
Cellular automata and cluster computing: An

application to the

simulation of laser dynamics

J.L. Guisado

Centro Universitario de Mérida, Universidad de Extremadura,
Santa Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain.

jlguisado@unex.es

F. Jiménez-Morales

Departamento de Fı́sica de la Materia Condensada, Universidad de Sevilla,

P.O.Box 1065, 41080 Sevilla, Spain.

F. Fernández de Vega

Centro Universitario de Mérida, Universidad de Extremadura,

Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain.

Firstly, the application of a cellular automata (CA) model to simulate the dynamics of lasers is
reviewed. With this kind of model, the macroscopic properties of the laser system emerge as a cooperative
phenomenon from elementary components locally inter-acting under simple rules. Secondly, a parallel
implementation of this kind of model for distributed-memory parallel computers is presented.
Performance and scalability of this parallel implementation running on a computer cluster are analyzed,
giving very satisfac-tory results. This confirms the feasibility of running large 3D simulations—
unaffordable on an individual machine—on computer clusters, in order to simulate specific real laser
systems.

Keywords: Parallel computing; modelling and simulation; computer clusters; complex systems;
cellular automata; laser physics.

1. Introduction

Cellular automata (CA) are a class of spatially and temporally discrete systems

which are characterized by local interaction and synchronous dynamical evolution

[1, 2, 3]. Formally, a cellular automaton is a 4-tuple of the form [4]:

A = (L,S,N , g)

where:

• L is the cellular space, usually a regular lattice, whose elements are called

cells;

• S is a finite set of states;

1

• N is a neighborhood, i.e. a finite set (of size σ = |N |) of neighborhood

indices that identify the cells that are considered as the neighbors of a

generic cell.

• g is a local transition function which associates a new state to each state

configurations in the neighborhood, g : Sσ → S.

The dynamics of the automaton is given by the synchronous application of the local

function to all the cells in the cellular space. Thus, the state of each cell at any time

step is determined as a function of the states of the neighboring cells at the previous

time step.

CA are capable of generating a complex behavior emerging from sets of compo-

nents which interact locally using relatively simple rules. Therefore, CA provide an

excellent modeling and simulation approach for complex systems. CA models have

been extensively used in the last decades to build computational models and simu-

lations in many areas of science and technology [5, 6]. CA are intrinsically parallel

systems. Therefore, they represent a method which can be naturally and efficiently

implemented on parallel computers. They can be used to carry out high perfor-

mance simulations taking full advantage of all the potential of parallel computing

platforms. For that reason, and for the affordability of clusters of workstations with

a very good price/performance ratio, parallel CA simulations have been successfully

applied recently in many scientific and engineering fields, see for example [7, 8, 9, 10].

In addition, several software tools for the programming of CA on parallel computers

(for example [11, 12]) have been introduced.

In this paper, CA are employed to model the dynamics of laser systems. A

laser is a device that generates and amplifies coherent electromagnetic radiation

based on the stimulated emission phenomenon. They are considered as paradigmatic

complex systems, in which the interactions among simple atoms and the radiation

that they produce can give rise to a cooperative phenomenon [13]. The four-level

laser system shown in Fig. 1 is a simplified but still realistic description of many

real laser systems. Electrons in the laser active medium are excited from its ground

quantum-mechanical energy level (E0) to a higher level (E3) by the energy supplied

by some external (electrical, optical or chemical) pumping process. In a good laser

system, the life times of energy levels E3 and E1 are negligible as compared to the

life time of level E2. Thus, after being excited, electrons in level E3 decay very fast

down to level E2, which has a longer life time. Electrons in level E1 decay very

fast down to level E0 as well, so a population inversion is produced between levels

E1 and E2: level E2, which has a higher energy, is more populated than level E1.

The population inversion N(t) is defined as the difference in the population (or

number of electrons) in these energy levels: N(t) = N2(t) − N1(t) where Ni is the

population of level i. As N1 ≃ 0, the population inversion is approximately equal

to the population of level E2: N(t) = N2(t) − N1(t) ≃ N2(t).

Stimulated emision is the main process which is responsible of laser action: an

electron in level E2 (also referred to as the higher laser level) can decay down to

3

2

1

0

ACTION
LASER

�
�
�

�
�
�

�������������
�������������
�������������

�������������
�������������
�������������

�������
�������
�������
�������

���
���
���
���
���

���
���
���
���
���

E

E

E

E

PUMPING

ENERGY LEVELS

INVERSION
POPULATION

POPULATION

STIMULATOR
PHOTON

Fig. 1. Schematic view of a four-level laser system—a simplified but still realistic description of

many real laser systems—showing some of its physical processes. Stimulated emission occurs when

an electron in level E2 decays down to level E1 stimulated by the presence of a stimulator photon

with energy E = E2 −E1. Some external pumping process excites electrons from the ground level

up to level E3. Population inversion is produced between levels E1 and E2, because the life times

of energy levels E3 and E1 are negligible as compared to the life time of level E2, so electrons in

levels E3 and E1 decay very fast but level E2 is metastable. Absorption of electrons in level E2

and absorption of laser photons, which are also important, are not represented here.

level E1 (also referred to as the lower laser level) stimulated by the presence of a

photon with energy equal to the difference between the two energy levels. At the

same time, a second photon with the same properties as the original one (wave-

length, phase, polarization and direction of propagation) is emitted. In addition to

pumping and stimulated emission, two other important processes occur in the laser

system: absorption of electrons and absorption of laser photons. Absorption of elec-

tons happens when electons in the upper laser level (E2) decay down to lower levels

by other processes different than stimulated emission. Absorption of laser photons

happens when they disappear from the laser device, either because they leave the

cavity or because they are absorved by the laser materials. Population inversion

is essential for laser operation because when it happens stimulated emision has a

greater probability than electron absorption and the laser action can be sustained.

