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ABSTRACT

Online social media is popular due to its real-time nature, extensive connectivity

and a large user base. This motivates users to employ social media for seeking

information by reaching out to their large number of social connections. Information

seeking can manifest in the form of requests for personal and time-critical information

or gathering perspectives on important issues. Social media platforms are not designed

for resource seeking and experience large volumes of messages, leading to requests not

being fulfilled satisfactorily. Designing frameworks to facilitate efficient information

seeking in social media will help users to obtain appropriate assistance for their needs

and help platforms to increase user satisfaction.

Several challenges exist in the way of facilitating information seeking in social

media. First, the characteristics affecting the user’s response time for a question are

not known, making it hard to identify prompt responders. Second, the social context

in which the user has asked the question has to be determined to find personalized

responders. Third, users employ rhetorical requests, which are statements having the

syntax of questions, and systems assisting information seeking might be hindered from

focusing on genuine questions. Fouth, social media advocates of political campaigns

employ nuanced strategies to prevent users from obtaining balanced perspectives on

issues of public importance.

Sociological and linguistic studies on user behavior while making or responding to

information seeking requests provides concepts drawing from which we can address

these challenges. We propose methods to estimate the response time of the user for a

given question to identify prompt responders. We compute the question specific social

context an asker shares with his social connections to identify personalized responders.

We draw from theories of political mobilization to model the behaviors arising from
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the strategies of people trying to skew perspectives. We identify rhetorical questions

by modeling user motivations to post them.
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Chapter 1

INFORMATION SEEKING IN SOCIAL MEDIA

Information seeking is defined as “A conscious effort to acquire resources in response

to a need or gap in knowledge” (Case, 2012). Social media makes it easier for users to

reach out to a large number of people in real time, leading them to post to their online

social network to seek information. Considerable interest on information seeking in

social media is shown in recent literature (Morris et al., 2010; Lampe et al., 2014;

Zhao and Mei, 2013).

Examples of information seeking in social media are illustrated in Fig 1. Fig

1 features three requests seeking information from the asker’s social network. The

first request in the image is for assistance in the user’s mathematics homework and

is looking for a person who is familiar with the asker’s math abilities. The second

request is for time-critical information regarding a possible tsunami in Bangladesh

and a prompt response containing the relevant information is expected. The third

request is looking for a broad range of perspectives about the recent 2016 election

campaign in the United States.

Designing algorithmic frameworks to facilitate information seeking in social media

has several practical applications. Identifying answerers to personal questions will

help to bridge the unique information gap of users and increase user satisfaction for

personal and time-critical needs. Learning concepts that can satisfy personal needs

can also help enhance search in social media by making it personalized to the asker.

Facilitating users to get a broad range of perspectives can ensure that they make an

informed opinion on the important issues facing society.
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Figure 1: Examples of Requests in Social Media

Generic social media sites are not designed for information seeking (Paul et al.,

2011). Questions are buried among other content produced by the social connections

of a potential answerer. Thus the responder might not see questions he is suitable

to answer. Questions and statements are mixed with each other, and this leads to

confusion for any possible system that aims to aid information seeking in social media.

Users who seek perspectives are hindered by people who are trying to shape their

opinion by pushing their agenda on their social media profiles. Information seeking

can be facilitated by identifying responders and identifying posts and users hindering

information seeking. I next present a few challenges associated with facilitating

information seeking in social media.

First, the information need of social media users is subjective or personal in many

cases, unlike traditional Q&A platforms like StackOverflow, and his social context is

used to find appropriate people able to satisfy it (Hecht et al., 2012). For example, to

assist a person looking to get a new hairstyle, finding people from his social connections

who share related context with him can be more useful to him than finding web pages

related to hair salons. It is challenging to determine the social context of the asker
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related to the question and appropriately utilized to connect the responders to the

questions they are suitable to answer.

Second, the characteristics affecting the time taken to respond to a social media

question are not precisely known. This makes it hard to estimate the time taken for a

user to respond to a time-critical question posted in social media. Parallel research

on information retrieval states that the characteristics of urgent queries are yet to

be explored (Mishra et al., 2014a), leading to people in need not getting prompt

help. Millions of posts are published during emergencies by a large number of users,

leading to a large candidate responder set. It is difficult to estimate the availability

and inclination of the candidate responders to reply to a given question promptly.

Moreover, timeliness is a distinct entity than relevance, and these entities have to be

integrated to identify responders who can give timely and relevant responses.

Third, advocates in social media try and push their agenda on popular issues

preventing users from getting a broad range of perspectives. They employ nuanced

message construction and propagation strategies to shape user opinion and increase

the spread of their messages, making it difficult to distinguish them from random

users posting on issues related to the campaign. These strategies are very diverse,

manifesting both in the activity patterns restricted to individual advocates like

constructing persuasive messages, and multiple relational patterns like shared language

and interactions, making it a challenge to study collectively in a unified model.

Fourth, rhetorical questions, an example of which is illustrated Fig 1 has the

syntactic structure of a question and cannot be easily differentiated from information

seeking questions. Previous research on question identification using syntax proposes

that rhetorical questions are shown to be most prone to get misclassified (Li et al.,

2011). Rhetorical questions have the function of a statement, and determining its
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function might lead us to distinguish them for other questions better. However, the

purpose served by a standalone post of a social media user is not always apparent. In

the question in Fig 1, the reason behind the user posting is not clear just by looking

at the statement.

We draw from sociological and linguistic theories which provide concepts using

which we can address these challenges. Social foci theory (Feld, 1981) postulates

that interactions between people organized around relevant entities, known as foci.

Inspired by the social foci theory, we propose that, people sharing question-specific

social foci with the asker are suitable to answer personal, informational questions.

The response time of a user for a time-critical question given in 1 can be determined

by models of future availability(Morris et al., 2010) and self-consistent (Korman, 1970)

behavior of the candidate responders.

Sociological studies of political mobilization provide attributes of advocates using

which I can build models of their characteristics. Behavioral theories record persuasive

language and high degrees of emotion in the messages of advocates in their attempts

to shape the opinion of people (McCarthy and Zald, 1977). Campaign communications

are (Farrell and Webb, 2006) studies the widespread use of focused messaging and

shared language patterns (Philipsen et al., 1997). To increase the reach of messages

during political campaigns, the utility of popular users for widespread propagation

(González-Bailón et al., 2013) and coordination through social connections have been

studied (McCarthy and Zald, 1977).

Rhetorical questions can be filtered out by drawing concepts from linguistic

literature to model user motivations to post them (Schmidt-Radefeldt, 1977). The

motivation of posters of rhetorical questions, like subtly conveying a message (Schmidt-

Radefeldt, 1977) and strengthen or mitigate a previous statement (Frank, 1990),
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can be modeled and integrated with textual information of the question to help in

differentiating between rhetorical and not rhetorical questions in social media.

Drawing concepts from these theories, we design algorithms to facilitate resource

seeking in social media. We specifically answer the following questions.

• How to leverage future availability and self-consistency for identifying prompt

and relevant responders to time-critical questions in social media?

• How to leverage question specific social foci to select responders who can satisfy

personal requests?

• How to identify accounts of users who are trying to advocate their agenda on a

given issue?

• How to model user motivations to distinguish between rhetorical and non-

rhetorical questions posted in social media?
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Chapter 2

RELATED WORK

While addressing the research questions on facilitating information seeking in

social media, I drew concepts from a wide body of literature on social information

seeking, information retrieval, linguistics, community Q&A platforms and political

mobilization. I next enumerate the wide body of related literature and place my work

in context.

2.1 Resource Seeking in Social Media

Resource seeking in social media which has received considerable attention in

research communities (Ellison et al., 2013; Lee et al., 2012; Yang et al., 2011). An

analytical study of the primary motivations for information seeking and responding in

Twitter is presented in (Morris et al., 2010; Paul et al., 2011). They indicated that

subjective questions were the most prevalent, trust users have with their friends and the

real-time information was the primary factor for asking questions A study of requests

and responses received in Facebook (Gray et al., 2013; Ellison et al., 2013) presented

information seeking as a tool for resource mobilization in social media. The factors

affecting the quantity (Liu and Jansen, 2013) and speed of the responses (Teevan

et al., 2011) are studied, and these mainly correlate of question characteristics such as

phrasing and posting time with the number and speed of responses. The prediction

of response time for social media questions is studied in (Mahmud et al., 2013) by

modeling response time taken for the previous questions of the asker to estimate the
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reply time. These papers give interesting insights to the question answering process

in social media, but here we focus on identifying responders to these questions.

2.2 Responder Identification

Systems have been proposed to identify responders for social media questions to

match question content with profile information (Hecht et al., 2012) and use crowd-

sourced technology (Jeong et al., 2013). Search architectures with empirical models

to route questions to responders using social information are discussed in (Horowitz

and Kamvar, 2010; Nandi et al., 2013). These papers are meant to demonstrate

architectures of social search systems and hence do not contain any experimental

evaluations. A method for recommending users who can answer questions in social

media (Mahmud et al., 2014) models temporal, behavioral and content related factors

to identify suitable users. It identifies users capable of answering questions in general,

and the users not optimized for a particular question.

