
divergence-preserving encoding of PEP in MBD.

After the introduction of the two basic brane calculi PEP and MBD, contain-
ing only membranes and membrane interaction primitives, in [9] the calculus is
extended with small molecules, freely floating either in the external environment
or inside a membrane, and with a molecule–membrane interaction primitive.

Biological membranes contain catalysts that can cause molecules, floating re-
spectively inside and outside the membrane, to interact with each other without
crossing the membrane. Membranes can bind molecules on either sides of their
surface, and can release molecules on either sides of their surface. Usually, such
an operation occurs in an atomic (all-or-nothing) way. The bind&release opera-
tion permits to simultaneously bind and release multiple molecules.

In [4] we extend the decidability result presented in [6] in two directions.
On the one hand, we showed the decidability of divergence to the calculus with
molecules, and with all the molecule–membrane and membrane–membrane inter-
action primitives, except the phago operation. On the other hand, we extended
the decidability result on the full calculus without phago to other biologically



relevant properties, such as, e.g., control state maintainability, inevitability and
boundedness.

Control state maintainability can be used to check safety properties, such as,
e.g., the fact that all the derivatives of a system contain at least one occurrence
of a given molecule (or at least two occurrences of molecules belonging to some
specified set). Inevitability can be used to check, e.g., if in all the computation a
state is eventually reached that does contain no occurrences of a given molecule.
Boundedness can be used to check if the number of membranes or of molecules
can arbitrarily grow during the computation.

The decidability results in [4] are all constructive, i.e., they provide a com-
putable procedure for deciding the systems properties. We plan to develop a tool
for the animation and the analysis of Brane Calculus systems, also based on the
results presented in this work.

We also recently started to use Brane Calculi for the modeling of biological
pathways, and to apply the analysis techniques developed in [4]. A preliminary
step in this direction is represented by [8], where the LDL Cholesterol Degrada-
tion Pathway [1] is modeled both in Brane Calculi and in Membrane Computing.
Moreover, we also discuss an application of the analysis techniques developed
in [4] to check behavioural properties of this pathway.

4 Final Remarks

In the last years, two branches of Natural Computing, Membrane Computing
and Brane Calculi, have been developed, with a continuous afflux of new ideas,
notions, problems, and with a series of applications, especially in modelling bi-
ological phenomena. No lab implementation was intended, and no such imple-
mentation is known to be planned for the near future2.

Brane Calculi are somewhat dual to Membrane Computing, as they work
with objects placed on membranes (corresponding to proteins attached to or
embedded in the real membranes), with membranes operations controlled by
these objects, and trying to stay as close to the biology as possible; also the tools
and the goals are different – process algebra and systems biology, respectively.

A notable difference between Brane Calculi and P systems is concerned with
the semantics of the two formalisms: whereas Brane Calculi are usually equipped
with an interleaving, sequential semantics (each computational step consists of
the execution of a single instruction), the usual semantics in membrane com-
puting is based on maximal parallelism (a computational step is composed of a
maximal set of independent interactions).

The fist attempt of bridging both research areas was made in [11] by the fa-
thers of the disciplines L. Cardelli and Gh. Păun and as they point out Membrane
Computing and Brane Calculi have different objectives and develop in different
directions. While Membrane Computing tries to abstract computing models, in

2 For Membrane Computing, several simulators have been implemented. We refer to
[34] and to the corresponding chapter from [14] for details.



the Turing sense, from the structure and the functioning of the cell (. . . ), Brane
Calculi pay more attention to the fidelity to the biological reality (. . . ).

In [11] a variant of P systems with the mate and drip operations – inspired
by the corresponding primitives in Brane Calculi – is defined and proved to be
Turing powerful. The Projective Brane Calculus [16] is a refinement of Brane
Calculi, where the interaction primitives reside either on the external side or on
the internal side of the membrane. In [3] a projective variant of the P systems,
defined in [11], is defined and shown to be computationally complete.

In [5] the computational power of the MBD Brane Calculus equipped with two
different semantics is investigated. The first semantics is the classical interleav-
ing semantics of process calculi, whereas the second semantics is the maximal
parallelism semantics used for Membrane Computing. An expressiveness gap has
been found, thus confirming the intuition that the maximal parallelism semantics
turns out to be a very powerful synchronization mechanism.

Recently, a bridge has been crossed the other way [7]. Instead of expressing
Brane Calculi operations in terms of the Membrane Computing formalism, a
problem is taken from Computer Science (the generation of the set {n2 | n ≥ 1})
and it is shown how it can be implemented both in Membrane Computing and
in Brane Calculi.

In the last years, Membrane Computing has turned out to be a useful frame-
work for building models with biological relevance, and the number of applica-
tions of this type is steadily increasing and becoming more and more advanced
and elaborate.

This leads to considerations concerning the significance of membrane based
calculi and systems (for biology, for mathematics, and for computing). The ap-
proach is clearly motivated from a mathematical point of view, not only because
it is natural to (try to) model the cell computational behaviour, but also because
the new computing model has a number of intrinsically interesting features. Ex-
amples of such features are: the use of multisets, the inherent parallelism, the
possibility of devising computations which can solve exponential (intractable)
problems in polynomial time (by making use of an exponential space created in
a natural manner). At this moment, all these features are only potentially useful
from a practical computational point of view. How should the implementation
problem be approached? All these questions (and some more presented at [24])
should be explored in the future.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter. Molecular
Biology of The Cell. Garland Science, 4th edition, (2002).
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11. L. Cardelli and Gh.Păun. An Universality Result for a (Mem)Brane Calculus Based
on Mate/Drip Operations. In Cellular Computing (Complexity Aspects) (M.A.
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23. Gh. Păun. Membrane Computing – An Introduction. Springer-Verlag, Berlin,

(2002).
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