The standard description of laser dynamics is based on differential equations.

They can be put in their simplest form as a system of two coupled differential

equations (laser rate equations) [14, 15]: one of them giving the temporal variation

of the total number of laser photons in the system n(t) and the other one the

temporal variation of the total population inversion N(t):

dn(t)

dt
= K N(t)n(t) −

n(t)

τc
(1)

dN(t)

dt
= R −

N(t)

τa
− K N(t)n(t) (2)

Equation (1) gives the variation on the number of laser photons n(t) with time,

which is proportional to the laser beam intensity. The first term on its right hand

side +KN(t)n(t) represents the increase on the number of photons by stimulated

emission (K is the coupling constant between the radiation and the population in-

version). The second term −n(t)/τc reflects the decaying (or absorption) process of

laser photons inside the cavity with a characteristic decay time τc. Eq. (2) represents

the temporal variation of the population inversion N(t). The term +R(t) introduces

the pumping of electrons with a pumping rate R to the upper laser level. The term

−N(t)/τa represents the decaying (or absorption) process of the population inver-

sion, i.e. the decaying of electrons from the upper laser level to lower levels, with

a characteristic decay time τa. Finally, the product term −KN(t)n(t) accounts for

the decreasing of the population inversion by stimulated emission. These two cou-

pled equations have a nonlinear nature due to the presence of the product term

KN(t)n(t) in each equation. In the case of small amplitude fluctuations its solu-

tions can exhibit relaxation oscillations in their evolution towards a steady state.

Furthermore, in the case of strong oscillations there do not seem to be any simple

analytic solution. In this case, the two variables n(t) and N(t) are changing in a

fast and typically nonlinear way [16, 14].

In the first part of this work we review the application of a model of laser dynam-

ics based on CA, introduced in references [16, 17, 18], which can reproduce much of

the phenomenology observed in laser systems. In the second part of this work, firstly

we present a parallel implementation of the CA laser model for distributed-memory

parallel computers. Secondly, we describe its implementation on a computer cluster

using the message passing paradigm. Thirdly, an analysis of the performance and

scalability of the parallel implementation running on the cluster is performed. This

implementation will allow us to run large size two-dimensional (2D) simulations

of the model on clusters of workstations. Additionally the 2D implementation will

be useful to test the feasibility of a parallel three-dimensional (3D) version of the

model, needed to make realistic simulations of specific laser systems. A parallel im-

plementation is essential for the 3D version due to its high runtime and memory

requirements.

The outline of the paper is the following: in section 2 the cellular automata model

is presented; in Section 3 the results of the simulations are reviewed; in Section 4 a

parallel implementation of the CA model is described; in Section 5 performance and

scalability of the parallel implementation running on a computer cluster is analyzed;

finally, the conclusions are summarized in Section 6.

2. Model of laser dynamics

In this section, the CA model for laser dynamics, originally introduced in reference
[16], is presented. A laser device is modeled by a two-dimensional, multivariable,
partially probabilistic CA, wich corresponds to a transverse section of the active
medium in the laser cavity. The CA is defined by the following elements:

2.1. Cellular space

The CA is formed by a two-dimensional square lattice containing Nc = L × L cells,
with periodic boundary conditions. It means that there is no border present in the
lattice, what simulates an infinite lattice.

2.2. States of the cells

There are two variables, ai(t) and ci(t), associated to each cell. The first variable,
ai(t), represents the state of the electron in cell i at time t: if ai(t) = 0 the electron
is in the laser ground state and if ai(t) = 1 it is in the upper laser state. The second
variable, ci(t) ∈ {0, 1, 2, ..., M}, represents the number of laser photons in cell i at
time t. The upper value M is chosen large enough to avoid saturation of the system.
The state variables values, which represent “bunches” of real photons and electrons,
are obviously smaller than the number of photons and electrons in the real system
and are connected to them by a normalization constant.

2.3. Neighborhood

Each cell interacts locally with nine neighboring cells included in its Moore neighbor-

hood : the cell itself, its four nearest neighbors and the four next nearest neighbors.
The Moore neighborhood in a rectangular or square lattice is anisotropic (i.e. doesn’t
have the same connectivity in every direction). However, when using probabilistic
rules all directions are equally likely on a macroscopic level. Therefore, a simmetry
can emerge on a macroscopic scale that was not present at the microscopic level [6].
The implementation of the model with this simple kind of lattice is accurate enough
to reproduce the laser phenomenology. If a more detailed reproduction would be
needed, a hexagonal lattice (which is isotropic) could be used.

2.4. Transition rules

The set of transition rules defines the time evolution of the CA, by determining
the state of each cell of the system at time step t+1 depending on the state of the
cells included in its neighborhood at time t. These rules represent different physical
processes working at the microscopic level in a laser system:

• Rule 1. Pumping: If the electronic state of a cell has a value of ai(t) = 0 in

time t, then in time t + 1 that state will have a value of ai(t + 1) = 1 with

a probability pumping λ.

• Rule 2. Stimulated emission: If, in time t, the electronic state of a cell has

a value of ai(t) = 1 and the sum of the values of the laser photons states

in the nine neighbor cells is greater than a certain threshold (which in our

simulations has been taken to be 1), then in time t + 1 a new photon will

be emitted in that cell: ci(t + 1) = ci(t) + 1 and the electron will decay to

the ground level: ai(t + 1) = 0.

