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ABSTRACT  

   

Exome sequencing was used to identify novel variants linked to amyotrophic 

lateral sclerosis (ALS), in a family without mutations in genes previously linked to ALS. 

A F115C mutation in the gene MATR3 was identified, and further examination of other 

ALS kindreds identified an additional three mutations in MATR3; S85C, P154S and 

T622A. Matrin 3 is an RNA/DNA binding protein as well as part of the nuclear matrix. 

Matrin 3 interacts with TDP-43, a protein that is both mutated in some forms of ALS, and 

found in pathological inclusions in most ALS patients. Matrin 3 pathology, including 

mislocalization and rare cytoplasmic inclusions, was identified in spinal cord tissue from 

a patient carrying a mutation in Matrin 3, as well as sporadic ALS patients. In an effort to 

determine the mechanism of Matrin 3 linked ALS, the protein interactome of wild-type 

and ALS-linked MATR3 mutations was examined. Immunoprecipitation followed by 

mass spectrometry experiments were performed using NSC-34 cells expressing human 

wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 

in mRNA transport centered on proteins in the TRanscription and EXport (TREX) 

complex, known to function in mRNA biogenesis and nuclear export. ALS-linked 

mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-

localization with endogenous Matrin 3 and increased co-localization with specific TREX 

components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA 

export defects of both global mRNA and more specifically the mRNA of TDP-43 and 

FUS. Our findings identify ALS-causing mutations in the gene MATR3, as well as a 

potential pathogenic mechanism attributable to MATR3 mutations and further link 

cellular transport defects to ALS. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION TO ALS 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder first 

described by Charcot in 1874 (Charcot 1874). ALS is characterized by the loss of upper 

motor neurons, located in the cortex and projecting to the brainstem and spinal cord, and 

lower motor neurons which are found in the brainstem and spinal cord and project to 

muscles. This loss of motor neurons leads to progressive paralysis characterized by 

spasticity and muscle stiffness due to the loss of upper motor neurons, as well as 

fasciculations and muscle atrophy due to the loss of lower motor neurons (Brown and Al-

Chalabi 2017). In Europe and the United States, the incidence of ALS is approximately 2 

per 100,000 individuals with a prevalence of 5 per 100,000 people (Chio, Logroscino et 

al. 2013). The mean age of symptom onset is 62 years and the mean age of diagnosis is 

64 years. In approximately two thirds of ALS cases symptom onset is in the limbs, with 

approximately one third of patients presenting with bulbar symptoms first (Brown and 

Al-Chalabi 2017).  

The diagnosis of ALS is made clinically, often with the aid of electromyography 

(EMG) along with investigations to exclude ALS mimics (Lenglet and Camdessanché 

2017). Most studies report a diagnostic delay of approximately 1 year, suggesting that 

there is still a significant delay between symptom onset and a diagnosis of ALS (Chio, 

Logroscino et al. 2013). After diagnosis, the average survival of patients is approximately 

3-5 years with most patients succumbing to respiratory failure. Survival is very 

heterogenous however, with approximately 5-10% of patients surviving 10 years or 
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longer (Chio, Logroscino et al. 2009). In addition to motor symptoms, approximately 

13% of patients are also diagnosed with behavioral variant FTD (frontotemporal 

dementia), and as many as 50% of ALS patients exhibit some degree of cognitive or 

behavioral abnormalities (Lomen-Hoerth, Murphy et al. 2003).  

Currently there are two FDA approved drugs to treat ALS: Riluzole and 

Edaravone. Riluzole was approved in 1995 after clinical trials suggested that treatment 

extended survival and slowed deterioration of muscle strength (Bensimon, Lacomblez et 

al. 1994). Since its initial approval, studies suggest that Riluzole can extend survival by 

only three months on average (Traynor, Alexander et al. 2003, Miller, Mitchell et al. 

2012). Edaravone was approved in May 2017 after clinical trials performed in Japan 

suggested that it could slow the decline of ALSFRS-R scores in a subset of patients that 

were early in the disease process with a fast disease progression (Writing and Edaravone 

2017).  

Approximately 5-10% of ALS cases are considered familial, which while well not 

formally defined, is generally considered patients who have at least one first or second 

degree relative with ALS or FTD (Boylan 2015). Mutations in over 30 genes have been 

implicated in ALS to date, beginning with the discovery of mutations in SOD1 in 1993 

(Rosen, Siddique et al. 1993, Renton, Chio et al. 2014). Proteins implicated in ALS tend 

to fall into three categories; RNA binding proteins and proteins involved in RNA 

processing, proteins involved in cytoskeletal dynamics and proteins involved in 

proteostasis. The most common genetic cause of ALS is a hexanucleotide repeat 

expansion in the chromosome 9 open reading frame 72 (C9orf72) which does not appear 

to fall into these common categories (DeJesus-Hernandez, Mackenzie et al. 2011, 
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Renton, Majounie et al. 2011). Overall, in 2014 it was estimated that the genetic etiology 

of approximately two thirds of familial and 11% of sporadic ALS was known (Renton, 

Chio et al. 2014).  

While the genetic causes of ALS are diverse there are some pathologies 

connecting them. The most common pathology in the neurons of ALS patients is the 

mislocalization and/or aggregation of proteins. The most commonly aggregated protein is 

TDP-43 (TAR DNA Binding Protein 43) which is mutated in approximately 4% of 

familial ALS cases and 1% of sporadic ALS cases, and yet is mislocalized from the 

nucleus, where it is normally found, to the cytoplasm and aggregated in an estimated 97% 

of ALS patients (Neumann, Sampathu et al. 2006, Kabashi, Valdmanis et al. 2008, 

Sreedharan, Blair et al. 2008, Ling, Polymenidou et al. 2013). Patients carrying mutations 

in SOD1 or FUS generally do not have TDP-43 pathology and instead present with 

aggregates containing SOD1 and FUS respectively (Bruijn, Houseweart et al. 1997, 

Hewitt, Kirby et al. 2010). Patients carrying the C9orf72 repeat expansion generally have 

both TDP-43 pathology as well as pathology unique to C9orf72 including both RNA foci 

created from the repeat in the nucleus as well as peptides created from an alternative form 

of translation. These DPR (Di-Peptide Repeat) products are created from RAN (Repeat 

Associated Non-ATG) translation and can be made in any reading frame in both the sense 

and antisense direction (Mackenzie, Frick et al. 2014).  

1.2 LITERATURE REVIEW OF MATRIN 3 

1.2.1 Cellular Roles of Matrin 3 

Mutations in Matrin 3 were linked to ALS in 2014 after the discovery of Matrin 3 

mutations in four families with ALS. Matrin 3 is an RNA binding protein and like many 
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proteins involved in ALS has roles in RNA processing and biogenesis. Matrin 3 was first 

identified in 1991 as an “acidic internal matrix protein.” Matrin 3 is a part of the nuclear 

matrix which is defined as the “salt-resistant proteinaceous nuclear structure that is 

isolated from the interphase cell,” and thought to have roles in RNA processing, 

chromatin organization and DNA replication (Belgrader, Dey et al. 1991).  

After the initial identification of Matrin 3, another group cloned a protein they 

termed P130, which was later determined to be Matrin 3. They discovered that Matrin 3 

binds to repetitive DNA sequences as well as matrix attachment regions (MARs), which 

are defined as genomic DNA sequences at the boundaries of chromatin loops. MARs are 

thought to function in chromatin folding and unfolding and transcriptional regulation via 

an ATATAT sequence (Hibino 2000). It was also shown that the association of Matrin 3 

with chromosomes requires the presence of both of its zinc-finger domains (Hibino, Usui 

et al. 2006).  

When dsRNA (double-stranded RNA) is found in the nucleus, especially when 

the double stranded portion is longer than 15 base pairs, it is often edited by the ADAR 

(Adenosine Deaminase Acting on RNA) family of proteins (Nishikura 1992). This 

editing takes the form of the hydrolytic deamination of adenosine to inosine (A-to-I). 

Inosine base pairs with cytosine which results in it being read as a guanine by the cell’s 

translational machinery. Selective A-to-I editing is required for the proper function of 

some transcripts, most notably glutamate receptor subunits and subtypes of the serotonin 

receptor, but extensive editing, often referred to as promiscuous editing, can be 

detrimental (Higuchi, Single et al. 1993, Burns, Chu et al. 1997). After the discovery that 

extensively edited RNAs are retained within the nucleus (Kumar and Carmichael 1997), 
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the authors sought to identify proteins that preferentially bound inosine containing RNA. 

The protein p54
nrb

 (NonO) was identified as preferentially binding to inosine containing 

RNA and it was found that this binding occurred as a complex along with the proteins 

PSF (SPPQ, the protein originally named Matrin 4 was later positively identified as PSF) 

and Matrin 3 which were found in a 1:1:1 ratio. Matrin 3 does not appear to bind directly 

to inosine containing RNA, and the authors speculate both that Matrin 3 interacts with 

this complex via protein-protein interactions with PSF and p54
nrb

, and that Matrin 3 may 

confer the cooperative binding properties of the complex (Zhang and Carmichael 2001). 

Matrin 3 was identified as the predominant protein phosphorylated by the kinase 

PKA after the addition of N-methyl-D-aspartate (NMDA) to cultures of rat cerebellar 

neurons. It was further shown that Matrin 3 is both phosphorylated and degraded after 

treatment with NMDA. Using a model of NMDA receptor activation in which rats are 

injected intraperitoneally with ammonium acetate, Matrin 3 was shown to be 

phosphorylated and degraded in vivo as well. PKA inhibition prevented the 

phosphorylation and degradation of Matrin 3, as well as rescued cell death (Giordano, 

Sanchez-Perez et al. 2005).  

The location of Matrin 3 within the nucleus, as compared to other nuclear factors 

such as RNA polymerase II (Pol II), euchromatin and heterochromatin (as defined by the 

intensity of DAPI staining), SAF-A (hnRNPU), TS (nascent transcript sites) and PCNA 

(active DNA replication sites) was studied by immunofluorescence. Matrin 3 was found 

in a punctate staining pattern with most puncta approximately 0.2-0.4µm in diameter 

throughout the extranucleolar space and was suggested to form a network-like structure. 

Matrin 3 was highly co-localized with SAF-A, as well as Pol II and PCNA 
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(Malyavantham, Bhattacharya et al. 2008). In a later study Matrin 3 was found in both 

gene poor and gene rich chromosomal regions, though it appeared to be excluded from 

heterochromatin as well as the Barr body (Zeitz, Malyavantham et al. 2009).  

As part of cells’ normal response to double stranded DNA breaks the kinase ATM 

is activated. Matrin 3 was identified as a potential target of ATM (at amino acid 208) and 

its role in response to DNA damage was further supported by the identification of two of 

its binding partners PSF (SFPQ) and p54 (NONO) as binding DNA end-rejoining 

proteins. Matrin 3 was further shown to immunoprecipitate the Ku heterodimer 

Ku70/Ku80 which is an integral part of the non-homologous end rejoining (NHEJ) DNA 

repair process. When the recruitment of these proteins to sites of DNA damage was 

investigated it was shown that while both PSF and p54 are recruited to sites of DNA 

damage, Matrin 3 was not, and knockdown of Matrin 3 did not affect the recruitment of 

PSF or p54. Interestingly, knockdown of Matrin 3 did affect the retention of PSF and p54 

at the site of DNA damage, causing them to remain at the site for approximately 30 

minutes longer. The knockdown of Matrin 3 also led to both increased radiosensitivity 

and increased the proportion of cells in S phase after damage induction, suggesting that 

Matrin 3 has a role in the cellular response to double stranded DNA damage by altering 

the kinetics of other proteins involved in the response (Salton, Lerenthal et al. 2010).  

Matrin 3 has been identified as interacting with a host of different proteins 

including PKCε after it has been induced to translocate to the nucleus (Xu and Rumsby 

2004). It also exhibits calcium dependent binding to CaM and is susceptible to cleavage 

by caspases 3 and 8(Valencia, Ju et al. 2007). Heat shock proteins GRP78, GRP75 and 

GSTπ2 were identified by others as Matrin 3 interacting proteins (Osman and van 
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Loveren 2014). Immunoprecipitation followed by mass spectrometry was performed by 

two groups. The first identified 8 Matrin 3 binding partners; DHX9, PABPC1, DDX17, 

DDX5, hnRNPL, hnRNPK, PTBP1, and ILF2. Matrin 3 was also identified as binding to 

the non-coding RNAs; U4, SNORA73A, 7SK, and RMRP. Knockdown of Matrin 3 also 

resulted in decreased levels of 77 genes by microarray analysis (Salton, Elkon et al. 

2011). Matrin 3 has been shown to decrease in protein level after treatment of SH-SY5y 

cells with the neurotrophic factors GDNF and Artemin (Park and Lee 2011). Matrin 3 

was identified as a binding partner of the Y RNA, pY RNA1-s2 which has increased 

expression in retinal cells though its function in unknown (Yamazaki, Kim et al. 2014). 

Matrin 3 was identified as a binding partner of PABPN1 (poly(A) binding 

protein), in skeletal muscle tissue lysates from mice overexpressing PABPN1. Skeletal 

muscle was studied due to the role of mutations in PABPN1 in OPMD (OculoPharyngeal 

Muscular Dystrophy). Matrin 3 was also found to bind to myogenic transcripts in primary 

myoblasts and depletion of Matrin 3 led to a decrease in proliferation and differentiation 

of the myoblasts. Matrin 3 depletion was also found to alter poly adenylation site 

selection and intron retention of PABPN1 targets. Matrin 3 was found to interact with the 

lncRNA Neat1, a major component of the nuclear structure paraspeckles. Depletion of 

either PABPN1 or Matrin 3 was found to increase Neat1 levels, increased numbers of 

paraspeckles, increased editing of the transcript Ctn which is normally adenosine to 

inosine (A-to-I) edited in paraspeckles(Banerjee, Vest et al. 2017).   

A role for Matrin 3 in insulator complexes has been shown using iChIP 

(insertional chromatin immunoprecipitation) which involves the isolation of a genomic 

region of interest prior to ChIP. Insulators are a part of the complex epigenetic regulation 
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that occurs, and function as boundaries to chromatin domains, protecting the genes they 

flank from trans elements and chromatin silencing. Matrin 3 was identified as part of the 

chicken insulator complex HS4 which regulates expression of β-globin genes. Matrin 3 

was not found to bind directly to the DNA but rather to other protein components of the 

insulator complex, and the authors suggest a possible role for Matrin 3 in tethering these 

complexes to the nuclear matrix (Fujita and Fujii 2011). 

Matrin 3 also appears to have a role in gene regulation via the homeodomain 

transcription factor Pit1. After identifying the proteins Matrin 3, β-catenin, and Satb1, as 

a Pit1 binding proteins, ChIP was performed with a Matrin 3 antibody, and it was 

determined that more than half of Matrin 3 binding sites co-localized with H3K4me2 

peaks. Of the sites where the two co-localized, over 80% of them were elements distal to 

transcription start sites, suggesting an association between Matrin 3 and DNA regulatory 

elements. It was further noted that these Matrin 3 sites often co-localized with Pit1 

enhancers. When cells were depleted of β-catenin or Satb1, the levels of Pit1 bound 

enhancers co-localizing with Matrin 3 decreased, suggesting β-catenin and Satb1 are 

required for this interaction. A dominant negative mutation in Pit1 causes combined 

pituitary hormone deficiency as well as the loss of the interaction with β-catenin and 

Satb1, and therefore Matrin 3. Loss of Pit1 resulted in the loss of both co-localization of 

Pit1 bound enhancers with Matrin 3, as well as decreased expression of Pit1 dependent 

genes. Both phenotypes could be rescued by expression of Pit1 but not by expression of 

dominant negative Pit1. Interestingly, attaching a SAF/SAP domain (matrix attachment 

region) from rat HNRNPU, to the dominant negative form of Pit1 restored its ability to 
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rescue both phenotypes, suggesting that tethering of Pit1 bound enhancers by Matrin 3 

are required for their function (Skowronska-Krawczyk, Ma et al. 2014).  

An example of Matrin 3 functioning with an enhancer was recently investigated 

after the discovery of the lncRNA (long non-coding RNA) PINCR (p53 induced non-

coding RNA) identified in a microarray performed in colorectal cancer cell lines after 

induction of p53. Matrin 3 was found to mediate the association between PINCR and p53 

allowing PINCR to associate with enhancer regions (Chaudhary, Gryder et al. 2017). 

Matrin 3 has been identified as a nesprin-1 binding partner by 

immunoprecipitation followed by mass spectrometry experiments. Nesprin-1 functions in 

connecting the nucleoskeleton and cytoskeleton, and a short isoform generated by 

alternative transcription has been identified in p-bodies (mRNA processing bodies). After 

mapping the interaction between Matrin 3 and Nesprin-1 to two Nesprin-1 domains that 

are known to function in miRISC (micro RNA Induced Silencing Complex) function, and 

due to the fact that Matrin 3 had been previously identified in Argonaute protein 

complexes, a role for Matrin 3 in miRISC function was assessed. Using a Let-7a miRISC 

reporter assay it was determined that knockdown of Matrin 3 resulted in enhanced 

luciferase activity suggesting a role for Matrin 3 in miRNA-mediated gene silencing. A 

50kD N-terminal Matrin 3 isoform was identified, which seems to be associated with p-

bodies. Truncating mutations in Matrin 3 form cytoplasmic foci that seem to transition to 

stress granules upon heat shock, though this did not occur using full length Matrin 3. 

Additionally, no known clones seem to represent this potential short isoform of Matrin 3 

(Rajgor, Hanley et al. 2016).  
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Matrin 3 was shown to have a role in splicing after it was identified in a 

proteomics screen as the strongest interactor of the splicing regulator PTB 

(polypyrimidine tract binding protein). Knockdown of Matrin 3 was found to cause over 

600 alterative splicing events, half of which were cassette exons. Of the cassette exons 

the majority were inclusion events suggesting that Matrin 3 represses inclusion of these 

exons. To determine the relationship between Matrin 3 binding and splicing regulation 

iCLIP (individual-nucleotide resolution Cross-Linking and ImmunoPrecipitation) was 

performed and Matrin 3 was found to bind uniformly with no peaks at long intronic 

regions within 500 nucleotides of the repressed exon. The role for Matrin 3 in splicing 

regulation seems to require its RRM (RNA Recognition Motifs) but not its zinc-finger 

domains (Coelho, Attig et al. 2015).  

Murine Matrin 3 protein expression was investigated and Matrin 3 was found to 

be expressed ubiquitously in all tissues tested. Expression was highest in reproductive 

organs and lowest in muscle. Within the CNS Matrin 3 expression was variable across 

different brain regions, but as a whole higher in the brain than in the spinal cord. Matrin 3 

was also found to be expressed within the nucleus of all cell types examined though 

staining intensity was variable, particularly within the Purkinje cells of the cerebellum. 

When Matrin 3 expression was measured on the scale of a whole tissue (whole brain 

lysate, whole spinal cord lysate) during development, expression was found to decrease 

postnatally by 2.5 fold in brain and 11 fold in spinal cord over the first 37 days of life. 

This reduction in Matrin 3 levels seems to occur during development, while there was a 

decrease in Matrin 3 expression between 1 and 4 months there was no difference between 

4 and 21 months (Rayaprolu, D'Alton et al. 2016).  
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A mouse model which was initially published as overexpressing full length wild-

type Matrin 3 was created with expression driven by the mouse prion promoter. Since the 

time of publication this work has been retracted as it is believed that constucts were 

mislabeled and the mice examined in the study actually expressed mutant Matrin 3. Three 

founder lines were created that all produced progeny with hindlimb paresis and paralysis 

though the age at which these different lines began to show a phenotype ranged from 

approximately one month of age to one year of age. In addition to paralysis all lines of 

mice had decreased body weight compared to their nontransgenic littermates, rounded 

muscle fibers of variable size, subsarcolemmal vacuoles, internal nuclei and nuclear 

chains in myofibers and increased nuclear size. Matrin 3 immunoreactivity was increased 

in the nucleus though staining was variable between nuclei, and rare cytoplasmic Matrin 

3 staining was seen. Neuromuscular junctions were also altered with a collapsed 

morphology, decreased post-synaptic junction size, and a reduction in the overlap 

between pre- and post-synaptic junction markers. In the spinal cord increased nuclear 

immunoreactivity for Matrin 3 was seen along with occasional cytoplasmic staining as 

well as gliosis (Moloney, Rayaprolu et al. 2016).  

1.2.2 Matrin 3 Alterations in Disease 

Matrin 3 has also been found to be altered in diseases apart from those caused by 

mutations in Matrin 3. A group performing quantitative proteomics analyses on fetal 

cortex tissue from controls and Down’s syndrome identified Matrin 3 as one of three 

proteins with altered expression early in development in Down’s syndrome. Matrin 3 

protein expression was approximately four-fold higher in control brains as compared to 

Down’s syndrome though it is not clear what if any significance this downregulation may 
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have to Down’s syndrome pathogenesis (Bernert, Fountoulakis et al. 2002). Matrin 3 

expression level affects both cell viability and proliferation. Treatment with siRNA 

against Matrin 3 in cultured cells led increased cell death, decreased proliferation, 

decreased size, and a shift to cells in G0 (Przygodzka, Boncela et al. 2011). 

 Matrin 3 was identified as a binding partner of Lamin A after a protein domain 

found within Lamin A, the Lamin A tail domain was expressed, purified and crosslinked 

to a sepharose column which was then incubated with the nuclear lamina protein extract 

isolated from differentiated C2C12 myotubes. The binding between Matrin 3 and Lamin 

A was further characterized and found to occur between the IgG fold tail region of Lamin 

A and the carboxy terminus of Matrin 3. Interestingly the LMNA R453W mutation which 

is causative of Emery Dreifuss Muscular Dystrophy, but not R527P mutations, increase 

the binding between Matrin 3 and Lamin A. Immunocytochemistry performed on 

differentiating myotubes suggests that Matrin 3 expression is found near the nuclear 

membrane within myotubes that have begun differentiating which is a similar to the 

staining pattern of Lamin A. In fibroblasts heterozygous for a truncating mutation in 

Lamin A, Δ303, which causes cardiomyopathy and muscular dystrophy, the level of co-

localization between Matrin 3 and Lamin A is decreased (Depreux, Puckelwartz et al. 

2015).  

A number of groups have also implicated Matrin 3 in viral pathogenesis. It was 

first identified as a target of the US3 family of kinases found in alphaherpes viruses 

where it is phosphorylated at T150 upon infection. It was suggested that this 

phosphorylation led to a more diffuse nuclear staining of Matrin 3 (Erazo, Yee et al. 

2011). Matrin 3 is also involved in HIV pathogenesis through its role in viral RNA 



  13 

export. Unspliced and partially spliced transcripts require the HIV protein Rev for export 

to the cytoplasm. Matrin 3 was initially identified as an HIV RNA binding protein, it was 

then shown that knockdown of Matrin 3 affected the cytoplasmic levels of transcripts 

requiring Rev for export (Kula, Guerra et al. 2011). Overexpression of Matrin 3 can both 

stabilize and increase the levels of these transcripts (Yedavalli and Jeang 2011). The role 

of Matrin 3 in viral Rev dependent RNA export was shown to be after the release of RNA 

from the site of transcription, and unspliced HIV RNA was shown to associated with 

Matrin 3 in the insoluble nuclear matrix fraction (Kula, Gharu et al. 2013). Matrin 3 has 

also been shown to regulate viral transcripts via its interaction with the protein ZAP 

(CCCH-type Zinc-Finger Antiviral protein), which acts as a restriction factor that binds 

viral RNA and recruits the RNA processing exosome leading to RNA degradation. 