Expertise finding methodologies in social media have received considerable attention

in recent literature. Social expertise systems have been proposed for different social

media platforms like Twitter (Weng et al., 2010; Pal and Counts, 2011), enterprise

social networks (Bozzon et al., 2013) and image-based social networks like Instagram

(Pal et al., 2016) and identify subject matter experts in social media. These papers

focus on finding experts for a given information need and do not consider possible

response times when choosing an appropriate responder. Social media questions are

subjective and personal might require answerers who share social context with the

asker rather than subject matter experts.

The convergence of models for search and recommendation is another similar
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line of research. A theoretical discussion on the advantages and opportunities of the

fusion of search and recommendation algorithms is presented in (Garcia-Molina et al.,

2011). Models fusing search and recommendation to provide search results considering

the interests of the searcher has been studied in (Weston et al., 2012). The authors

of (Mishra et al., 2014b) build upon this to model the effects of the social network

between searchers to rank the search results. Features determining the urgency of

search queries, taking health-related searches as a case study have been proposed in

(Hsiao et al., 2014). These papers do not focus on social media questions and do not

consider the timeliness of responses while ranking candidate responders.

2.3 Community Q&A Systems

A related line of research is timely information seeking in search and community

Q&A systems like Yahoo! Answers (Adamic et al., 2008) and Quora (Wang et al.,

2013a). Content from existing Q&A sessions is used to rank answerers by NLP

techniques. (Jurczyk and Agichtein, 2007) uses link structure to find authoritative

answerers for a question category. The authors in (Zhou et al., 2012) and (Yang et al.,

2013b) combine network and content information to identify authoritative users as

answerers. The environment for social media questions is different as the candidate

answerers are themselves connected via social relations. Systems utilizing question

categories (Zhu et al., 2013) cannot be applied as they are not explicitly known in

generic social media.

The temporal behavior of users of community Q&A platforms, such as factors

affecting response time (Liu and Agichtein, 2011) and variation of response times

for different categories of questions (Chua and Banerjee, 2013) have been recently
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studied. The temporal dynamics between experts in a community Q&A platform have

been studied in (Pal et al., 2012), and it shows that modeling the evolution of experts

improves the performance of expert identification community Q&A. However, these

papers do not explicitly identify users who can provide timely and relevant responses

to a given question.

A set of categories present in the questions along with the most popular question

types has been studied in (Adamic et al., 2008; Wang et al., 2013a). These papers

analyze categories already provided by the platform and do not address automatic

question categorization. A taxonomy of question types in different Q&A platforms

is manually constructed in (Harper et al., 2010), and this gives insight into the

variations of response quality and quantity across various categories. Identification of

unresolved questions in community Q&A platforms have been addressed by exploiting

conversation dynamics (Anderson et al., 2012) and structure (Kim and Kang, 2014).

Various methods of automatic question classification to facilitate easier search are

evaluated in (Qu et al., 2012; Chan et al., 2013), but do not consider rhetorical

questions as a relevant category. Users post in community Q&A platforms to get

answers to their queries, and rhetorical questions are posted to make statements and

not look for answers. Hence, rhetorical questions are not likely to be prevalent here,

and the literature does not focus on them.

2.4 Question Identification

Automatic identification of questions posted in social media has been addressed in

recent literature (Zhao and Mei, 2013; Wen and Lin, 2015; Hasanain et al., 2014). The

problem of identifying poorly phrased questions have been addressed in (Podgorny
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et al., 2015) and the authors use grammatical structures of questions to identify them.

Rhetorical questions are different from information seeking, or poorly phrased questions

and characteristics unique to rhetorical questions have to be modeled to identify them.

The authors in (Bhattasali et al., 2015) address the problem of identifying rhetorical

questions by directly combining contextual information. We model the motivations

of the user to post rhetorical questions by utilizing particular relations between the

question and its context.

2.5 Linguistic Theories of Rhetorical Questions

The characteristics of rhetorical questions have extensively been studied in linguistic

literature (Gass and Seiter, 2015; Blankenship and Craig, 2006; Ilie, 1994). The use of

rhetorical questions in public discourse as well as arguments between people has been

studied in (Ilie, 1994). The authors survey different papers and study motivations of

users to employ rhetorical questions in various conversations. The use of rhetorical

questions to imply a message from its context instead of directly conveying it is studied

in (Schmidt-Radefeldt, 1977). The utility of rhetorical questions in strengthening or

mitigating the degree of the statement previously made in a conversation has been

studied (Frank, 1990). We model the behaviors arising from these motivations to

design a framework to identify rhetorical questions. The use of rhetorical questions

for persuasion in social and political campaigns is also studied in linguistics (Gass and

Seiter, 2015). The utility of rhetorical questions for persuasion (Petty et al., 1981)

as well as resistance to persuasive tactics (Blankenship and Craig, 2006) have been

documented in the previous linguistic literature.
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2.6 Social Foci Theory

Another related field to our work is the application of social foci theory in social

media. Social foci theory has received attention in several domains such as relational

learning (Tang and Liu, 2009) and structural hole theory (Burt, 2009). Recently,

social foci theory has been used to derive community memberships using both node

and edge attributes (Yang et al., 2013a). To the best of our knowledge, this is the

first work that has utilized concepts from social foci theory to identify answerers for

social media questions.

2.7 Inferring Message Context

Considerable attention has been given to identifying characteristics of a user’s

status messages from his history (Yang et al., 2012; Zangerle et al., 2011; Liang et al.,

2012). The authors in (Godin et al., 2013) predict the characteristics of the user’s

future messages by modeling the topics from his previous posts. The authors in

(Kywe et al., 2012) use collaborative filtering methods by incorporating the content of

similar users and posts to compute characteristics of future messages. The authors

in (Ma et al., 2014) predict the characteristics of future messages by integrating the

past content of the user, temporal information with the effect of interactions between

candidate users. These works are recommended hashtags for a given post and are not

specific to determining whether a question is rhetorical. Hence, the methodologies to

model the user history is not explicitly designed for identifying rhetorical questions.
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2.8 Social Media in Emergencies

The use of social media during emergencies has been extensively studied in literature

(Gao et al., 2011; Starbird and Palen, 2013, 2011). The utility of social media as a source

of real-time information during emergencies has been evaluated in (Palen et al., 2010)

and it establishes a set of guidelines to assess information credibility and helpfulness.

Identifying users present in the location of the disaster and comparing with those

outside has been studied in (Kumar et al., 2013b). These papers do not concentrate on

information seeking during emergencies. The trends in information seeking patterns

in Twitter is investigated in (Zhao and Mei, 2013) and it observes a high occurrence

of bursts in questions during emergencies. A case study of microblogging behavior

during the Yushu Earthquake has been conducted in (Qu et al., 2011) and information

seeking posts was found to be prevalent during emergencies. A system to match

social media posts containing requests with individual posts containing offers during

emergencies is proposed in (Purohit et al., 2013). Our work differs in that we match

questions with users who can provide timely and relevant responses to social media

questions.
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Chapter 3

FACILITATING TIME-CRITICAL INFORMATION SEEKING

Social media has emerged as a popular source of real-time information during nat-

ural disasters, social unrest, and political emergencies, where timeliness of information

is a critical requirement. Considerable interest has been shown in recent literature

(Purohit et al., 2013; Qu et al., 2011; Zhao and Mei, 2013) regarding the use of social

media for information seeking and providing responses during natural calamities like

Hurricane Sandy, Typhoon Haiyan, and the Haiti Hurricane. Fig 2a illustrates a

few examples of requests for information, help and volunteering published emergency

situations on the social media platform Twitter.

However, social media platforms are not equipped to facilitate timely informa-

tion seeking, and this makes it difficult for users to obtain prompt responses (Paul

et al., 2011). The responders have to sift through many tweets, thus delaying the

(a) Examples questions
during emergencies.

(b) The proposed framework

Figure 2: Identifying responders who provide timely and relevant responses to social
media questions
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response. Existing frameworks (Horowitz and Kamvar, 2010; Ranganath et al., 2015a)

only identify users who can provide relevant responses, not considering timeliness.

Frameworks to identify responders who can provide timely and relevant answers faces

many challenges.

I identify characteristics affecting the timeliness of responses to social media

questions taking inspiration from sociological studies on information seeking and

organizational behavior. Free time during the posting time of the question is an

important motivation (Morris et al., 2010) and the response time can be related

to his future availability. The self-consistency theory (Korman, 1970) states that

people perform tasks consistent with their previous instances of performing related

tasks. Therefore, the response time can be related to his response times to similar

questions. I propose a framework to identify automatically responders who can provide

timely and relevant responses to social media questions. Specifically, I answer the

following questions: How to model the temporal patterns of the candidates to rank

them according to the timeliness of response? How to integrate temporal patterns

with interests to identify users who can provide timely and relevant responses to a

given question?

The major contributions made in the chapter are

• Formally defining the problem of identifying users who can provide timely and

relevant responses to social media questions;

• Proposing an algorithmic framework to integrate timeliness and relevance for

identifying responders to social media questions;

• Utilizing the framework to estimate the time taken for a question to obtain a

response; and
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• Presenting experimental evaluations on two real-world datasets of social media

questions.