• Rule 3. Photon decay: A finite life time τc is assigned to each photon when

it is created. The number of time steps elapsed since the emission of each

photon is individually recorded and each photon is destroyed τc time steps

after being created.

• Rule 4. Electron decay: A finite life time τa is assigned to each electron

that is promoted from the ground level to the upper laser level. The num-

ber of time steps elapsed since the excitation of each electron is individually

recorded and each electron decays to the ground level again τa time steps

after being excited, if it has not yet decayed by stimulated emission. The

τa lifetime include spontaneous radiative and eventually non-radiative pro-

cesses. As in an ideal four level laser the population of the lower laser level

is negligible, stimulated absorption has not been considered.

Spontaneous emission and thermal contributions are simulated by a continuous

noise of random photons in the laser mode which are introduced at every time step.

They are responsible of the initial laser start-up, as happens in real lasers. This is

done by making ci(t + 1) = ci(t) + 1 for a small number of randomly chosen cells

(< 0.01% of total).

The response of the system is dependent on three parameters: the pumping prob-

ability (λ), the life time of photons (τc) and the life time of excited electrons (τa).

For each simulation, an initial state is provided (ai(0) = 0, ci(0) = 0, ∀i, except a

small fraction 0.01% of noise photons present) and the system is let to evolve for a

number of time steps. In each step, two macroscopic magnitudes are measured: the

total number of laser photons n(t) =
∑Nc

i=1 ci(t), and the total number of electrons

in the upper laser state (population inversion) N(t) =
∑Nc

i=1 ai(t).

3. Simulation results

In this section, some of the results that have been previously obtained using the

CA model of laser dynamics introduced in section 2, which were presented in refer-

ences [16, 19, 17], are reviewed. As is shown, this simple model can reproduce, in a

qualitative level, different physical features of a laser system.

First of all, the model can reproduce the typical laser behavior consisting in hav-

ing a threshold pumping probability [16]. In a laser system, the laser mechanism

only acts when the pumping probability is over a characteristic threshold value.

Below this threshold, population inversion is not strong enough to trigger the laser

action. This phenomenon is reproduced by the CA model: in the simulations, a cas-

cade of laser photons are produced via stimulated emission only when the pumping

probability is over a threshold value. This value depends on the other two system

parameters (life times τa and τc) and its dependence is in good agreement with the

laser behavior as shown in Fig. 2.

101 102 103 104
10-4

10-3

10-2

10-1

100

λ
t

τa τc

Fig. 2. Dependence of the threshold pumping probability λt from the CA laser model on the

product of the characteristic life times τa and τc (measured in time steps) plotted on a logarithmic

scale. The dots correspond to the results obtained by the simulations and the solid line to the laser

behavior, which is predicted by the standard laser rate equations, i.e. Eqs. (1-2).

Different types of behavior are shown in the time evolution of the macroscopic

variables of the system—the total number of laser photons (n) and the population

inversion (N)—depending on the value of the three system parameters. It is possi-

ble to classify the occurrence of each type of behavior in the parametric space by

calculating the Shannon’s entropy S of the distribution of values achieved by n or

N , after running the simulation for a time interval [19]. In order to calculate S,

the whole range of values taken by n or N is divided into 103 equally spaced bins

and the frequency (fi) at which n or N has a value which is inside every particular

non-void bin i is computed. Then, the Shannon’s entropy is:

S(λ, τc, τa) = −
m

∑

i=1

fi log2 fi (3)

where m <= 103 is the number of non-void bins. The value of S is zero if the

outcome of the system is constant, so that all the bins except one are void, and it

increases as the probability distribution of values of the outcome is wider.

The result is shown in Fig. 3, where R is the laser pumping rate and Rt is the

threshold laser pumping rate, which are linearly related to the pumping probability

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

c

a

b

S
c

R / R
t

a /

c

0

0,6667

1,333

2,000

2,667

3,333

4,000

Fig. 3. Contour plot of the Shannon’s entropy of the distribution of the number of laser photons

obtained in the simulations for a fixed value of τc = 10 time steps. High values of Sc (dark zones)

indicate that the response of the system is oscillatory, while low values (bright zones) correspond

to a non-oscillatory response. The black line is the theoretical stability curve that indicates the

predictions of the laser rate equations, separating areas of oscillatory behavior (above and to the

right of the curve) and constant behavior (below and to the left of it). Points a, b and c correspond

to the values of the parameters for which the time evolution is shown in Figs. 4 and 5. a: R/Rt = 16,

τa/τc = 3. b: R/Rt = 5, τa/τc = 18. c: R/Rt = 12.4, τa/τc = 18. A 200 × 200 lattice has been

used for this figure.

λ and the threshold pumping probability λt that appear in the CA model, so that
R
Rt

= λ
λt

. The threshold value λt is calculated as the smallest value of the pumping

probability λ for which after a transient time the number of laser photons is clearly

greater than the number of noise photons introduced. Two main characteristic types

of behavior are exhibited by the system: a stationary constant behavior for values

of the parameters for which the Shannon’s entropy Sc is low, such as point a in Fig.

3; and a regime with correlated large amplitude damped oscillations in the number

of laser photons and the population inversion when Sc is higher, such as point b.

The later behavior is also known in laser physics as laser relaxation oscillations or

laser spiking. In Fig. 4, the time evolution of the system for values of the parameters

characteristic of these two regimes is shown.