Matrin 3 was identified by performing immunoprecipitation followed by mass 

spectrometry using antibodies against Matrin 3 in CHME3 cells that were either 

uninfected or infected with HIV-1. Two proteins intricately involved in the RNA 

processing exosome DDX17 and EXOSC3 were both identified as binding Matrin 3 only 

in infected cells. The role of Matrin 3 in ZAP mediated HIV-1 restriction was tested in a 

series of knockdown experiments in cells infected with HIV-1. Overexpression of ZAP 

alone led to a 6 fold restriction of HIV-1 expression and knockdown of Matrin 3 alone 

led to a four-fold decrease inhibition of HIV-1 expression, but overexpression of  ZAP 

and in the context of Matrin 3 knockdown led to a 35-fold restriction of HIV-1 

suggesting a role for Matrin 3 as a negative regulator of ZAP-mediated viral restriction 

(Erazo and Goff 2015). 



  14 

Alterations in Matrin 3 have been linked to congenital heart defects including 

bicuspid aortic valve, coarctation of the aorta, and patent ductus arteriosus in a patient 

with a balanced translocation 46,XY,t(1;5)(p36.11;q31.2)dn. The breakpoints of this 

translocation disrupted two genes AHDC1 and MATR3. In addition to heart defects this 

patient exhibited global developmental delays including speech delays and was diagnosed 

with Noonan-like syndrome. Loss of function of AHDC1 has been shown to cause 

cognitive abnormalities and developmental delays suggesting that this part of the 

phenotype may be due to the loss of AHDC1. The breakpoint within MATR3 is found 

667 bp downstream of the stop codon, in the 3’ UTR of MATR3 exon 15. 3’ RACE 

(Rapid Amplification of cDNA Ends), a technique that utilizes a sequence specific primer 

as well as an adaptor primer against the poly (A) tail, performed on adult tissue from 

various organs showed that there are two different MATR3 RACE products created 

through the use of an alternative polyadenylation site. In all tested tissues, with the 

exception of skeletal muscle and cardiac muscle, the product is 1589 bp whereas in 

skeletal muscle and cardiac muscle a band of 963 bp predominates. The location of the 

translocation suggests that it would disrupt the creation of the longer transcript that 

utilizes the distal polyadenylation site. In patient lymphoblasts, the longer transcript from 

the distal polyadenylation site is lost which seems to result in an upregulation of the 

shorter transcript from the proximal polyadenylation site. Interestingly, this alteration in 

polyadenylation seems to lead to an increase in Matrin 3 protein, which was found to be 

increased by 2.7 fold in patient lymphoblasts compared to controls. A gene trap mouse 

model in which the MATR3 gene is interrupted in exon 13, is homozygous embryonic 
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lethal and heterozygotes have cardiac defects similar to patients (Quintero-Rivera, Xi et 

al. 2015)  

1.2.3 Ser85Cys Matrin 3 Mutations in VCPDM 

Before mutations in Matrin 3 were identified in ALS patients, a Ser85Cys 

mutation was identified as the cause of a form of distal myopathy known as vocal cord 

and pharyngeal weakness with distal myopathy (VCPDM). Patients with VCPDM are 

described as having an average age of onset of 35-57 years, and commonly exhibit the 

initial symptom of foot drop and ankle dorsiflexion weakness. These patients then went 

on to develop progressive weakness including vocal cord and/or swallowing dysfunction 

in some but not all patients. EMG and nerve conduction studies were reported to suggest 

a myopathy and muscle biopsies showed variations in muscle fiber size, fiber splitting, 

and subsarcolemmal rimmed vacuoles (Feit, Silbergleit et al. 1998). The chromosomal 

location of the causative mutation was narrowed to a region of the 5
th

 chromosome but 

mutations in Matrin 3 were not identified until additional family members were 

diagnosed with the disease (Senderek, Garvey et al. 2009).  

While Ser85Cys mutations in Matrin 3 are associated with distal myopathy a 

common phenotype in these patients is respiratory dysfunction. When eight patients were 

studied 6 reported exertional dyspnea and all 8 had respiratory symptoms of some form 

including diaphragm dysfunction, weak expiratory muscles, and reduced airway 

clearance. Two patients progressed to the point where they required mechanical 

ventilation and one experienced sudden respiratory failure (Kraya, Schmidt et al. 2015).  

The clinical phenotype of patients with Ser85Cys mutations in Matrin 3 has been 

assessed by other groups who support the diagnosis of distal myopathy. An additional 
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American family in which Ser85Cys mutations were identified had 6 affected individuals 

over two generations. The age of onset ranged from 31-48 years and initially manifested 

as limb weakness. Two of the family members developed hypophonia and dysphagia and 

two family members developed respiratory symptoms. A muscle biopsy was performed 

and showed rimmed-vacuolated fibers, accumulation of TDP-43 and p62 in rimmed-

vacuolar fibers, and a staining for Matrin 3 at the membrane of myonuclei but absent 

from the center of the nucleus. Electron microscopy also showed highly convoluted 

myonuclei. Matrin 3 protein levels were reported to be the same as in controls (Palmio, 

Evilä et al. 2016).  

The Ser85Cys mutation in Matrin 3 was also found in a Japanese family 

consisting of a father who developed gait disturbance and respiratory failure as well as 

his daughters, two half sisters. One of the two sisters first presented with difficulty in 

ambulation and then went on to develop dysphagia and dysarthria. The second sister first 

experienced dysphagia and dysarthria and then went on to develop muscle wasting. Both 

of the two sisters were examined and were found to lack upper motor neuron signs, 

preventing a diagnosis of ALS, and instead suggesting VCPDM. Both sisters underwent 

muscle biopsies and which showed myopathic changes and internal nuclei were found 

within the myofibers. One of the two sisters had autophagic vacuoles in degenerating 

myofibers and an increase in type I fibers, whereas her sister was found to have an 

increase in type II fibers. Their muscle fibers also contained p62 positive sarcoplasmic 

aggregates, and had variable nuclear immunoreactivity for Matrin 3. Matrin 3 staining 

patterns were also explored in other types of myopathies and sarcoplasmic granular 

staining for Matrin 3 was present in p62 positive degenerating fibers in tissue from 
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patients with sIBM (sporadic Inclusion Body Myositis), OPMD, as well as myopathies 

with mutations in the genes GNE and VCP. TDP-43 aggregates were present in one of 

the cases with decreased nuclear immunoreactivity for both TDP-43 and Matrin 3 in the 

myofibers with aggregates and diffuse sarcoplasmic immunoreactivity for TDP-43 was 

found in the other case (Yamashita, Mori et al. 2015).  

1.2.4 Matrin 3 Mutations in ALS 

Mutational analysis was performed on 169 Taiwanese ALS patients that did not 

have mutations in any other genes linked to ALS and an Ala72Thr (c.214G>A) mutation 

in Matrin 3 was found. This mutation was identified in an apparently sporadic ALS 

patient with bulbar onset disease who initially presented with slurred speech at age 53. 

She progressed to dysphagia and progressive muscle weakness and atrophy within 3 

years and died 11 years after symptom onset. Amino acid 72 in Matrin 3 is well 

conserved across a host of different species and this alteration was not found in controls 

from the Exome Aggregation Consortium, dbSNP, or the 1000 genomes project (Lin, 

Tsai et al. 2015).  

The frequency of Matrin 3 mutations was assessed in a French-Canadian 

population resulting in the identification of one missense mutation and two splicing 

variations in sporadic ALS patients. The authors reported the mutational frequency in 

their cohort of sporadic ALS patients was 1.8%. The missense mutation V394M, is in a 

highly conserved region but was not predicted to be pathogenic by Polyphen-2, SIFT or 

Provean. Of the two splicing variations c.48+1G>T alters a splice site resulting in a 24 

amino acid longer protein. The second splicing variation (c.-339+2T>A) is within the 5’ 

UTR. None of the three variations were found in the control databases NHLBI Exome 
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Sequencing Project, 1000 Genomes Project, dbSNP or internal control samples. 

However, the c.48+1G>T variation was reported in 1 individual from ExAc database 

(Leblond, Gan-Or et al. 2016).  

Matrin 3 mutations were also assessed in a cohort of two hundred Italian ALS 

patients leading to the discovery of a p.Arg147Trp mutation in Matrin 3. This mutation 

was identified in a sporadic ALS patient. The patient presented with progressive 

weakness predominantly in the lower limbs at age 43 and followed a slow disease course. 

At the time of publication the patient was still living, 9 years after diagnosis with 

tetraparesis and severe muscle atrophy, though without dementia, dysarthria or 

dysphagia. This variant was not present in the Human Gene Diversity Panel or 500 

unrelated Italian controls (Origone, Verdiani et al. 2015).  

A cohort of 322 Italian ALS patients were examined for Matrin 3 mutations and 5 

missense variants were identified in 6 individuals (mutational frequency of 1.9%). The 

variants identified were p.Q66K, p.G153C (twice), p.E664A, p.S707L, and p.N787S. 

These patients had an age of onset ranging from 48 to 64 years and 2 (S707L and E664A) 

presented with bulbar onset, one presented with respiratory symptoms first (Q66K), the 

patient carrying the N787S and one of the patients carrying the G153C mutations 

presented with lower limb onset, and the second G153C presented with upper limb onset. 

Two patients underwent muscle biopsies which showed neurogenic changes including 

atrophic angulated or round fibers, pyknotic nuclear clumps, abnormal checkerboard 

staining of type 1 fibers and internal nuclei. One patient (S707L) also developed FTD 

(Marangi, Lattante et al. 2017).    
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Matrin 3 mutations were not found in ALS patients studied in France (153 

patients) (Millecamps, Septenville et al. 2014), or Australia (106 patients) (Fifita, 

Williams et al. 2015).  

Expression of the ALS associated mutations in Matrin 3 (Ser85Cys, Phe115Cys, 

Pro154Ser, Thr622Ala) was studied in CHO and H4 cell lines. The expression of both 

wild-type and mutant Matrin 3 was predominantly nuclear. While there was occasional 

cytoplasmic staining, there was no statistical difference in the number of cells with 

cytoplasmic staining in mutant as compared to wild-type. Treatment of cells with arsenite 

induced cytoplasmic stress granules but Matrin 3 remained nuclear. Expression of a 

mCherry-tagged stress granule component G3BP1 led to the occasional accumulation of 

Matrin 3 within cytoplasmic puncta but only in cells that were not treated with arsenite; 

in cells treated with arsenite Matrin 3 again remained nuclear. The authors suggest that 

this phenomenon could be the consequence of Matrin 3 interacting with G3BP1 outside 

of stress granules (Gallego-Iradi, Clare et al. 2015).  

Matrin 3 staining patterns were explored by another group studying an ALS 

linked mutation in Sigma Receptor-1. Expression of mutant Sigma Receptor-1 in 

immortalized cells as well as patient lympoblastoid cells, led to the cytoplasmic 

accumulation of TDP-43, FUS and Matrin 3. Immunohistochemistry was performed on 

spinal cord tissue from sporadic and familial ALS patients to explore Matrin 3 pathology. 

Nuclear Matrin 3 immunoreactivity was increased in sporadic ALS patients as compared 

to controls and Matrin 3 positive inclusions and cytoplasmic accumulation was found in 

familial ALS patients carrying mutations in either FUS or carrying the C9orf72 repeat 

expansion (Dreser, Vollrath et al. 2017). 
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Immunohistochemistry using four different antibodies against Matrin 3 was 

performed on spinal cord tissue from controls and sporadic ALS patients. Matrin 3 

immunoreactivity was classified into two categories; mild and strong. The percentage of 

cells in control cases and ALS cases with mild versus strong Matrin 3 staining was 

similar.  Of the four antibodies one showed Matrin 3 positive cytoplasmic inclusions in 9 

out of 15 sporadic ALS cases in 2-9% of motor neurons. The majority of Matrin 3 

positive inclusions were described as round in shape with very few showing a skein-like 

morphology. Immunohistochemistry with an antibody against TDP-43 was also 

performed and it was noted that cells containing either a Matrin 3 positive inclusion or a 

TDP-43 positive inclusion tended to have mild nuclear staining for Matrin 3. Matrin 3 

inclusions were also suggested to co-localize with TDP-43 inclusions in all cases though 

not all TDP-43 positive inclusions co-localized with Matrin 3. It was also noted that the 

patients that did have Matrin 3 positive inclusions in some of their cells had a shorter 

disease span than those that did not have Matrin 3 positive inclusions (Tada, Doi et al. 

2017).  

1.3 RNA EXPORT IN NEURODEGENERATIVE DISEASE 

1.3.1 RNA Export Under Normal Conditions 

In eukaryotic cells, transcription and translation are compartmentalized by the 

nuclear membrane, or nuclear envelope. The nuclear membrane separates the nucleus, 

where transcription takes place, from the cytoplasm, where translation occurs. Transport 

between the two compartments is tightly regulated via trafficking through nuclear pores 

that are contained within the nuclear membrane. While molecules, including both 

proteins and nucleic acids, with a molecular mass below 40kDa may diffuse freely 
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through the pores, most larger molecules are actively transported using numerous carrier 

proteins (Paine 1975, De Robertis, Longthorne et al. 1978, Dingwall, Sharnick et al. 

1982). RNA transport is predominantly mediated by either NXF1 (Nuclear RNA Export 

Factor 1), also known as TAP, or members of the exportin family of proteins. The export 

adaptor used is largely dependent on the type of RNA, with mRNA predominantly 

relying on NXF1 (Segref, Sharma et al. 1997, Herold, Klymenko et al. 2001). All other 

types of RNA require a member of the exportin family as an adaptor, along with a 

gradient of the GTPase Ran. rRNA (Thomas and Kutay 2003, Rouquette, Choesmel et al. 

2005, Wild, Horvath et al. 2010), snRNA and some mRNAs utilize CRM1 (exportin-1, 

XPO1) (Fornerod, Ohno et al. 1997, Watanabe, Fukuda et al. 1999), and tRNA and 

miRNA require exportin-t and exportin-5 respectively (Arts, Fornerod et al. 1998, Kutay, 

Lipowsky et al. 1998, Bohnsack, Czaplinski et al. 2004, Lund, Guttinger et al. 2004). In 

each case, the transport carrier protein is required to move the RNA, in the form of a 

ribonucleoprotein particle (RNP), through the nuclear pore and release it on the 

cytoplasmic side. In this chapter, we will review the canonical pathways for transport of 

RNA from the nucleus to the cytoplasm under normal conditions, as well as explore the 

alterations in RNA transport that have been identified in neurodegenerative diseases. 

These alterations predominantly fall into three categories; alterations in the nuclear 

envelope as well as mislocalization of the proteins making up the nuclear pore, alterations 

in the Ran gradient, and deficits in the export of mRNA, identified in both models of 

neurodegenerative disease and tissue from patients who suffered from these diseases.  

Transport between the nucleoplasm and cytoplasm is controlled by a protein structure 

called the nuclear pore complex (NPC). The NPC is approximately 125MDa in size in 
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humans and comprised of a group of proteins known as nucleoporins (Reichelt, 

Holzenburg et al. 1990). The geometric structure of the nuclear pore consists of 8 spokes 

connecting radially to form concentric rings and exhibits an eight-fold symmetry, formed 

from over 500 copies of up to 30 different nucleoporins (Reichelt, Holzenburg et al. 

1990, Cronshaw, Krutchinsky et al. 2002). The NPC can be broken into three regions; the 

central channel, nuclear basket and cytoplasmic filaments. The central channel which is 

embedded within the nuclear envelope allows cargoes to move in and out of the nucleus. 

The nuclear basket is found on the nuclear side of the pore, and functions to bind 

transport competent mRNPs (messenger ribonucleoprotein particles) and direct them to 

the pore.  Cytoplasmic filaments guide both proteins into the nuclear pore, and RNA 

cargoes which are exiting the pore, toward the translational machinery. The pore forms a 

central channel approximately 50-100kDa/40nm in size and is lined with nucleoporins 

containing phenylalanine-glycine (FG) repeat domains. These FG repeats both fill the 

channel of the pore as well as comprise both the cytoplasmic filaments and nuclear 

basket. An estimated 6MDa of FG repeats are found in a single pore and these domains 

provide both a barrier to diffusion, as well as docking sites for transport factors as they 

are trafficked through the pore (Frey and Gorlich 2007).  
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Figure 1.1 Canonical RNA Export Pathways 

 

Export of mRNA predominantly requires the TREX and TREX-2 pathways. snRNA and 

rRNA export requires the exportin CRM1 bound to RanGTP along with the adaptor 

PHAX for snRNA and as well as specific adaptors for different subunits of rRNA. Export 

of tRNA and miRNA require the exportins XPOt and XPO5 respectively, bound to 

RanGTP.  
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Different types of molecules (proteins, mRNA, rRNA, tRNA, miRNA) rely on a 

host of different transport factors to transverse through the nuclear pore. Some mRNA as 

well as most other types of RNA, including rRNA, tRNA, and miRNA, require a member 

of the exportin family to facilitate their export (Fukuda, Asano et al. 1997). Exportins are 

a family of 7 proteins including CRM1 (XPO1), CSE1L (XPO2), XPOt (XPO3), XPO4, 

XPO5, XPO6, XPO7 which function in export from the nucleus (Figure 1.1). Much like 

the nuclear import transporters importins, exportins require the small GTPase Ran to 

function. Export via exportins requires a gradient of Ran to exist in which GTP bound 

Ran (RanGTP) is concentrated in the nucleus, and both GDP bound Ran (RanGDP) and 

its GTPase activator RanGAP1 are concentrated in the cytoplasm (Bischoff and Ponstingl 

1991). Of the 7 known exportins, CRM1 is required for the export of some mRNAs as 

well as rRNA, in addition to being a primary transporter of proteins (Fukuda, Asano et al. 

1997). CRM1 does not bind RNA itself but instead relies on a series of RNA binding 

adaptor proteins which bind RNA and then CRM1 for RNA export (Figure 1.1) 

(Brennan, Gallouzi et al. 2000, Yang, Bogerd et al. 2001, Topisirovic, Siddiqui et al. 

2009). These adaptor proteins requires a NES (Nuclear Export Sequence) which for 

CRM1 is HX2–3HX2–3HXH, where H is a hydrophobic amino acid (i.e.,isoleucine, 

leucine, methionine, phenylalanine, or valine) X is any amino acid (Kalderon, Roberts et 

al. 1984, Henderson and Eleftheriou 2000). The binding of CRM1 to an NES containing 

protein is cooperative with its binding to RanGTP (Petosa, Schoehn et al. 2004). After 

transport through the nuclear pore, GTP hydrolysis occurs which helps to dissociate its 

cargoes. In addition to a small subset of mRNAs, CRM1 is necessary for the export of 

rRNAs. Both the pre-60S subunit and the pre-40S subunit can be exported via CRM1 and 
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an adaptor (Nmd3 or Lvt1 respectively). The pre-60S can also be exported by exportin-5 

while the pre-40S subunit seems to rely solely on CRM1 (Thomas and Kutay 2003, Wild, 

Horvath et al. 2010). Other types of RNAs are also exported in a similar Ran dependent 

process using other exportins, with export of tRNA requiring exportin-t (XPOt) and 

export of miRNA requiring exportin-5 (XPO5) (Arts, Fornerod et al. 1998, Kutay, 

Lipowsky et al. 1998, Yi, Qin et al. 2003, Bohnsack, Czaplinski et al. 2004, Lund, 

Guttinger et al. 2004) (Figure 1.1). Binding between pre-miRNA and XPO5 is mediated 

by the pre-miRNA structure rather than sequence with the recognition of a two nucleotide 

3’ end overhang structure and the double stranded stem found in pre-miRNA (Okada, 

Yamashita et al. 2009). In both cases the RNA is bound by GTP-bound exportin which 

allows for its trafficking through the pore.  

Nucleocytoplasmic trafficking of mRNA through the nuclear pore mainly occurs 

via the transport factor NXF1. NXF1 is loaded onto mRNA via a series of handoffs 

involving the TREX (TRanscription and EXport) complex. Transport of mRNA is 

intricately linked with transcription and all stages of pre-mRNA processing including 

splicing.  The TREX complex is made up of the THO complex containing Thoc1 (Hpr1), 

Thoc2, Thoc3 (hTEX1), Thoc5, Thoc6 and Thoc7 as well as UAP56 (ddx39b), and Aly 

(Ref) (Strasser, Masuda et al. 2002) (Figure 1.1). Unlike exportin mediated export, TREX 

does not rely on a Ran gradient but rather ATP hydrolysis.  

The specificity of mRNA to TREX is mediated by its link to RNA polymerase II 

transcription, as well as a length requirement mediated by hnRNPC. hnRNPC interacts 

with the 5’ end of RNA if it is longer than 300bp, preventing the recruitment of export 

factors other than TREX to the mRNP (McCloskey, Taniguchi et al. 2012). During 
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transcription, proteins necessary for capping of the 5’ end, splicing, 3’ end cleavage, and 

polyadenylation bind to the nascent RNA. In metazoans, TREX has been shown to be 

predominantly coupled to splicing, whereas in yeast it has been shown to be more 

associated with transcription (Reed and Cheng 2005). In human cells, TREX proteins 

have been shown to be recruited to the 5’ end of pre-mRNA near the cap binding 

complex (CBC) which consists of the proteins CBP80 and CBP20 (Cheng, Dufu et al. 

2006). Aly binds closest to the CBC followed by UAP56 which binds downstream of Aly 

but upstream of the exon junction complex (EJC) (Figure 1.1). This interaction is thought 

to be mediated by protein-protein interactions between Aly and CBP80 (Cheng, Dufu et 

al. 2006). Interestingly, binding of mRNA to Aly and TREX complex member Thoc2 has 

been shown to require capped and spliced mRNA, suggesting that the recruitment of Aly 

to mRNA requires more than just binding to CBP80 (Cheng, Dufu et al. 2006).  

Binding of Aly and RNA to UAP56 has been shown to stimulate the intrinsic 

ATPase activity of UAP56, which aids in its dissociation from the complex. The 

dissociation of UAP56 from the mRNP constitutes the handover of the mRNP to Aly. 

Aly along with a co-activator, Thoc5 or Chtop, are required for the binding of NXF1 to 

RNA (Viphakone, Hautbergue et al. 2012). NXF1 functions as a heterodimer with p15 

(NXT1), and has very little RNA binding activity in its native state. Upon binding with 

Aly and a co-activator, NXF1 is remodeled to expose its RNA binding domains 

(Viphakone, Hautbergue et al. 2012). At this stage, the mRNP is turned over to NXF1 for 

trafficking though the nuclear pore.  

Another export complex, TREX-2, also has a role in the export of mRNA via the 

NXF1 transporter. TREX-2 is built upon a scaffold protein GANP (Germinal-center 
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associated nuclear protein), which binds ENY2, PCID2 and DSS1 (Wickramasinghe, 

Stewart et al. 2010) (Figure 1.1). The exact role of TREX-2 is unclear, though in yeast it 

has been shown to be involved in localizing a subset of actively transcribing genes to the 

pore (Kohler, Schneider et al. 2008).  In metazoans however, it has been shown to be 

involved in chaperoning mature mRNPs from processing centers to the pore for export 

(Wickramasinghe, Stewart et al. 2010). It is unclear whether TREX and TREX-2 work 

cooperatively on the same mRNPs or transport different subsets of mRNPs, though some 

cooperation between the two complexes is thought to occur in mammalian cells 

(Wickramasinghe, Stewart et al. 2010). One proposed model suggests that TREX-2 

attaches to the mRNP after it is transferred from Aly to NXF1 and mediates its transport 

to and interaction with the nuclear pore (Wickramasinghe, Stewart et al. 2010).  

Many groups, including ours, have recently emphasized the role alterations in 

nucleocytoplasmic trafficking play in a number of neurodegenerative diseases (Sheffield, 

Miskiewicz et al. 2006, Freibaum, Lu et al. 2015, Zhang, Donnelly et al. 2015, Gasset-

Rosa, Chillon-Marinas et al. 2017, Grima, Daigle et al. 2017, Shang, Yamashita et al. 

