
Unrestricted multivariate medians for adaptive filtering 

of color images 

Ezequiel López-Rubio
1
, María Nieves Florentín-Núñez

2 

1Department of Computer Languages and Computer Science, University of Málaga, Spain 

ezeqlr@lcc.uma.es 
2Department of Investigations and Extensions, National University of Itapúa, Paraguay 

florentin@uni.edu.py 

Abstract. Reduction of impulse noise in color images is a fundamental task in 

the image processing field. A number of approaches have been proposed to 

solve this problem in literature, and many of them rely on some multivariate 

median computed on a relevant image window. However, little attention has 

been paid to the comparative assessment of the distinct medians that can be 

used for this purpose. In this paper we carry out such a study, and its 

conclusions lead us to design a new image denoising procedure. Quantitative 

and qualitative results are shown, which demonstrate the advantages of our 

method in terms of noise reduction, detail preservation and stability with 

respect to a selection of well-known proposals.  

Keywords: Adaptive filtering, multivariate median, impulse noise, edge 

detection. 

1. Introduction 

Filtering of color images is aimed at reducing noise while at the same time 

chromaticity, edges and details are preserved [1]. This can be done by either 

component-wise or vector methods [2]. The main difference between these families of 

methods is that component-wise methods can introduce new color artifacts in the 

resulting image, because they process each pixel color channel independently without 

considering the correlation between channels. On the other hand, the vector methods 

process the color channels of each pixel as a vector, thus avoiding inconvenient 

chromaticity changes in the resulting image [2], [3]. For this reason, the vector 

methods are more effective for noise reduction and preservation of color image 

chromaticity. Among classical non-linear vector based filters, we have the Vector 

Median Filter (VMF) [4]; the Basic Vector Directional Filter (BVDF) [5]; and the 

Directional Distance Filter (DDF) [6]. These filters are uniformly applied on the 

image; therefore they tend to modify both noisy pixels and edge pixels. Consequently, 

effective noise removal is achieved at the expense of blurred and distorted features. In 

order to better preserve the image structure, the vector median and directional 

weighted adaptive filters have been proposed [7], [8]. The vector filters based on an 

adaptive switching scheme [3], [9], [10], [11] consider an impulse detector to 
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determine which pixels should be filtered and which pixels should be preserved. 

These filters are simple and effective in preserving image details.  

We propose a new filter for noise reduction in color image, based on the filter 

unrestricted multivariate medians, in an adaptive switching scheme. Median based 

filters such as the VMF are commonplace in literature; there has been little interest in 

studying the comparative advantages of the different multivariate medians that could 

be used for image denoising. Here we do such a study, and its result leads us to 

propose a new denoising filter for color images corrupted by impulse noise. The 

results of experiments and simulations have shown that the proponed filter is better 

than many other existing adaptive filters, in terms of capacity for noise reduction, 

preservation of edges, thin detail and image color. 

The paper is organized as follows. Section 2 describes the different multivariate 

medians that can be used for color image denoising, and then carries out a study of 

their relative strengths. In light of the results of this study, we propose in Section 3 a 

new adaptive filter. Experimental results and comparisons between the proposed filter 

and several well-known nonlinear adaptive filters are presented in Section 4. Finally, 

the conclusions are set out in Section 5. 

2. Median Filters 

In this section we examine the use of median filters for impulse noise removal. 

Impulse noise is classified into two types [11], [3]: 

1. Fixed-valued impulse noise, also known as salt and pepper noise, pollutes pixels 

with random values that can be either 0 or 255.  

2. Uniform impulse noise, pollutes the pixels following a uniform random 

distribution over the full range [0, 255]. We have considered this filter model for 

the experiments.  

Under impulse noise, the pixels of the k-th channel of a color image (k=1,2,3) are 

distorted according to the following equation: 
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noise value which is independently chosen in the three channels; and denotes the 

noise ratio. In order to simplify the discussion, for the rest of this section we will 

assume that 
21

, xxn
k

comes from a uniform distribution (uniform impulse noise), as 

this is the impulse noise type which is the most difficult to remove.  

Perhaps the most basic procedure for noise removal is low pass filtering. This 

amounts to replacing the old value by a weighted mean of the pixel color values 
j

y in 
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a small window W around the pixel of interest. If we assume equal weights for the 

sake of simplicity we arrive at the sample mean:  
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where W stands for the number of pixels of the windows W . However, the mean is 

known to be very sensitive to outliers [12]. As seen in (2), this is because the mean 

minimizes the sum of squared distances. Consequently, this approximation can be 

dominated by outliers. In this way, when the noise is made of impulses, the corrupt 

data dominate the computation of the weighted average, leading to poor results. 

A classical approach to solve this problem is to use the component-wise median: 
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The decision to use cmedian is very common when applying a denoising method 

designed for grayscale data to color images, since it is equivalent to filtering the three 

color channels separately by means of the univariate median. Despite being a robust 

statistic, cmedian does not make use of the tridimensional structure of the color space, 

which leads to chromatic shifting problems [3]. Moreover, it is not invariant to 

similarity transformations.  