This result can be compared with the predictions of the usual modelling ap-

proach based on the laser rate equations, Eqs. (1)-(2). By linearizing them for the

case of small amplitude fluctuations, it is found that two different behaviors are

expected, depending on the values of the laser parameters [16]: Damped oscillations

0 200 400 600 800 1000
0

5

10

15

20

25

30 Population inversion
 Laser photons

Po
pu

la
tio

n

 (
 1

04)

Time steps
0 200 400 600 800 1000

0

2

4

6

8

10

 Population inversion
 Laser photons

Po
pu

la
tio

n

 (
 1

04)
Time steps

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

La
se

r p
ho

to
ns

(
 1

04)

Population inversion (104)

0 2 4 6 8 10
0

1

2

3

4
La

se
r p

ho
to

ns

(

 1
04)

Population inversion (104)

(a) (b)

Fig. 4. (a): Evolution of the system for the values of the parameters marked as point a in Fig. 3. Up:

number of laser photons (n(t)) and population inversion (N(t)) versus time. Down: evolution in a

phase space with the number of laser photons (n(t)) versus the population inversion (N(t)). After

an initial transient, the systems goes to a fixed point. Parameters: λ = 0.192, τc = 10, τa = 30.

(b): Evolution of the system for the values of the parameters marked as point b in Fig. 3. The

system follows a spiral trajectory which converges toward a steady-state limit point. Parameters:

λ = 0.0125, τc = 10, τa = 180. Lattice size: 400 × 400 cells.

appear for values of the parameters obeying

τa

τc
>

(

R
Rt

)2

4
(

R
Rt

− 1
) (4)

and a constant behavior appears if this condition is not satisfied. The black line in

Fig. 3 is the theoretical stability curve derived from equation (4), which separates

the area of damped oscillations (above and to the right of the curve) and the area

of a constant behavior (below and to the left of it) in the parametric space. As

seen in Fig. 3, the dependence of the type of behavior exhibited by the simulations

(classified by the Shannon’s entropy) on the parameters is in a good qualitative

agreement with the theoretical stability curve.

Besides the two main types of characteristic behavior presented above, the CA

500 750 1000 1250 1500 1750 2000 2250 2500

3,4

3,5

3,6

3,7

3,8

3,9

4,0

4,1 Population inversion
 Laser photons

P
op

ul
at

io
n

 (

 1
04)

Time steps

Fig. 5. Evolution of the system follows an irregular oscillations regime for the values of the param-

eters marked as point c in Fig. 3. The number of laser photons and population inversion versus

time is shown, after a transient of 500 time steps. Fluctuations are exhibited on a wide range of

time scales. Parameters: λ = 0.031, τc = 10, τa = 180. Lattice size: 400 × 400 cells.

model displays another type of complex behavior [17], which is shown in Fig. 5

and corresponds to the values of the parameters of the point c in Fig. 3. After a

transient time, the system exhibits irregular oscillations involving fluctuations on a

wide range of time scales. In order to distinguish these oscillations from those that

could be induced by the introduction of noise photons, in this case noise photons

have only been introduced in the first 100 time steps to activate the laser process,

and the populations values have been recorded after a transient time of 500 time

steps. The power spectrum of a time series is a useful tool to analyse its statistical

behavior. The power spectrum of the time series {xj ≡ x(tj)}, where time is sampled

as tj ≡ j ∆t with j = 1, 2, ..., N and frequency f is defined as the inverse of time

f ≡ t−1
j , is the square of the modulus of the Fourier transform (x̂k) of the series:

P (fk) = |x̂k|
2

where

x̂j =

N
∑

k=1

xkei2πk(j/N)

.

Figure 6 shows the corresponding power spectrum P (f), which follows a power

law of the kind 1/f−β where f is the frequency and the exponent is close to β = 2.

The system could be in a chaotic state for this regime of irregular oscillations, which

10-3 10-2 10-1 100
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

A(f) f -

 = 2.30

Frequency f (Hz)

P
ow

er
 P

(f)

10-3 10-2 10-1 100
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

A(f) f -

 = 2.15

Frequency f (Hz)

P
ow

er
 P

(f)

Fig. 6. Power spectrum P (f) with respect to the frequency f of the population inversion (up) and

the number of laser photons (down) for the time series depicted in Fig. 5, showing a power law

behavior. A linear fit of the spectrum, A(f) (dotted line), varies as f−β with exponent β = 2.15

for the population inversion and β = 2.30 for the number of laser photons.

would be in agreement with the frequent finding of a chaotic dynamics in real lasers

for sufficiently high values of the pumping. A process of self-organized criticality

could also be the origin of the observed behavior. However, a detailed study of the

dynamics of the system in this regime has not been yet fully accomplished.

Other aspects of the laser phenomenology have also been successfully modeled

using this kind of CA model, such as the dynamics of pulsed pumped lasers [18],

and the dependence of the decay rate of the relaxation oscillations on different

parameters [17]. In addition, CA models of laser dynamics can also be very useful

to study the evolution of spatiotemporal patterns in lasers.

4. Parallel implementation

In the previous section, different results obtained with the CA model of laser dy-

namics have been reviewed, showing that a very simple, coarse-grained CA model

can reproduce the laser behavior qualitatively. However, if one is interested in repro-

ducing the behavior of some specific laser device quantitatively, a more fine-grained

model is needed which can reproduce more details of that particular device (for

example, complicated boundary conditions) and have a granularity which is closer

to the real macroscopic system. In addition, a 3D version of the CA model is needed

to reproduce the shape of the device. For both purposes (using a fine-grained or a
3D CA model), a very large lattice size is needed. The runtime for a typical exper-

iment grows very quickly with the automaton size, as shown in Fig. 7, so an extra

large runtime would be needed on a stand-alone sequential computer. Therefore, a
parallel implementation is mandatory for this kind of applications.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 200 400 600 800 1000 1200 1400

R
un

tim
e

(s
)

System width (cells)

Fig. 7. Variation of the runtime of a sequential implementation of the 2D laser model with the

system size. For all the experiments, the simulation has been run for 1000 time steps using the

same values of the parameters.