2017). While initial studies have focused on defects in protein trafficking, likely due to 

the common pathology of protein aggregation in the cytoplasm observed in many of these 

diseases, evidence for defects in RNA trafficking has recently come to light (Freibaum, 

Lu et al. 2015, Boehringer, Garcia-Mansfield et al. 2017). These RNA trafficking 

alterations in disease states predominantly fall into three categories of defects; alterations 

in the localization of nucleoporins and abnormal nuclear envelope architecture, defects in 

the Ran gradient and alterations in the proteins that are responsible for maintaining it, and 

alterations in TREX proteins as well as mRNA retention within the nucleus. It is 
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important to note that alterations in protein trafficking are intricately linked to alterations 

in RNA trafficking due to the use of common regulatory proteins in nuclear export of 

proteins and RNA. Alterations in nucleoporins and the nuclear envelope as well as loss of 

the Ran gradient is likely to influence all forms of transport in and out of the nucleus. 

While export of mRNA via the TREX/NXF1 pathway is Ran independent, it requires 

members of the export process to be imported back into the nucleus to function, which is 

a Ran dependent process. 

1.3.2 Nuclear Envelope and Nucleoporin Abnormalities 

The earliest evidence for RNA transport alterations is the mislocalization of 

nucleoporins away from the nuclear envelope where they function, as well as abnormal 

nuclear envelope morphology which is often highlighted by nucleoporin immunostaining. 

These phenotypes have been identified in both animal models and patient tissue from 

several different neurodegenerative diseases (Sheffield, Miskiewicz et al. 2006, 

Freibaum, Lu et al. 2015, Zhang, Donnelly et al. 2015, Gasset-Rosa, Chillon-Marinas et 

al. 2017, Grima, Daigle et al. 2017).  

In Alzheimer’s disease tissue, nuclear envelope abnormalities were noted in the 

hippocampus after staining with Nup62, an FG containing nucleoporin normally 

localized to the central channel of the nuclear pore (Sheffield, Miskiewicz et al. 2006). In 

control tissue, Nup62 immunoreactivity forms a smooth circle in the nuclear envelope 

whereas in Alzheimer’s patients forms a tortuous and uneven nuclear envelope. It is 

important to note that these alterations in the nuclear envelope were not accompanied by 

positive staining for caspase-3 or TUNEL suggesting that this is not a consequence of cell 

death (Sheffield, Miskiewicz et al. 2006).  
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In a mouse model of Huntington’s disease, mice expressing physiological levels 

of ~175 CAG trinucleotide repeat expansion within one or both huntingtin (Htt) alleles 

exhibited a dose and age dependent increase in the number of cells with abnormal nuclear 

envelopes, as observed using staining against Lamin B1 in the cortex and striatum 

(Gasset-Rosa, Chillon-Marinas et al. 2017).  This phenotype was also present in the 

cortex of mice expressing a 23kD human exon 1 fragment of Htt with a 120-125 repeat 

polyglutamine expansion (R6/2 mice) (Gasset-Rosa, Chillon-Marinas et al. 2017). This 

same mouse model of Htt was shown by others to exhibit intranuclear inclusions of 

Nup62 that co-localized with mHtt aggregates in the striatum and cortex (Grima, Daigle 

et al. 2017). In the zQ175 mouse model of Huntington’s disease which contains the 

human Htt exon 1 sequence with a 193 CAG repeat which replaces the mouse Htt exon 1 

within the mouse Htt gene, the nucleoporin Nup88, was identified in intracellular 

inclusions that co-localized with mHtt aggregates (Grima, Daigle et al. 2017). Abnormal 

nuclear envelopes were also seen in iPS (induced pluripotent stem cell) derived neural 

progenitors from Huntington’s patients, and in the motor cortex of patient tissue (Gasset-

Rosa, Chillon-Marinas et al. 2017). Components of the nuclear pore complex including 

Dbp5, a protein necessary at the terminal step of mRNA export to remove proteins from 

mRNAs after they have been transported through the pore, and RanBP3, a Ran binding 

protein that acts a cofactor for CRM1 mediated export were also identified in the isolated 

polyglutamine aggregates induced in a cell culture model of Huntington’s disease (Suhr, 

Senut et al. 2001).  

In ALS disease models based on expression of mutant SOD1 in mice, alterations 

of NPC components including increased immunoreactivity of the nucleoporins GP210 
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and Nup205 (Shang, Yamashita et al. 2017). This staining was reminiscent of staining 

patterns in sporadic ALS patients which showed increased staining for GP210 in the 

nuclear envelope and cytoplasm. (Shang, Yamashita et al. 2017). Others have also 

identified nuclear envelope irregularities as denoted by Nup62, Nup88 and Nup153 

immunoreactivity in SOD1 mice which worsened with age as well as in both sporadic 

ALS (sALS) and familial ALS (fALS) patient tissue (Kinoshita, Ito et al. 2009).  

In a genetic screen performed in a Drosophila model of C9orf72, loss of function 

of Nup50 enhanced the phenotype of the C9 repeat, as did a dominant negative form of 

Ran, whereas loss of function of Nup107 and Nup160 suppressed the phenotype 

(Freibaum, Lu et al. 2015). These results suggest altered subcellular distribution of 

nucleoporins may have a functional role in disease pathogenesis rather than being a 

consequence of the disease pathology, and that these alterations could have both loss of 

function and toxic gains of function phenotypes. This phenotype was accompanied by 

nuclear envelope irregularities as well as puncta of Nup107 in the salivary glands of flies 

(Freibaum, Lu et al. 2015). As Nup107 is both found in aggregates and puncta, and its 

loss of function suppresses the disease phenotype in flies, it is possible that these 

aggregates and puncta of NPC can be toxic to cells. The mechanism by which these 

alterations in the nuclear envelope and mislocalization of NPC proteins induce disease is 

unknown, but a number of hypotheses have been proposed. PR dipeptides, formed from 

RAN (repeat associated non-ATG) translation of the C9orf72 repeat expansion (DPRs) 

were found to bind to the FG repeat of the central channel of the nuclear pore complex 

and keep them in a polymerized state, possibly physically blocking movement through 

the nuclear pore (Shi, Mori et al. 2017). Nuclear transport proteins including nuclear pore 
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complex components and transport proteins such as CRM1 were found to interact with 

the DPRs PR and GR, produced from the C9orf72 repeat expansion, and CRM1 was also 

found to be an enhancer of a GR viability phenotype in Drosophila (Lee, Zhang et al. 

2016).  Another group suggests that cytoplasmic protein aggregates lead to the 

mislocalization of NPC proteins (Woerner, Frottin et al. 2016). This hypothesis was 

tested using an artificial, aggregation prone β-sheet protein which led to the accumulation 

of NPC proteins in the cytoplasm and defects in both protein import and export 

(Woerner, Frottin et al. 2016).  

1.3.3 Alterations in the Ran Gradient 

Another common theme amongst neurodegenerative diseases is alterations in the 

Ran gradient or its binding partners and regulators. A high nuclear to cytoplasmic ratio of 

RanGTP is required for nuclear export where RanGTP is needed to bind to the exportin 

family of proteins within the nucleus.   

In mice expressing mutant Htt, Gle1, part of the terminal step of mRNA export, as 

well as RanGAP1 are found co-aggregated with Htt (Gasset-Rosa, Chillon-Marinas et al. 

2017). RanGAP1, (Ran GTPase Activating Protein) which is necessary for activating the 

GTPase function of Ran leading to its conversion to a GDP bound state, and Nup62 were 

found in inclusions in Htt R6/2 mice and RanGAP1 and Nup88 were found in mHtt 

inclusions in zQ175 Htt mice (Grima, Daigle et al. 2017). RanGAP1 was also 

mislocalized and concentrated in perinuclear puncta, and Nup62 was mislocalized in the 

frontal cortex and striatum of Huntington’s patients (Grima, Daigle et al. 2017). Higher 

levels of RanGTP are required in the nucleus compared to the cytoplasm to fuel active 

transport via exportins. In iPS derived neurons from Huntington’s patients, the nuclear to 
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cytoplasmic ratio of Ran is decreased (Grima, Daigle et al. 2017). Interestingly, 

expression of either RanGAP1 or Ran ameliorated cell death in cells expressing mutant 

Huntingtin, suggesting that at least part of the mechanism of action may be a loss of 

function of these proteins (Grima, Daigle et al. 2017). 

 In Alzheimer’s disease, cytoplasmic aggregates of NTF2, part of the import 

pathway required for importing Ran into the nucleus, were found in patient tissue 

(Sheffield, Miskiewicz et al. 2006). Nuclear levels of Ran were also found to be 

decreased both in a mouse model of FTD based on mutations in progranulin, and in tissue 

from patients carrying that mutation (Chen-Plotkin, Geser et al. 2008, Ward, Taubes et al. 

2014).  

In a model of Parkinson’s disease based on administration of the drug 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP), mice that lacked one copy of the Ran binding 

protein, Ranbp2, had a more severe disease course and slower recovery (Cho, Searle et al. 

2012). Interestingly, in mice lacking any other genetic modifications, knock down of 

Ranbp2 in Thy1 positive motor neurons led to motor deficits, respiratory distress and 

premature death (Cho, Yoon et al. 2017).  

Many models of ALS also exhibit similar defects in either the Ran gradient or in 

Ran binding proteins. TDP-43 is a protein mutated in rare forms of ALS as well as 

present in pathological aggregates in most ALS, FTD and subsets of a number of other 

neurodegenerative diseases, and has been shown to bind the 3’ UTR of Ran mRNA and 

regulate its levels (Ward, Taubes et al. 2014). Loss of nuclear TDP-43 correlated with 

loss of Ran in the frontal gyrus of patients with FTD caused by mutations in progranulin 

(GRN) and led to overall decreased levels of Ran in the cortex (Ward, Taubes et al. 
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2014). In addition, knockdown of TDP-43 in SH-SY5Y cells leads to decreased levels of 

RanBP1 (Stalekar, Yin et al. 2015). In mice expressing mutant SOD1 an upregulation and 

nucleoplasmic mislocalization of RanGAP1 were observed (Shang, Yamashita et al. 

2017). A similar increase in RanGAP1 staining was seen in tissue from sALS patients 

(Shang, Yamashita et al. 2017).   

The RanGAP1 protein has also been shown to bind to the G-quadruplex structure 

formed by the RNA of the C9orf72 repeat expansion, and there is a reduced nuclear to 

cytoplasmic ratio of Ran in iPS motor neurons derived from C9-ALS patients as well as 

in immortalized cell lines expressing the repeat (Freibaum, Lu et al. 2015). Both iPS 

derived motor neurons and motor cortex tissue from ALS patients carrying the C9orf72 

expansion exhibited discontinuous nuclear envelope staining for RanGAP1 as well as 

mislocalization and puncta that occasionally co-localized with Nup107 and Nup205 

(Zhang, Donnelly et al. 2015). In a mouse model of C9orf72 expressing the GA DPR, 

both RanGAP and Pom121, a transmembrane nucleoporin involved in anchoring the NPC 

to the membrane, were found in nuclear and cytoplasmic puncta which often co-localized 

with the poly(GA) aggregates (Zhang, Gendron et al. 2016). Interestingly, in a 

Drosophila model of C9orf72, a genetic screen found that RanGAP suppressed the 

toxicity accompanied by the repeat, whereas RanGEF enhanced the toxicity (Zhang, 

Donnelly et al. 2015).  Importantly, in this model system the phenotype of the altered Ran 

gradient (which likely inhibits the export of both proteins and RNA) could be partially 

rescued by a variety of treatments. The Ran gradient phenotype was rescued with 

antisense oligonucleotides against the C9orf72 repeat, by destabilizing the G quadruplex 

structure the repeat forms, or by inhibiting CRM1, suggesting both that these defects are 
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may be induced by the repeat, and that drug strategies currently being employed for the 

repeat might modulate these defects (Zhang, Donnelly et al. 2015).  

1.3.4 Defects in mRNA Export 

While mislocalization of nucleoporins and defects in the Ran gradient and Ran 

binding proteins are likely to cause alterations in the nuclear export of RNA, recent 

studies have identified deficits in the export of mRNA in models of neurodegenerative 

disease.  

In Huntington R6/2 mice, the TREX complex component Thoc2, is mislocalized 

and found in inclusions, and mRNA was found to be retained within the nucleus of these 

cells (Woerner, Frottin et al. 2016, Gasset-Rosa, Chillon-Marinas et al. 2017). The same 

phenotypes of Thoc2 aggregation and nuclear mRNA retention were found in cells 

expressing Htt86Q as well as c-terminal fragments of TDP-43 or even an artificial 

aggregation prone β-sheet construct (Woerner, Frottin et al. 2016). In mice expressing a 

~175 CAG trinucleotide repeat of Htt (Htt
Q165

), mRNA accumulated within nuclei by 

RNA-FISH (fluorescence in situ hybridization) using an oligo dT probe, in a dose 

dependent manner (Gasset-Rosa, Chillon-Marinas et al. 2017). In addition to phenotypes 

in models of neurodegenerative disease, this phenotype of mRNA nuclear accumulation 

has been identified in the cortex in tissue from Huntington’s patients (Gasset-Rosa, 

Chillon-Marinas et al. 2017).  

Some rare forms of fALS are caused by mutations in Gle1 which is an integral 

component of the release of mRNA from transport machinery in the cytoplasm. While the 

mechanism by which these mutations cause disease is not completely understood it has 



  35 

been suggested that haploinsufficiency of Gle1 is to blame, suggesting a role for mRNA 

transport defects in this disease (Kaneb, Folkmann et al. 2015).  

Expression of an ALS causing variant of SOD1 (G93A) in NSC-34 cells causes 

retention of RNA within the nucleus, as measured by an increased nuclear to cytoplasmic 

ratio of RNA transcripts identified using RNA-seq (Kim, Hong et al. 2017). This 

retention was not accompanied by an increase in transcripts containing introns suggesting 

that the nuclear retention was not linked to defects in splicing but rather likely due to 

defects in nuclear trafficking (Kim, Hong et al. 2017).   

Recently, multiple groups have shown interactions between the C9orf72 repeat or 

its products with proteins involved in mRNA nuclear export. Multiple nucleoporins as 

well as CRM1 and SRSF7 have been identified as protein interactors of the dipeptide 

repeats PR and GR (Lee, Zhang et al. 2016). In a genetic screen in Drosophila aimed at 

discovering modifiers of the C9orf72 phenotype, proteins involved in mRNA export were 

identified. The strongest suppressor was found to be Aly, with partial loss of function of 

NXF1, CHTOP, NCBP2, ARS2, Gle1 and CRM1 enhancing the phenotype. Importantly, 

expression of the repeat in cells led to an accumulation of poly (A)+ mRNA within the 

nucleus, which can be decreased with Aly knockdown (Freibaum, Lu et al. 2015). Others 

have also shown the accumulation of poly (A)+ mRNA within the nucleus of cells 

transfected with the C9orf72 repeat accompanied by the nuclear accumulation of PABPc 

with binds to the C9orf72 RNA. PABPc accumulation is a phenomenon reminiscent of 

viral infection where nuclear PABPc nuclear accumulation is sufficient to cause nuclear 

mRNA retention (Rossi, Serrano et al. 2015).  
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Recently we have shown that Matrin 3, a nuclear matrix protein mutated in rare 

forms of ALS, binds to many TREX components and proteins involved in nuclear RNA 

export including, Aly, UAP56 and Sarnp in cell culture as well as nuclear spinal cord 

lysates (Boehringer, Garcia-Mansfield et al. 2017). The expression of ALS linked 

mutations in Matrin 3 in cell lines also causes the accumulation of poly (A)+ mRNA 

within the nucleus. These mutations also caused nuclear accumulation of mRNAs of 

ALS-relevant proteins TDP-43 and FUS linking mRNA nuclear retention to disease 

pathology (Boehringer, Garcia-Mansfield et al. 2017).  

Alterations in nucleocytoplasmic transport have been identified by numerous 

groups in a wide range of neurodegenerative disorders including Alzheimer’s disease, 

Huntington’s disease, FTD and ALS. The identification of these alterations in such a 

wide span of neurodegenerative diseases suggests neuronal survival depends upon proper 

regulation of trafficking to and from the nucleus. While altered protein 

nucleocytoplasmic transport has been well documented in many neurodegenerative 

diseases, the only direct evidence for defective RNA transport has been the accumulation 

of poly (A)+ mRNA within the nucleus in patient derived tissue and various disease 

models.  However, the alterations in both the localization and levels of nucleoporins and 

the loss of the Ran gradient and mislocalization of Ran binding proteins strongly suggests 

defects occur in the transport of all RNA subtypes. Further studies are necessary to 

explore how other RNA subtypes are mislocalized in neurodegenerative diseases. While 

it is unclear why defects in nucleocytoplasmic trafficking preferentially affect neurons, 

there is evidence to suggest that post-mitotic cells including neurons may be more 

susceptible to age related defects in nucleocytoplasmic transport. The proteins of the 
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NPC are normally replaced during cell division where they are disassembled and 

reassembled with newly synthesized proteins during mitosis (Rabut, Lenart et al. 2004). 

In post-mitotic cells such as neurons, the NPC is not completely disassembled and 

proteins such as Nup107 and Nup160 do not appear to turn over, suggesting that they are 

some of the longest-lived proteins in the body (D'Angelo, Raices et al. 2009, Savas, 

Toyama et al. 2012). The longevity of the NPC makes it vulnerable to the buildup of 

damage over time and unsurprisingly is subject to age related dysfunction (D'Angelo, 

Raices et al. 2009). The susceptibility of neurons as post-mitotic cells to defects in the 

NPC, as well as the age-related nature of neurodegenerative diseases, could explain the 

contribution of nucleocytoplasmic trafficking defects in these diseases. While there is 

clear evidence that these defects are present in neurodegenerative diseases such as 

Alzheimer’s disease, Huntington’s disease, FTD and ALS, the mechanism by which these 

defects occur as well as the role that these defects play in disease onset and pathogenesis 

remains unknown and merits continued study.  
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Figure 1.2 RNA export defects identified in neurodegenerative diseases.  

 

Altered nuclear membrane morphology, interactions between DPRs and the nuclear pore, 

mislocalization and sequestration of export proteins into pathological aggregates, mutant 

proteins or pathological RNA species, interactions of TDP-43 with Ran mRNA as well as 

modifications to the Ran and RanGAP1 gradients, and decreased levels of mRNA export 

are all seen in a host of different neurodegenerative diseases.  
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CHAPTER 2 

MUTATIONS IN THE MATRIN 3 GENE CAUSE FAMILIAL AMYOTROPHIC 

LATERAL SCLEROSIS 

2.1 ABSTRACT 

MATR3 is an RNA/DNA binding protein that interacts with TDP-43, a major 

disease protein linked to amyotrophic lateral sclerosis (ALS) and fronto-temporal 

dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. 

We also observed MATR3 pathology in the spinal cords of ALS cases with and without 

MATR3 mutations. Our data provide additional evidence supporting the role of aberrant 

RNA processing in motor neuron degeneration. 

2.2 INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease 

characterized by progressive paralysis and respiratory failure leading to death, typically 

within two to three years of symptom onset. Much attention has focused on the discovery 

of causal genes on the basis that understanding the pathophysiology underlying motor 

neuron degeneration would provide rational targets for therapeutic development. These 

efforts have been successful to the point that the genetic etiology of two thirds of the 

familial form of ALS and 11% of the more common sporadic form of the disease is now 

known (Renton, Chio et al. 2014). Nevertheless, the discovery of additional genes would 

allow complete mapping of the cellular pathways underlying this fatal neurological 

condition.  
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2.3 METHODS 

Figure 2.1 Pedigrees of patients with MATR3 mutations.  

 

a) Kindred USALS#3. b) Kindred USALS#4. c) Kindred ITALS#10. d) Kindred 

UKALS#1. mt, mutant alleles; wt, wild-type alleles. Genotypes of presumed obligate 

carriers are in brackets. Red asterisks indicate individuals who underwent clinical 

examination. Arrows denote probands.  
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2.3.1 Description of Pedigrees 

Description of the USALS#3 pedigree (Phe115Cys). The proband (III:11, Fig. 

2.1a) developed dysarthria at 50 years of age. He developed gait difficulties because of 

leg stiffness and cramping in the feet. He began choking on liquids at age 51 and 

developed pseudobulbar affect but no detectable cognitive impairment. Nocturnal 

noninvasive ventilation was prescribed for obstructive sleep apnea since age 53. 

Neurological examination at 52 years revealed mild, predominantly spastic dysarthria; 

increased jaw jerk; brisk facial reflexes, especially on the right; and slowed lateral tongue 

movements. Mild muscle atrophy was noted in the right thigh and rare fasciculations 

were seen in the proximal upper limbs. Tone was mildly spastic in the right arm and 

lower limbs, with slowed right fine finger movements and right foot tapping. Power in 

upper and lower limbs was normal. Tendon reflexes were pathologically brisk 

throughout, with right extensor plantar response. Gait and sensation were normal. 

Dysarthria, dysphagia, and distal weakness in upper and lower extremities 

progressed slowly over 2 years, requiring use of bilateral ankle foot orthoses. Most recent 

neurologic examination at age 55 revealed mild cognitive impairment with disinhibition 

and inability to vocalize (anarthria). Vertical saccades were slowed and upgaze was 

noticeably limited. Jaw jerk was markedly brisk with clonus, as were facial reflexes, and 

there was a hyperactive gag reflex. The tongue was severely atrophic, fasciculating, and 

unable to move off the midline or protrude beyond the lower teeth. Muscle atrophy was 

global, being moderate proximally and severe distally, especially in intrinsic hand 

muscles and forelegs. Fasciculations were active in both upper limbs and neck regions, 

and tone was markedly spastic in the arms and legs, particularly over the right side. 
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Weakness was most prominent distally in hands and feet, with little or no movement of 

thumb and fingers (0–2/5) and ankle and toes (0–2/5). Proximal upper and lower limb 

strength was better (4/5), allowing the patient to stand, although shoulder pain from 

contractions limited useful arm function. Tendon reflexes were pathologically brisk 

throughout, more marked on the right with ipsilateral extensor plantar response. He was 

unable to walk because of the weakness and spasticity, and used a wheelchair for 

mobility. 

Patient II:6. The mother of the proband (II:6, Fig. 2.1a) developed bilateral finger 

and hand weakness at age 70. This was followed a few months later by speech and 

swallowing problems, and ALS was diagnosed at age 71. Her father had died at 47 years 

of age after a prolonged course involving leg muscle weakness. Three siblings died in 

their eighties: one (II:1) died of dementia, another (II:2) developed limb weakness and 

was unable to walk at the time of death, and a third (II:5) died of dementia and also was 

reported to be dysarthric and to have upper limb weakness. 

Neurological examination at 71 years revealed normal speech and cognition, brisk 

facial reflexes, mentalis muscle fasciculations and weak (4/5) neck flexors. Fasciculations 

were seen in both upper extremities and thighs, with moderate atrophy of intrinsic hand 

muscles. She was weaker distally, with thumb abductors, thumb flexors and intrinsic 

hand muscles 3/5, shoulder abductors 4/5, ankle dorsiflexors and toe extensors 4/5, and 

hip flexors 4/5. Tendon reflexes were pathologically brisk, with a right extensor plantar 

response. Gait was unsteady and partially steppage in nature. Over the next 3 years, her 

limbs became progressively paralyzed and she developed dysarthria and mild cognitive 

impairment. She died of respiratory failure at 75 years of age. 
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Patient II:7. An aunt of the proband (II:7, Fig. 2.1a) and identical twin of the 

proband’s mother developed slowly progressive hand weakness at 57 years of age. Four 

years later, she began experiencing dysarthria, at which point she was diagnosed with 

ALS. Her weakness gradually spread to the rest of her limbs and she developed severe 

cognitive impairment. Currently, at age 82, she is unable to stand or walk and uses a 

wheelchair for mobility. Her hand weakness has deteriorated to the point that she cannot 

feed herself or brush her teeth, and she is aphasic. She has respiratory failure (forced vital 

capacity 49%). 