3.1 Problem Statement

In this section, we present notations used, describe a few relevant terms and

formally present the problems we are addressing. Boldface uppercase letters (e.g. X)

denote matrices, boldface lowercase letters (e.g. x) denote vectors, and calligraphic

uppercase letters (e.g. X ) denote a set. The notation 1
x
indicates a vector whose

elements are the reciprocal of each element of the vector x. Xij signifies the element

in the ith row and jth column of matrix X. The ith row of matrix X is denoted by

X(i, :). We denote the Frebonius norm of a matrix X as ||X||F =
√∑

i,j X
2
ij.

The terms related to the proposed framework, focusing on a single question, are

illustrated in Fig 2b. Let the candidate question be denoted as q, and U be the set

of candidate responders for the set of candidate questions C. Let the set of previous

questions answered by the users in U be denoted as P. From Fig 2b, let q ∈ R1×wQ

denote the word frequency vector of question q, where wQ is the total number of words

in the candidate question set and the set of previous questions.

We next define the terms related to the response timeliness. We denote tq as the

posting time of question q. For each user in the candidate set of question u ∈ Uq,

we define the posting time vector t. This vector contains the time in seconds of

his previous postings with length equal to the total number of posts he made. The

previous question matrix of the user u is represented as P ∈ Ro×wQ , where o is the

number of questions he answered previously. We denote the time taken in seconds by

user u to reply to the previous questions by the reply time vector rt of length o.
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We next define the terms related to the relevance of the candidate user u to the

given question q. Let the user-word vector of the user u be denoted as k ∈ R1×wU ,

where wU is the total number of words used by users in U . The connection vector of

each user is obtained from the corresponding row of the network adjacency matrix N.

Finally, the relevance of the answered is denoted by a positive acknowledgment from

the asker, like a “favorite” or a reply with “thanks”.

Given these notations, we formally present two problems we address to facilitate

time-critical information seeking in social media. The problem we address is to identify

responders who can provide timely and relevant answers to a given question in social

media. The problems are formally stated as follows: “Given a question q, the question

word vector q, a set of candidate responders Uq along with the previous question matrix

P, the posting time vectors t, the reply time vectors rt, the user word vectors k, and

the social connection matrix N for all the users in Uq , identify people in Uq who

provide timely and relevant answers”.

3.2 Data Analysis

We are inspired by the sociological studies in information seeking (Morris et al.,

2010) and organizational behavior (Korman, 1970) to address the two problems of

identifying suitable responders and estimating the response time for a given question.

We are motivated by (Morris et al., 2010) to postulate that the sooner a candidate

responder is active on the platform after a question is posted, the faster can be his

response to the question. We postulate from response consistency (Korman, 1970)

that the response time of the user for the given question is proportional to his response

time to questions related to it. We develop characteristics based on these theories
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Parameter Sandy Rains

Candidate Questions 1,191 1,863
Askers 1,158 1,481
Positive Examples 2,877 3,905
Negative Examples 40,177 72,746
Candidate Respondents 43,064 75,921
Tweets by Candidate Respondents 26,911,778 24,301,721
Network Connections 812,817 914,044
Previous Questions Answered 572,202 914,488

Table 1: Statistics of the two datasets.The first dataset consists of questions collected
during Hurricane Sandy while the second dataset consists of questions collected during
the recent Chennai Floods

that are capable of distinguishing between users who can provide timely responses

and those who have not provided timely responses. To evaluate these characteristics,

we collect questions posted on the social media platform Twitter to construct two

datasets. We first describe the datasets and then use the datasets in evaluating the

effectiveness of the characteristics to distinguish between users who can provide timely

responses and those who have not provided timely responses.

We have collected two datasets having the questions posted on the social media

platform Twitter. The first dataset is collected during Hurricane Sandy using keywords

and hashtags related to the events collected using (Kumar et al., 2011). The earliest

question in the dataset is posted on October 24th, 2012 and the latest question was

posted on November 27th, 2012. The second dataset is collected during the Chennai

Floods using similar techniques. The first question in the dataset is posted on Dec 1,

2015, and the last question was posted on December 15, 2015. For each question, we

collected the text, user information and the timestamps of its replies and assigned the

users who replied as the positive examples. We assigned the users who are posting

on the same keywords and hashtags related to Hurricane Sandy within a day of the
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(a) Replies per question: Hurricane
Sandy

(b) Reply time per question : Hurricane
Sandy

(c) Replies per question : Chennai
Rains

(d) Reply time per question : Chennai
Rains

Figure 3: Dataset Statistics (a) No. of replies received (b) The reply time per question
for Hurricane Sandy Dataset and (c) No. of replies received (d) The reply time per
question for Chennai Rains dataset.The reply time per question follows a power law
distribution in both the datasets, with a significant number of questions receiving less
that 10 replies (Power law coefficient ρ = −2.15 for Hurricane Sandy, ρ = −2.58 for
Chennai Rains). The reply time follows a bell shaped curve with the mode of the
reply time is around 500 seconds in both the datasets.

question being posted but have not replied to the questions as negative examples. We

use up to 1000 negative examples per question, and each negative example can be

used for multiple questions. The positive and negative examples for each question q

are jointly considered as the set of candidate responders Uq. We collected the tweets,

times of tweets posted, network connections and previous questions answered by the

candidate responders to construct q, k, t, P, rt and N as defined in Section 3.1.

The Hurricane Sandy dataset has 1,191 questions by 1,158 askers which are

responded by 2,877 users. It has a pool of 40,177 respondents from which the negative
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examples are drawn, up to 1000 for each question, making it a total of 43,064 candidate

respondents. The candidate respondents have posted around 27 million tweets and

answered 572,202 questions previously and have 812, 817 network connections. The

Chennai Rains dataset has 1,1863 questions by 1,481 askers which are responded by

3,905 users. It has a pool of 72,746 respondents from which the negative examples are

drawn, up to 1000 for each question, making it a total of 75,921 candidate respondents.

The candidate respondents have posted around 25 million tweets and answered 914,488

questions previously and have 914,044 network connections. The statistics of the

datasets are listed in Table 1.

Fig 3 illustrates some salient aspects of the dataset that are related to response

quantity and times. Fig 3a and 3c illustrates the number of responses received per

question for Hurricane Sandy and Chennai Rains datasets respectively. The number

of replies is on the x-axis, and the number of questions having received the reply is on

the y-axis. The distribution is power-law on both the datasets with the power law

coefficient ρ = −2.15 for Hurricane Sandy dataset and ρ = −2.58 for the Chennai

Rains dataset. This shows very few questions get a large number of replies in both

the datasets. Fig 3b and 3d illustrates the characteristics of the response time for

Hurricane Sandy and Chennai Rains datasets respectively. The number of replies is on

the x-axis and the number of questions having with the response time is on the y-axis.

The figures show a bell-shaped distribution for both the datasets with a majority of

the questions receiving after 20 minutes. We first evaluate the effectiveness of the

characteristics in distinguishing between users who can provide timely responses and

those who have not provided timely responses with the Hurricane Sandy dataset. We

use the characteristics to build the algorithm to identify timely and relevant responders

and later evaluate the algorithm using both the datasets.
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3.2.1 Evaluating Future Availability

The response time of a user to a question is dependent on the interval between the

time the question is posted and the time he is next available on the platform (Morris

et al., 2010). To verify this, we propose the following postulate “The shorter the

interval between the question time and the time the user is available on the platform,

the faster he is likely to respond to the candidate question.”. Let us consider a question

q ∈ Q with a candidate set Uq. We take the posting time of a user as an indicator of

his availability on the platform. We take the past posting times of a user u ∈ Uq who

has responded to the question. To obtain the time he is available after the question is

posted, we use time series forecasting methods proposed in (Zhang and Qi, 2005) to

predict his next availability from his past posting times. We compute the reciprocal of

the interval between the question time and the predicted future availability and assign

it to an element of vector a. We then obtain the reciprocal of his reply time and assign

it to the vector r. We then randomly pick a user in Uq who has not responded to the

question and repeated the procedure. We consider the reciprocal of the reply time

of the non-responders as 0. We repeat this procedure to all the responders in Uq of

question q and then for the questions in the dataset. We postulate the null hypothesis

H0 : a � r to show that reply time of the user is not correlated with the interval

between the future availability and the question time and the alternate hypothesis

H1 : a ∼ r to indicate that they are. Here x ∼ y denotes that x and y are correlated,

and x � y indicates they are not. Computing the Pearson’s correlation coefficient

between the two vectors, with t-test to assess the significance, show that they are

positively correlated with p < 0.05, thus verifying the postulate.
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3.2.2 Evaluating Self Consistency

The response time of a user to similar questions in the past can also predict his

response time to the given question (Korman, 1970). To verify this, we propose the

following postulate “The shorter the response time of the user to similar questions in

the past, the faster he is likely to respond to the candidate question”. We first compute

the topic distributions of the questions, and the previous questions responded by the

users in their candidate sets using (Blei et al., 2003). Let us consider a question q ∈ Q

with a candidate set Uq. We first obtain the topic distributions of the past questions

answered by user u ∈ Uq who has responded to the question q. We then compute

the Euclidean similarities between the topic distributions of the candidate question

and the set of past questions responded by the user and compute vector e. Here,

the Euclidean similarity between two vectors x and y as e(x,y) = 1
1+euc(x,y)

, where

euc(x,y) is the Euclidean distance between x and y. We then compute the weighted

average of the reciprocal of the response times of the user to the questions he answered

in the past, using the similarity scores in vector e as weights. We assign the weighted

average of the response times to vector p. We then randomly pick a user in Uq who

has not responded to the question and repeat the procedure appending the result to

vector f . We repeat this procedure to all the responders in Uq of question q and then

for the questions in the dataset. We postulate the null hypothesis H1 : p � r to show

that reply time of the user is not correlated with the response time to similar questions

he has answered in the past and the H0 : p ∼ r alternate hypothesis to indicate that

they are. Computing the Pearson’s correlation coefficient between the two vectors,

with t-test to assess the significance, show that they are positively correlated with

p < 0.0001, thus verifying the postulate.
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In this section, we evaluated the characteristics inspired by sociological character-

istics in their ability to distinguish between users who can provide timely responses

and those who have not provided timely responses. We next present a framework to

model these characteristics and integrate them to solve the proposed problems aimed

at facilitating time-critical information seeking in social media.