We have developed a parallel implementation of the CA model of laser dynamics

for parallel computers with distributed memory, such as computer clusters, using

the message passing paradigm. In this paradigm a set of processes which have only

local memory operate on different processors. Processes can perform cooperative

operations by communicating among themselves by sending and receiving messages

which can include data to be exchanged and control information. The two most fre-

quently used implementations of the message passing paradigm are Message Passing

Interface (MPI) and Parallel Virtual Machine (PVM). Both are public domain li-

braries that can target very different types of machines and that can be used with

different programming languages. While MPI is currently more extended, we have

used PVM for the implementation of the CA model of laser dynamics because we

are interested in a further study of that model using dynamic load balancing mech-

anisms specifically developed for this library. However, the implementation can be

easily ported to other message passing libraries such as MPI.

The master-slave programming model has been used for the parallelization. The

procedure is illustrated in Fig. 8. Workload allocation has been carried out following

the data decomposition or partitioning methodology where identical tasks operate
over different portions of the data.

SLAVE

SLAVE

(optional)
to monitor execution

on−screen output
results file

input data file

SLAVE
MASTER

Fig. 8. Block diagram of the parallel implementation of the CA model of laser dynamics. The

master-slave programming model has been used. The master program performs initialization, par-

titioning of the problem, distribution of parts of the task to the slave programs, collection of results

and input/output. A slave program is executed on each cluster node and performs the computation

for its assigned partition of the CA. Each box in bold type represents a different processor, bold

lines represent communications between the processes running on different processors and arrows

indicate direction of communication or data flow.

The “master program” initially divides the CA lattice in p partitions of equal

size and sends each to a “slave program” running on a different processor. The

particular tasks performed by the master and slave programs are:

• Master program:

(1) Input data from external file (system size, number of partitions, pa-

rameter values, number of time steps) and initialization.

(2) Spawning of slave programs.

(3) Partitioning of the initial data of the automaton.

(4) Sending of common information and initial data to each slave.

(5) Collection of results from slaves for each time step.

(6) Termination of slave programs.

(7) Calculations performed using collected data.

(8) Output of final data to external files.

(9) Timing functions to measure performance.

• Slave program:

(1) Reception of common information and initial data from master.

(2) Time evolution computation for the assigned partition: application of

CA evolution rules.

(3) Exchange of state of the boundary cells with slave programs computing

the neighboring partitions.

(4) Computation of intermediate results and their communication to mas-

ter program.

In general, for d-dimensional CA 1-, 2-, ... or d-dimensional domain decompo-

sitions can be considered. In the present model, a 2D CA is used so there are two

possibilities: using a one-dimensional (1D) domain decomposition, i.e. partitioning

the CA into parallel stripes, or using a 2D domain decomposition into a checker-

board pattern. Both alternatives are shown in Fig. 9.

Fig. 9. Posible data domain decompositions for a 2D CA. Left: 1D domain decomposition into

parallel stripes. Right: 2D domain decomposition into a checkerboard pattern. Each processor
of the parallel computer performs computations on one subdomain. It is critical to minimize

communications between different processors.

For a parallel implementation intended to be executed on a computer cluster, it is

specially important to minimize the number of messages that exchange data between

the processors, because communications have a higher time cost than computations

on this kind of architecture. In order to exchange a message containing data, the

sender process must call the send routine from the message passing library and

the receiver process must call the receive routine. Therefore, to choose the most

advantageous decomposition, it is convenient to compare the number of send/receive

calls carried out by each subdomain for both alternatives. This value is shown in

Table 1 for the possible types of data decomposition for a 2D CA, considering that

for each communication 2 calls (one send and one receive) are used and that in the

case of a 2D domain decomposition the number of send/receive calls per subdomain

depends too on the type of neighborhood considered for the CA because a different

number of surrounding cells from each subdomain must be communicated.

We have chosen a 1D domain decomposition (instead of a 2D decomposition)

for the parallel implementation of the CA model of laser dynamics for the following

reasons:

i) A 2D CA with Moore neighborhood is used, so the number of send/receive calls

for a 1D domain decomposition is 4 times smaller than for a 2D decomposition,

as shown in Table 1.

Table 1. Number of send/receive calls per subdo-

main, for different data domain decomposition types

for a 2D cellular automaton.

Domain decomposition 1D 2D (v-N) 2D (M)

Number of calls 4 8 16

Note:
(v-N): CA using the von Neumann neighborhood

(M): CA using the Moore neighborhood.

Fig. 10. The CA is vertically partitioned into parallel stripes (using a 1D domain decomposition)

and each sub-domain is assigned to a different processor. Two additional columns—in light gray—

of ghost cells are added at both sides of each partition to store the photon state ci(t) of neighboring

cells belonging to the neighboring partitions.

ii) The communication structure is simpler and the data to be communicated can

be stored in adjacent memory positions so that the joint access time can be

reduced.

iii) As discussed in reference [20], a 1D decomposition is more favorable in runtime

for a small to moderate number of nodes, despite the amount of data to be

communicated is larger.

As shown in Fig. 10, the CA is vertically partitioned into parallel stripes and each

sub-domain is assigned to a different processor. For each sub-domain, two additional

columns of ghost cells have been included at the left and right sides, used to store

the photon state ci(t) of neighboring cells belonging to different sub-domains.