Robust statistics have been developed, which are fully adapted to the 

characteristics of multivariate data [13]. In particular, the multivariate median (also 

called L1-median) has an efficient learning algorithm [14] and has been proven to 

experience little degradation when outliers are present [15], [16]. It has a key 

advantage over cmedian, namely its invariance with respect to all similarity 

transformations. The rationale behind the Lmedian statistic is to drop the square in the 

minimization (2) to arrive at the L1-median of the set (we use equal weights like 

before to simplify matters): 

W
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so that the outliers have a much lesser impact on the minimization. 

A typical simplification of Lmedian for color image denoising is to restrict the 

possible outcomes to be among the input data [10], [3], [4]. In this way we arrive to 

the restricted L1-median: 

The four discussed strategies (smn, cmedian, Lmedian and rmedian) are estimators 

of the true value ŷ of the central pixel, where the input samples for the estimation 

come from the window W . Perhaps the most standard way to compare the 
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performance of two estimators y
~  and y

~  is to compute their relative efficiency 

(REF); see [17], [18]. For a tridimensional estimated parameter ŷ , which is our case, 

it reads as follows [19]: 
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where y
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cov  and y
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cov  are the covariance matrices of the estimators y
~ and y
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 is judged to be better than y
~  if and only if 

1
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~  is better than   if and only if 1
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yyREF . Since we have 

four estimators to compare, and not only two, it is more convenient to compute the 

following estimator efficiency: 
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Higher values of  y
~

EFF  mean that the estimator y
~  is better, since from (6) and 

(7) we have:  
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We have tested the four considered approaches without any impulse detection 

method, in order to compare their intrinsic performance against uniform noise (Fig. 

1); the well known Baboon image has been used for this purpose [20]. The four most 

used window sizes have been considered, i.e. 3 3, 5 5, 7 7 and 9 9. The impulse 

noise probability  has been varied from 0 to 1 in 0.01 increments.  

As seen, the best performing filter is Lmedian for the most commonly considered 

noise levels ( <0.5), and all window sizes and noise types. 
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Fig. 1. Efficiency of the estimators under uniform impulsive noise for the Baboon image. 

The best window size is the smallest (3 3) for low noise ( <0.2). This is because 

the increased smoothing of the larger sizes does not offer any advantage at so low 

noise levels. However, when the noise is higher, larger sizes are better. The 5 5 size 

is the best performing for moderate noise levels, so it is a reasonable tradeoff, as seen 

before. From the preceding, it can be concluded that we can get some advantages in 

impulse noise removal by considering the Lmedian strategy, in particular with a 5 5 

window size. Next we design a nonlinear image filtering scheme which is based on 

this observation. 

3. Adaptive Filtering  

Before we can apply the unrestricted multivariate median Lmedian to image 

denoising, we need a procedure to detect impulse corrupted pixels reliably. Let 

),(
21

xxx be the position of a pixel in an image of size NumColsNumRows , and 

let be
3

,1,1: Ry NumColsNumRows , where   

xxxx
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is the function which gives the three-dimensional color value at position x . If the 

pixel x were not an impulse, it would imply that y is differentiable at x . Hence we 

could express each of its components as a Taylor series, 
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Then we get from (10) that the directional derivative in the direction ,  is zero 

to first order approximation: 
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That is, there should be a small constant 0 such that 
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Please note that the vector ,  points in the direction of the level curve that 

crosses the point
21

, xx . One could check whether 
21

, xx is not an impulse by 

looking for a vector ,  which fulfils (12). We restrict our search to those which 

correspond with easily realizable gradient estimators (edge detection filters): 

1,1,1,1,0,1,1,0,  (13) 

The corresponding masks for the 5 5 window size are as follows: 
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Please note that equation (12) should hold for all three color components if the 

pixel were not an impulse. Consequently, we declare that pixel
21

, xx  is an impulse 

if and only if there exists a color component such that no vector ,  which satisfies 

(13) can be found to verify condition (12).  

If the pixel at position x is not an impulse, it is not changed in the restored output 

xy
~  Otherwise, we substitute it by the unrestricted multivariate median of its 5 5 

window Wx, as justified in Section 2: 

x
xy WLmedian~  (16) 

Now that we have defined our proposal, we are ready to assess its performance, 

which is done in the following section. 

4. Experimental Results  

In this section we compare the performance of the proposal we have just presented 

with that of several well known impulse noise removal filters. We have considered 
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various benchmark images of 512  512 pixels, 24-bit RGB. These images were 

obtained from the Southern California University images database [20]. We have 

obtained quantitative and qualitative results similar to the test images. We only 

present the experimental results obtained with Baboon (Fig. 2). We considered a filter 

window 5 5 to experiment with our filter, as previously explained. We chose a 

threshold value 5 , which proved to yield robust results across the tested 

benchmark images. The set of alternative multi-channel filters which has been 

considered for the comparative evaluations is shown in Table 1. 

 

   

Fig. 2. Original Image (Baboon). 