3.3 The Proposed Framework

In this section, we present a framework to facilitate time-critical information

seeking in social media by addressing two problems: identifying responders who can

provide timely and relevant responses to questions, and estimate the response time

for a given question in social media. We first describe the ranking criterion and

present quantitative models for identifying users who provide timely and relevant

responders. A learning algorithm is then proposed to learn the parameters of the

ranking criterion along with the time complexity analysis optimally. We then use

the learned parameters to design a model to estimate the response time for a given

question in social media.

3.3.1 Modeling Timeliness

We first present a model to rank the candidate responders according to their future

availability. For each question q posted at time tq, we take the posting time vector t

of each candidate user up to tq, taking posting as a measure of his activity on the

platform. The rank of a user is inversely proportional to the estimated time after tq
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at which he is active on the platform. Therefore,

fa(q, u) =
1

|test − tq|
, (3.1)

where fa(q, u) is the ranking score of candidate user u for question q and test is the time

at which he posts in the platform after tq as estimated from his posting time vector t.

We predict test with a nonlinear autoregressive neural network with a single hidden

layer (Zhang and Qi, 2005) on the posting time vector t. The lower the estimated

difference between estimated future availability and the question time, the higher the

ranking score of candidate user u is.

We next rank the candidate responders according to their past response behavior

to related questions. To represent the relationship between the given question and the

previous questions answered by the user u, we transform the corresponding question

word vectors into a common latent dimension space using S ∈ Rn×wQ . Here n is the

number of dimensions of the space (n� wQ). The representation of the given question

q in the low dimensional space is then given by qST and the representation of the

previous questions answered by the user u is given PST. We represent its relationship

to the previous question answered by the user incorporating domain correlation with

T ∈ Rn×n as qSTTSPT. The ranking function can then be computed as

fp(q, u) = qSTTSPT 1

rt
, (3.2)

where rt is the time taken by user u to answer the previous questions. The ranking

score fp(q, u) is higher if the user u has promptly answered questions having a close

relationship with question q in the past. The overall ranking criterion according to

timeliness of reply is given by ft(q, u) = fa(q, u)+αfp(q, u), where α controls the amount

of contribution from the past response behavior of the user to related questions.
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3.3.2 Modeling Relevance

To model the relevance of a user to a given question, we compute the relationship

between the content of the given question and the interests of the user. The nearer the

question with the interest of the user, the greater can be his relevance to the question.

We obtain the interests of the user from his user word vector k and represent it in

a shared low dimensional space with the question word vector q. Let V ∈ Rn×wU

be the latent dimension representation of the user content, where n is the number

of dimensions of the space and wU is the total number of words used by the set of

candidate responders (n � wU). The representation of the question q in the low

dimensional space is then given by qST and the representation of user u is given by

VkT. We compute the relevance of the user u to the question q incorporating domain

correlation with T ∈ Rn×n as

fr(q, u) = qSTTVkT. (3.3)

The overall ranking criterion can be obtained by integrating the ranking scores

fa(q, u), fp(q, u) and fr(q, u). It is therefore computed as

f(q, u) = fa(q, u) + αfp(q, u) + βfr(q, u)

=
1

|test − tq|
+ αqSTTSPT 1

rt
+ βqSTTVkT,

(3.4)

where α controls the amount of contribution from the past response behavior to

related questions and β controls the amount of contribution from the relevance to the

overall ranking criterion. The higher the candidate responders’ estimated timeliness

of response and relevance to the question, the higher is the score computed by f(q, u).
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3.3.3 Learning Latent Parameters

We now present a learning algorithm to compute the latent matrices S, T and V

for optimal ordering of the candidate responders. Given a question q in the training set,

we define the vector f containing the predicted scores for all the candidate responders

for question q. The element of f related to the ith candidate user is denoted by fi. In

order to obtain an optimal ranking order for the candidate responders, we need to

penalize the function when the users who have responded to the question are ranked

low. The Weighted Approximate-Rank Pairwise (WARP) (Weston et al., 2012) loss is

defined as errWARP =
∑K

i=1 L(rank(fi)). Here, rank(fi) is a marginal ranking criterion

which is computed as rank(fi) =
∑

b6=Ui
I[1 + fb ≥ fi] where I(x) is the indicator

function which is 1 if x is true or 0 if it is false, Ui is the ith candidate responder and

Ub is a member of the set of candidate responders of q who have not responded.

The pair {Ui, Ub} is known as the violating pair if 1 + fb ≥ fi. The ranking

function assigns to each pair a cost if the ranking score of Ub is larger or within

a margin of 1 from the ranking score of Ui. The WARP loss function is therefore

the penalty imposed when Ui is ranked within a certain margin or below a negative

example Ub. L transforms the rank into a loss and is defined as L(k) =
∑k

i=1 ai. Here

a1 ≥ a2 ≥ a3 ≥ ...ak ≥ 0, with the values of ai determining the additional penalty for

each successive reduction in rank. A choice of ar = 1/r, gives a larger penalty to the

top position and provides a smooth weighting over positions (Usunier et al., 2009).

We weigh the WARP penalty in proportion to the timeliness and relevance of the

response given by Ui in the violating pair. We weigh the WARP loss as

errweighted =
N∑

i=1

(1 +
1

rti
)(reli)L(rank(fi)), (3.5)
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where rti is the response time of Ui and reli is 1 if the response of Ui is accepted as

relevant by the asker of q and 0 otherwise.

Calculating the exact rank is computationally expensive (Weston et al., 2010) and

we therefore approximate by sampling. We compute the stochastic gradient approach

to minimize the error, choosing at each iteration a single training instance randomly

from the training set X . We compute the ranking score fi of positive example Ui.

We then randomly select users from the candidate set who have not replied to the

question q and compute the ranking score for each of them until we find a violating

pair i.e. 1 + fb ≥ fi. If L steps are required to find a pairwise violation, then the

approximate value of the term rank(fi) is given by

rank(fi) = b|Uq| − 1

L
c, (3.6)

where |Uq| indicates the size of the candidate set and b.c denotes the floor function.

Following (Weston et al., 2010), the single instance objective becomes

f = (1 +
1

rti
)(reli)L(b|Uq| − 1

L
c).|1− fi + fb|. (3.7)

Letting Ci = (1 + 1
rti

)(reli)L(b |Uq |−1L c), we get

fr =Ci.(1− (
1

test − tq
+ αqSTTSPT 1

rt
+ βqSTTVkT)i+

(
1

test − tq
+ αqSTTSPT 1

rt
+ βqSTTVkT)b),

(3.8)

We constrain the magnitude of the elements of matrices S,V,andT to reduce overfitting.

The final objective function is then defined as follows

f = fr + γ(||S||2F + ||V||2F + ||T||2F). (3.9)

We next optimize the objective function through gradient descent to obtain the

updated values for the latent matrices S, V, and T.
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3.3.4 Computation of S

Solving the optimization function on S is equivalent to minimizing the following

objective function

min
S
Ci.(1− fi + fb) + γ||S||2F (3.10)

We solve this by gradient descent. The gradient of the function with respect to S

is given by

∂f

∂S
=Ci(α((TTSKT + TSK)b − (TTSKT + TSK)i)

+β((TVL)b − (TVL)i) + 2γS,

(3.11)

where L = kTq,K = PT( 1
rt
q). At each iteration, the matrix S is updated by

S← S− η ∂f
∂S

, (3.12)

where η is the weight given to the gradient.

3.3.5 Computation of V

Solving the optimization function on V is equivalent to minimizing the following

objective function

min
V

Ci.(1− fi + fb) + γ||V||2F (3.13)

The gradient of the function with respect to V is

∂f

∂V
=Ciβ((TTSLT)b − (TTSLT)i) + 2γ2V

(3.14)
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where L = kTq,K = PT( 1
rt
q),Mij = kiV

TVkT
j . At each iteration, the matrix V is

updated by

V← V − η ∂f
∂V

, (3.15)

where η is the weight given to the gradient.