Each slave program computes the time evolution on its assigned partition of the

automaton by applying the CA evolution rules. To this end, the following procedures

are applied on each time iteration:

(1) Stimulated emission.

(2) Refresh values of photon state ci(t).

(3) Photon and electron decay and electron pumping.

(4) Noise photons.

Procedures 1 to 3 are three successive loops through all of the cells in the par-

tition. In the first one, stimulated emission is computed storing new values of the
photon state ci(t) in a temporal array; in the second one, the values of the pho-

ton state ci(t) of all the cells in the partition are updated using the values stored
in the temporal array; in the third one, photon and electron decay and electron
pumping are computed. In the fourth procedure, Nn/p noise photons are intro-

duced in randomly chosen cells inside the partition, where Nn is the total number
of noise photons introduced in the system at every time step and p is the number
of partitions in the system.

In general, in a parallelized CA the state of the CA cells in the boundaries of
each slave partition must be communicated to the slave programs dealing with the
neighboring partitions, because this state will be needed to compute the CA evolu-

tion rules there. Synchronization is capital here: communication must be carried out
first and computation afterwards, and not vice versa. For this particular CA model,
the only state value from neighboring cells needed to compute the CA evolution
rules for a cell is the photon state ci(t). Therefore, only this state is communicated
to the neighboring partitions. This communication is carried out directly between
the slave programs.

Additionally, in the last part of each time iteration, each slave program computes
the total number of electrons ai(t) and laser photons ci(t) in its CA partition and
sends this information to the master, which can record it and make some calculations
with it, such as computing the Shannon’s entropy as described in section 3.

5. Performance and scalability analysis

In order to test the performance and scalability of the parallel implementation of
the 2D CA model of laser dynamics on small computer clusters, simulations have
been carried out on a Linux PC cluster of ten nodes with Intel Pentium-4 processor,
for different sizes of the cellular automaton lattice. The cluster is heterogeneous:
six nodes have a clock frequency of 2.7 GHz and the other four nodes of 1.8 GHz.
This configuration has been chosen for the experiments to avoid indeterminism in
the results: for simulations with 1 to 6 nodes the slave programs have been run on
the “fast” (2.7 GHz) machines, and for simulations with 7 to 10 nodes additional
“slow” (1.8 GHz) machines have been used to achieve the required number of nodes.
The master program was always run on the master node of the cluster (which runs
at 1.8 GHz).

In Fig. 11, the results of the same experiment (computing the time evolution
of the population inversion and the total number of laser photons for 1000 time
steps) for two different system sizes are compared: 300 × 300 cells (a)—representing

(a) (b)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 200 400 600 800 1000

P
op

ul
at

io
n

 (
· 1

04)

Time Steps

Population Inversion
Laser Photons

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0 200 400 600 800 1000

P
op

ul
at

io
n

 (
· 1

06)

Time Steps

Population Inversion
Laser Photons

Fig. 11. Evolution of the whole system for the same values of the parameters (those marked

as point b in Fig. 3) for two different system sizes. (a) (left): 300 × 300 cells, typical result of

previous sequential implementations of the model. (b) (right): 2520 × 2520 cells, using the parallel

implementation with a much larger system size. Parameters: λ = 0.0125, τc = 10, τa = 180.

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

Number of Processors

2520 x 2520
1260 x 1260

630 x 630

Fig. 12. Runtime of the experiments, shown in a logarithmic scale, using three different system

sizes, for different number of partitions of the whole CA. Each partition was run on a different

processor.

a typical system size for previous sequential implementations—and 2520 × 2520

cells (b). In both cases the same parameter values as in Fig. 4(b) have been used:

λ = 0.0125, τc = 10, τa = 180. As for all the experiments included in this section, the

ratio of noise photons (introduced in every time step) to total number of cells in the

system has been maintained constant (0.03% of the cells) for the simulations with

different system sizes. The differences between both results are that the populations

are scaled and that the shape of the oscillations is smoother in (b) due to having

used a much larger system size, thus reproducing more accurately the relaxation

oscillations obtained in real lasers or from the integration of macroscopic differential

equations.

The performance of the parallel implementation has been measured by running

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26

 0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Processors

2520 x 2520
1260 x 1260

630 x 630
Linear Speedup

Fig. 13. Speedup of the parallel implementation with respect to the sequential program for varying

number of processors and for three different system sizes, compared to the ideally optimal linear

speedup. A very good performance is obtained for a moderate system size (630 × 630 cells). For

larger system sizes, super-linear speedup is obtained.

the same experiment (corresponding to the results shown in Fig. 11) using different

system sizes (2520× 2520, 1260× 1260 and 630× 630 cells) and for different number

of partitions of the whole CA (each one being handled by the slave program on a

different node). Runtime of the experiments is shown in Fig. 12, using a logarithmic

scale. Runtime get significantly shorter when the number of processors is increased,

with the exception of the change from 6 to 7 processors. The reason is that “fast”

machines have been used for a number of processors from 1 to 6, whereas “slow”

machines are used to complete a number of processors higher than 6. As the CA

operates in a lock-step mode, i.e. all the cells of the CA must be updated before

proceeding to the next step, the processing speed of the application is limited by

the speed of the slowest running task and adding one “slow” machine results in a

decrease of speed of the whole application.

