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Abstract. This paper presents the results of a hybrid estimation model for perfective software 

maintenance applied in a real context. The resulting model integrates heuristics and 

parametric methods to improve the maintenance estimation. One of the main objectives of this 

model is the inclusion of functionalities that provide zero function points. These functionalities 

can be supported by the model through impact points. Likewise, the micro function points and 

weighted risks have been included to provide a more realistic estimate. Finally, the model was 

implemented in a SME where the estimates were very approximates to the real effort. As result, 

the model could be implemented in a small organization with a stable maintenance process and 
effort deviation was 11% after applying the model. 

Keywords: estimation model, perfective maintenance, effort, impact points, micro 

function points, methods. 

1   Introduction 

In smalls organizations there is debate around the fact that size estimation is an 

important aspect of managing and controlling project delivery [1]. However, the 

organization must establish a mechanism to estimate the size of the software project 

to assess the level of effort needed to build the required deliverable [1]. The 

importance of having an accurate (or accurate enough) sizing mechanism has a direct 

impact on the efficiency of resource use and management of budgets [2]. Although 

the tasks related to estimate are hard, they are necessary. Therefore there are 

techniques to estimate in early phases of software lifecycle [3].  

On the other hand, perfective maintenance is the most used in relation to other 

types of maintenance in the software industry according to [4], because the most of 

the software industries incorporate new features to their applications, either by 

customer request or to generate a new version of their product for marketing. When 

the estimates are made to calculate the effort in maintenance process, the result of 

obtaining such estimates is called maintenance cost prediction [5] or maintenance 

project effort estimation [6], where the software maintenance is defined as “a process 

of modifying a software system or component after delivery to correct faults, 
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improve, performance other attributes, or adapt to a changed environment” [7], in 

other words, the maintenance is the process associated to the change.  

A maintenance project is the most difficult to estimate [8] and there is a challenge 

related to estimate a maintenance project under dynamically circumstances (risks) [9]. 

A number of estimation models [6, 11-16] for software development have been 

broadly adopted such as size measures as source lines of code, function points, etc. 

The models do not describe the estimation techniques used and their application in 

real context oriented to small organizations. Results about the impact on estimates of 

very small functionalities that are difficult to estimate were not provided because 

these models are not focus in these functionalities. Also the models have not enough 

risk factors related to software maintenance that may impact the estimated effort. 

The purpose of this paper is to present a hybrid estimation model based on 

heuristic and parametric methods. Also, the model applies micro function points [17] 

to estimate the make more realistic estimates and impact points [18] to measure the 

functions with zero function points (both are explained later in this paper). An 

experience and of using the model is described in a real context. The model was 

implemented in a SME (Small and Medium Enterprise) from Mexico, where results 

were very satisfactory.  

The remainder of the paper is organized as follows. Section 2 addresses the related 

works to this research and a more detail of objective of the estimation model 

proposed. Section 3 mentions the main objective of the estimation model proposed 

and needs to satisfy by this proposal. Section 4 describes the method based on IPs 

count, their objective, scope, considerations, and integration with the estimation 

model. Section 5 details the micro function points and Section 6 mentioned the risk 

referred to integrate the model. The structure of the estimation model proposed is 

described in Section 7. The experience and results are mentioned in Section 8 and 

finally Section 9 presents the conclusions, the model’s scopes and suggestions for 

possible future work. 

2   Related Works 

There are few models and researches that address the maintenance estimation based 

on software size estimation techniques and estimation methods, in this section are 

mentioned some. The model proposed by [11] was tested in a controlled environment 

and it used the LOC as main factor to generate estimates. Model raised by [12] and 

models analyzed by [13] apply only LOC in the estimates generation. These three 

works observe that there is a dependency to the programming language when this 

measure is used to estimate. Some difficulties were derived from the variation in the 

definition on source codes itself and counting the new, changed, or reused lines 

delivered. These researchers conclude that it is necessary a good relationship between 

the maintenance team members. Thus, the estimates are provided and the risks are 

mitigated with more accuracy. These models produced an effort variation of 10% 

compared to estimates. 