3.3.6 Computation of T

Solving the optimization function with respect to the user specific matrix T is

equivalent to minimizing the following objective function

min
T
Ci.(1− fi + fb) + γ||T||2F (3.16)

The gradient of the function with respect to T is given by

∂f

∂T
= Ci(−(αSKST + βSLTVT)i + (αSKST + βSLTVT)b) + 2γT (3.17)

where L = kTq,K = PT( 1
rt
q). At each iteration, the matrix V is updated by

T← T− η ∂f
∂T

, (3.18)

where η is the weight given to the gradient during the update. The update equations

are summarized as below

S←S− η(Ci(α((TTSKT + TSK)b − (TTSKT

+TSK)i) + β((TVL)b − (TVL)i)) + 2γS)

V←V − η(Ciβ((TTSLT)b − (TTSLT)i) + 2γV)

T←T− η(Ci(−(αSKST + βSLTVT)i+

(αSKST + βSLTVT)b) + 2γT)

(3.19)
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where L = kTq,K = PT( 1
rt
q) Here L ∈ RwU×wQ and K ∈ RwQ×wQ where wQ is the

number of words in the question set Q, and wU is the number of words used by the

set of candidate responders U .

We repeat the procedure by randomly selecting a training instance until the error

converges which we test using a validation set. We summarize the learning algorithm

in Algorithm 1. We substitute the values of the latent matrices and compute the

scores for the questions in the test set. For each question q, we order the set of

candidate responders Uq according to the scores and return the ranked list.

ALGORITHM 1: Finding Time Critical Responders in Social Media
Data: Training set with q, Uq , P,t, rt, k for each example
Result: Trained values of latent matrices S, V and T
Initialize S,V,T randomly;
do

Pick a random labeled example i ;
Compute fi;
k=0 ;
do

Randomly pick a negative example Ub ∈ Uq

Compute f(q, b);
k=k+1;

while 1 + f(q, b) < f(q, u) or k ≤ size(Uq)− 1;
Minimize f by updating S,V,T as in Eq 3.19;
Substitute update matrices in f ;

while errweighted does not converge;

To adapt to the real world settings where there are events with rapidly changing

large-scale data, online updating methods to obtain the latent parameter values needs

can be used. Online updating algorithms for learning to rank in (Schuth et al., 2013)

has been proposed and has been shown to work in real-world settings. In the future, we

will plan to adopt the methods proposed to our algorithm and deploy it in real-world
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settings. Our framework can then be deployed and evaluated using systems employing

social media to assist first responders (Kumar et al., 2014).

3.3.7 Estimating Response Time

There has been literature on estimating the response time for a given social media

question (Mahmud et al., 2013). Estimating response time can help the asker during

emergencies and also guide him in deciding the right time to ask a given question. The

response time for a given social media question is estimated from the response times

of the previous questions of the asker in (Mahmud et al., 2013). We examine if the

response time can be better estimated by the properties of the candidate responders

modeled by our framework rather than the properties of the asker. To do this, we

first set β = 0 in Eq 3.4 to consider only the timeliness components and rank the

candidate responders of each question accordingly. We then estimate the time taken

by the top-ranked user to reply and return this as the estimated response time for the

given question.

We estimate the response time taken by the top user by computing a weighted

average of his previous reply times. In order to compute the weights, we transform the

word vector of the given question q and word feature matrix of the previous questions

he has answered P to a latent dimension and measure the similarity between the

transformed vectors. The estimated time of the top user is computed as

test =
o∑

i=1

1

1 + edist(qSTT,SPT(i, :))
rt(i)

where edist(x, y) is the Euclidean distance between x and y, qSTT is the latent

dimension representation of the question transformed to the domain of user u, SP(i, :)T

is the latent dimension representation of the ith question answered by the user u and
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rt(i) is the time taken to answer the ith question and o is the number of questions

answered by him. The weight for a given question is higher if the distance between

the latent dimension of the question transformed to the user domain and the latent

dimension representation of the previous questions answered by the user is lesser. The

time taken by the top user to respond is computed as a weighted average of his past

response time to previous questions, with the similarity of the candidate question and

the previous questions acting as the weight.

The estimated response time for the given question is computed as the time taken

to respond to the top-ranked user. We repeat this procedure for all the candidate

questions and compare the estimated response times with actual response times using

different error measures. The method is summarized in Algorithm 2. We present

the results of the experiments to evaluate the framework in next section.

ALGORITHM 2: Estimating Response Time for Questions
Data: Question set with q, Uq , P,t, rt for each example, and S
Result: Estimated response times ∀qi ∈ Q
Initialize vector et ∈ {0}1×Q ;
for i=1:Q do

Compute latent representations of qi a = qSTT;
for k=1:length(Uq) do

Compute latent representations of questions k, b = SP(k, :);
Compute similarity scores between a and b as 1

1+euc(a,b)
;

Weigh the response time as c = 1
1+euc(a,b)

rtu(k);
eti = eti + c;

end
end
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3.3.8 Time Complexity

We now present the time-complexity to demonstrate the scalability of the framework

for large datasets prevalent in social media. The majority of the time complexity

comes from the update equations in Eq 3.19. The complexity of TTSKT and TSK is

O(wQn2), due to the sparsity of K. Similarly the complexity of TVL, and TTSLT is

O(wUn2) as the matrix L is sparse.

The complexity of the terms SKST is O(wQn) due to sparsity of K. Similarly

the complexity of the terms SLTVT is O((wQ + wU)n) when computed as shown in

the brackets as L is sparse. Combining all the terms, the total complexity in each

iteration is therefore O((wQ + wU)(n2 + n)). This is low owing to the low number of

latent dimension n, indicating the scalability of the algorithm to a large dataset.

In this section, we propose a set of ranking criterion integrating information from

future activity, past response behavior to related questions and user interests. We

then present a learning algorithm to obtain an optimal ranking to identify responders

who can provide timely and relevant answers. In the next section, we present the

collected dataset and experiments designed to evaluate our framework.
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3.4 Experiments

In this section, we describe the experiments designed to evaluate our algorithm.

We use the datasets to answer the following questions: How effective is the framework

in integrating timeliness and relevance in identifying responders for social media

questions? How does the framework perform for variations of parameter values and

training data size? How does the framework perform in estimating the response time

of the question posted in social media? We now use the datasets to proceed to answer

these questions.

3.4.1 Experiment Settings

We evaluate the proposed framework and the baselines with Mean Reciprocal

Rank (MRR), Mean Average of Precision (MAP), Non-Discounted Cumulative Gain

(NDCG). We present some alternative baselines to compare our framework with related

methods.

• Random Selection: We randomly order the candidate responders for each

question and aggregate the rankings obtained by repeating over 100 iterations.

• Future Availability: This calculates ranking scores considering only the future

availability of the responder (α = 0 and β = 0).

• Nandi et al. (Nandi et al., 2013): The authors built a probabilistic model

to combine temporal features and content metrics to rank candidate responders.

• Mahmud et al. (Mahmud et al., 2014): It proposes a supervised learning

approach to learning features on the users’ posting times and replying time to

previous questions.
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• Topic Similarity: This baseline substitutes latent parameters in the model

with topic distributions of the questions, previous questions, and the status

messages obtained from LDA (Blei et al., 2003). This baseline is employed to

demonstrate the utility of learning latent parameters specifically to rank timely

and relevant respondents.

• Past Response: This baseline calculates ranking scores only considering infor-

mation related only to the past timeliness to the previous questions.

• Relevance: This baseline calculates ranking scores from information related to

the relevance of the user to the candidate questions.

• Our Model - Dim Corr: This baseline calculates ranking scores removing

the dimension correlation matrix T.

We evaluate the proposed framework and the baselines with the following metrics

Mean Reciprocal Rank (MRR): The MRR of the mean of the reciprocal of

the rank of the first positive example in the ranked list returned by the algorithm

(Radev et al., 2002). The MRR is calculated as

MRR =
1

|Q|
∑
qεQ

1

rankq

where Q is a set of questions, and rankq is the rank of the first relevant responder for

question q.

Mean Average of Precision (MAP): The average precision is the average of

the Precision@K computed after each positive example appears in the ranked list

(Bian et al., 2008). MAP is computed as

MAP =
1

|Q|
∑
qεQ

∑Nq
n=1(P(n)× sui(n))

2 ∗ |Rq|
,

where Nq is the number of candidate responders for question q, |Rq| is the number of

responders for question q and P(n) is the Precision@K value computed when the nth
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(a) MRR for Hurricane Sandy (b) MAP for Hurricane Sandy

(c) NDCG for Hurricane Sandy (d) MRR for Chennai Rains

(e) MAP for Chennai Rains (f) NDCG for Chennai Rains

Figure 4: Performance of the framework with varying parameters for α and β as
shown by (a) MRR (b) MAP (c) NDCG for Hurricane Sandy dataset, (d) MRR (e)
MAP (f) NDCG for Chennai Rains dataset. The baseline is Topics, which is the
closest in performance to our model among the baselines taken from prior work.

responder appears in the ranked list. The term sui(n) denotes the suitability of the

rth relevant responder and we compute this by

sui(n) = 2− rn
max(r)

,

if n has replied to the question and 0 otherwise, where rn is the time taken by user n

to reply to the question. The suitability of the responder increases with the timeliness

of his response.

Non-Discounted Cumulative Gain (NDCG): NDCGk takes the order of the

36



positive examples into consideration within the top K ranks (Wang et al., 2013b).

This measure is computed as

DCGk =
k∑

r=1

2sui(i)−1

log2(i + 1)

nDCGk =
DCGk

IDCGk

(3.20)

where IDCGk computes the DCGk for the optimal ordering of candidate responders.