Patient III:10. The proband’s older sibling (III:10, Fig. 2.1a) developed right 

(dominant) hand stiffness and cramping at 52 years of age. At 57 years, he began 

experiencing progressive weakness of right hand and finger muscles resulting in inability 

to button or tie shoelaces. Atrophy of intrinsic right hand muscles was also noted. The 

patient denied leg weakness but would develop cramping of thigh muscles after 

squatting. About 18 months later the patient noticed worsening left hand weakness. There 

were no bulbar symptoms or shortness of breath initially. 

Neurological examination at age 58 revealed no cognitive or behavioral 

abnormalities, normal speech, and no bulbar signs except for slightly increased right 

facial reflex and right palmomental reflex. Upper limbs showed moderate atrophy of 

distal muscles, especially of the lateral hand in a split hand pattern, with continuous 

fasciculation of right more than left shoulder and arm muscles. Lower limbs showed no 

changes. Tone was normal throughout. Weakness was most prominent distally and 

slightly worse on the right, with thumb abductors and deep finger flexors 3/5, finger 

abductors and extensors 4/5, wrist flexors and extensors 4+/5, and elbow flexors and 
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extensors almost 5/5. Tendon reflexes were pathologically brisk throughout, with left 

extensor plantar response. Over the next 2 years, the patient’s condition gradually 

deteriorated, with progressive limb and respiratory muscle weakness. The patient expired 

2 years later from respiratory failure at 60 years of age. Brain and spinal cord were 

obtained for pathologic analysis. 

Patient III:1. A cousin of the proband (III:1, Fig. 2.1a) initially presented with 

lower limb weakness at 63 years of age. Symptoms progressed to involve the remaining 

limbs and bulbar musculature. Severe dysphagia necessitated the placement of a 

gastrostomy tube. The patient’s mother (II:3) died of dementia in her eighties. The patient 

became cognitively impaired several years after the initial presentation and died from 

respiratory failure at the age of 68. Affected members of the USALS#3 kindred were 

negative for the pathogenic repeat expansion of C9ORF72. 

Description of the USALS#4 pedigree (Ser85Cys). The proband of the USALS#4 

family (IV:10, Fig. 2.1b) developed right foot drop at 44 years of age. Muscle weakness 

spread to the remaining limbs over the next 2 years. A diagnosis of Charcot-Marie-Tooth 

disease was made at the age 46 on the basis of a neurogenic pattern observed in an 

electromyogram and nerve conduction studies (EMG/NCS). Reevaluation 2 years later 

led to the patient’s illness being reclassified as non-Scandinavian distal myopathy. The 

patient’s condition progressed, with the development of dysarthria and mild dysphagia by 

the age of 53 and respiratory failure requiring nocturnal noninvasive ventilation by the 

age of 56. Currently, at age 65, the subject uses a power wheelchair for mobility. 
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Neurological examination at age 65 revealed mild dysarthria, perioral 

fasciculations, a brisk jaw jerk and moderately weak neck extension. There was 

generalized muscle wasting and pyramidal-distribution weakness in all four limbs. 

In the upper limbs, shoulder abduction was 3/5 bilaterally, elbow extension was 4/5, wrist 

extension and finger extension were 1/5, and finger abduction, finger adduction and 

thumb abduction were 3/5, whereas shoulder adduction, elbow flexion, wrist flexion and 

abductor digiti minimi were 5/5 bilaterally. In the lower limbs, hip flexion was 4/5 

bilaterally; ankle dorsiflexion, ankle plantar flexion and extensor hallucis longus were 

0/5, whereas hip abduction, hip adduction, knee flexion and knee extension were 5/5 

bilaterally. Tendon reflexes were absent, and toes were mute on Babinski testing. 

Proprioception and vibration sensation were diminished to the level of the ankles and 

knees, respectively, bilaterally. The patient was able to stand and walk slowly using a 

walker and with the assistance of one person. 

Patient V:2. A cousin of the proband (V:2, Fig. 2.1b) noticed right foot drop at 42 

years of age. Within 5 years, the muscle weakness had spread to involve both hands. The 

patient developed dysarthria and mild dysphagia at age 47 and respiratory failure 

requiring supplemental oxygen and noninvasive ventilation at 49. The patient had an 

episode of aspiration pneumonia at age 55 that required prolonged intubation and 

ventilation. Currently, at age 57, the patient uses a power wheelchair but can walk slowly 

using a walker. 

Neurological examination at age 57 revealed mild dysarthria, mild facial 

weakness, poor palate elevation and a brisk jaw jerk. Limb examination showed 

generalized muscle atrophy and a pyramidal pattern of weakness. In the upper limbs, 
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shoulder abduction and elbow extension were 4/5 bilaterally, wrist dorsiflexion was 1/5, 

finger extension and thumb abduction were 3/5, and finger flexion and abductor digiti 

minimi were 4/5, whereas shoulder adduction, elbow flexion and wrist flexion were 5/5 

bilaterally. In the lower limbs, hip flexion was 4/5 bilaterally, and ankle dorsiflexion, 

ankle plantar flexion, toe flexion and toe extension were 1/5, whereas hip abduction, hip 

adduction, knee flexion and knee extension were 5/5 bilaterally. Deep tendon reflexes 

were absent in the upper limbs. The right knee jerk was 2+, and the left knee jerk was 

brisk (3+). Ankle jerks were absent and toes were mute on Babinski testing. There was 

loss of pinprick and temperature sensation to the mid-calf level bilaterally. 

Patient V:7. A cousin of the proband (V:7, Fig. 2.1b) observed right leg weakness 

at 33 years of age. Symptoms progressed to the point that the patient has been using a 

power wheelchair since 57, although continuing to walk slowly using a rollator walker as 

part of an exercise regimen. Hand weakness developed at age 60, and the subject had an 

episode of aspiration pneumonia requiring prolonged intubation and hospitalization at age 

63. The patient has required nocturnal noninvasive ventilation and daytime oxygen 

supplementation since that time. Mild dysphagia and occasional choking episodes 

required changes in food consistency. 

Neurological examination at age 65 revealed mild dysarthria, mild facial 

weakness and a brisk jaw jerk. Generalized limb atrophy and pyramidal- 

distribution weakness was evident. In the upper limbs, shoulder abduction, elbow flexion 

and elbow extension were 4/5 bilaterally, wrist extension was 3/5, finger extension was 

4/5 and thumb abduction was 3/5, whereas shoulder adduction, wrist flexion and adductor 

digiti minimi were 5/5 bilaterally. In the lower limbs, hip flexion was 4/5 bilaterally, hip 
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abduction and hip adduction were 3/5, knee flexion and knee extension were 1/5, ankle 

dorsiflexion and ankle plantar flexion were 0/5, and toe extension was 1/5 bilaterally. 

Deep tendon reflexes were absent in all four limbs, and toes were mute on Babinski 

testing. Temperature sensation was diminished to the mid-calf level bilaterally. 

Patient V:8. A cousin of the proband (V:8, Fig. 2.1b) presented with dysarthria 

and choking at 47 years of age. The patient developed left ankle weakness at age 52. 

Weakness had spread to both hands by age 58. Currently, at age 63, the patient has 

difficulty using eating utensils and walks with the aid of a walker. 

Neurological examination at age 63 revealed dysarthria with nasal air escape, 

poor palate elevation, tongue fasciculations and a brisk jaw jerk. There was marked distal 

atrophy and weakness. In the upper limbs, wrist extension was 4/5 bilaterally, finger 

extension and thumb abduction were 3/5, and left abductor digiti minimi was 4/5, 

whereas bilateral shoulder abduction, shoulder adduction, elbow flexion, elbow 

extension, wrist flexion and right adductor digiti minimi were 5/5. In the lower limbs, 

ankle dorsiflexion and ankle invertors were 3/5 bilaterally and extensor hallucis longus 

was 4/5, whereas hip flexion, hip extension, hip abduction, hip adduction, knee flexion, 

knee extension, ankle plantar flexion and foot evertors were 5/5 bilaterally. Triceps 

reflexes were brisk (3+) bilaterally, whereas other deep tendon reflexes in the upper limbs 

were normal (2+). Knee jerks were brisk (3+) bilaterally, ankle jerks were absent, and 

toes were mute on Babinski testing. Vibration sensation was diminished to the level of 

the ankles bilaterally. 
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Patient V:13. A cousin of the proband (V:13, Fig. 2.1b) noticed mild dysarthria 

and throat-clearing difficulties at 42 years of age. At age 44, the subject developed right 

leg weakness that spread to involve the left leg and both hands by age 51. The patient 

occasionally chokes when eating. Currently, at age 58, the patient remains mobile with 

the aid of bilateral ankle orthotics. 

Neurological examination, at age 58, revealed trace dysarthria. There was 

prominent distal muscle atrophy. In the upper limbs, right shoulder abduction was 4/5 

bilaterally and wrist extension and finger extension were 3/5, whereas shoulder 

adduction, elbow flexion, elbow extension, wrist flexion and finger flexion were 5/5 

bilaterally. In the lower limbs, left hip flexion was 4/5, ankle dorsiflexion was 2/5 

bilaterally and extensor hallucis longus was 3/5, whereas hip extension, hip abduction, 

hip adduction, knee flexion, knee extension and ankle plantar flexion were 5/5 bilaterally. 

In the upper limbs, reflexes were diminished (1+). In the lower limbs, knee jerks were 

brisk (3+ with crossed adductors), ankle jerks were absent, and the toes were mute on 

Babinski testing. All sensory modalities were intact. 

Patient V:15. A cousin of the proband (V:15, Fig. 2.1b) developed hand weakness 

at 49 years of age. Currently, at age 50, the patient complains of fatigue, frequent 

cramping of the right foot, and mild dysarthria when fatigued. 

Neurological examination, at age 50, revealed bilateral thenar and first dorsal 

interossei muscle atrophy. In the upper limbs, wrist extension, finger extension and 

thumb abduction were 4/5 bilaterally, whereas shoulder abduction, shoulder adduction, 

elbow flexion, elbow extension, wrist flexion and finger flexion were 5/5 bilaterally. In 

the lower limbs, extensor hallucis longus was 4/5 bilaterally, whereas all other muscle 
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groups were 5/5. Reflexes in the upper limbs were 2+ with the exception of the left 

brachioradialis, which was diminished (1+). 

In the lower limbs, knee jerks were brisk (3+ with crossed adductors) bilaterally, 

ankle jerks were absent, and toes were downgoing on Babinski testing. Vibration 

sensation was diminished to the level of the ankle bilaterally. The patient had difficulty 

with heel walking and toe walking. 

In summary, the clinical features of patients in the Ser85Cys MATR3 kindred 

were consistent with a progressive, fatal motor neuron disease with combined upper and 

lower motor neuron signs, bulbar dysfunction and respiratory failure.   

Description of the ITALS#10 pedigree (Thr622Ala). The proband (III:1, Fig. 

2.1c) developed spinal ALS presenting with left foot drop at 62 years of age. MRI with 

diffusion tensor imaging revealed bilateral corticospinal tract damage. The patient was 

cognitively normal on exam, and [18F]fluorodeoxyglucose PET imaging was also 

reported to be normal. The patient remains alive 32 months after symptom onset and uses 

noninvasive ventilation for 12 h per day. 

Patient III:3. A cousin of the proband (III:3, Fig. 2.1c) presented with a 5-month 

history of progressive right arm weakness at 60 years of age. Neurological examination at 

the time of presentation showed weakness and hypotrophy in upper limbs, more evident 

on the right side and in distal muscles. Deep tendon reflexes were diffusely brisk, 

especially on the right. MRIs of the brain and cervical spinal cord were normal. EMG 

showed active and chronic denervation in upper limbs muscles, whereas motor evoked 

potentials revealed increased central conduction time. Over the following months, the 

patient’s symptoms progressed to involve the lower limbs and respiratory muscles. She 
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died 33 months after disease onset of respiratory failure. No mutation in known ALS-

associated genes, including the pathogenic repeat expansion of C9ORF72, segregated 

with disease in the ITALS#10 kindred. 

Description of the UKALS#1 pedigree (Pro154Ser). The proband of the 

UKALS#1 family (II:1, Fig. 2.1d) was Indian and developed upper limb weakness at 59 

years of age. There was no family history of ALS or dementia, though an offspring (III:I) 

was diagnosed with autism. Over the next 3 years, the patient’s symptoms spread to 

involve the remaining limbs and bulbar musculature. The patient now uses a wheelchair 

for mobility and requires ventilator support for respiratory failure, a gastrostomy tube for 

feeding and an eye-tracking system for communication. Neurological examination, at age 

62, revealed widespread upper and lower motor neuron signs and bulbar involvement 

consistent with a diagnosis of ALS. 

The affected member of UKALS#1 was negative for mutations in known ALS-

associated genes, including the pathogenic repeat expansion of C9ORF72. 

2.3.2 Additional Samples 

For subsequent mutational screening, we examined exome sequence data that had 

been generated in our laboratory using DNA obtained from 108 individuals (n = 6 

Canadians, n = 14 Germans, n = 9 Israelis, n = 32 Italians, n = 47 from the United States) 

who had been diagnosed with familial ALS and who were negative for mutations in 

known ALS-associated genes, including the pathogenic hexanucleotide repeat expansion 

of C9ORF72. Average age of symptom onset among this cohort was 55.1 (range, 15.0–

79.0), and 47.2% were male. 
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Multiethnic control samples consisted of a series of 1,051 anonymous samples 

that are part of the Human Gene Diversity Panel 

(http://www.cephb.fr/en/hgdp/diversity.php/). These samples come from the following 

geographical regions: Africa (n = 122), Algeria (n = 30), Brazil (n = 45), Cambodia (n = 

11), China (n = 182), Colombia (n = 13), France (n = 53), Israel (n = 144), Italy (n = 50), 

Japan (n = 30), Mexico (n = 50), New Guinea (n = 39), Orkney Islands (n = 16), Pakistan 

(n = 199) and Russia (n = 67). 

Neurologically normal control subjects who were genotyped as part of the 

genome-wide association study that was ongoing in the Laboratory of Neurogenetics, 

NIA, consisted of samples from the United States (n = 2,882), the United Kingdom (n = 

677), Italy (n = 1,242) and Finland (n = 389). 

The appropriate institutional review board (National Institute on Aging 

Institutional Review Board protocol number 2003-081) approved the study, and informed 

consent was obtained from all subjects included in this study. 

2.3.3 Exome sequencing and bioinformatic analysis pipeline.  

DNA from affected individuals II:7, III:1, III:10 and III:11 of the USALS#3 

family was enriched using TruSeq technology (version 1.0) and paired-end sequenced on 

a Hiseq2000 sequencer according to the manufacturer’s protocol (Illumina, San Diego, 

CA). This generated 8.0 gigabases (Gb) of alignable sequence data for individual II:7, 

15.4 Gb for III:1, 7.8 Gb for III:10 and 9.7 Gb for III:11 (mean 10× coverage = 95.4%, 

range 94.3 to 98.0%; mean 30× coverage = 87.9%, range 85.1 to 93.1%). Exome 

sequence data from the additional 108 familial ALS samples were generated in a similar 

manner. Sample randomization was not performed and the researchers were not blinded 
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to genotype. Statistical methods were not used to predetermine sample sizes, but rather 

our sample sizes were dictated by patient availability and are similar to those generally 

employed in the field.  

Sequence alignment and variant calling were performed against the reference 

human genome (UCSC hg 19) using the Genome Analysis Toolkit 

(http://www.broadinstitute.org/gatk/). PCR duplicates were removed before variant 

calling using Picard software (http://picard.sourceforge.net/index.shtml). 

A series of standard filters was applied to the exome sequence data generated for 

the USALS#3 family to identify the causative mutation. First variants and indels that 

were not shared by all four affected members were excluded. Next variants and indels 

that were homozygous or nonautosomal were excluded. Then synonymous and 

noncoding changes were identified using the SeattleSeq online tool (annotation 137, 

http://snp.gs.washington.edu/SeattleSeqAnnotation137/index.jsp) and filtered from the 

variant list. Under the hypothesis that the mutation underlying this rare familial disease 

was not present in the general population, SNPs identified in the Exome Sequencing 

Project (n = 6,500, http://evs.gs.washington.edu/, accessed 25 March 

2013), the 1000 Genomes project (n = 1,092, 20110521 release, version 3, 

http://www.1000genomes.org/, accessed 25 March 2013) or dbSNP (build 137, 

http://www.ncbi.nlm.nih.gov/SNP/, accessed 25 March 2013) were filtered. As an 

additional step, variants and indels detected in the USALS#3 family were filtered against 

exome data generated in our laboratory for 200 neurologically normal control subjects. 

Fig. 2.2 shows the number of variants filtered by each of these steps in the USALS#3 

pedigree, Fig 2.3 shows the genomic location of the two novel coding variants identified 
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by exome sequencing. Sanger sequencing using customized primers was performed to 

confirm the presence of the two remaining variants. Exome data for the 108 familial ALS 

cases was processed in an identical manner. 
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Figure 2.2 Filters applied to variants and indels detected by exome sequencing in 

affected individuals of the USALS#3 pedigree 
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Figure 2.3 Novel Coding Variants Identified in the USALS#3 Kindred by Exome 

Sequencing.  

 

Graphical representation of autosomes showing genomic regions shared by the four  

affected individuals of the USALS#3 pedigree (blue lines). Whole genome data was 

generated using Infinium OmniExpress genotyping arrays (Illumina Inc.). LMNB1 and 

MATR3 variants are shown as red crosses located within a 17.4 Mb shared segment on  

chromosome 5q. No other novel, coding variants were shared across affected individuals  

of the USALS#3 family. 
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Figure 2.4 Characterization of MATR3 Antibodies.  

 

The specificity of MATR3 antibodies Abcam 151714 (a) and Sigma HPA0036564 (b) 

were tested against purified MATR3 protein (Origene TP323258), lysates from 

HEK293FT cells treated with siRNA (untransfected control, non-targeting control, 

Cyclophilin B and MATR3), and cells overexpressing MATR3(WT)-GFP. Both 

antibodies were specific to MATR3 as indicated by the MATR3 siRNA sample showing 

a reduction in MATR3 protein level compared to untransfected, non-targeting and 

Cyclophilin B controls.  
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2.3.4 Genotyping 

Genotyping of the LMNB1 (chr5:126156748, C>T, Ala436Val, NM_005573.3) 

and MATR3 (chr5:138643448, T > G, Phe115Cys, NM_199189.2) variants was 

performed in the Human Gene Diversity Panel samples using Taqman SNP genotyping 

assays (Life Technologies Corp., Grand Island, NY, USA) on the 7900HT Fast Real 

Time PCR System according to the manufacturer’s instructions (Applied Biosystems 

Inc., Foster City, CA, USA). 

The MATR3 chr5:138643448, T > G (Phe115Cys) and chr5:138643358, C>G 

(Ser85Cys) variants were assayed in an additional 5,190 neurologically normal control 

subjects of European ancestry as part of a genome-wide association project that was 

ongoing in the Laboratory of Neurogenetics, NIA, using the HumanExome+ SNP chip 

with custom content (Illumina). 

2.3.5 Immunohistochemistry of spinal cord and muscle 

Immunohistochemistry of spinal cord. Immunohistochemistry was performed on 

lumbar spinal cord from ALS patients (n = 16), neurologically normal controls (n = 6) 

and one ALS patient with the Phe115Cys MATR3 mutation as follows: tissues were 

deparaffinized, rehydrated and subjected to antigen retrieval for 20 min in a steamer in 

pH 9 buffer (Dako Inc., Carpinteria, CA, USA) for the Sigma antibody, and in pH 6 

citrate buffer (BioGenex Inc., Freemont, CA, USA) for the Abcam antibody. This was 

followed by 20 min incubation in buffer warmed to 100 °C. Next, slides were blocked in 

Superblock (ScyTek Laboratories Inc., West Logan, UT, USA) with avidin protein 

(Vector Laboratories Inc., Burlingame, CA, USA) for 1 h, after which primary antibody 

diluted in Superblock (Pierce Biotechnology, Rockford, IL, USA) with biotin (Vector 
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Laboratories) was added for a second hour, with PBS washes in between. Slides were 

then incubated in biotinylated horseradish peroxidase (HRP)-conjugated secondary 

antibody (catalog number B-2004, 1:200 dilution, Vector Laboratories). The primary 

anti-MATR3 antibodies were HPA036565 (1:500 dilution, Sigma-Aldrich Corp., St. 

Louis, MO, USA) and ab151714 (1:500 dilution, Abcam PLC, Cambridge, MA, USA) 

(see Fig. 2.4 for characterization of these antibodies). Slides were incubated with 

Vectastain Elite ABC reagent (Vector Laboratories) for 30 min, washed in PBS, and 

developed for 5 min using Vector NovaRED Substrate Kit (Vector Laboratories). Finally, 

slides were counterstained with Mayer’s hematoxylin (Sigma-Aldrich) for 1 min, 

dehydrated, and mounted in Permount medium. 

All pictures were taken with an Olympus BX40 light microscope, and images 

were acquired using a Nikon DS L2 digital camera. Image analysis was performed with 

Photoshop CS5 (Adobe Systems Inc., San Jose, CA, USA). All of the samples shown 

were processed at the same time. 

Immunohistochemistry of skeletal muscle. Cryostat sections of rapidly frozen 

skeletal muscle were processed in a standard fashion consistent with ref. (Weihl, Temiz 

et al. 2008). Immunocytochemistry for each antibody was performed on tissue from 

patients and compared with normal tissue controls processed simultaneously. Primary 

antibodies used in this study were TDP-43 rabbit polyclonal antibody (catalog number 

10782-2-AP, ProteinTech Antibody Group, Chicago, Illinois, USA) and MATR3 mouse 

monoclonal (catalog number sc-81318, Santa Cruz, Santa Cruz, CA). Dilutions were both 

1:1,000. Double-labeling immunofluorescence was performed as previously described 

using secondary antibodies conjugated to Alexa Fluor 488 and 594 (Invitrogen, catalog 
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numbers A-21200 and A-21442, 1:200 dilution). Sections were examined using a 

fluorescence microscope (80i upright; Nikon) and charge-coupled device camera (EZ 

monochrome; Roper Industries) with deconvolution software analysis (NIS Elements; 

Nikon). Image processing and analysis were performed with NIS Elements 4.0 software 

and Photoshop CS3 (Adobe Systems Inc.). 

2.3.6 Immunoprecipitation 

 Mutations (Ser85Cys, Phe115Cys and Thr622Ala) were introduced into Flag-

tagged MATR3 cDNA plasmid (Addgene, Cambridge, MA, USA) using a QuikChange II 

XL Site-Directed Mutagenesis Kit (Agilent Technologies Inc., Santa Clara, CA, USA). 

All plasmids were sequence-verified. For Flag immunoprecipitation of MATR3, 

HEK293FT cells (Life Technologies Corp., Grand Island, NY, USA) transiently 

expressing Flag-MATR3 were lysed with lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1mM EDTA, 0.5% (v/v) NP-40, phosphatase (Thermo Scientific, number 78427) 

and protease inhibitor (Roche, catalog number 04693159001) for 30 min at 4 °C. Lysate 

was precleared with EZview Red Protein G Affinity Gel (Sigma-Aldrich) for 30 min at 4 

°C, followed by immunopurification with EZview Red Anti-Flag M2 Affinity Gel 

(catalog number F2426, Sigma-Aldrich) for 2 h at 4 °C. Protein-gel complexes were 

washed four times with lysis buffer. MATR3 was eluted using Gentle Ag/Ab Elution 

Buffer (Thermo Fisher Scientific Inc., Rockford, IL, USA) for 30 min at room 

temperature. 