Other researches [14, 15] founded that expert estimates outperform the function 

point estimates, while analogy estimates slightly outperform the expert estimates. 
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Some studies [6, 15, 16] have addressed the most used parametric method: the 

function points. However, the authors have carried out changes in the original method 

to estimate a maintenance projects. The main conclusions and limitations encountered 

are: 

 The size of the resulting system is not a simple sum of existing size and the 

size of the new component. The resulting system can even be smaller than 

initial one (when a part of functionality is being removed).  

 Mainly, models have not specific adjustment factors for maintenance. 

 The size in a component to be changed has a much larger impact on effort 

than the size of the changes. 

 A situation where the functional size is zero frequently occurs and expert 

opinion should be used.  

 The estimates with wide tolerance range during early phases of software 

lifecycle affect mainly to small development teams. These small 

organizations can not waste too much effort because this strongly impacts 

their benefits. 

3   The Aim of the Proposed Estimation Model 

According to the recommendations of [10] and based on previously identified needs, 

it is necessary a model that can be applied in broader categories of software 

applications and a certain level of external validation to apply different estimation 

techniques. Hybrid model proposed will have the next characteristics: 

 Acceptable tolerance range and effort estimation determined by micro 

function points expert opinion and researches, statistical techniques. 

 Quantitative representation in the functionality changes that provide zero 

function points. This will be done by the impact points. 

 Specific adjustment factors risks involved in software maintenance. 

 The model will work with analogy, algorithmic and statistical methods and 

will incorporate expert opinion to balance the risks. 

The proposed estimation model has been tested in a real context, to increase and 

improve the validation. The recommendation given in [19] has been considered in this 

research. 

4   A start toward the solution: Impact Points Count  

The FPs (Function Points) has problems measuring other functions that may be 

impacted by a specific change (zero FPs). For example, changes to static Web pages 

or populating code tables that are not related or used by the FP. Junhai [20] addresses 

this problem, but he did not reflect it in a counting unit. He only identified accounting 

small functions with LOC. Other studies indicate that zero FP works involved 15 or 

20 percent in maintenance projects [18]. 

Impact Points are used to measure zero FP functionality impacted in a project. 

Based in the IPs description, this measure provides the next advantages: 
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 It is a single measure for all impacted functionality. It is an addition to the 

measurement program in the case study. 

 It is independent of the technology context and implementation techniques.  

 It is based on the IFPUG FP methodology. 

 It is not requires an extensive set of guidelines to be developed, or extensive 

training for employees already familiar with FP counting. 

For example, impact points can count validations and confirm boxes, which 

provide zero FPs.  

To implement IPs in an organization and in an estimation model, it is important to 

assess and define the projects types and situations that will use them (in this case 

estimation related to perfective maintenance).  

Some steps to consider are: 

 Develop a list of non-FP countable situations and projects then categorize 

them by type and volume (e.g., rate changes, new products, etc.). 

 Conduct IP counts on a representative sample of projects from the non-FP 

countable project list. 

 Record the effort and delivery platform for non-FP countable projects  

 Assess the productivity rates (IPs per hour) to determine trends and any 

further breakdowns/measures needed. 

 Develop templates to use going forward to avoid conducting IP counts on all 

non-FP countable projects. 

If the rate changes typically impact the same functions, then the same IP count 

would be used each time.  

4.4   Integration with the Estimation Model 

Based on the recommendations described before, the estimation model required the 

definition of the functions with zero PF, which are shown in Table 1. The functions 

should not maintain files and do not calculate, derive or maintain data. It is possible to 

add many more features to the table for more granularity level.  

Table 1. Example of Functions considered to be counted with Impact Points 

Classification Functionality 

Table updates Add rate 

Delete rate 

Create table 

Delete table 

Update table 

Code/Text Changes Add help 

Update help 
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5.   Improving the Estimation: Micro Function Points  

The micro function points [17] were developed based on the reasoning that an EI 

(External Input) having 1 DET (Data Element Type) and 0 FTRs (Referenced Files) 

get scored as 3 (unadjusted) function points, while an EI with 15 DETs and 1 FTR 

also is scored as 3 function points. The resulting equations were obtained from 

multiple regression from the combinations of DETs, FTRs and the corresponding 

function point counts. The study description, analysis and the next equations were 

obtained from [17]. 

This FP change makes the estimated effort more adjusted and real in the 

application to maintain. Also these estimates help to the least waste in time and 

resources to maintain small features; this is vital, especially in organizations and small 

teams. It does not recommend using the micro function point count approach for 

counting applications that have at least 30 different functions. The next section 

mentions risks to use in the estimation model to complement the software size 

estimation technique addressing the possible risks in a maintenance project. 