In the rest of the section, we describe experiments designed to evaluate the

framework using the evaluation metrics using the two datasets. In Section 3.4.2,

we evaluate the performance of the framework in identifying users providing both

timely and relevant responses. We keep the value of the parameters as α = 1 and

β = 1 in this section. Next, we evaluate the robustness of the framework due to

parameter variation in Section 3.4.3 and change in training data size in Section 3.4.4.

We conclude the experiments by examining if the framework can be used to estimate

the response time for a given question in Section 3.4.5.

3.4.2 Timely and Relevant Responders

We now evaluate the performance of the framework in identifying responders who

can provide both timely and relevant answers to questions in social media in both

the datasets. We employ the procedure described in Algorithm 1 for training and

substitute the obtained latent matrices for scoring the questions and the candidate

responders in the test set. For each question, we rank the candidate responders and

evaluate the position of the relevant responders in the rank list. The results of the

experiment are presented in Table 2, and we make the following observations.
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From the table, we can see that the performance of random ordering is low

demonstrating the difficulty of the problem. The performance of (Nandi et al., 2013)

improves upon the random performance for both the datasets show the utility of

modeling relevance for identifying responders for our task.The improved performance

of [17] indicates the utility of response times from previous questions and supervised

models for our task. The “Topics” baseline demonstrates an improved performance

over (Mahmud et al., 2014) and (Nandi et al., 2013) in both the datasets, showing the

effectiveness of the criterion in identifying timely and relevant responders.

The performance of “Future Availability” in both the datasets demonstrates the

utility of estimating future user behavior in identifying timely responders to questions

in social media. “Past Response,” which models the relationship between the given

question and the previous questions answered by the candidate, and “Relevance”

which considers the relevance terms improves upon the baselines. This demonstrates

the utility of the learning algorithm in determining suitable parameter values. Our

combined framework considerably outperforms existing baselines by a significant

margin in both the datasets, thus demonstrating its effectiveness in integrating

information related to future availability, previous response patterns, and relevance

in identifying responders who provide timely and relevant answers. The inclusion of

dimension correlation matrix improves the performance of the algorithm, showcasing

its utility. We performed a paired t-test to compare the results with the baselines that

showed the improvement is significant with p < 0.001.

In summary, we can say from Table 2 that our framework is effective in identifying

responders who provide timely and relevant answers in both the datasets. The results

also demonstrate the ability of the framework to integrate effectively information

crucial for identifying responders providing timely and relevant answers to a given
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(a) MRR for Hurricane Sandy(b) MAP for Hurricane Sandy

(c) NDCG for Hurricane Sandy(d) MRR for Chennai Rains

(e) MAP for Chennai Rains (f) NDCG for Chennai Rains

Figure 5: Performance of the framework with varying training data size as shown by
(a) MRR (b) MAP (c) NDCG for Hurricane Sandy Dataset and (d) MRR (e) MAP
(c) NDCG for Chennai Rains dataset. he baseline is Topics, which is the closest in
performance to our model among the baselines taken from prior work.

social media question. Next, we will examine the effect on the performance of the

framework due to variation in training data size and parameter values.

3.4.3 Effect of Parameter Variation

In the ranking criterion presented in Eq 3.4, α and β control the proportion of

temporal patterns in the answering behavior and his relevance to the question respec-

tively. In order to evaluate the performance of the framework to different proportions

of temporal and relevance information, we vary the values of α = [0.2, 0.5, 1.0, 2.0, 5.0]
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and β = [0.2, 0.5, 1.0, 2.0, 5.0] and plot the performance of the framework for these

values in Fig 4 for both the datasets using the MRR, MAP and NDCG metrics. We

make the following observations from the figure.

From Fig 4, we notice that the framework performs the best when there is equal

proportions information related to timeliness and relevance (α=β). This shows the

equal importance of information related to timeliness and relevance for this task and

the effectiveness of the proposed framework for integrating them. The performance

takes a dip in performance where information related to past response is relatively

low, showing its importance in identifying prompt responders. The framework shows

a good performance outperforms the nearest baselines Topics in both the datasets

for a large range of parameter values, demonstrating its robustness to the variation of

parameters.

In summary, the framework performs well over different proportions of information

from temporal and relevance patterns and is robust to their variation in both the

datasets. An appropriate combination of these kinds of information can optimize the

effectiveness of the framework for identifying responders who can provide timely and

relevant answers to social media questions.

3.4.4 Effect of Variation in Training Data Size

We now examine the relation between the performance of the framework with

varying proportions of training data. This enables us to examine the performance of

the framework when less amount of training information is available and also assess

the robustness of the framework with varying training data size. We keep 50% of the

data for training and the rest 50% for testing. We further divide the training data
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into ten equal parts and vary the proportion from 10% to 90% in steps of 10% and

measure the performance of the framework using MRR, MAP and NDCG metrics

using the test dataset. We plot the results of the experiment in Fig 5 and make the

following observations.

From the figure, we can say that the performance of the framework increases with

increasing proportion of training data in both the datasets. The framework shows

a good performance when 30% of the data is used for training, outperforming the

nearest supervised baseline (Mahmud et al., 2014), demonstrating that it performs

well for fairly low training data sizes. We observe a small dip in performance for

higher proportions of training data, and this may be due to insufficient testing data.

The performance increases with increasing training data in the all three metrics in

both the datasets, showing the ability of the framework to utilize the training data

points effectively to identify timely and relevant responders to social media questions.

In summary, the figure demonstrates that the framework is effective in learning

the latent parameters from a small amount of training data and that the framework

is effective in learning when more training data is available. This also demonstrates

the effectiveness of the proposed ranking criterion and the learning framework in

exploiting information crucial for identifying such responders. Next, we investigate

the effectiveness of the framework in estimating the response time for a social media

question.

3.4.5 Estimating Response Time

We now describe the baselines and the metrics used to evaluate the method

described in Algorithm 2. We compare the method with the following baselines
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Hurricane Sandy Chennai Rains
Method MAE RMSE MAE RMSE

Prev Asker 1.01 ∗ 106 3.09 ∗ 106 4.66 ∗ 104 1.69 ∗ 104

Past Replies 3.69 ∗ 104 4.50 ∗ 104 2.54 ∗ 103 1.12 ∗ 103

Our Model 2.60 ∗ 104 1.07 ∗ 104 2.50 ∗ 103 1.10 ∗ 103

Table 3: Estimating response time : Comparison of the framework with baselines

• Prev Asker (Mahmud et al., 2013): This work estimates the time taken

to a given question to get a reply from the reply times to the asker’s previous

questions.

• Past Response: For each question, we compute the mean response time for

previous questions answered by the candidate responders. The response time

for the given question is estimated as the minimum of the mean response times

of the candidate responders.

The response time estimated by the proposed method and the baseline is compared to

the true response times using MAE (Mean Absolute Error) and RMSE (Root Mean

Square Error), and the results are illustrated in Table 3.

From Table 3, we can see that modeling response time for the previous questions of

the asker (Mahmud et al., 2013) gives a poor RMS and MAE values. This performance

is improved upon by “Past Responses” baselines showing that the response time for

a question has a higher correlation with the temporal behavioral patterns of the

candidate responders in both the datasets. The proposed method outperforms the

baselines significantly, demonstrating that modeling the similarity of the given question

and previous questions answered by the user will better estimate the response time

for the asker. We performed a t-test between the results provided by the proposed

method and the baselines that showed that the improvement is significant.
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In summary, we show that the proposed framework can be applied to estimate the

response time for a given question in both the datasets. The results showed that the

proposed behavioral patterns of the candidate responders are effective in estimating

the response time for a social media question.

3.5 Summary

In this chapter, we propose a novel framework to identify responders who can

provide timely and relevant answers to questions in social media by integrating

information related to their future availability, past response behavior, and interests.

We evaluate the framework on using two datasets of questions posted in Twitter and

demonstrate its effectiveness in identifying users to satisfy time-critical information

needs.

43



Chapter 4

FAST IDENTIFICATION OF PERSONAL RESPONDERS

When the information need of the user is subjective or personal, his social context

might be useful to find appropriate people able to satisfy it (Hecht et al., 2012). Users

with higher tie strength with the asker were shown to better satisfy information needs

in social media (Panovich et al., 2012). For example, to assist a person looking to get

a new hairstyle, finding people from his social connections who share related context

with him can be more useful to him than finding web pages related to hair salons.

Inferring and utilizing the social context of the asker and his social connections in

the question domain can be challenging. I make use of the social foci theory, which

postulates that interactions between people are organized around relevant entities

known as foci (Feld, 1981). A focus can be the activities, interests, and various

affiliations of a user. Different groups of social connections of a user share different

foci with him. For example, from Fig. 6a I see that the user shares an interest in

sports with his connections in green, an interest in music with his connections in

yellow and academic interests with his connections in red.

Inspired by the social foci theory I propose that, people in social media sharing social

foci related to the question with the asker are suitable to answer them. Illustrative

examples of questions are given in Fig. 6b. The asker of Q1 is seeking assistance in

his math homework, and this might be best responded by users sharing academic foci

with him. The answer for Q2 might be best provided by his connections sharing foci

related to sports with the asker. Similarly, Q3 might be best answered by connections

sharing music related foci.
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(a) (b)

Figure 6: (a) Different foci a user shares with his social connections. (b) Questions of
users. Users sharing different foci with the asker are more likely to answer related
questions.

I propose a framework to investigate the utility of social context derived from

network and content information in identifying answerers to social media questions.