Protein samples were prepared for SDS-PAGE in SDS sample buffer (Life 

Technologies) and boiled at 95 °C for 10 min before electrophoresis on 4–20% TGX gels 

(Bio-Rad Laboratories Inc., Hercules, CA, USA). Proteins were transferred to PVDF 
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membranes using the semi-dry Trans-Blot Turbo Transfer System (Bio-Rad). Membranes 

were blocked with 5% non-fat milk OmniBlok (American Bioanalytical Inc., Natick, 

MA, USA). The following primary antibodies were used at the indicated dilutions: rabbit 

anti-MATR3 ab151714 (1:200, Abcam), rabbit anti-MATR3 HPA036564 (1:200, Sigma-

Aldrich), mouse anti-Flag F1804 (1:5,000, Sigma-Aldrich), rabbit anti-TDP43 10782-2-

AP (1:2,000, ProteinTech Group Inc., Chicago, IL, USA) and rabbit anti-DHX9 A300-

855A (1:2,000, Bethyl Laboratories Inc., Montgomery, TX, USA). Immunoreactivity was 

revealed using appropriate HRP-conjugated secondary antibodies (1:5,000, Jackson 

ImmunoResearch Laboratories Inc., West Grove, PA, USA, catalog numbers 711-035-

1521 and 715-035-1501) and the ECL Plus chemiluminescent system (Pierce). 

Quantitation was performed using ImageJ software (version 1.41, National Institutes of 

Health, USA). Wilcoxon signed-rank test was used to estimate significance for 

differences in median values of interaction of MATR3 with TDP-43 and DHX9, 

comparing the values relative to wild-type protein in each experiment. 

 

2.4 RESULTS 

Here, we applied exome sequencing to a Caucasian family in which several 

individuals had been diagnosed with ALS and dementia (Fig. 2.1a) with the aim of 

identifying the causative mutation. We found two novel, heterozygous, missense variants 

that segregated with disease within this kindred, namely p.Ala436Val (chr5:126156748, 

C>T) in LMNB1 and p.Phe115Cys (chr5:138643448, T>G) in MATR3. Neither variant 

was present in population polymorphism databases (including the Exome Sequencing 

Project (n = 13,000 control chromosomes), the 1000 Genomes Project (n = 2,184 
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chromosomes) and dbSNP), or in the Human Gene Diversity Panel (HGDP, n = 2,102 

chromosomes screened in our laboratory). The MATR3 variant was also not present in an 

additional 5,190 neurologically normal subjects genotyped in our laboratory, bringing the 

total number of control chromosomes that did not carry this transversion to 27,666. 

A p.Ser85Cys (chr5:138643358, C>G) mutation in MATR3 was previously 

reported as the cause of autosomal dominant, distal, asymmetrical myopathy with vocal 

cord paralysis in a large multi-generational family (Fig. 2.1b) (Feit, Silbergleit et al. 

1998, Senderek, Garvey et al. 2009). Neurophysiological studies and muscle biopsies of 

affected members were variably reported to be consistent with either a neurogenic or a 

myopathic pattern. In light of our genetic findings, the senior author (BJT) and the 

neurologist who initially reported this family (HF) re-evaluated the p.Ser85Cys MATR3 

family. Affected individuals developed progressive respiratory failure resulting in death, 

typically after fifteen years of illness.  

Pathologically brisk knee reflexes, indicative of upper motor neuron lesions, were 

present in four of six examined patients. One patient also had brisk upper limb reflexes, 

as well as tongue fasciculations and a brisk jaw jerk. All of the examined cases displayed 

a “split-hand” pattern of weakness suggestive of a lesion in the anterior horn of the 

cervical spinal cord, a sign commonly observed in ALS patients (Eisen and Kuwabara 

2012). These clinical findings supported reclassification of this condition as slowly 

progressive ALS, and the presence of upper motor neuron signs in the form of brisk 

reflexes ruled out myopathy as the only cause of disease in this family. 

To determine the frequency of MATR3 mutations as a cause of ALS, we 

examined exome sequence data from 108 additional familial ALS cases. We identified a 
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p.Thr622Ala (chr5:138658372, A>G) missense change in MATR3 in a 66-year-old 

Sardinian diagnosed with familial ALS. This variant was present in a first-degree cousin, 

who had also presented with typical, rapidly progressive ALS at the age of 64 (Fig. 2.1c). 

In addition, custom resequencing of genes linked to neurodegeneration in 96 British ALS 

cases identified a p.Pro154Ser (chr5:138643564, C>T) missense variant in MATR3 in an 

individual diagnosed with sporadic disease (Fig. 2.1d and Fig. 2.5). Again, neither 

mutation was present in population polymorphism databases or in HGDP (n = 17,286 

control chromosomes). Though these data are supportive, additional studies are required 

to confirm the pathogenicity of these variants, especially p.Pro154Ser, which was found 

in a single sporadic case and consequently lacks segregation data. We did not find any 

additional mutations in the LMNB1 gene.  
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Figure 2.5 Distribution of MATR3 Mutations Detected in Familial ALS Patients.  

 

The upper panel shows the location of detected mutations and of the domains of MATR3 

as determined by Hibino, Y., et al. Biochim. Biophys. Acta 1759, 195–207 (2006). 

Corresponding chromatograms showing mutant and wild-type alleles are as indicated, 

and conservation of amino acid residue across species is highlighted at the bottom 

(generated using the Clustal Omega online tool, www.ebi.ac.uk/Tools/msa/clustalo/). 

  

http://www.ebi.ac.uk/Tools/msa/clustalo/
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Figure 2.6 Lumbar Spinal Cord Tissue Immunostained for MATR3 and 

Counterstained with Hematoxylin 

 

(a) Control spinal cord exhibits MATR3 nuclear immunoreactivity in some motor  

 neurons, with weak glial cell immunostaining. (b) Spinal cord from a subject with ALS  

 exhibits strong nuclear immunoreactivity, with cytoplasmic immunoreactivity present in  

 some motor neurons either diffusely or in cytoplasmic puncta. Strong glial  

 immunostaining is also noted in samples from ALS patients. (c) Spinal cord from a  

 patient with the Phe115Cys MATR3 mutation exhibits strong nuclear staining, as well as  

 cytoplasmic staining in many cells. Images were taken at 20x magnification; insets show  

 enlargements of the boxed regions. Scale bars represent 50 µm. 
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Figure 2.7 MATR3-Immunoreactive Staining in Spinal Cord Neurons  

 of ALS Patients.  

 

 (a & d) Control cases exhibit a nuclear staining pattern with staining not filling the entire 

nucleus. (b & e) ALS cases display stronger nuclear staining pattern with cytoplasmic 

staining present in some cells. Cytoplasmic staining is either diffuse across the entire cell 

or found in cytoplasmic puncta. E shows a MATR3-positive cytoplasmic inclusion, 

which are occasionally observed (this patient was known to carry a pathogenic C9ORF72 

repeat expansion). (c & f) Patient carrying the pPhe115Cys MATR3 mutation shows 

strong nuclear staining and cytoplasmic staining in many cells. Immunohistochemistry 

was performed using the HPA036565 antibody (Sigma-Aldrich). Similar results were 

seen with a different anti-MATR3 antibody.All images were taken at 40x magnification, 

and the scale bars represent 25µm. 
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We examined subcellular distribution of MATR3 using immunohistochemistry. In 

control subjects, MATR3 was detected in a granular staining pattern within the nuclei of 

motor neurons and surrounding glial cells (Fig. 2.6a and Fig.2.7 a and d). In ALS 

patients, MATR3 was observed in the nuclei of remaining motor neurons and 

occasionally within the cytoplasm (Fig. 2.6b and Fig. 2.7 b and e). In a patient harboring 

the p.Phe115Cys MATR3 mutation, MATR3 immunoreactivity was intense within the 

nucleus of all motor neurons and diffuse cytoplasmic staining was evident in many 

neurons (Fig. 2.6c and Fig.2.7c and f). Cytoplasmic inclusions were absent in this 

individual. However, we detected rare MATR3-positive cytoplasmic inclusions in an 

ALS patient known to carry the C9ORF72 repeat expansion (Fig. 2.7e). 

MATR3 is a 125kDa nuclear matrix protein that is known to bind DNA and RNA. 

Previous unbiased screens found that MATR3 is a protein interactor of TDP-43, an RNA 

binding protein that is known to cause ALS (Ling, Albuquerque et al. 2010, Salton, Elkon 

et al. 2011). To confirm this interaction, we performed coimmunoprecipitation of FLAG-

tagged MATR3 variants with endogenous TDP-43 in HEK293FT cells. As the genetic 

data were strongest for the p.Phe115Cys and the p.Ser85Cys, we selected these variants, 

as well as the p.Thr622Ala variant for which proof of pathogenicity was less clear, for 

further scrutiny. We found a reliable interaction that, interestingly, was increased by the 

p.Ser85Cys mutation, but not with the p.Phe115Cys or p.Thr622Ala variants (Fig. 2.8). 

We also noted that p.Ser85Cys MATR3 was expressed at lower steady state levels than 

other variants, suggesting a structural effect of the mutation (Fig. 2.8). There was no 

alteration in interaction between MATR3 and a second protein interactor, DHX9, 

demonstrating that the effect of p.Ser85Cys is specific for TDP-43 and not generalized to 
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all interactions of MATR3. Both interactions were abolished by RNase (Fig. 2.9), 

demonstrating that they are RNA-dependent. Coimmunoprecipitation of endogenous 

protein confirmed that MATR3 and TDP-43 interact at the endogenous level (Fig. 2.10). 

Also consistent with an interaction, MATR3 and TDP-43 co-aggregated in skeletal 

muscle tissue of a patient carrying the p.Ser85Cys mutation (Fig. 2.11). TDP-43 staining 

patterns were also examined in lumbar spinal cord tissue from the patient with a F115C 

mutation and Matrin 3 along with tissue from controls and sporadic ALS patients. In 

control tissue, TDP-43 remained within the nucleus in its normal localization and in 

sporadic ALS tissue it was found mislocalized to the cytoplasm where it formed 

inclusions. In Matrin 3 ALS tissue, TDP-43 similarly was found mislocalized to the 

cytoplasm and in cytoplasmic inclusions (Fig. 2.12). 
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Figure 2.8 Immunoprecipitation of MATR3 with TDP-43 

 

(a) FLAG-MATR3 was expressed in HEK293FT cells, immunoprecipitated using anti-

FLAG antibody, and probed with TDP-43 and DHX9 antibodies. (b) Graphs show mean 

+/− SEM based on 10 replicate immunoprecipitation experiments. Differences in 

interaction between MATR3 and TDP-43 were tested with Wilcoxon signed rank test 

(**p<0.01).  
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Figure 2.9 MATR3 and TDP-43 Interaction is RNA Dependent.  

 

 FLAG-MATR3 was expressed in 293FT cells, immunoprecipitated using anti-FLAG 

antibody followed by treatment with RNase A and probed with TDP-43 and DHX9 

antibodies. Representative blots from two independent experiments are shown. 

Interaction of MATR3 and DHX9 is consistent with Salton, M. et al., PLoS One 6, 

e23882 (2011) showing that the interaction is RNA dependent, as is the interaction with 

TDP-43. 
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Figure 2.10 Co-immunoprecipitation Experiments using Endogenous MATR3.  

 

Endogenous MATR3 was immunoprecipitated from 293FT cells and probed with DHX9 

and TDP-43 antibodies. Representative blots from two independent experiments are 

shown. These data show that MATR3, TDP-43 and DHX9 interact at the endogenous 

level.   
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Figure 2.11 Immunofluorescence of Skeletal Muscle Biopsies using anti- TDP-43 

and anti-MATR3 Antibodies.  

 

Immunofluorescence of skeletal muscle biopsy from (a) a normal control, and (b) a 

patient carrying the p.Ser85Cys missense mutation in MATR3 using anti-TDP-43 and 

anti-MATR3 antibodies. In normal skeletal muscle, MATR3 and TDP-43 localize to 

nuclei including myonuclei. In the patient with the MATR3 mutation, there is decreased 

nuclear MATR3 immunoreactivity, whereas TDP-43 accumulates in the sarcoplasm and 

is restricted from the nucleus. In addition, MATR3 and TDP-43 co-aggregate in the 

sarcoplasm adjacent to myonuclei. Open arrow highlights a TDP-43 positive fiber 

(outlined in white). Closed arrows demonstrate MATR3 and TDP-43 co-localized in 

perinuclear inclusions. Insets are enlarged myonuclei and the scale bar is 50uM. 
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Figure 2.12 Immunohistochemistry of human spinal cord tissue using anti-TDP-43 

antibodies. 

 

Immunohistochemsitry of human spinal cord tissue from control individuals, sporadic 

ALS patients and an ALS patient with a F115C mutation in Matrin 3. TDP-43 staining 

(red) with hemtoxalyin counterstain (blue) shoes nuclear immunoreactivity in control 

tissue and cytoplasmic TDP-43 inclusion along with loss of nuclear immunoreactivity in 

tissue from sporadic ALS patients and the Matrin 3 ALS patient.  
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2.5 DISCUSSION 

Differential effects of different mutations within the same gene have been reported for 

other neurodegenerative diseases, such as LRRK2 (a cause of familial Parkinson’s 

disease) (Cookson 2012) and FUS (a cause of familial ALS) (van Blitterswijk, Wang et 

al. 2013). Therefore, the lack of effect of p.Phe115Cys and p.Thr622Ale on 

MATR3/TDP-43 interaction does not necessarily preclude their pathogenicity, as it is 

possible that these mutations disrupt other cellular processes in a manner that would not 

be detected by our assays. The variants found in MATR3 were distributed across the 

length of protein, perhaps disrupting different nearby domains. Indeed, multiple functions 

have been associated with MATR3, including RNA processing (Salton, Elkon et al. 

2011), retention of hyper-edited RNA (Zhang and Carmichael 2001), gene silencing 

through interaction with Ago-containing complexes (Hock, Weinmann et al. 2007), 

chromatin organization (Ma, Siegel et al. 1999), and mediating neuronal cell death in 

response to NMDA glutamate receptor activation (Giordano, Sanchez-Perez et al. 2005). 

We also note that the p.Ser85Cys variant only alters interaction with TDP-43 and not 

another MATR3 partner, DHX9. However, and reminiscent of mutations in VAPB 

(Aliaga, Lai et al. 2013), p.Ser85Cys is notably less stable than other MATR3 variants. 

We infer that, of the genetic variants tested, p.Ser85Cys has the strongest effect on 

protein structure and this is correlated with a change in affinity for TDP-43. The 

structural basis of this interaction will need to be resolved in future studies. In this regard, 

it is interesting to note that the p.Ser85Cys mutation in MATR3 was associated with 

slowly progressive form of ALS, whereas individuals carrying the p.Phe115Cys mutation 

typically died from respiratory failure within five years of symptom onset. Similar 
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phenotype variability has been observed for other ALS genes. For example, the A4V 

mutation of SOD1 is associated with an aggressive form of the disease with an average 

survival of only nine months after symptom onset (Chio, Logroscino et al. 2009). In 

contrast, the homozygous D90A mutation in the same gene is associated with an indolent 

course with patients developing respiratory failure after ten years of illness14. 

Furthermore, the phenotype observed in some patients carrying MATR3 mutations 

combined features of ALS and myopathy. This clinical pattern is markedly similar to that 

observed in patients with mutations in VCP, HNRNPA1 and HNRNPA2B1, and the term 

“multisystem proteinopathy” has been used to reflect this broad pleiotropy (Johnson, 

Mandrioli et al. 2010, Kim, Kim et al. 2013). Exome sequencing data from the original 

USALS#3 family, as well as the 108 familial ALS cases, have been made available on 

dbGaP (accession number phs000101). The public release of such data allows other ALS 

researchers around the world to access, reanalyze and combine it with their own sequence 

data, thereby accelerating the pace of gene discovery. In summary, our genetic data 

identified mutations of the MATR3 gene as a rare cause of familial ALS and broadens 

the phenotype associated with this gene beyond the previously reported distal myopathy. 

This provides further insight into the importance of RNA metabolism in this fatal 

neurodegenerative disease. Future efforts to unravel the precise mechanism by which 

defects in RNA processing lead to motor neurodegeneration may provide novel targets 

for the design of rational therapies 
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CHAPTER 3 

ALS ASSOCIATED MUTATIONS IN MATRIN 3 ALTER PROTEIN-PROTEIN 

INTERACTIONS AND IMPEDE mRNA NUCLEAR EXPORT 

3.1 ABSTRACT 

Mutations in Matrin 3 have recently been linked to ALS, though the mechanism 

that induces disease in these patients is unknown. To define the protein interactome of 

wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation 

followed by mass spectrometry using NSC-34 cells expressing human wild-type or 

mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA 

transport centered on proteins in the TRanscription and EXport (TREX) complex, known 

to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 

led to its re-distribution within the nucleus, decreased co-localization with endogenous 

Matrin 3 and increased co-localization with specific TREX components. Expression of 

disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global 

mRNA and more specifically the mRNA of TDP-43 and FUS.  Our findings identify a 

potential pathogenic mechanism attributable to MATR3 mutations and further link 

cellular transport defects to ALS.  

 

3.2 INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder 

that results in the loss of motor neurons in the brain, brain stem, and spinal cord (Kiernan, 

Vucic et al. 2011) (Pratt, Getzoff et al. 2012). Loss of motor neurons results in muscle 

atrophy and progressive paralysis, typically leading to death due to respiratory failure 
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within 2-5 years of diagnosis. Amongst a growing number of genetic mutations linked to 

ALS, the most common genetic cause of ALS is a repeat expansion of the C9orf72 locus 

(DeJesus-Hernandez, Mackenzie et al. 2011) (Renton, Majounie et al. 2011). Of the more 

than 30 genes associated with ALS (Guerreiro, Bras et al. 2015), the most common 

mechanistic pathway implicated in ALS is RNA processing and metabolism. Mutations 

in many proteins that function in RNA processing and regulation such as TDP-43 

(Neumann, Sampathu et al. 2006) (Gitcho, Baloh et al. 2008), FUS (Kwiatkowski, Bosco 

et al. 2009), hnRNPA1, hnRNPA2B1 (Kim, Kim et al. 2013) and Matrin 3 (Johnson, 

Pioro et al. 2014) have been linked to ALS. However, the manner in which defects in 

RNA processing lead to neurodegeneration remains poorly understood. 

Previously, exome sequencing was used to identify four mutations in the RNA-

binding protein Matrin 3 attributed to familial ALS: S85C, F115C, P154S and T622A 

(Johnson, Pioro et al. 2014). Subsequently, five other groups discovered additional 

mutations in Matrin 3 linked to ALS (Lin, Tsai et al. 2015, Origone, Verdiani et al. 2015, 

Leblond, Gan-Or et al. 2016, Xu, Li et al. 2016, Marangi, Lattante et al. 2017). The 

MATR3 mutations predominately cluster in two potential hotspots found within amino 

acids 66-154 (containing six known mutations), and amino acids 610-787 (containing 

five known mutations) (Fig. 1a). S85C mutations in Matrin 3 have also been linked to 

vocal cord and pharyngeal weakness with distal myopathy (VCPDM), a progressive 

autosomal dominant distal myopathy that also results in dysphagia, dysphonia and vocal 

cord and pharyngeal weakness(Senderek, Garvey et al. 2009, Muller, Kraya et al. 2014, 

Yamashita, Mori et al. 2015). In human spinal cord tissue, Matrin 3 is predominantly 

localized within the nucleus of motor neurons; though in sporadic ALS (sALS) patients 
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as well as a patient harboring the F115C Matrin 3 mutation, nuclear immunostaining was 

increased compared to non-neurologic disease controls, with occasional cytoplasmic 

immunostaining(Johnson, Pioro et al. 2014). Rare Matrin 3 positive cytoplasmic 

inclusions have also been identified in patients harboring the C9orf72 repeat expansion as 

well as mutations in FUS (Johnson, Pioro et al. 2014, Dreser, Vollrath et al. 2017). 

Interactions between Matrin 3 and TDP-43 were also reported and this interaction was 

increased by the S85C mutation (Johnson, Pioro et al. 2014).  

Matrin 3 is an RNA-binding protein and a component of the nuclear matrix, and 

has been shown to be involved in diverse processes including the response to DNA 

damage (Salton, Lerenthal et al. 2010), mRNA stability (Salton, Elkon et al. 2011), RNA 

splicing (Coelho, Attig et al. 2015) and is phosphorylated in response to N-methyl-D-

aspartate receptor (NMDAR) activation (Giordano, Sanchez-Perez et al. 2005) and 

murine Matrin 3 protein levels have been shown to be lowest in muscle and the spinal 

cord (Rayaprolu, D'Alton et al. 2016). Recently, others have shown that expression of 

ALS linked mutations in Matrin 3 in a cell culture model does not result in gross 

mislocalization of the protein(Gallego-Iradi, Clare et al. 2015). Due to the diverse roles of 

Matrin 3, we sought to identify functional alterations caused by ALS-linked mutations. 

Immunoprecipitation (IP) followed by tandem mass spectrometry (MS) experiments were 

performed to determine Matrin 3 protein-protein interactions (PPI) and any changes 

induced by disease-associated mutations. Using NSC-34 cells stably expressing either 

wild-type or mutant Matrin 3, we performed IP-MS and identified approximately 50 

Matrin 3 interacting proteins with either wild-type or each mutant Matrin 3 protein.  

Multiple proteins within the TRanscription and EXport (TREX) protein complex that 
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regulates mRNA nuclear export were found to interact with Matrin 3, and mutant Matrin 

3 exhibited altered interactions with specific TREX proteins.  We further demonstrate 

altered global mRNA nuclear export in cells expressing mutant Matrin 3 protein.  Our 

results identify proteins that interact with wildtype and each mutant Matrin 3 protein, as 

well as a novel function of Matrin 3 in regulating mRNA nuclear export.  These findings 

support a critical role for RNA processing and transport in the pathogenesis of ALS.  

3.3 METHODS 

3.3.1 Immunoprecipitation and Western Blot 

Flag immunoprecipitations (IP) were performed using NSC-34 cells stably 

expressing 3x Flag Matrin 3 wild-type or ALS-associated mutant, endogenous IPs were 

performed in untransfected NSC-34 cellsImmunoprecipitations were performed on 

nuclear fractions (400µg of total protein), isolated using a Nuclear Complex Co-IP Kit 

(Active Motif) with minor modifications, and either Flag M2 affinity gel (Sigma-Aldrich) 

or antibodies against Ddx39b, Aly or Matrin 3. 

Lumbar spinal cord tissue homogenates were prepared from frozen tissue from 

controls (n= 3) and ALS cases (n= 3) for coimmunoprecipitation studies. Nuclear and 

postnuclear extracts were prepared as described previously (Kolarcik and Bowser 2012). 

Briefly, samples were homogenized in a solution containing 10 mM Tris (pH 8.0), 10 

mM MgCl2, 15 mM NaCl, and 0.1% Ipegal CA-630 (Sigma) supplemented with protease 

and phosphatase inhibitors, and nuclei were collected via low-speed centrifugation at 800 

× g for 5 min. Nuclei were lysed in buffer containing 0.42M NaCl, 20mM HEPES, 20% 

glycerol and 0.1% Ipegal CA-630 supplemented with protease and phosphatase 

inhibitors. Nuclear lysate was collected after a 10 min lysis by centrifugation at 14,000 
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rpm for 5 min. The resulting supernatant was saved nuclear extract and used for 

immunoprecipitation (150μg protein per sample). After eluting proteins, the mixture was 

separated using gel electrophoresis on NuPage 4-12% Bis-Tris gels (Thermo Fisher) and 

either transferred to Immobilon FL polyvinylidene difluoride (PVDF) membranes 

(Millipore) or stained with Coomassie blue (BioRad) for mass spectrometry analysis. For 

IP followed by western blot (IP-WB) membranes were blocked in Odyssey blocking 

buffer (LiCor) and probed with the indicated primary antibody overnight followed by the 

appropriate secondary antibody (LiCor). Both WB and Coomassie stained membranes 

were imaged on an Odyssey CLx imager (LiCor).  