6.   Complementing the Model: Maintenance Risks 

There are many researches that address the importance of the risk in a project. 

Sommerville [22] asserted that productivity factors concerning the environment of 

software maintenance can include characteristics such as module independence, 

programming language, programming style etc. 

According to [11] the maintenance effort is affected by a large number of factors 

such as size and types of maintenance work, personnel capabilities, the level of 

programmer’s familiarity with the system being maintained, processes and standards 

in use, complexity, technologies, the quality of existing source code and its supporting 

documentation. 

Belady related the maintenance efforts with productivity effort, complexity of 

software design and documentation, and the degree of familiarity with the software 

[23]. Jorgensen’s effort prediction model includes variables such as the cause of the 

task, the degree of change in the code, the type of operation on the code (mode), and 

the confidence of the maintainer [24]. However, models that have been studied [6, 14, 

25] do not include the quantitative evidence generation derived from factors that may 

affect the process or maintenance project. A perfective maintenance project in regular 

conditions has an effort variation of 20% over the initial estimation [3]. In case more 

tolerance range is needed that assumed by the model for project delivery, it is 

recommended a meeting with the stakeholders to reach agreement. The percentages 

related to effort variation may be smaller if the organization improves the accuracy of 

the risk weighting and their impact in the maintenance process.  

Then, for an estimated total percentage, the average risk is calculated. The result is 

the tolerance range for the delivery of the maintenance projects. It is recommended 

that the tolerance range does not report to the maintenance team, to have performance 

estimation under ideal conditions. The tolerance range is only considered for 

negotiation with the client.  
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7.   Estimation Model Structure 

In this section will be described the hybrid estimation model. First part of the model 

contains a specific template to use the IP count and the description of features this 

count uses. Template shows categories and their features, each feature has a field to 

introduce the number of IP in that classification. This section of the model uses the 

ascending method because the estimates have a very high granular level. If there is an 

accounting function with IP and it is not in the categories, it is necessary to add it and 

mention it to the maintenance team. 

The second and third parts have a template to apply the micro function point count 

(parametric method) based on the fields of a traditional FP count. However, this 

templates use the micro function point formulas to calculate the total FP. These parts 

are applied to insert or delete functionality.  

The last 2 parts are the most important. The principal section has the historical data 

from the projects, inputs and outputs, and all the risks. The fields of historical data 

projects are: Project’s name, technology, FP to insert, FP to delete, FP to change, IP 

to insert, IP to delete, IP to change, (that 6 fields have their related efforts), effort 

estimate, effort estimate with risks, effort variation, percentage risk and real effort. 

The effort variation is the percentage representation of the subtraction of effort 

estimate minus effort estimate with risk.  

This area allows applying the analogy method. The analogy method is used to filter 

the fields from projects with similar characteristics to the maintenance project to 

develop. The main characteristic to filter the projects is the size based on FPs or IPs. 

Filtration may contain some fields (e.g. IP to insert) and not all necessarily. When the 

projects are already filtered the next part of the model allows introducing the values 

of the new maintenance project according to the count performed to its features. 

It should be emphasized that if there are not projects with similar characteristics it 

is necessary to calculate the average score of this characteristic, through of the sum of 

all the values of this characteristic (e.g IP to delete) divided by the total effort in all 

the projects with this characteristic. After that, the value can be entered in monte carlo 

section in field named “average”. Figure 2 shows some fields of this part of the model 

from some projects of the SME that applied the estimation model. 

 

 

Fig. 2. Some fields of historical data projects. Project’s name, technology, FP to insert, Effort 

in FP to insert, FP to delete, Effort in FP to delete, FP to change, Effort in FP to change,IP to 

insert, Effort in IP to insert. 

The final part of the model has a statistic method based on monte carlo simulation, 

which is very applicable and reliable for estimation [25-27]. The simulation takes the 

average score obtained from the risks and the standard deviation for its iterations.  

Figure 5 shows monte-carlo simulation in the estimation model while some tests 

were performed. 
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Fig. 5. Some fields about the implementation of monte carlo simulation in the estimation 

model. IPs to insert: Average, Standard deviation, total iterations, iteration and it effort, effort 

estimate, minimum expected and maximum expected. Total effort estimate, effort variation 

estimate and duration, these 3 fields are from the total maintenance project. 