Specifically, I address the following questions: How to utilize the network and content

information of the asker and his social connections to better identify answerers for

social media questions? Are approaches based on the shared context in the question

domain useful in identifying answerers to different kinds of social media questions?

The main contributions of our work are as follows:

• Formally defining the problem of finding suitable users to answer questions in

online social media platforms.

• Proposing a framework to exploit network and content information to identify

answerers to social media questions, and

• Conducting experimental evaluations of the framework on a dataset of social

media questions.
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4.1 Problem Definition

We now define some terms related to the questions asked, the network and content

of the asker and his social connections. We define attributes of a question q as the

set of words used in the question i.e. wq = [wq1,wq2, ...,wql]. Since we are dealing

with subjective questions, the asker marking the answer to be useful or publicly

acknowledging the answerer gives the evidence of its acceptance.

Let A denote the asker of the question q and fA = [f1, f2, ...., fm] denote the social

connections of A and m is the number of social connections of A. We define the

egonetwork of each asker A as consisting of the asker, the social connections of

the asker and the links among his social connections. The egonetwork of asker A,

N ∈ R(m+1)×(m+1) is given by

Nij =


1 directed edge from fj to fi, i 6= j, i,j ∈ {A, fA}

0 otherwise

We collect the status messages of the asker and his social connections. We apply basic

preprocessing steps such as removal of stop words and stemming. We then define the

user-word matrix S ∈ R(m+1)×w of asker A as

Sij =


num*tfidfj if user ui has used word wj num times

0 if user ui has not used the word wj,

where num is the number of times the user ui has used the word wj, w is the total

number of words used by the asker and his social connections and tfidfj is the tf-idf

score of word wj. A single user will only use a small subset of the total number of

words, resulting in S being sparse.

With the terminologies and the notations described above, we formally define the

problem as follows “Given a question q, an asker A, the network neighborhood of the
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asker fA, find a suitable set of people among fA whose responses for the question q that

the asker accepts”.

4.2 Information Seeking via Social Foci

In this section, we describe our framework to identify answerers for social media

questions in detail. First, we infer social foci memberships of the asker and his social

connections from their network and content information. We then compute the overlap

in foci memberships of the asker and his social connections in the question domain to

identify answerers to these questions.

4.2.1 Modeling Content Information

We model the content information to infer major foci of the asker and his social

connections. We draw from Non-negative Matrix Factorization (NMF) presented

in (Seung and Lee, 2001) to infer foci from the user-word matrix S ∈ R(m+1)×w.

We factorize the matrix S into two low dimensional sparse non-negative matrices,

U ∈ R(m+1)×k and P ∈ Rw×k such that k� m by solving the following optimization

problem.

min
U≥0,P≥0

||S−UPT||2F (4.1)

Here, k is the number of latent foci in the neighborhood of the asker and m is the

number of his social connections. U denotes the latent foci membership of the asker

and his social connections and P denotes the latent foci memberships of words. The

correlation between foci memberships of the words can be obtained by the overlap

in the corresponding rows of P. The constraints U ≥ 0 and P ≥ 0 denote that the
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matrices have all non-negative elements. The non-negativity ensures an intuitive

decomposition of the matrix into its constituent parts.

4.2.2 Integrating Network Information

In a social setting, the interests or affiliations of a user are correlated with the

interests of his social connections, thereby affecting his memberships to different foci

(Feld, 1981). This notion is also supported by network homogeneity (Marsden, 1988),

which says that people connected to each other display similar interests and affiliations.

Therefore, it is essential to utilize network structure to determine foci memberships of

the asker and his social connections.

To utilize the network structure, we first factorize the ego network of the asker N

into two low rank non-negative matrices U ∈ R(m+1)×k and V ∈ Rk×k s.t. k� m by

solving the following optimization problem.

min
U≥0,V≥0

||N−UVUT||2F , (4.2)

where U contains the membership of the asker and his social connections to different

latent foci and V contains the correlations between the foci. The constraints U ≥ 0

and V ≥ 0 denote that the matrices have only non-negative elements.

We then integrate network and content information to infer the foci membership

of the asker and his social connections by formulating the following optimization

problem.

min
U≥0,V≥0,P≥0

α||S−UPT||2F + β||N−UVUT||2F

+γ(||U||2F + ||V||2F + ||P||2F )

(4.3)

Here U contains the latent foci membership of the asker and his connections obtained

by integrating network and content information, P shows the latent foci memberships
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of the words and V represents the correlation between the latent foci. ||U||2F , ||V||2F ,

and ||P||2F are regularization terms introduced to prevent overfitting and γ is the

positive parameter for control the proportions of the regularization terms. The

constraints U ≥ 0, V ≥ 0, and P ≥ 0 denote that the matrices do not contain

negative elements. α and β are positive parameters to control the effects of content

and network proportions respectively.

We draw from the concepts of the social foci theory illustrated in Fig. 6 to propose

that users sharing a lot of foci memberships with the asker in the question domain

can effectively answer social media questions. The shared foci memberships of the

asker with his social connections are given by the overlap between their corresponding

rows in U. The question domain in the latent foci space is obtained by combining

the rows of P corresponding to the words in the question. Before formalizing these

notions, we optimally derive the latent matrices U, V and P by solving Eq. (4.3).

4.2.3 Deriving the Optimal Latent Matrices

The problem presented in Eq. (4.3) belongs to a class of constrained convex

minimization problems. Motivated by (Ding et al., 2006), we describe an algorithm

to find optimal solutions for U, V and P. The key idea is to optimize the objective

concerning one variable while fixing others. The three variables are iteratively updated

until convergence.

From Eq.(4.3), we let

J = α||S−UPT||2F + β||N−UVUT||2F+

γ(||U||2F + ||V||2F + ||P||2F )

(4.4)

We then take the Lagrangian of the objective function J . Let the Lagrange multiplier
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for the constraints U ≥ 0, V ≥ 0, and P ≥ 0 be Λu, Λv, and Λp respectively. Then

L = J + tr(ΛuU
T) + tr(ΛvV

T) + tr(ΛpP
T) (4.5)

We compute the partial derivatives of the lagrangian L with respect to U, V, and P

keeping the other variables fixed as shown below.

∂L
∂U

= 2(α(−SP + UPTP) + β(−NTUV −NUVT

+ UVUTUVT + UVTUTUV) + γU) + Λu

∂L
∂V

= 2(β(−UTNU + UTUVUTU) + γV) + Λv

∂L
∂P

= 2(α(−STU + PUTU) + γP) + Λp. (4.6)

Substituting the KKT complementary conditions in Eq. (4.6) and rearranging we get

the following update rules for latent matrices U, V, and P.

Uij ← Uij

√
αSP + β(NTUV + NUVT)

αUPTP + β(UVUTUVT + UVTUTUV) + γU

Vij ← Vij

√
βUTNU

β(UTUVUTU) + γV

Pij ← Pij

√
αSTU

αPUTU + γP.
(4.7)

The optimization algorithm is summarized in Steps 1-7 in Algorithm 1. The

square root on the update rules is added to ensure convergence (Ding et al., 2008).

The correctness and convergence of the rules can be proved by the axillary function

method (Lee and Seung, 2000).

4.2.4 Identifying Answerers from Foci Information

We now identify relevant answerers from the social connections of the asker using

the latent matrices U,V and P. We first extract the words from the question attribute
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vector wq and obtain the foci memberships of each word from the corresponding rows

in matrix P. We then compute the domain of the question in the latent foci space as

a combination of individual word membership vectors as

dq =
∑

wiεwq

Pi, (4.8)

where dq represents the domain of the question q in the latent foci space and wi is

the word corresponding to the ith row of P.

We next compute the foci memberships of the asker and his social connections in

the question domain. The Hadamard product of two vectors is the pointwise product

of their respective elements, and it exactly captures this notion. For each question,

we compute the Hadamard product of the row of U corresponding to the asker, UA

and the vector representing the question domain dq.

gA = UA ◦ dq, (4.9)

where gA contains the foci membership of the asker in the domain of the question.

Similarly, we compute the foci memberships of each social connection of the asker in

the domain of the question q by

gfm = Ufm ◦ dq, (4.10)

where fm is the mth social connection of the asker, Ufm is the row of matrix U

corresponding to fm and gfm contains the foci membership of fm w.r.t the domain of

the question.

Finally, we find the overlap in foci memberships of the asker and his social

connections in the question domain as

rs(q,A, fm) = sim(gA,gfm), (4.11)
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where rs(q,A, fm) denotes the score of the answerer fm to the question q by the asker

A. We sort the answerers according to their score and return them to the asker as a

ranked list, ra. Results with different similarity metrics is presented in Table 5. The

method for identifying answerers from foci information is summarized in Steps 8-11

in Algorithm 1. The quantity rs(q,A, fm) signifies the context in terms of network

and content shared between asker A and his social connection fm in the domain of

question q.