The performance of the parallel implementation can be evaluated in terms of

the speedup (Sp), which indicates how much faster is a parallel algorithm than

a corresponding sequential algorithm. Speedup is defined [21] as the ratio of the

runtime of the sequential version of the program running on 1 processor of the

parallel computer (T1) to the runtime of the parallel version running on m processors

of the same computer (Tm):

Sp(m) =
T1

Tm
(5)

The speedup obtained for different number of partitions of the system (each one

running on a different processor) is shown in Fig. 13, in comparison with the linear

speedup, represented by the line y = x, which could be defined as the ideally optimal

speedup. A parallel application obtains linear speedup when, by using m processors,

the runtime is reduced m times with respect to the runtime of the sequential version

of the program running on 1 processor, i.e. when Sp(m) = m. As shown in in Fig. 13,

a very good performance has been obtained. In fact, a super-linear speedup (speedup
higher than linear) is obtained, specially for a system size of 2520 × 2520 cells, and
also for 1260 × 1260 cells. The reasons for super-linear speedup are finite memory
effects on the memory hyerarchy. For CA with a large lattice size, swap memory is
used for the sequential version of the program and not for the parallel version with
more than one processor because the total size of available physical memory is
higher. As an access to swap memory is much slower than an access to physical
memory, this causes an extra speedup in addition to the speedup coming from
computation. Additionally, a similar but slighter effect is caused by the memory
caches: when using more processors, the size of accumulated memory caches from
different processors is larger so that more data fit into caches and can be accessed
faster. Due to these effects a very high speedup, even higher than linear, can be
obtained.

The use of swap memory for running a very large size simulation of the model (as
necessary for 3D simulation) can make the calculation non-affordable on a single PC
but feasible on a cluster, because the system is partitioned so that less memory is
used in each node and no swap memory is needed.

The execution of the parallel application has been analysed using XPVM, a
graphical console for PVM which provides a performance monitor and debugger [22].
In Fig. 14, a Gantt chart showing the different types of tasks executed for each node
versus time is shown. As can be observed in the figure, after the master process
allocates the initial CA state to all the slaves, computation is the dominant task for
slave processes for the rest of the execution, and the master process mostly waits.

In Fig. 15, a detail of the tasks executed by each node and the messages trans-

ferred between different nodes versus time, once the computation phase has started,
is shown. Two distinct periods can be recognized: computation and communication.
In the computation period, the CA state of the next time step is calculated by
applying the evolution rules in each partition. In the communication period, the
photon state values of the cells in the borders of each partition are communicated to
the slave nodes which handle the neighbouring partition, and the total number of
electrons and photons in each slave partition are sent to the master node. As can be
observed in Fig. 15, computation periods are much longer than communication
periods. The average computation-to-communication ratio obtained for the parallel
application for slave processes is of the order of 10. As discused above, on a com-

puter cluster it is essential to keep the amount of communications to a minimum, so
that the computation-to-communication ratio is high. A relatively high value has
been obtained. This is an indication that the application takes advantage of the
parallelization on the computer cluster.

Finally, a scalability analysis of the parallel application running on the computer
cluster has been carried out. An application is said to be scalable if, when the num-

ber of processors and the problem size are increased by a factor of x, the running

Fig. 14. Gantt chart showing the different tasks executed by each cluster node versus time. Tasks 1

to 6 (down) correspond to the slave nodes and task 7 (up) to the master node. The tasks marked as

“Computing” are busy executing user computation, those marked as “Overhead” are busy execut-

ing PVM system calls and those marked as “Waiting” are idle and waiting for messages. Initially

(left) the master process allocates the initial CA state to all the slaves. After this initialization

phase, the slave processes spend most of the time computing and the master process mostly waits.

time remains the same [23] In order to analyze the scalability of our combination

parallel application – parallel computer, the same experiment has been run increas-

ing the total number of cells of the CA (which in our problem is directly related

to the amount of computation, or problem size) and the number of processors by

the same factor. The same experiment as for Fig. 11 has been used, but involv-

ing the computation of 10000 time steps. As in that case, in order to compute the

same physical experiment, the ratio of noise photons to total number of cells in the

system has been maintained constant (0.03% of the cells) for the simulations with

different system sizes. The results are shown in Fig. 16. In an ideally scalable paral-

lel computer, the running time should be the same in all cases. In practice, using a

higher number of processors always involves some runtime overload due to the com-

munication needed to coordinate and distribute the task between the processors.

As shown in Fig. 11, only a small excess (from 2 % to 5 %) of runtime compared

to the optimal value has been obtained, showing that the parallel implementation

scales well on a small computer cluster.

6. Discusion and conclusions

In the first part of this work, the application of a cellular automata model simulating

laser dynamics was reviewed. It was shown that laser dynamics phenomenology is

reproduced by the CA model: the different laser behaviors and their dependence on

Fig. 15. Gantt chart showing a detail of the tasks executed by each cluster node and the messages

passed between different nodes versus time, once the calculation phase has started. Computation

periods are much longer than communication periods, so a high computation-to-communication

ratio, of the order of 10, is obtained. That condition is of capital importance on a computer cluster

and indicates that the application is exploiting the parallel computational power of the machine.

laser parameters are reproduced, as well as the threshold pumping probability for

laser action and its dependence on laser parameters. CA-based models show some

benefits over the standard approach based on differential equations for different situ-

ations. They can be used as a good modelling alternative for lasers governed by stiff

differential equations, with convergence problems; or for very small optoelectronic

devices, for which the usual approximations may not be valid. Also, boundary con-

ditions with arbitrary geometry can be readily modelled. Another advantage is that

CA-based models can be efficiently implemented on parallel computers thanks to

their intrinsic parallel nature. In addition, we expect they could be useful to study

problems of current interest, such as cooperative phenomena in lasers, chaotic lasers

or two-photon lasers.