3.3.2 In-gel digestion 

  After IP followed by electrophoresis (see above) lanes were excised into 

individual bands, excluding heavy and light IgG chains observed at 52kDA and 25kDa 

respectively. Bands were cut into 1-2mm
3
 cubes and processed using published methods 

(Shevchenko, Tomas et al. 2006). Briefly, resulting fractions were reduced with 10mM 

DTT (6˚C for 30 min), alkylated with 55mM iodoacetamide (room temperature for 30 

min, in the dark) and digested using 20 ng/mL of Trypsin Gold (Promega) (37°C, 

overnight). Finally, peptides were extracted, vacuum dried and stored at -20°C until LC-

MS analysis. 

3.3.3 LC-MS analysis 

Individual fractions were reconstituted in 0.1% formic acid and analyzed using 

online liquid chromatography on a Waters nanoAcquity UPLC coupled to a Thermo LTQ 

Orbitrap Velos mass spectrometer. Chromatography solvents A and B were 0.1% formic 

acid in water or acetonitrile, respectively. Peptides were first trapped on a 30 mm × 100 
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μm diameter fused silica column packed with 3 µm 120 Å ReproSil-Pur C18 AQ resin 

(Dr Maisch GMBH, Ammerbuch-Entringen, Germany) at 7.5 μl/min and 5% solvent B, 

before separation at 500 nl/min on a 100 mm × 100 μm analytical column (same solid 

phase as trap column) in a 3–40% solvent B gradient for 17 min, followed by 40-90% in 

0.6 min, then 90% B for 2 min and final re-equilibration for 10.5 min. The mass 

spectrometer was operated in positive ion mode using a spray voltage of 1.8 kV, and a 

capillary temperature of 200°C. Data were acquired in top-15, data-dependent acquisition 

mode using a collision voltage of 30 V. 

3.3.4 Protein Identification 

  The raw mass spectra were deconvoluted using Proteome Discoverer v1.4.1.14 

(Thermo Fisher Scientific, Waltham, MA). The spectra were searched against Mus 

Musculus (Swissprot, January 2015) supplemented with human Matrin-3 using Mascot 

v2.4.1 (Matrix Science, London, UK) with the following variable modifications: 

oxidation (Met) and carbamidomethyl (Cys). Mass tolerances for precursor ions were set 

at ±10 ppm, for fragment ions at ±0.8 Da. A maximum of 2 missed cleavages was 

allowed. Data were processed for label-free quantitation using Scaffold v4.5.1 (Proteome 

Software Inc., Portland, OR) and X!Tandem (The GPM, v2010.12.01.1) to further 

improve confidence in protein identification. At least 2 peptides were required for protein 

identification, with 0.1% peptide FDR and 1% protein FDR. Only exclusive spectral 

counts were used for prediction of protein-protein interactions.  

3.3.5 Bioinformatics and Pathway Analysis 

  Probabilistic scoring of protein-protein interaction (PPI) combined with manual 

thresholding analysis of interactants to wild-type and mutant forms of Matrin-3 was 
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performed using SAINTexpress (Teo, Liu et al. 2014). Using SAINTexpress, average 

probability (AvgP), fold change and a Bayesian False Discovery Rate (BFDR) were 

computed for each interaction pair. Fold-changes were calculated using average exclusive 

spectral counts against the empty vector as a background control for non-specific 

binding. PPIs were filtered by presence in at least 2 out of 3 replicates, fold change ≥2.5 

and AvgP ≥0.7. For manual analysis, Matrin-3 interactors were filtered by presence in at 

least 2 out of 3 replicates and a fold change ≥2.5 based on maximum spectral counts.  

3.3.6 Immunofluorescence and RNA FISH 

Immunofluorescence staining was performed on NSC-34 cells either transiently 

or stably expressing Matrin 3 constructs. Cells were grown on glass coverslips, fixed in 

4% paraformaldehyde (PFA) in PBS for 5 min, then permeabilized in 0.1% Triton X-100 

for 5 min. Cells were then blocked for one hour in SuperBlock (Scytek), and primary 

antibody was added for either one hour at room temperature or overnight at 4°C followed 

by the appropriate secondary antibody for one hour at room temperature. Nuclei were 

labeled with 4’, 6-diamidino-2-phenylindole (DAPI) for 5 min (Invitrogen). For co-

localization analysis, Pearson’s correlation coefficients were calculated using Imaris 

software (Bitplane) first by masking the DAPI channel to measure only co-localization 

within the nucleus, and then applying an automatic thresholding algorithm. The number 

of cells analyzed over the course of three independent experiments are as follows: Matrin 

3-WT=41, 85=43, 115=40, 154=41, 622=41, Aly-WT=41, 85=40, 115=42, 154=46, 

622=43, Ddx39b-WT=50, 85=43, 115=45, 154=44, 622=43, Sarnp-WT=46, 85=50, 

115=44, 154=42, 622=47. 
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RNA FISH experiments were performed on NSC-34 cells transiently expressing 

Matrin 3 constructs. Cells were plated on glass coverslips, fixed in 4% PFA for 10 min 

followed by permeabilization in 0.2% Triton X-100 for 10 min and washes in 70% 

ethanol and 1M Tris-HCl. Cells were hybridized in buffer containing 2ng/µl Cy3 labeled 

Oligo dT, 0.5µg/µl tRNA, 2µg/µl BSA fraction V, 10% dextran sulphate, 20% 

formamide, and 2x saline-sodium citrate (SSC) buffer for 3 hours at 37°C in a humidified 

chamber. Cells were then washed in SSC and subjected to the same 

immunocytochemistry protocol as listed above beginning with blocking step. The number 

of cells analyzed over the course of three independent experiments are as follows: WT 

transfected=34, WT untransfected=31, 85 transfected=34, 85 untransfected=33, 115 

transfected=32, 115 untransfected=33, 154 transfected=32, 154 untransfected=32, 622 

transfected=33, 622 untransfected=33. 

Images were captured using a Zeiss LSM 710 confocal microscope and image 

analysis was performed using Imaris software (Bitplane).  

3.3.7 Gene Ontology  

Gene ontology assessments were performed using ToppGene Suite (ToppFun). 

Medium confidence lists of proteins were utilized (identified in at least 2 replicates with a 

fold change of at least 2.5 over controls, and AvgP>0 using the SAINTexpress program) 

for this analysis. Calculations were made using GO: Biological Processes with a FDR p-

value cutoff of 0.01. The top ten results for each group are shown in order along with p-

values and the number of proteins identified in each biological process.  

To create a visual network of overlapping and unique GO terms across the 

Matrin-3 mutant samples, ClueGO
 
v2.3.2 was utilized through Cytoscape v3.3.0. The 
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proteins were aligned to GO:Bbiological Processes using the mouse proteome. GO term 

fusion was implemented merging parent-child terms with shared proteins. All other 

default ClueGO parameters were used. Proteins shared between identified GO terms were 

selected for display on the network map (Bindea, Mlecnik et al. 2009).  

3.3.8 Cell Culture and Creation of Matrin 3 stable lines 

NSC-34 cells (Cellutions Biosystems) were cultured in DMEM supplemented 

with 10% FBS and grown in the presence of 1% Pen-Strep at 37°C and 5% CO2. Matrin 

3 cDNA plasmid HsCD00075976 was obtained from the DNASU plasmid repository at 

Arizona State University. Matrin 3 3x Flag constructs were PCR amplified using Phusion 

High-Fidelity Polymerase (NEB) then sub-cloned into a pcDNA3 vector (Invitrogen) 

along with 3 Flag peptides attached to the N-terminus of the protein. Constructs 

expressing ALS linked mutations were created by performing site directed mutagenesis 

(Agilent Technologies) on Matrin 3 3x Flag pcDNA3 constructs (Seiler, Park et al. 2014). 

Cells were transfected using Lipofectamine 3000 (Life Technologies) and stable lines 

were selected under the using 500µg/ml Genetecin (Life Technologies) applied 24hrs 

after transfection. For transient transfections cells were used 48hrs after transfection.  

3.3.9 Nuclear/Cytoplasmic RNA fractionation 

HEK-293 cells were harvested and processed for nuclear and cytoplasmic RNA 

fractionation as described in (Quaresma, Sievert et al. 2013) adapted from the method 

developed by (Andersen, Lyon et al. 2002).  Briefly, cells were transfected with the 

various Matr3 constructs, and harvested 48h later. Pellets were rinsed in PBS and 

resupended in lysis buffer A (10mM HEPES, 1.5mM MgCl2, 10mM KCl, 0.5mM DTT 

and 2mM vanadylriboside VRC). A fraction was immediately separated for the total 



  84 

RNA fraction, and the remaining fraction was incubated on ice, and broken down with a 

chilled Dounce homogenizer to release nuclei. Cells were then spun down at 228xg for 

5min to release the cytoplasmic fractions (supernatant) and the nuclei (pellets). Nuclei 

were washed in buffer A twice, resuspended in Buffer S1 (250mM sucrose, 10mM 

MgCl2 and 2mM VRC), and layered on top of a cushion of buffer S3 (880mM sucrose, 

0.5mMMgCl2, 2mM VRC). Nuclei were spun down at 2800xg and for 10min and pellets 

were resuspended in buffer A. Trizol was then added to all fractions, and RNA was 

extracted using the Direct-zol RNA miniprep kit (Zymo Research, Irvine, CA). cDNA 

was synthesized using Superscript VILO (ThermoFisher Scientific), and cDNA was used 

for quantitative real-time PCR using PowerUp Sybr Green master mix. All curves were 

normalized by the comparative ΔΔCt method. Nuclear fraction RNA levels were 

normalized to tRNA-Lys (For: CGGATAGCTCAGTCGGTAGA and Rev: 

CCGAACAGGGATCTTGAACC), while cytoplasmic fractions were normalized to 

mitochondrial cytochrome b (For: CTAGCAGGTGTCTCCTCTATCT and Rev: 

GGCGTTTGGTATTGGGTTATG). Primers used for TDP43 were (For: 

GGGAAATCTGGTGTATGTTGTCA and Rev: TTTTCTGGACTGCTCTTTTCACT) 

and FUS (For:ATGGCCTCAAACGATTATACCCA and 

Rev:GTAACTCTGCTGTCCGTAGGG). 

3.3.10 Antibodies 

Antibodies used throughout the paper include Matrin 3 ab151714 and ab70336 

(abcam) and HPA036565 (Sigma), Flag F3165 (Sigma) and 2368 (Cell Signaling), actin 

MAB1501 (Millipore), Aly ab6141 and ab202894 (abcam), ddx39b 14798-1-AP 
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(Proteintech) and NBP2-52456 (Novus Biologicals), Sarnp HPA030902 (Sigma), and 

GAPDH 2118S (Cell Signaling). 

 

3.3.11 Tissue Samples 

  ALS and disease control post-mortem tissue samples were obtained from the 

Barrow Neurological Institute ALS Tissue Bank, and the Target ALS Human 

Postmortem Tissue Core. All tissues samples were collected after informed consent from 

the subjects or by the subjects’ next of kin, complying with all relevant ethical 

regulations. The protocol and consent process were approved by the the Dignity Health 

Institutional Review Board. Clinical diagnoses were made by board certified 

neuropathologists according to consensus criteria for ALS. Patient demographics can be 

found in Supplemental Table 2.  

 

3.4 RESULTS 

3.4.1 Matrin 3 Protein-Protein Interactions (PPI) altered by ALS-Linked Mutations 

While Matrin 3 performs many functions in the nucleus, few studies have 

identified proteins that interact with Matrin 3 and regulate its function (Salton, Elkon et 

al. 2011, Erazo and Goff 2015). To further define the functional role of Matrin 3 and how 

MATR3 disease causing mutations alter its function, we examined protein-protein 

interactions of wild-type and each mutant Matrin 3 protein. Immunoprecipitation 

followed by tandem mass spectrometry experiments were performed using NSC-34 cells 

stably expressing either flag-tagged human wild-type or ALS associated mutant Matrin 3 

proteins (Fig. 3.1b,c). While additional mutations in MATR3 have recently been 
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published, we chose to focus efforts on the original four mutations including a 

(chr5:138643358, C>G) resulting in a Ser85Cys (S85C) amino acid alteration, 

(chr5:138643448, T>G) Phe115Cys (F115C), (chr5:138643564, C>T) Pro154Ser 

(P154S), and (chr5:138658372, A>G) Thr622Ala (T622A) (Fig. 3.1a) (Johnson, Pioro et 

al. 2014). A recent study demonstrated that mutant Matrin 3 protein remains 

predominately in the nucleus when transiently overexpressed in multiple cell types 

(Gallego-Iradi, Clare et al. 2015). In our stable cell lines, these MATR3 mutations do not 

alter the cellular localization of endogenous or mutant Matrin 3, which remains 

predominantly nuclear (Fig. 3.1b). Therefore, we examined Matrin 3 PPI specifically in 

the nucleus of cells expressing wild-type or mutant Matrin 3. All four mutants were 

expressed at similar levels as wild-type and stable lines were selected to have low 

overexpression levels (approximately 2.5 fold) to stay close to physiological ranges. It 

was also noted that overexpression of mutant Matrin 3 did not lead to downregulation of 

the endogenous protein (Fig. 3.1c). Expression of ALS linked mutations in Matrin 3 did 

however, lead to increased toxicity which was found in the form of increased cell death 

when S85C, F115C or P154S Matrin 3 was expressed (Fig. 3.2). 

  



  87 

Figure 3.1 Matrin 3 cell culture model and IP-MS workflow. 

 

 a) Domain structure of Matrin 3 including location of mutants studied in this work listed 

below the protein as well as other recently identified mutations shown above. b) 

Representative immunofluorescence images of NSC-34 cells stably expressing Flag 

tagged wild-type Matrin 3 or one of S85C, F115C, P154S or T622A Matrin 3 mutants. 

Cells transfected with empty vector are also shown denoting endogenous levels and 

localization of Matrin 3. Flag expression is shown in red, Matrin 3 in green, DAPI 

marking nucleus in blue. c) Western blot of whole cell lysates probed with antibodies 

against Flag (top) and Matrin 3 (bottom) showing expression levels of endogenous 

Matrin 3 and Flag tagged Matrin 3 in NSC-34 stable cells lines and quantitation. Full 

length blots can be found in figure 3.14. Error bars represent standard error of the mean 

(SEM) of three experiments. One way Analysis of Variance (ANOVA) with Dunnett’s 

post-test showed no significant differences between level of expression of wild-type and 

any of the four mutations (Flag p-values: WT vs 85: p=0.8163, WT vs 115: p=0.4753, 

WT vs 154 p=0.0619, WT vs 622 p=0.0715, F-value: 8.671, DF=14, Matrin 3 p-values: 

WT vs 85: p=0.9957, WT vs 115: p=0.9722, WT vs 154 p=0.9998, WT vs 622 p=0.7550, 

F-value: 2.716, DF=17). d) Flow chart of IP-MS sample preparation and analysis 

protocols.  
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Figure 3.2 Expression of mutant Matrin 3 increases cell death. 

 

NSC-34 cells were transiently transfected with either an empty vector, wild-type Matrin 3 

or ALS associated mutations in Matrin 3. After 48 hours cell death was measured using a 

fluorescent dye that binds to the DNA of cells with impaired membrane integrity. One 

way ANOVA with Dunnett’s post-test showed a significant increase in cell death (* 

refers to p<0.05) for three mutations in Matrin 3; S85C, F115C, P154S, and T622A.   

 

  



  89 

 
Figure 3.3 Representative image of Coomassie stained gel after IP pull-down.  
 

Input indicates total nuclear lysate before immunoprecipitation experiment (40µg of total 

protein) followed by immunoprecipitation using Flag agarose gel in NSC-34 cells stably 

expressing empty vector, wild-type Matrin 3 or one of the four mutations in Matrin 3. 

Red boxes indicate the area used for mass spectrometry experiments (IgG heavy and light 

chains were removed). 
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As outlined in Figure 3.1d, nuclear extracts were prepared from each stable cell 

line and used for immunoprecipitation of exogenous Flag-tagged Matrin 3, followed by 

elution of bound proteins and identification by mass spectrometry (Fig. 3.3). After 

peptide identification, interactions were analyzed by two methods, manual analysis and a 

probabilistic protein-protein interaction algorithm (SAINTexpress). Manual analysis 

consisted of filtering proteins to only include those that were identified in two out of 

three replicates at a fold change of 2.5 or greater over the maximum spectral counts 

identified in the empty vector control. SAINTexpress analysis was performed on proteins 

that were identified in two out of three replicates and at a fold change of 2.5 or greater as 

compared to the average spectral counts of empty vector, and yielded two populations of 

proteins; a medium confidence list of proteins that either met the manual analysis criteria 

or the SAINTexpress criteria of (AvgP>0) and a high confidence list (AvgP>0.7) (Figure 

3.1e). Overall, we identified approximately 300 proteins for wild-type and each mutant 

(range of 276-333), approximately 70 proteins that met the thresholding criteria for 

medium confidence (range of 61-87), and approximately 18 proteins that met the 

stringent criteria of high confidence interactors (range of 13-31). Across wild-type and all 

four mutants, a total of 167 unique proteins met the medium confidence threshold (Table 

3.1) and 53 proteins met the threshold for high confidence in at least one of the five cell 

lines (Table 3.2). 
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Table 3.1 High and medium confidence protein interactors of Matrin-3. 

 

 Plus signs signify a fold change over empty vector of ≤10 (+), 10-50 (+ +) or ≥50 (+ + 

+). Medium confidence protein interactors were defined as those identified in two out of 

three replicates and with a fold change ≥2.5 over empty vector in the manual analysis, or 

a fold change ≥2.5 over empty vector and an avgP≥0 in the SAINTexpress analysis. High 

confidence interactors were those with a fold change ≥2.5 over empty vector in both the 

SAINTexpress analysis and the manual analysis along with a SAINTexpress avgP value 

≥0.7. 
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Wild-type S85C F115C P154S T622A 

Acta1 
      Alyref       Ap2b1          

Ccar1           
Ckap4 

       
Ddx17 

        
Ddx39b 

         
Ddx54 

        
Hist1h2bp 

      
Hist1h3b        Hnrnpa3           
Hnrnpd           
Hnrnpm 

       Ilf3 
       

Imp3 
      

Imp4         
Kiaa1429 

      Map1b 
         

Mest 
      

Mocs3 
        Ngdn 
        

Plec         
Pnn 

      Poldip3           
Polr2a          
Ppp1ca          
Prpf6 

        Rnps1           
Rpl23a 

        
Rpl27          
Rpl32 

       
Rplp0          
Rps11           
Rps13          
Rps18          
Rps23 

        
Rps24 

        
Rps6 

       
Rrp12         
Sarnp           
Sf3a3        Skiv2l2          
Sltm 

        
Snrpa1         Srsf7 

      
Tbl3 

       
Tmod3        Tmpo          Tuba1b 

       
Tubb5 

      Vim 
       

Wdr33 
       

Zc3h11a          
Table 3.2 List of high confidence proteins identified by IP-MS. 
 

List of all proteins that met the threshold criteria for high confidence (identified in at least 

2 replicates, fold change of at least 2.5 fold over vector and SaintExpress AvgP>0.7) in 

wild-type or mutant Matrin 3 IP-MS experiments. Proteins shown in white for a 

particular cell line were either not identified or did not meet minimum threshold 
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requirements for medium confidence (identified in at least 2 replicates, fold change of at 

least 2.5 fold over vector and SaintExpress AvgP>0), proteins shown in light blue met 

medium confidence thresholds, proteins shown in dark blue met high confidence 

threshold. Protein names that are bolded denote proteins involved in nuclear export 

and/or the TREX complex. 
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3.4.2 Gene Ontology Analysis Highlights mRNA Transport 

ToppFun gene enrichment analysis was performed to functionally annotate the 

Matrin 3 interactome yielding a list of biological processes, many of which were RNA 

related (Table 3.3).  The top biological process shared by wild-type and all four mutants 

was either “RNA processing” or in the case of Ser85Cys, “mRNA metabolic process”. 

For wild-type Matrin 3 PPIs the top 15 biological processes were all related to RNA, 

including mRNA and rRNA, processing and biogenesis, transcription and splicing. While 

the top gene ontology (GO) terms for all four Matrin 3 mutations included these 

processes, they also included terms involved in mRNA and RNA transport/localization, 

suggesting a role for Matrin 3 in RNA transport (Table 3.3). 

This pathway is particularly interesting due to recent reports describing 

interactions between the C9orf72 repeat and proteins involved in nuclear transport, as 

well as the subsequent defect in both protein import and RNA export in cells expressing 

the C9orf72 repeat expansion 
26-28

. Upon closer examination of Matrin 3 interacting 

proteins we identified multiple components and interactors of the TREX complex that 

controls mRNA nuclear export, including Aly (AlyRef), Sarnp (Cip29), Zc3h11a, 

Poldip3 and DdX39b (UAP56) (Dufu, Livingstone et al. 2010, Katahira 2012) (Table 3.1, 

3.2). We further explored and validated interactions of Matrin 3 with TREX proteins and 

the role of Matrin 3 in mRNA nuclear export.  
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44 
42 

 

mRNA 

metabolic 

process 

1.44E-

23 
31 

mRNA 

processing 

4.28E-

30 
31 

 

RNA 

processing 

6.64E-

31 
38 

 

mRNA 

processing 

1.12E-

24 
31 

 

mRNA 

processing 

5.16E-

32 
32 

 

ribonucleoprot

ein complex 

biogenesis 

2.38E-

14 
21 

RNA 

splicing 

1.58E-

27 
28 

 

RNA splicing, 

via 

transesterificat

ion reactions 

with bulged 

adenosine as 

nucleophile 

3.27E-

27 
26 

 
RNA splicing 

3.71E-

24 
29 

 
RNA splicing 

2.10E-

29 
29 

 

mRNA 

processing 

3.97E-

14 
21 

RNA 

splicing, via 

transesterifi

cation 

reactions 

with bulged 

adenosine 

as 

nucleophile 

1.61E-

27 
26 

 

mRNA 

splicing, via 

spliceosome 

3.27E-

27 
26 

 

RNA splicing, 

via 

transesterificat

ion reactions 

with bulged 

adenosine as 

nucleophile 

3.90E-

23 
26 

 

RNA splicing, 

via 

transesterificat

ion reactions 

with bulged 

adenosine as 

nucleophile 

4.61E-

26 
25 

 

protein 

localization to 

endoplasmic 

reticulum 

1.43E-

12 
13 

mRNA 

splicing, via 

spliceosome 

1.61E-

27 
26 

 

RNA splicing, 

via 

transesterificat

ion reactions 

4.61E-

27 
26 

 

mRNA 

splicing, via 

spliceosome 

3.90E-

23 
26 

 

mRNA 

splicing, via 

spliceosome 

4.61E-

26 
25 

 

rRNA 

processing 

2.04E-

12 
16 

RNA 

splicing, via 

transesterifi

cation 

reactions 

2.27E-

27 
26 

 
RNA splicing 

1.28E-

25 
27 

 

RNA splicing, 

via 

transesterificat

ion reactions 

5.48E-

23 
26 

 

RNA splicing, 

via 

transesterificat

ion reactions 

6.41E-

26 
25 

 

rRNA 

metabolic 

process 

3.10E-

12 
16 

ribonucleop

rotein 

complex 

biogenesis 

2.33E-

14 
20 

 

RNA 

localization 

7.97E-

09 
12 

 

ribonucleoprot

ein complex 

biogenesis 

2.18E-

18 
26 

 

ribonucleoprot

ein complex 

biogenesis 

7.89E-

16 
21 

 

mRNA export 

from nucleus 

6.26E-

12 
12 

rRNA 

processing 

2.70E-

09 
13 

 

nucleic acid 

transport 

2.45E-

08 
11 

 

rRNA 

processing 

3.38E-

12 
17 

 

termination of 

RNA 

polymerase II 

transcription 

6.80E-

12 
10 

 

mRNA-

containing 

ribonucleoprot

ein complex 

export from 

nucleus 

6.26E-

12 
12 
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Table 3.3: Gene ontology analysis for biological processes using medium confidence proteins identified by IP-MS.  