8.   Experience and Results 

The estimation model was used in a micro SME from Veracruz, Mexico with one-half 

year experience in software development for electronic billing. The organization was 

composed by 22 persons between administrative staff and development team. 

The projects were 57% related to maintenance in their applications and other 

provided by customers and their market was only regional. They had 7 projects, 4 of 

them was projects related to perfective maintenance, 3 of which were their 

developments and 1 was provided by the client. They used a process based on Agile 

Mantema [19]. They wanted to have quantitative evidence in the duration of their 

projects based on effort to be more successful in their offers to the customer. 

Information was introduced to the model from 4 projects where the effort was 

recorded by PSP (Personal Software Process). The projects could be counted (after 

their termination and based on requirements) with IPs and estimated with micro 

function points. All the features with their times were recorded with strict accuracy, 

this provided to the model reliable records of maintenance team’s ability. Time in 

each feature corresponds to total effort in planning, analysis, design, development, 

testing and deployment phases. 

The risks relating to these projects could not be accurately quantified, so was used 

the experience of some maintenance team members associated with the previous 

projects to calculate the average score related to the risks. The projects and some of 

their characteristics are in the table 3 (the fields have been abbreviated). 
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Table 3 Description of some data from the historical projects. Name’s project, technology, FP 

to insert, Effort in FP to insert, FP to delete, Effort in FP to delete, FP to change, Effort in FP 

to change,IP to insert, Effort in IP to insert, effort variation and percentage risk. 

Name Tech FPI EFPI FPD EFPD FPC EFPC IPI EIPI EV %R 

P1 Java 16.77 140 9 22.5 0 0 10 6.3 7% 21% 

P2 Java 16.15 138 0 0 0 0 6 2.6 5% 21% 

P3 Java 16.7 145 11.8 26.2 0 0 8 4.1 8% 11% 

P4 Java 20.2 230 0 0 6.1 48.4 4 2.2 2% 11% 

 

A perfective maintenance project was estimated, it had similar characteristics to 

projects P1and P2. This project did not estimate the effort in each phase of software 

lifecycle because an analysis about historical distribution of effort in each phase did 

not exist. The distribution of effort was made based on expert opinion of the leader 

maintenance team. 

Results are quite satisfactory because they have an 11% in average effort variation 

in planning, analysis, design, development, testing and deployment phases. The team 

cohesion, meetings and experience were the most important factors to minimize effort 

variation and solve problems faster. Figure 6 shows the effort variation in the project. 

 

 

Fig. 6. Effort variation in planning, analysis, design, development, testing and deployment 

phases. 

9.   Conclusions 

This paper present a hybrid effort estimation model for perfective maintenance tested 

in a SME and some results of effort estimates. The model applies the function points, 

impact points count and an estimation method based on micro function points. 

The model integrates reasonably the expert opinion method to mitigate the impact 

in the risks estimation during the maintenance project. Also it carries out the analogy 

method to select similar projects and implement statistics formulas (algorithmic 

method) to provide reliable estimates. 
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The hybrid model provided the integration of some estimation methods to estimate 

effort according to the capabilities and experience in the organization. The Micro 

Function points, quantitative evidence of factors risk, and the statistical method 

provided more real effort estimates in the maintenance projects. 

The IPs provides a high granularity level to measure functionalities with zero FP 

and they can adapt to the understanding of the maintenance team. Also, the IPs may 

vary to incorporate a complexity related to this IP type. New functionalities with zero 

FP are ease to incorporate to the model. So, it is possible to estimate these 

functionalities in the future. Size of maintenance software project can be estimated if 

the effort of the functionalities to insert, change or delete are managed separately. No 

matter if it is large or small. 

It is possible to implement the model in small organizations with a well defined 

maintenance process and to provide good estimations and a minimum effort variation 

in a SME. The data reliability provided by statistical estimation depends of stability in 

the maintenance process implemented in the organization (no matter if it is based on 

agile or traditional methodology). 

As future work, it expects to implement the model in different context 

(organizational and technologic) and test it in bigger maintenance projects to provide 

deeper validation. Likewise, it is necessary more detailed in the definition related to 

the factors risks for better understanding of them and a formal technique to weight 

these factors risks. 
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