In the second part of this work, a parallelization of this model in two dimen-

sions was studied, its implementation on a computer cluster using a message passing

library was described, and the performance and scalability of the parallel implemen-

tation running on that parallel platform ware analyzed. Such an implementation is

required in order to run realistic simulations, due to their extensive runtime and

0

50

100

150

200

1 2 3 4 5 6

100000 200000 300000 400000 500000 600000

R
un

tim
e

(s
)

Number of Processors

System size (total number of cells)

Runtime of the simulations
Optimal scalability

Fig. 16. Runtime of the parallel implementation of the application for different number of processors

and system sizes, to show the scalability of the combination parallel application-parallel computer.

For an optimal ideal scalability, the same runtime (horizontal straight line) would be obtained

when increasing the number of processors and the system size by the same factor. A small excess

in runtime from the optimal value is obtained, showing that the parallel implementation scales

well at this level of parallelization.

memory size needs. In spite of the fact that the CA parallel model is only partially

uncoupled, i.e. the parallel tasks have to perform communications after each time

step, the presented implementation takes a good advantage of the parallelization

and obtains a very good performance. The reason is that, after the initial data have

been communicated to the slave processes and the computation phase has started,

communication periods are much shorter than computation ones. Different factors

contribute to that situation: it is not necessary to communicate the complete state of

the neighboring cells to the neighboring processors, but just one of its variables (ci);

the chosen data domain decomposition (1D) minimizes the number of send/receive

calls; the chosen parallel computer platform (a computer cluster) introduces only

a minimum delay in the communications between processors (much smaller than

parallel platforms of distributed architecture, such as in grid computing).

The present analysis confirms the feasibility of running large 3D CA simulations

of specific real laser systems in computer clusters, which are not realizable on a single

processor sequential computer due to the high runtime and memory requeriments.

Acknowledgments

We thank the referee for his detailed suggestions for improvement. This work was

partly supported by the project OPLINK (TIN2005-08818-C04-03) of Ministerio de

Educación y Ciencia (Spain).

References

[1] von Neumann, J., Theory of Self-Reproducing Automata (University of Illinois Press,
Urbana, 1966).

[2] Wolfram, S., Cellular automata and complexity (Addison-Wesley, Reading, MA,
1994).

[3] Ilachinski, A., Cellular automata. A discrete Universe (World Scientific, Singapore,
2001).

[4] Weimar, J., Simulation with Cellular Automata (Logos Verlag, Berlin, 1998).
[5] Chopard, B. and Droz, M., Cellular Automata Modeling of Physical Systems (Cam-

bridge University Press, Cambridge, 1998).
[6] Toffoli, T. and Margolus, N., Cellular automata machines: a new environment for

modelling (The MIT Press, Cambridge, MA, 1987).
[7] Sloot, P., Kaandorp, J., Hoekstra, A. and Overeinder, B., Distributed simulation with

cellular automata: architecture and applications. Lecture Notes in Computer Science
1725, 203–248, 1999.

[8] Bandini, S., Mauri, G. and Serra, R., Cellular automata: from a theoretical paral-
lel computational model to its application to complex systems. Parallel Computing
27(5), 539–553, 2001.

[9] Dattilo, G. and Spezzano, G., Simulation of a cellular landslide model with
CAMELOT on high performance computers. Parallel Computing 29(10), 1403–1418,
2003.

[10] Zhou, J., Zhu, L., Petzold, L. and Yang, T., Parallel Simulation of Fluid Slip in a
Microchannel. In 18th International Parallel and Distributed Processing Symposium
(IPDPS’04) - Papers (IEEE Computer Society, 2004), p. 43a.

[11] Talia, D., Cellular processing tools for high-performance simulation. IEEE Computer
33(9), 44–52, 2000.

[12] Hecker, C., Roytenberg, D., Sack, J.-R. and Wang, Z., System development for parallel
cellular automata and its applications. Fut. Gen. Comp. Sys. 16, 235–247, 1999.

[13] Haken, H., Synergetics: an introduction. Nonequilibrium phase transitions and self-
organization in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1983).

[14] Siegman, A., Lasers (Unversity Science Books, Mill Valley, CA, 1986).
[15] Svelto, O., Principles of lasers (Plenum Press, New York, 1998), 4th edition.
[16] Guisado, J. L., Jiménez-Morales, F. and Guerra, J. M., Cellular automaton model

for the simulation of laser dynamics. Physical Review E 67(6), 066708, 2003.
[17] Guisado, J. L., Jiménez-Morales, F. and Guerra, J. M., Computational simulation of

laser dynamics as a cooperative phenomenon. Physica Scripta T118, 148–152, 2005.
[18] Guisado, J. L., Jiménez-Morales, F. and Guerra, J. M., Simulation of the dynamics of

pulsed pumped lasers based on cellular automata. Lecture Notes in Computer Science
3305, 278–285, 2004.

[19] Guisado, J. L., Jiménez-Morales, F. and Guerra, J. M., Application of Shannon’s
entropy to classify emergent behaviors in a simulation of laser dynamics. Mathematical
and Computer Modelling 42, 847–854, 2005.

[20] Worsch, T., Simulation of cellular automata. Future Generation Computer Systems
16(2-3), 157–170, 1999.

[21] Foster, I., Designing and building parallel programs (Addison-Wesley, Reading, MA,
1995).

[22] XPVM: A Graphical Console and Monitor for PVM.
http://www.netlib.org/utk/icl/xpvm/xpvm.html, as available on January 2007.

[23] Dongarra, J., Foster, I., Fox, G. C., Gropp, W., Kennedy, K., Torczon, L. and White,
A. (eds.)., Sourcebook of parallel computing (Morgan Kaufmann, San Francisco, 2003).

https://www.researchgate.net/publication/220301724