 

Top 15 biological processes by Bonferroni corrected p-value for wild-type and each mutant are listed. Grey boxes highlight terms 

involved in RNA transport and localization. Number of genes refers to the total number of Matrin 3 interacting proteins identified for 

each gene ontology term.  

Wild-type  Ser85Cys  Phe115Cys  Pro154Ser  Thr622Ala 

GO term 
p-

value 

# of 

genes  GO term 
p-

value 

# of 

genes  GO term 
p-

value 

# of 

genes  GO term 
p-

value 

#  of 

genes  GO term 
p-

value 

# of 

genes 

rRNA 

metabolic 

process 

3.78E-

09 
13  

RNA 

transport 

2.45E-

08 
11  

rRNA 

metabolic 

process 

5.26E-

12 
17  

DNA-

templated 

transcription, 

termination 

2.78E-

11 
11  RNA splicing 

7.46E-

12 
18 

termination 

of RNA 

polymerase 

II 

transcriptio

n 

3.04E-

08 
8 

 

establishment 

of RNA 

localization 

2.94E-

08 
11 

 

termination of 

RNA 

polymerase II 

transcription 

5.80E-

12 
11 

 

mRNA export 

from nucleus 

4.30E-

11 
11 

 

mRNA 

transport 

1.56E-

11 
13 

ribosome 

biogenesis 

3.97E-

08 
13 

 

termination of 

RNA 

polymerase II 

transcription 

4.20E-

08 
8 

 

mRNA 

transport 

9.80E-

12 
14 

 

mRNA-

containing 

ribonucleopro

tein complex 

export from 

nucleus 

4.30E-

11 
11 

 

RNA splicing, 

via 

transesterifica

tion reactions 

with bulged 

adenosine as 

nucleophile 

2.62E-

11 
16 

DNA-

templated 

transcriptio

n, 

termination 

5.36E-

08 
9 

 

mRNA 

transport 

1.05E-

07 
10 

 

ncRNA 

processing 

2.09E-

11 
19 

 

mRNA 

transport 

6.96E-

11 
12 

 

mRNA 

splicing, via 

spliceosome 

2.62E-

11 
16 

regulation 

of RNA 

splicing 

1.16E-

07 
9 

 

nucleobase-

containing 

compound 

transport 

1.77E-

07 
11 

 

DNA-

templated 

transcription, 

termination 

5.28E-

11 
12 

 

rRNA 

processing 

1.01E-

10 
14 

 

RNA export 

from nucleus 

2.88E-

11 
12 

nuclear-

transcribed 

mRNA 

catabolic 

process, 

nonsense-

mediated 

decay 

2.52E-

07 
9 

 

RNA export 

from nucleus 

3.28E-

07 
9 

 

RNA 

localization 

6.34E-

11 
15 

 

ncRNA 

processing 

1.29E-

10 
16 

 

ribonucleopro

tein complex 

export from 

nucleus 

2.88E-

11 
12 
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Figure 3.4 Functionally organized GO term network (ClueGO) of binding partners 

to wild type and mutant Matrin 3 in NSC-34 cells.  

 

Associated gene clusters and functional differences are highlighted. GO terms with a 

single sample frequency above 50% were color-coded wild type (purple), 

Ser85Cys(green), Phe115Cys(yellow), Pro154Ser(blue), Thr622Ala(red), and unspecific 

(grey). Terms were considered unspecific if sample frequency was above 50% across 

more than one sample. Sample frequency was determined as a percentage based on the 

number of genes that defined that specific term. Increased size of GO term nodes 

inversely correlates to p-values computed by a two-sided hypergeometric test, with step-

down Bonferroni correction.  
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ClueGO functional enrichment analysis was performed to aid in the visualization and 

interpretation of Matrin 3 PPI by grouping interacting proteins by biological processes, 

highlighting the role of Matrin 3 interacting proteins in RNA processing, RNA splicing, and RNP 

biogenesis (Figure 3.4). This analysis also emphasizes the role of Matrin 3 in RNA transport with 

such GO terms as “poly (A)+ mRNA export from the nucleus” and “RNA localization” common 

across all mutants and wild-type Matrin 3. While most GO terms were not unique to a specific 

mutation, “negative regulation of mRNA processing,” and “regulation of mRNA stability” were 

linked specifically to Ser85Cys; “cellular response to interleukin-4” and “nuclear export” were 

linked specifically to Thr622Ala; and “ribosomal small subunit biogenesis” was linked to 

Phe115Cys (Figure 3.3). Future studies will explore the role of specific Matrin 3 mutations in 

mRNA stability and ribosomal biogenesis.  

3.4.3 Validation of Matrin 3 interactions with TREX proteins 

IP-MS results were validated in two manners, co-immunoprecipitation followed 

by western blot (IP-WB) and double-label immunofluorescence microscopy of cultured 

cells. Both methods also provided relative quantification of protein interactions with 

wild-type or mutant Matrin 3. Immunofluorescence microscopy was performed on cells 

transiently transfected with either wild-type or mutant Matrin 3 and immunostained with 

antibodies against the Flag tag on Matrin 3 and the protein of interest. Pearson’s 

correlation coefficients were calculated for nuclear immunostaining to quantify levels of 

co-localization. Co-immunofluorescence against both Flag and Matrin 3 allowed us to 

explore whether mutant Matrin 3 co-localizes with endogenous Matrin 3 throughout the 

nucleus. Pearson’s correlation coefficients ranged from 0.8 and 0.9 for endogenous 

Matrin 3 compared to exogenous Flag-Matrin 3 indicating high levels of co-localization  
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Figure 3.5 Immunofluorescence images of NSC-34 cells transiently transfected with 

wild-type or mutant Matrin 3 then subjected to co-localization analysis. 
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 a,c,e,g) Representative images from immunofluorescence staining. In each case Flag is 

shown in red marking exogenous Matrin 3 and the protein of interest (Matrin 3, Aly, 

Ddx39b and Sarnp, respectively) is shown in green, merged image of two signals below. 

Scale bar indicates 5µm.  b,d,f,h) Average Pearson’s correlation coefficient for Flag and 

the protein of interest, whiskers indicate 1.5 times the interquartile range (IQR) for 40-50 

cells per genotype. One way ANOVA followed by Dunnett’s post-test, (*) denotes p-

value <0.05, (**) p<0.01 and (***) p<0.001 compared to wild-type (Matrin 3 p-values: 

WT vs 85: p=0.1524, WT vs 115: p=0.0035, WT vs 154 p=0.0002, WT vs 622 

p=0.5535, F-value: 12.61, DF=205; Aly p-values: WT vs 85: p=0.0001, WT vs 115: 

p=0.8307, WT vs 154 p=0.0001, WT vs 622 p=0.3368, F-value: 9.284, DF=211; 

Ddx39b p-values: WT vs 85: p=0.9725, WT vs 115: p=0.0002, WT vs 154 p=0.0107, 

WT vs 622 p=0.0364, F-value: 7.701, DF=224; Sarnp p-values: WT vs 85: p=0.0090, 

WT vs 115: p=0.9400, WT vs 154 p=0.9791, WT vs 622 p=0.8224, F-value: 2.913, 

DF=228).
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Figure 3.6 Wide Field View of Immunofluorescence Images of Cells Transiently Transfected with Matrin 3 then Subjected to 

Co-localization Analysis.  

 

Representative images from immunofluorescence staining., flag is shown in red marking exogenous Matrin 3 and endogenous Matrin 

3 is shown in green, merged image of two signals below. Insets indicate higher magnification images. Scale bar indicates 10µm  
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Figure 3.7 Wide Field View of Immunofluorescence Images of Cells Transiently Transfected with Matrin 3 then Subjected to 

Co-localization Analysis with Aly. 

 

 Representative images from immunofluorescence staining., flag is shown in red marking exogenous Matrin 3 and Aly is shown in 

green, merged image of two signals below. Insets indicate higher magnification images. Scale bar indicates 10µm   
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Figure 3.8 Wide Field View of Immunofluorescence Images of Cells Transiently Transfected with Matrin 3 then Subjected to 

Co-localization Analysis with Ddx39b. 

Representative images from immunofluorescence staining., flag is shown in red marking exogenous Matrin 3 and Ddx39b is shown in 

green, merged image of two signals below. Insets indicate higher magnification images. Scale bar indicates 10µm   
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Figure 3.9 Wide Field View of Immunofluorescence Images of Cells Transiently Transfected with Matrin 3 then Subjected to 

Co-localization Analysis with Sarnp.  
 

Representative images from immunofluorescence staining., flag is shown in red marking exogenous Matrin 3 and Sarnp is shown in 

green, merged image of two signals below. Insets indicate higher magnification images. Scale bar indicates 10µm
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between the two (Figure 3.5). The F115 and P154S mutations of Matrin 3 co-localized 

significantly less with endogenous Matrin 3, suggesting that ALS-linked mutations alter 

the localization of mutant protein within the nucleus (Fig. 3.5 a, b, Figure 3.6). This 

change in mutant Matrin 3 distribution within the nucleus may reflect the altered protein-

protein interactions observed by IP-MS and contribute to disease pathogenesis induced 

by these mutations. 

We next explored co-localization between proteins involved in TREX regulated 

mRNA export (Aly, Sarnp and Ddx39b) with wild-type and mutant Matrin 3. For all 

three proteins, Pearson’s coefficients were found to be 0.6 or higher, implying that the 

three proteins do co-localize with Matrin 3, further validating our IP-MS results (Figure 

3.5c-h). The S85C and P154S mutations in Matrin 3 exhibited increased levels of co-

localization with Aly as compared to wild-type Matrin 3 while F115C and T622A levels 

remained similar to wild-type (Figure 3.5c, d, Figure 3.7). Three of the four Matrin 3 

mutations (F115C, P154S, and T622A) exhibited increased co-localization between 

mutant Matrin 3 and Ddx39b, with S85C showing similar levels to wild-type (Figure 3.5 

e, f, Figure 3.8). S85C did, however, show increased levels of co-localization with Sarnp 

while the other mutants showed no difference (Figure 3.5 g, h Figure 3.9). Taken 

together, ALS-linked mutations in Matrin 3 co-localized less with endogenous Matrin 3 

and exhibited increased co-localization with components of the TREX complex. A shift 

in protein interactions may induce alterations in TREX function within cells expressing 

ALS associated mutations in Matrin 3.   



  

  108   

Using co-IP coupled with western blot, Matrin 3 interactions were confirmed for 

each of the TREX proteins (Figure 3.10a). We also confirmed protein-protein interactions 

between endogenous Matrin 3 and Aly and Ddx39b (Figure 3.10b, c). To rule out 

potential non-specific pull-down by the Flag antibody, reverse IP experiments were 

performed using antibodies against Aly or Ddx39b. Our results confirm the predicted 

interaction of Matrin 3 with Aly and Ddx39b (Figure 3.10d). Quantitation of these blots 

showed a trend towards increased binding of both Aly and Ddx39b to the S85C and 

P154S mutations in Matrin 3, while increased binding of S85C Matrin 3 to Ddx39b 

reached statistical significance (Figure 3.10e, f).Co-immunopreciptiation between Matrin 

3 and Ddx39b was also performed in human post-mortem lumbar spinal cord tissue, 

confirming that these proteins interact in vivo and in the context of sporadic ALS (Figure 

3.10g). Patient demographics for samples used in Figure 3.10g are listed in Table 3.4. 

In addition to proteins within the TREX complex, the interaction between Matrin 

3 and hnRNPL as well as other proteins involved in ALS were examined. hnRNPL was 

chosen as a positive control as it has been identified previously as a Matrin 3 interacting 

protein. TDP-43, FUS, hnRNPA1 and hnRNPA2/B1 were all examined due to their links 

to other genetic forms of ALS. In all cases the proteins identified by IP-MS were also 

identified by IP-WB. In the case of TDP-43 which had previously been shown to bind to 

Matrin 3 and the interaction increased by the S85C mutation the same results were found 

with the addition of increased binding between TDP-43 and P154S Matrin 3 (Figure 

3.11).  
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Figure 3.10 Immunoprecipitation followed by western blot from NSC-34 cell lines 

and human lumbar spinal cord tissue.  

 

a) Immunoprecipitation using Flag antibody followed by western blot which was probed 

with Flag and Matrin 3 to confirm efficient pull down of Matrin 3, or TREX components 

Aly, Ddx39b and Sarnp; representative blots are shown, and all experiments were 

performed a minimum of three times with similar results. Full length blots in figure 3.15. 

b,c)Matrin 3 IP performed on endogenous Matrin 3 in untransfected NSC-34 cells. 

Immunoblots are probed with Aly (b) or Ddx39b (c). Full length blots can be found in 

figure 3.16. d) Reverse immunoprecipitation experiments using antibodies against Aly 

and Ddx39b followed by western blot probed with either Aly or Ddx39b confirming pull-

down of the target and Flag to measure the amount of mutant Matrin 3 bound, 

representative blots shown. Full length blots can be found in figure 3.17. e,f) 

Quantification of Aly and Ddx39b IP-WB experiments; values are expressed as Flag 

signal over signal of the bait protein (Aly or Ddx39b respectively) to control for IP 

efficiency, Aly IP values from five replicates, Ddx39b IP values from four replicates. 

Values are expressed as fold change over wild-type and error bars represent SEM. One 

way ANOVA followed by Dunnett’s post-test,(*) denotes p-value <0.05 (Aly p-values: 

WT vs 85: p=0.6561, WT vs 115: p=0.9670, WT vs 154 p=0.2250, WT vs 622 

p=0.9611, F-value: 1.011, DF=24; Ddx39b p-values: WT vs 85: p=0.0133, WT vs 115: 

p=0.9944, WT vs 154 p=0.0760, WT vs 622 p=0.9993, F-value: 6.025, DF=19).g) 

Matrin 3 IP performed in human lumbar spinal cord nuclear lysates of controls n=3 and 
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ALS patients n=3. Immunoblot is probed with Ddx39b and Matrin 3. Arrow indicates 

IgG heavy chain band. Full length blots can be found in figure 3.18. 
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Case ID Gender Age PMI (hrs) 

CON1 F 74 3 

CON2 M 81 17 

CON3 F 57 32 

ALS1 M 72 3 

ALS2 M 39 5.5 

ALS3 M 83 21 

 

Table 3.4 Patient Demographics of lumbar spinal cord tissues used in the study...  

 

PMI = post-mortem interval. All diagnoses were performed by licensed 

neuropathologists.  
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Figure 3.11 Flag IP followed by western blot showing binding between Matrin 3 and 

proteins additional proteins identified by mass spectrometry 

 

Immunoprecipitation using Flag antibody followed by western blot which was probed 

with Flag and Matrin 3 to confirm efficient pull down of Matrin 3. Western blots were 

also probed with hnRNPL, a known binding partner of Matrin 3 as a positive control and 

ALS linked proteins TDP-43, FUS, hnRNPA2/B1 and hnRNPA1; representative blots are 

shown, and all experiments were performed a minimum of three times with similar 

results  



  

  113   

3.4.4 Matrin 3 mutations reduce mRNA nuclear export 

Unlike other nuclear export machinery, the TREX complex is restricted to the 

export of mRNA (Strasser, Masuda et al. 2002). To confirm the role of Matrin 3 in 

nuclear mRNA export we performed fluorescence in situ hybridization (mRNA-FISH) 

using an oligo dT probe against poly(A) containing mRNA in cells transiently expressing 

either wild-type or mutant Matrin 3, and measured the amount of mRNA in the nucleus 

and cytoplasm of each cell. Nuclear to cytoplasmic ratios of mRNA were calculated for 

cells expressing mutant Matrin 3 (Transfected), and neighboring non-transfected cells 

(Untransfected) (Fig. 3.12a-f). There was a trend towards an increased nuclear to 

cytoplasmic ratio of mRNA for transfected vs. non-transfected for wild-type and all 

mutant expressing cells. There was a statistically significant increase in polyA-mRNA 

nuclear to cytoplasmic ratio in cells expressing S85C and P154S Matrin 3 (Fig. 3.12f). 

Expression of S85C resulted in a 34% increase in the nuclear to cytoplasmic ratio of 

mRNA and P154S expression resulted in a 29% increase in the ratio (Fig. 3.12f). The 

increased nuclear to cytoplasmic ratio implies that mRNA is sequestered within the 

nucleus in cells expressing mutant Matrin 3 protein and S85C and P154S Matrin 3 

mutations induce significant defects in mRNA nuclear export.   

3.4.5 Mutations in Matrin 3 lead to export defects of TDP-43 and FUS mRNA 

After demonstrating a global defect in mRNA export from the nucleus, we 

explored whether this defect affected specific mRNAs for proteins relevant to ALS. We 

focused on the mRNA of TDP-43 (Johnson, Pioro et al. 2014) and FUS (Yamaguchi and 

Takanashi 2016) ,two RNA-binding proteins previously linked to ALS, both of which 
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have been shown to bind to Matrin 3. To demonstrate the role of Matrin 3 in the nuclear 

export of TDP-43 and FUS mRNA, cellular fractionation followed by RT-PCR for TDP-

43 and FUS mRNA in each compartment was performed using HEK-293 cells expressing 

either wild-type or ALS associated mutant Matrin 3. HEK-293 cells were utilized in this 

experiment to demonstrate the role of Matrin 3 in nuclear export in a human cell line, 

though similar results were obtained using the NSC-34 cell lines (data not shown). 

Expression of wild-type Matrin 3 generated no change when compared to control cells 

but expression of S85C, and T622A Matrin 3 mutations led to an increase in the nuclear 

to cytoplasmic ratio of TDP-43 mRNA compared to an empty vector control (Fig. 3.12g). 

The nuclear to cytoplasmic ratio of FUS mRNA was increased by expression of S85C, 

P154S and T622A mutant Matrin 3 (Fig. 3.12h). In both cases RT-PCR with primers 

specific for TDP-43 and FUS was also performed on whole cells to confirm that the 

difference in mRNA levels was not due to differential mRNA expression or degradation 

(Fig. 3.13). 
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Figure 3.12 RNA-FISH and cellular fractionation followed by RT-PCR show defects 

in RNA export.  

 

Experiments performed in NSC-34 cells transiently transfected with either wild-type or 

mutant Matrin 3. a-e) mRNA signal of RNA-FISH experiment shown in red, 

immunofluorescence staining of cells using actin to mark the cell body (white), Flag to 

mark transfected cells (green) and DAPI to mark the nucleus (blue) (representative 

images). f) Nuclear to cytoplasmic mRNA ratio of transfected (T) vs. untransfected (UT) 

cells for wild-type Matrin 3 and each mutant expressed as fold change over untransfected 

cells on the same slide, 31-34 cells were measured per genotype collected from three 

independent experiments.  Whiskers indicate 1.5(IQR). One way ANOVA followed by 

Bonferroni post-test, WT p-value: 0.0697, 85 p-value: 0.0005, 115 p-value: 0.4100, 154 

p-value: 0.0073, 622 p-value: 0.0596). g,h). Cell fractionation followed by RT-PCR on 

nuclear and cytoplasmic fractions of HEK-293 cells. Values are expressed as average 

nuclear to cytoplasmic ratio of either TDP-43 or FUS mRNA, normalized to tRNA-Lys 
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for the nuclear fraction and cytochrome b for the cytoplasmic fraction. Error bars 

represent mean and SEM of three replicates. Experiments were each performed three 

times, graphs show representative experiment. One way ANOVA followed by Dunnett’s 

post-test (TDP-43 p-values: WT vs Vector: p=0.8529, WT vs 85: p=0.0001, WT vs 115: 

p=0.1003, WT vs 154 p=0.6840, WT vs 622 p=0.0001, F-value: 74.31, DF=17; FUS p-

values: WT vs Vector p=0.9999, WT vs 85: p=0.0054, WT vs 115: p=0.1336, WT vs 

154 p=0.0045, WT vs 622 p=0.0001, F-value: 35.21, DF=17, (*) denotes p-value <0.05, 

(**) p<0.01 and (***) p<0.001 for both RNA FISH and RT-PCR data. 
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Figure 3.13 Total TDP-43 and FUS mRNA levels by RT-PCR.  

 

Prior to fractionation experiments an aliquot of cells was separated and total RNA was 

extracted, followed by RTPCR to determine the total levels of a) TDP-43 and b) FUS. 

mRNA levels were not altered by expression of wild-type or mutant Matrin 3. Error bars 

represent the mean +/- SEM of three independent experiments  
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Figure 3.14 Full length western blot of RIPA lysates. 

 

Full length western blot of representative image shown in figure 3.1c. Blot was probed 

three times with antibodies for Flag, Matrin 3 and GAPDH. Each band is identified with 

an arrow and label.  
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Figure 3.15 Full length western blots of Flag IPs 

 

Full length western blots of Flag IPs from figure 3.9a probed with a) Flag, b) Matrin 3, c) Aly ,d) Ddx39b, e) Sarnp . Arrows mark 

band for each protein in question.  
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Figure 3.16 Full length western blots of Matrin 3 endogenous IPs. 

 

Full length western blots of Matrin 3 endogenous IPs from figure 3.9 b and c. a) Matrin 3 

IP probed with Matrin 3 (top arrow) and Aly (bottom arrow). b,c) Matrin 3 IP probed 

with Matrin 3 (b) band denoted by arrow, and Ddx39b (c) band denoted by arrow.  
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Figure 3.17 Full length western blots for Ddx39b and Aly IPs.  

 

Full length western blots from figure 3.9d showing Ddx39b IPs (a and b) probed with 

Ddx39b (a) and Flag (b) and Aly IPs (c) probed with Aly and Flag. Arrows denote bands 

of interest.  
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Figure 3.18 Full length western blots for Matrin 3 IPs performed in spinal cord 

tissue lysates.  

 

Full length western blots from figure 3.9g showing Matrin 3 IPs performed in spinal cord 

tissue lysates probed with Matrin 3 (a) and Ddx39b (b). Arrows denote bands of interest. 
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3.5 DISCUSSION 

We performed IP-MS to identify Matrin 3 interacting proteins, and determine 

alterations in PPIs caused by ALS-linked mutations. This yielded 167 total proteins that 

met our confidence threshold for interacting with either wild-type or one of the four 

mutant Matrin 3 proteins (Table 3.1). This contrasts with previously published IP-MS 

experiments which each identified only eight wild-type Matrin 3 interacting proteins 

(Salton, Elkon et al. 2011, Erazo and Goff 2015). Our results identified 6 of the 8 proteins 

identified in Salton et al., and 7 out of the 8 proteins identified in Erazo et al., though 

these proteins did not meet our stringent confidence thresholds for protein interaction. In 

comparison to other studies, the discrepancies in the number of Matrin 3 interactors 

identified in our work is likely due to the different cell types and methodologies used for 

the proteomic analysis. We also identified differences in PPIs induced by disease causing 

mutations in MATR3. On average, each mutant Matrin 3 protein exhibited approximately 

60% different interactors than the wild-type interactome (ranging between 54-63%), 

suggesting that these mutations allow for novel Matrin 3 protein interactions that may 

impact its function and contribute to disease.  