Table 1. Filters considered for comparison with the proposed filter. Please note that the first 

four filters operate using a filter window 3  3 and the rest of the filters operate using a filter 

window 5  5. 

Notation Filter Parameter Ref. 

VMF Vector Median Filter  [4] 

BVDF Basic Vector Directional Filter  [5] 

DDF Directional Distance Filter  25.0p  [6] 

HVF Hybrid Vector Filter 10Tol  [11] 

SVMF Switching Vector Median Filter  3Tol  [10] 

RASVMF Rank Adaptive Sigma Vector Median Filter 5  [9] 

4.1. Quantitative results  

Here we compare the methods in terms of quantitative noise reduction, faithful color 

reproduction, detail preservation and stability. To this end, we have selected three 

performance measures for the filter evaluations: Peak signal-to-noise ratio (PSNR), 

higher is better; mean absolute error (MAE), lower is better; and normalized color 

difference (NCD), lower is better. PSNR reflects noise suppression level [21]. MAE 

reflects the capability to preserve image details. NCD reflects the capability to 

preserve the image chromaticity [22]. The stability of the methods has been assessed 

by computing the mean value and standard deviation of these three measures over 10 

simulation runs with different pseudorandom seeds for random noise generation.  
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In order to evaluate the stability of the filters’ performance, we added impulsive 

noise to the test images; we processed ten times the test images with each filter, for 

every impulsive noise ratio considered in this paper.  

Table 2 present the results obtained with the mean and standard deviation for each 

performance measure (PSNR, MAE and NCD), with different impulsive noise ratios. 

Our method shows the best performance in chromaticity preservation (NCD) in all 

cases, while it also preserves details satisfactorily (MAE). This validates the 

theoretical results of Section 2, where we aimed to preserve the information which is 

associated to the three dimensional structure of the color data. On the other hand, it 

also attains good PSNR results, although RASVMF outperforms it. As we will see in 

the next subsection, RASVMF yields rather poor qualitative results in spite of having 

a high PSNR. This is because of its problems with color faithfulness, which we can be 

seen on table 2: RASVMF is the worst method with respect to NCD in several 

situations. This table shows that the performance of the proposed filter is more stable 

than that of most other filters.  

Table 2. Quantitative results (standard deviations in parentheses) on Baboon image corrupted 

by uniform impulsive noise. 

 

Filter 

10%  20% 

PSNR MAE NCD  PSNR MAE NCD 

VMF 30.(0.01) 7.2 (0.02) 0.10 (0.00)  29 (0.01) 8.5 (0.01) 0.11 (0.00) 

BVDF 29.(0.01) 9.9 (0.03) 0.12 (0.00)  29 (0.01) 11.1 (0.05) 0.13 (0.00) 

DDF 31.(0.01) 6.1 (0.01) 0.09 (0.00)  30 (0.01) 6.8 (0.01) 0.09 (0.00) 

SVMF 33.(0.02) 4.6 (0.02) 0.07 (0.00)  30 (0.01) 7.4 (0.02) 0.11 (0.00) 

HVF 31.(0.01) 5.6 (0.02) 0.08 (0.00)  30 (0.01) 7.2 (0.02) 0.10 (0.00) 

RASVMF 38.(0.02) 2.0 (0.01) 0.07 (0.00)  35 (0.02) 4.7 (0.19) 0.10 (0.02) 

Proposed 34.(0.02) 3.1 (0.01) 0.05 (0.00)  32 (0.01) 4.9 (0.01) 0.07 (0.00) 

4.2. Qualitative results  

The proposed filter is qualitatively more adequate than the other filters, in the three 

above mentioned criteria. For example, in Fig. 3, it can be observed that the thin white 

hairs of the Baboon face, are very well preserved, and noise, successfully reduced.  

It must be highlighted that bad color reproduction leads to visually deficient 

denoised images, even if the pixel values are numerically accurate. This can be seen 

in RASVMF results, where a very good PSNR does not lead to perceptually pleasant 

output images. The reason for this is that a relatively small number of very badly 

colored pixels can spoil the restored image as seen by a human. 

5. Conclusions 

The usage of multivariate medians for removal of impulse noise in color images has 

been examined. The different medians suitable for this purpose have been defined and 

compared. The insights provided by this comparison have leaded us to propose a new 

method to solve the impulse noise reduction problem in color images. Its comparative 
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performance has been assessed with respect to several alternative proposals, both in 

quantitative and qualitative terms. The results of these experiments show that our 

method is able to reduce the impulse noise significantly and reliably, while at the 

same time it preserves the details and edges of the original image. 

 

     
 (a) (b) (c) 

     
 (d) (e) (f) 

      
 (g) (h) (i) 

Fig. 3. Detail of the Baboon image (uniform noise). (a) Original image, (b) Image corrupted by 

10% uniform impulsive noise, (c) Proposed output, (d) VMF output, (e) BVDF output, (f) DDF 

output, (g) SVMF output, (h) HVF output, (i) RASVMF output. 
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