Gene ontology analysis highlighted terms including “RNA localization,” “RNA 

transport,” and “mRNA transport” within the top 15 most enriched biological processes 

for mutant but not wild-type Matrin 3. Examination of Matrin 3 PPIs involved in RNA 

localization, transport and export yielded several members of the TREX complex.  The 

role of the TREX complex is to link transcription, mRNA processing and mRNA nuclear 

export. After transcription, pre-mRNA molecules associate with several proteins to form 
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a dynamic messenger ribonucleoprotein (mRNP). TREX proteins are components of this 

mRNP from the initial stages of transcription, throughout splicing and processing, and 

ultimately to delivery of the mRNP for transfer to the nuclear pore and export (Heath, 

Viphakone et al. 2016). Interestingly, we identified Matrin 3 interactions not only with 

proteins that are core components of TREX such as Aly, Sarnp, Ddx39b, Zc3h11a, 

Chtop, Poldip3, and Thoc2, but also interactions between Matrin 3 and proteins involved 

in all stages of mRNA biogenesis and export (Supplemental Table 1). Matrin 3 also 

interacted with three RNA polymerase II subunits, Polr2a, Polr2b, and Polr2c that 

function at early steps of transcription.  Proteins involved in RNA splicing that interact 

with Matrin 3 include Pnn (Wang, Lou et al. 2002), Prpf6 (Tanackovic, Ransijn et al. 

2011), Sf3a3 (Tanackovic and Kramer 2005), Skiv2l2 (Nag and Steitz 2012), Snrpa1 

(Makarov, Owen et al. 2012), and Srsf7 (Muller-McNicoll, Botti et al. 2016).  

Interestingly Pnn, Prpf6 and Srsf7 bind to various mutations in Matrin 3 but were not 

found on the wild-type list. While we have not explored the role of Matrin 3 in mRNA 

splicing, others have shown a role for wild-type Matrin 3 as a splicing regulator which 

tends to repress exon inclusion (Coelho, Attig et al. 2015).  One of the transcripts shown 

to be regulated by Matrin 3 was ADAR1B which is altered in ALS (Hideyama, 

Yamashita et al. 2012). Future work will explore the role of wild-type and mutant Matrin 

3 in RNA splicing. 

We also identified Matrin 3 interactions with proteins involved in the delivery of 

mRNPs from TREX to the nuclear pore complex, including interactions with the nuclear 

export receptor NXF1, and nuclear pore proteins Nup107 and Nup160.  While we have 
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not validated these mass spectrometry based results, our data suggests that Matrin 3 

participates in processes throughout mRNA processing, transport and export from the 

nucleus.  It is unclear whether Matrin 3 performs these functions as a resident nuclear 

matrix protein or if there is a soluble pool of Matrin 3 that functions within and travels 

with TREX.  We determined that mutant Matrin 3 proteins are less co-localized with 

endogenous Matrin 3 (when compared to exogenously expressed wild-type Matrin 3) and 

instead more co-localized with TREX proteins Aly, Ddx39b and Sarnp. This suggests 

that while there are no gross overall changes in the localization of mutant Matrin 3 within 

the cell, there is a re-distribution in the localization of mutant Matrin 3 within the 

nucleus. Altered protein-protein interactions with TREX proteins may explain the 

observed defects in mRNA nuclear export induced by Matrin 3 mutant proteins in our 

study. The two Matrin 3 mutations with the strongest global export defects, S85C and 

P154S, were also the two mutations that showed increases in co-localization with Aly and 

increased binding to both Aly and Ddx39b. This suggests that alterations in the 

associations of Aly and Ddx39b with Matrin 3 caused by ALS-linked mutations may be 

key to the downstream phenotype of nuclear mRNA retention. Future studies will define 

the role of Matrin 3 interactions with Aly and Ddx39b in regulating mRNA nuclear 

export.  In addition, prior studies have shown a role for Matrin 3 in the nuclear export of 

HIV transcripts via CRM1 mediated nuclear export (Kula, Gharu et al. 2013).  Since 

CRM1 mediated nuclear export can also export some mRNAs, future studies will also 

explore the potential roles of Matrin 3 mutations in modulating RNA nuclear export of 

retroviral infected cells.  We previously reported increased binding between the S85C 
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Matrin 3 mutant protein and TDP-43, suggesting this mutation could have increased 

affinity to many different nuclear proteins (Johnson, Pioro et al. 2014). Interestingly, the 

S85C Matrin 3 also showed the largest change in the nuclear to cytoplasmic ratio of 

TDP-43 mRNA (Fig. 5g), and patients with this genotype have been shown to exhibit 

ALS and distal myopathy phenotypes (Johnson, Pioro et al. 2014, Muller, Kraya et al. 

2014, Yamashita, Mori et al. 2015, Palmio, Evila et al. 2016).  While various Matrin 3 

mutations impact TDP-43 or FUS mRNA nuclear export to various degrees, we did not 

detect global changes in TDP-43 or FUS protein levels or subcellular distribution in these 

same cells (data not shown). 

The cell culture model utilized in these experiments (NSC-34) is a mouse motor 

neuron like hybrid cell line. Matrin 3 is highly conserved between human and mouse with 

98.5% sequence homology at the amino acid level and 94.8% at the DNA level 

(HomoloGene, NCBI). Three of the four mutations that were studied in this work are in 

highly conserved regions of Matrin 3 (S85C, P115C, P154S), however the sequence 

differs at amino acid 622, which is threonine in humans and alanine in mice.  While this 

is a limitation of the model system used in this study, IP-MS experiments were also 

performed in a human cell line (HEK-293) and identical interactions between Matrin 3 

and TREX proteins including Chtop, Aly, and Zc3h11a were observed in this human cell 

line (data not shown).  We also demonstrate interactions of endogenous Matrin 3 with 

TREX proteins and interactions of wildtype Matrin 3 with the TREX protein Ddx39b in 

human post-mortem tissue samples. Future studies will further explore interactions of 
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mutant Matrin 3 and TREX proteins in human post-mortem tissue samples or patient 

derived stem cells. 

 While a role for Matrin 3 in TREX and nuclear export is novel, a functional role 

for Matrin 3 in splicing has been recently demonstrated (Coelho, Attig et al. 2015), and 

splicing is an integral functional role of TREX. Matrin 3 was linked to the export of viral 

RNA via the CRM1 mediated nuclear export pathway (Kula, Gharu et al. 2013), as 

discussed above. Finally, Matrin 3 was identified by mass spectrometry using isolated 

nuclear pore fractions (Cronshaw, Krutchinsky et al. 2002), suggesting that this protein 

can be located at the nuclear pore. The role of nuclear transport in ALS was initially 

implicated due to the discovery of mutations in the export protein GLE1 in familial ALS 

(Kaneb, Folkmann et al. 2015). More recently, nucleocytoplasmic transport has moved to 

the forefront of ALS pathobiology due to nuclear transport defects in numerous model 

systems expressing either the C9orf72 repeat expansion or dipeptide repeat proteins 

(DPRs) (Freibaum, Lu et al. 2015, Jovicic, Mertens et al. 2015, Zhang, Donnelly et al. 

2015) as well as in cells expressing c-terminal fragments of TDP-43 (Woerner, Frottin et 

al. 2016). Proteins that modified the C9orf72 phenotype were found to be interactors of 

Matrin 3 in our study including Aly, Nup 107, and Nup 160 (Freibaum, Lu et al. 2015). 

Though most studies have suggested a deficiency in the import of proteins, a similar 

nuclear accumulation of mRNA was seen in cells expressing the G4C2 repeat(Freibaum, 

Lu et al. 2015), as well as cells expressing TDP-43 c-terminal fragments (Woerner, 

Frottin et al. 2016), suggesting a defect in nuclear export of RNA. While the mechanism 

by which either the C9orf72 repeat expansion, TDP-43 c-terminal fragments and MATR3 
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mutations result in mRNA export defects is unknown, the fact that Matrin 3 interacts with 

both suggests that either all three mutations impact the same functional pathway, or this 

defect is mediated by interactions with one another (Haeusler, Donnelly et al. 2014, 

Johnson, Pioro et al. 2014, Lee, Zhang et al. 2016). This link between Matrin 3 and 

C9orf72 is further supported by the finding of rare Matrin 3 positive inclusions in a 

patient with a C9orf72 repeat expansion but not in other sALS cases (Johnson, Pioro et 

al. 2014, Dreser, Vollrath et al. 2017).  

In this study, we demonstrated binding of Matrin 3 to 167 total proteins with 53 

that met high confidence thresholds for protein interactions, greatly increasing the known 

Matrin 3 PPIs. This is the first study describing the PPI of the ALS-associated Matrin 3 

mutations S85C, F115C, P154S and T622A.  Importantly, our results demonstrate a novel 

role for Matrin 3 in mRNA nuclear export, possibly mediated via direct interactions with 

proteins of the TREX complex.  Disease causing mutations in MATR3 alter interactions 

with TREX proteins and nuclear export of mRNA, further highlighting the role for 

mRNA processing and nuclear export in the pathogenesis of ALS.   
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CHAPTER 4 

DISCUSSION 

While mutations in over 30 genes have been identified in ALS patients, it has 

been suggested that only a portion of the heritability of ALS (estimated at 21%) has been 

accounted for (Keller, Ferrucci et al. 2014). This suggests that a better understanding of 

the genetics of ALS is required to search for pathogenic mechanisms, build novel models 

of the disease, and ultimately create new therapeutics. My body of work spans from the 

discovery of a novel gene mutated in ALS to the creation of a cell culture model of 

Matrin 3 linked disease which was used to discover a possible disease mechanism. 

Mutations in Matrin 3 were discovered in a family with ALS that lacked mutations in 

other known ALS genes. After the initial discovery of four mutations in Matrin 3, other 

scientists searched and discovered a total of 9 additional missense mutations as well as 

two splicing alterations in ALS patients. Altogether, estimates of the incidence of Matrin 

3 mutations in ALS patients are approximately 2% of patients, making it a rare cause of 

ALS. Interestingly, with the additional mutations discovered there seem to be two 

mutational hot spots between amino acids 66 and 154 which contains 7 mutations and 

between 610 and 787 which contains 5 mutations. The function of these two hotspots is 

currently unknown and both regions lack any of the known domains making the 

understanding of these regions an area for future study.  

While many proteins linked to ALS form cytoplasmic inclusions and aggregates, 

immunohistochemistry performed on tissue from patients with sporadic ALS as well as a 

patient with a F115C mutation in Matrin 3 did not exhibit Matrin 3 positive inclusions. 
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We did however note rare Matrin 3 positive cytoplasmic inclusions in a patient carrying 

the C9orf72 repeat expansion, a phenotype that was recapitulated by others in both 

C9orf72 patient tissue as well as tissue from patients with mutations in FUS (Dreser, 

Vollrath et al. 2017).  It was recently reported that Matrin 3 positive inclusions are 

present in 60% of the cases examined (Tada, Doi et al. 2017). This discrepancy is likely 

due to the use of different antibodies by the different groups, either due to non-specific 

binding of the antibody or due to the use of antibodies with different epitopes. We used 

two different antibodies with epitopes at the n-terminal and c-terminal of Matrin 3 (amino 

acids 145-233 and 773-787) and found a similar staining pattern with both and Dreser et 

al. used an antibody with a similar c-terminal epitope (amino acids 800-847). The 

antibody used by Tada et al. however, has a more central epitope in the middle of the 

Matrin 3 protein (475-500) suggesting that Matrin 3 found in inclusions might have a 

different conformation such that the two termini of the protein are hidden and the central 

region is exposed. As there is currently no crystal structure published for full length 

Matrin 3, the confirmation of both normal wild-type Matrin 3 as well as Matrin 3 found 

in inclusions would be of interest. It will also be important to test whether Matrin 3 

positive inclusions are found within patient tissue from patients carrying Matrin 3 

mutations as they have currently only been discovered in sporadic ALS patients and 

familial patients with mutations in C9orf72 and FUS. It will also be of interest to 

determine whether Matrin 3 inclusions are present in any of the cell culture models we 

have created when stained with the antibody used by Tada and colleagues.  
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Our initial study of Matrin 3 provided evidence that ALS linked mutations alter 

the interactions between Matrin 3 and other proteins. TDP-43 a protein linked to ALS 

due to its propensity to be found in aggregates in most ALS cases as well as being 

mutated in rare forms of the disease, had been previously suggested to bind to Matrin 3. 

This interaction was further confirmed by immunoprecipitating flag tagged Matrin 3 and 

probing the resulting western blot with TDP-43. This experiment suggested that the S85C 

mutation was able to pull down more TDP-43 than wild-type Matrin 3 and was the first 

indication that ALS linked mutations in Matrin 3 might alter its protein-protein 

interactions.  

To test the hypothesis that Matrin 3 mutations alter its protein-protein interactions 

and that these alterations are involved in mechanisms of disease pathogenesis were tested 

in a cell culture model of Matrin 3. Multiple cell culture models were utilized in which 

wild-type or mutant Matrin 3 was expressed either stably or transiently in either HEK293 

cells or NSC-34 cells. These models allowed for us to examine the protein-protein 

interactions of wild-type and mutant Matrin 3 and search for alterations that are a result 

of disease causing mutations. IP-MS experiments were chosen as a way to perform large 

scale unbiased analysis of protein-protein interactions and allowed for both the 

identification of novel Matrin 3 binding partners and a more systems level analysis of the 

functions of Matrin 3 interacting proteins. To the first point our work greatly increased 

the number of proteins identified as interacting with Matrin 3 compared to previous IP-

MS experiments published by others. Unlike prior experiments where particular bands 

were cut from gels and identified by mass spectrometry, the entire lane with the 
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exception of the IgG heavy and light chain were used for downstream protein 

identification. This work was also the first to explore protein-protein interactions of any 

form of mutant Matrin 3.  

Numerous publications have identified hnRNPL as a strong Matrin 3 interacting 

protein, and we used this protein as a positive control in our IP-WB experiments. Next, a 

number of proteins linked to ALS were identified by this technique including TDP-43 

which had previously been examined. We were able to confirm the interaction between 

both wild-type and mutant Matrin 3 and TDP-43 as well as an apparent increased affinity 

between S85C Matrin 3 and TDP-43. This increased interaction between Matrin 3 and 

TDP-43 was also present with the P154S mutation which had not previously been 

examined. We also identified the proteins FUS, hnRNPA2/B1 and hnRNPA1 as Matrin 3 

interacting proteins and confirmed the interaction by performing IPs followed by western 

blots.  

Gene ontology analysis and functional enrichment analysis allowed us to cluster 

Matrin 3 interacting proteins by their biological processes and function. All of the top 15 

categories of biological processes for both wild-type and mutant Matrin 3 were involved 

in RNA biogenesis and processing. This revelation is unsurprising due to the initial 

characterization of Matrin 3 as an RNA binding protein but also adds additional evidence 

that defects and alterations in RNA processing play a role in ALS pathogenesis. One 

group of processes that was of particular interest due to recent work performed in models 

of C9orf72 ALS, were terms involved in mRNA transport and localization. The proteins 

within these lists were of particular interest first because they were found at the top of the 
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gene ontology lists for mutant Matrin 3 but lower on the gene ontology lists for wild-type 

Matrin 3, and due to the fact that many of the proteins within these terms were part of a 

single complex called TREX.  

While a role for defects in nucleocytoplasmic trafficking has been established in 

ALS a role for TREX is fairly novel to the field. TREX has a very specific role in the 

export of mRNA from the nucleus where it is transcribed, to the cytoplasm where it is 

translated. Others have demonstrated the accumulation of poly (A+) mRNA within the 

nucleus of cells expressing the C9orf72 repeat expansion. The TREX component Aly has 

also been identified as a top hit in a number of genetic screens aimed at identifying 

modifiers of the C9orf72 phenotype (Freibaum, Lu et al. 2015). The TREX complex 

member Thoc2 has been shown to mislocalize and form inclusion in both mouse models 

of Huntington’s disease as well as in tissue from Huntington’s patients. This aggregation 

was accompanied by nuclear mRNA retention suggestive of defects in TREX function 

(Woerner, Frottin et al. 2016) (Gasset-Rosa, Chillon-Marinas et al. 2017). This evidence 

led us to focus on examining the interaction between Matrin 3 and the TREX components 

Aly, Ddx39b and Sarnp. The interactions were first confirmed through multiple IP-WB 

experiments. First by pulling down with Flag antibody and probing blots with antibodies 

against Aly, Ddx39b and Sarnp and then by pulling down with Aly and Ddx39b and 

probing with Matrin 3 and Flag. These complementary approaches helped to validate the 

interaction and ensure that the binding was not dependent on the antibody used for the 

immunoprecipitation. Reverse IP experiments were also utilized to quantify and compare 

the level of interaction between wild-type and mutant Matrin 3. Reverse IPs were used as 
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in each case they appeared to pull down the equal amounts of Aly and Ddx39b 

respectively, in each of the different cell lines. This quantitation suggested an increase in 

binding between mutant Matrin 3 and Aly and Ddx39b similar to what was seen with the 

interaction between Matrin 3 and TDP-43. To ensure that these interactions occur under 

endogenous expression levels of Matrin 3, we also performed Matrin 3 IPs in 

untransfected cells, and again observed the interactions between Matrin 3 and Aly and 

Ddx39b. Finally, the interaction between Matrin 3 and Ddx39b was tested in tissue 

lysates prepared from lumbar spinal cord tissue from control and ALS patients. Again 

this confirmed the interaction between Matrin 3 and Ddx39b. Unfortunately we did not 

have access to spinal cord tissue lysates from any patients with mutations in Matrin 3 so 

we were unable to test the hypothesis suggested from our work performed in cell culture 

that in patients with mutations in Matrin 3 there is an increased and aberrant interaction 

between Matrin 3 and TREX components. 

We next performed immunofluorescence on cells expressing wild-type or mutant 

Matrin 3 to ensure that Matrin 3 is found in the same areas of the nucleus as TREX 

components. While Matrin 3 immunostaining appears to fill the nucleus with the 

exception of the nucleolus, it is found in a granular, punctate staining pattern that is very 

similar to the staining pattern observed for Aly, Ddx39b and Sarnp. As Matrin 3 was flag 

tagged we were able to compare the level of co-localization between an antibody against 

Matrin 3 and an antibody against Flag. This analysis was vital as it allowed us to identify 

both endogenous and flag tagged Matrin 3 in the same cell and quantify the level of co-

localization, allowing us to identify changes in staining patterns that are not obvious 
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qualitatively. The analysis performed was also unique in that it was performed only 

within the nucleus which was segregated by DAPI staining and that it was performed 

using an unbiased automated thresholding algorithm. While the Matrin 3 antibody used 

was able to detect both endogenous Matrin 3 and the exogenous flag tagged Matrin 3, the 

statistically significant decrease in the level of co-localization of the two would suggest 

that there were areas in the nucleus where endogenous Matrin 3 was found but exogenous 

flag tagged mutant Matrin 3 was not present. As all comparisons were performed 

between cells overexpressing wild-type Matrin 3 and those overexpressing mutant Matrin 

3, it is likely that the small but significant change that we identified is due primarily to 

the mutation in Matrin 3 and not merely the overexpression of the protein.  

Interestingly, when the same analysis was performed between Matrin 3 and Aly, 

Ddx39b and Sarnp there were also small but significant changes between the levels of co-

localization of wild-type and mutant Matrin 3 with these TREX proteins. In all three 

cases there was an increase in the level of co-localization of mutant Matrin 3 with TREX 

proteins compared to the level of co-localization with wild-type. This data is in 

agreement with our IP-WB experiments and indicates increased affinity between mutant 

Matrin 3 and TREX proteins. This suggests that either mutations in Matrin 3 cause a 

small change in its localization within the nucleus which puts it in closer proximity to 

TREX proteins thus increasing their interaction or that the mutations in Matrin 3 increase 

the affinity for TREX components and this increased interaction results in the change in 

localization. Our IP experiments were performed using nuclear extracts without any 

crosslinking agents, suggesting strong interactions between Matrin 3 and TREX proteins. 
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It would be of interest to determine where exactly in the nucleus these interactions occur 

and to determine if the interaction between mutant Matrin 3 affects the interactions 

between various TREX proteins with one another. TREX proteins are located both 

diffusely throughout the nucleus at splicing sites such as nuclear speckles and 

components have even been found at sites of active transcription. 

While the mechanism by which mutations in Matrin 3 increases the affinity and 

co-localization with TREX is unknown, we have shown that these ALS linked mutations 

in Matrin 3 result in accumulation of poly (A+) mRNA within the nucleus. We observed 

an approximately 30% increase in the nuclear to cytoplasmic ratio of mRNA. This 

modest increase however fits with the levels of nuclear retention observed in cells 

expressing C9orf72 repeat expansions. A modest level of mRNA retention also makes 

biological sense as cells could not survive without any export of mRNA and alternative 

mRNA export pathways do exist. What we have observed does not appear to be a 

complete shutdown of mRNA export but rather a slowing of the process. While it is 

unclear how exactly the slowing of mRNA export would cause this disease it is a model 

that would fit with a neurodegenerative disease with an onset late in life. While export by 

the TREX complex is thought to be the main export pathway for all mRNA there does 

seem to be some specificity to the export defects we uncovered as the mRNA for both 

TDP-43 and FUS are affected whereas the mRNA for GAPDH is not. It is possible that 

the difference could be due to the fact that different adapter proteins are available to 

function within TREX and there appear to be different forms of the TREX complex 

within cells. Unfortunately, the exact composition of which adapter proteins export 
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specific mRNAs is not currently known and it is likely that multiple proteins are involved 

under different conditions.  

The identification of defects in mRNA export in cells expressing mutant Matrin 3 

adds additional evidence that trafficking between the nucleus and the cytoplasm is 

affected in ALS. We have added Matrin 3 to the list of ALS causing proteins that have 

been shown to impact mRNA transport including SOD1, TDP-43, and C9orf72. 

Additionally, a similar phenotype of mRNA nuclear retention and alteration of a TREX 

protein were identified in Huntington’s disease mouse models and tissue suggesting that 

defects in mRNA export could be found broadly not just in ALS but in other 

neurodegenerative diseases as well suggesting a possible vulnerability of more than just 

motor neurons to this phenotype. 

While we have identified defects in the export of mRNA within NSC-34 motor 

neuron like cells it will be important to perform future studies in other cell types. iPS 

cells have been created from a patient carrying a F115C mutation in Matrin 3 which can 

be utilized in the future to examine this pathology in human iPS derived motor neurons. 

These cells can also be differentiated into other cell types including other types of 

neurons, glial cells or even muscle. In the future it will be important to confirm the results 

we have presented here in both the iPS derived motor neurons and in patient tissue. In our 

initial publication we identified regions within the sarcoplasm of muscle from a patient 

with a S85C mutation in Matrin 3 in which Matrin 3 and TDP-43 appear to be found in 

perinuclear inclusions. It would be interesting to determine whether these inclusions are 

present in muscle from ALS patients with either other mutations in Matrin 3 which are 
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not linked to myopathy as S85C is, as well as if these inclusions are present in ALS 

patients without mutations in Matrin 3. The link between Matrin 3 and both myopathy 

and ALS, as well as the primarily muscle phenotype identified in a mouse model of 

Matrin 3, makes muscle a particularly interesting area of future study 

Overall, my thesis spanned from the discovery of a novel genetic form of ALS to 

the characterization of Matrin 3 within patient tissue and the creation of an in vitro model 

of Matrin 3 mutations. This cell culture model allowed us to test the hypothesis that 

mutations in Matrin 3 change its protein-protein interactions and the functional impact of 

disease causing mutations. We identified a novel role for Matrin 3 in modulating TREX 

mediated nuclear export of mRNA and found that expression of ALS linked mutations in 

Matrin 3 leads to the nuclear retention of global mRNA. 
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