ALGORITHM 3: Automatic Identification of Answerers
Data: Question q of asker (A), friends and followers
of A, fA = [f1, f2, ...., fm], Egonetwork of the asker (N),
user-word matrix of the asker and his connections (S), and {α, β, γ, k}
Result: A ranked list of the potential answerers ra
Initialize U, V, P randomly;
for i=1:Q do

Compute latent representations of qi a = qSTT;
do

update U,V,P using Eqn 4.7;
while not convergent ;
eti = eti + c;
wq = [wq1,wq2, ...,wql], dq =

∑
wiεwq

Pi ;
gA = UA ◦ dq, gfm = Ufm ◦ dq;
rs(q,A, fm) = sim(gA,gfm);

end

4.2.5 Time Complexity

The highest time cost results from updating the latent matrices in steps 4-6. In

the updating terms, the complexity of the terms SP and STU is low due to sparsity

of S. The terms NTUV, NUVT and UTNU have a complexity of O(mk2) where m

is the number of friends and k is the number of latent dimensions due to the sparsity
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of N. The terms (U(V(UTU)VT), (U(VT(UTU)V) and ((UTU)V(UTU)) has a

complexity of O(mk2) when computed as shown in the brackets. The complexity of

PUTU and UPTP is O((w+m)k2) where w is the number of words. Therefore, the

overall complexity of a single iteration is O((w+m)k2), which is low owing to the few

number of latent dimensions. In addition, notice that steps 1-7 can be computed

offline and only steps 8-10 are computed when the question is asked, further reducing

the time required to identify answerers for a given question.

4.3 Experiments

In this section, we first present a dataset of questions posted on Twitter and then

conduct experiments to answer the following questions that help in understanding

the framework better: How does the proposed framework perform in comparison

to existing baselines? What is the effect of the amount of network and content

information on the performance of the framework?

4.3.1 Dataset

The dataset consists of subjective questions from the social media platform Twitter.

We follow the literature on questions in Twitter (Morris et al., 2010) to construct a

keyword set related to subjective questions. We append “?” to each keyword to collect

questions from the Twitter Streaming API. Texts having “?” in online content are

shown to be questioned with high precision (Cong et al., 2008). We deem replies to

have been accepted by the asker if he has marked it as “favorite” or acknowledged the

answerer by using “thanks” or “thank you”. We mark the users who provided these
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Parameter Statistics

# of Questions 1065
# of Askers 1026
# of Selected Answers 1450
# of Followers and Friends of the askers 966,117
Median # of Followers and Friends per asker 588
Median # Tweets per user 479

Table 4: Dataset containing questions posted in Twitter with statistics related to
network and content information.

answers as the ground truth for each question following (Hecht et al., 2012). Some

important statistics of the dataset are given in Table 4. The first question was posted

on Dec 27, 2013, and the last one on Jan 15, 2014. We use the methods in the public

Twitter API to collect the friends, followers and public status messages of the asker

to obtain the asker’s social connections and their interests (Kumar et al., 2013a). We

use the data to construct the ego network N and user-word matrix S for each asker.

4.3.2 Experiment Settings

We introduce the following metrics to evaluate the performance of our framework:

The Mean Reciprocal Rank (MRR) (Radev et al., 2002) is a measure of the overall

likelihood of the framework to identify an answerer for a question, the Mean Average

of Precision (MAP) (Bian et al., 2008) measures the potential satisfaction of the asker

with the top K results and the Normalised Discounted Cumulative Gain (NDCG)@K

considers the order within the top K rankings (Wang et al., 2013b).We use the following

baselines to evaluate the performance of our framework.
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Random: We randomly order the friends and followers of the asker 100 times

and return the mean ordering.

Aardvark (Horowitz and Kamvar, 2010): This paper describes a search engine

which directed questions posted by the system to users with a formulation to compute

affinity with the asker and interest in the question topics. It does not consider the

network structure and also does not contain experimental evaluations of its formulation.

Content based Methods (Riahi et al., 2012): The paper focuses on community

Q&A like Yahoo! Answers and compares the similarity of the question topic with the

interests of the answerers derived only from their content. Two topic models inferred

the interests: LDA and the Segmented Topic Model (STM) (Du et al., 2010).

Topic Sensitive Page Rank (Zhou et al., 2012): This paper employs a PageRank

based approach to find subject matter experts in the question topic by combining

network and content information of the potential answerers. The paper identifies

topical authorities not considering the shared context between the asker and the

answerers.

Shared Foci: This baseline measures the effect of shared user context. It computes

the shared foci memberships of the asker and his social connections derived from

either network (α=0) or content (β=0) information. The question information is not

taken into consideration. This also helps in evaluating methods using only network

structure.

For initial experiments, we set the parameters in Eq. (4.3) as follows. The

regularization parameter is set at γ=0.01. The number of topics in the baselines and

the number of foci k is set as 50. For initial evaluation of the framework, we choose

α=1 and β=1. The performance for different values of α and β will be presented in

future subsections.
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Method MRR MAP@5 NDCG@5

Random 1.20% 1.12% 0.25%
Content-LDA 1.56% 1.46% 0.30%
Content-STM 1.93% 2.27% 0.50%
TSPR 1.64% 1.63% 0.45%
Aardvark 2.11% 2.53% 0.50%
Shared Foci (Network) 3.43% 3.66% 0.97%
Shared Foci (Content) 3.60% 3.87% 1.17%
Our Model (Cosine) 3.91% 4.63% 1.25%
Our Model (PCC) 3.80% 4.73% 1.31%
Our Model (Euclidean) 4.36% 5.54% 1.41%

Table 5: Comparison of performance of the proposed framework with baselines.

4.3.3 Performance Evaluation

The results of the evaluations are presented in Table 5. From Table 5, we can

see that the proposed framework has outperformed the baselines by a considerable

margin. We conducted a paired t-test to compare the performance of our framework

with that of the baselines, and the results indicated the difference between them is

significant. We make the following observations from the table.

The proposed framework gives more than 300% improvement over random selection.

We can see that simple formulation like the one in Aardvark that considers social

network information performs on par with complex topical models using only content

such as STM. The proposed framework also performs significantly better than methods

identifying subject matter experts as answerers such as TSPR. This emphasizes the

importance of social context to identify answerers to social media questions.

Considering shared foci between the asker and the answerer improves the per-

formance over methods like Aardvark not utilizing community memberships. This

shows the effectiveness of using social foci to exploit social context. Incorporating
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question information to consider the overlap only in the foci related to the question

gives further improvement in the performance.

In summary, by designing approaches based on shared social context and exploiting

the structure of social ties, the proposed framework can effectively identify answerers

for social media questions in the dataset. Next, we wish to understand the effect of

content and network information on the performance of our framework.

4.3.4 Effect of Content and Network Information

In the model presented in Eq. (4.3), α and β control the proportion of the network

and content information respectively. In order to evaluate the framework for different

proportions of content and network, we set α = [0.1, 1, 10] and β = [0, 0.1, 1, 10] and

plot the values for MAP in Fig. 7 arbitrarily using cosine similarity as the similarity

metric. We make the following observations from the figure.

A general trend in Fig. 7 has peaked at the main diagonal of the α and β axes

and an off-diagonal dip. This shows that the framework works best for nearly equal

proportions of network and content information. The MAP value is greater than 3% for

all α and β except for low proportions of network information (α = 10, β = [0, 0.1]).

This emphasizes the importance of social connections of the asker for identifying

answerers to social media questions. The lowest performance across all parameter

values is more than twice than random ordering indicating the effectiveness of the

framework for low relative proportions of content or network information. Overall,

the MAP value is above 3% for different combinations of α and β indicating the

effectiveness of the framework for a wide range of parameter values.

In summary, the framework performs well over different proportions of network
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Figure 7: Effect of variation of content and network proportions on the framework
performance for MAP.

and content and is robust to their variation. An appropriate combination of network

and content information can optimize the effectiveness of the framework for identifying

answerers to social media questions.

4.3.5 Performance across Question Categories

The literature on social media questions have identified kinds of questions people

ask on Twitter. The recommendation, opinions, factual and rhetorical questions are

popular questions asked on Twitter (Morris et al., 2010; Paul et al., 2011). We select

four categories related to subjective questions, “Suggestions”, “Opinion”, “Favor”, and

“Rhetorical”, and evaluate our framework in identifying answerers for different question

categories.

We employed human labeling to assign category labels to questions. Three people

independently labeled the questions, and the labels were assigned using majority

selection. Employing this procedure, 93.5% of the questions were assigned to either

of the four categories, and the framework was evaluated on them. The results of the

evaluations are presented in Table 6. The distribution of different question categories
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Categories Parts MRR MAP@5

Suggestions 39.83% 4.27%(+2.23%) 4.68%(+1.78%)
Opinion 16.42% 2.67%(+1.43%) 2.38%(+1.61%)
Favor 30.51% 3.65%(+1.55%) 4.39%(+1.01%)
Rhetorical 6.74% 1.75%(+1.17%) 0%(+0%)

Table 6: Performance for different question categories.

is given in the first column. The performance for different categories is listed in the

other columns. The improvement over (Horowitz and Kamvar, 2010), the nearest

baseline not a part of our method, for different question categories are shown in the

brackets.

From the table, we see that the framework gives considerable improvements over

all the selected question categories. A paired t-test suggested that the improvements

are significant, indicating that the framework is effective in finding answerers to a

wide range of question categories in Twitter. The best performance can be seen in

“Suggestions” and “Favor” categories and the performance in “Opinions” is relatively

lower. These results suggest that identifying answerers for the “Opinion” category might

depend on additional factors such as similarity of views in a given topic. The framework

gives the lowest performance for questions in the “Rhetorical” category. Rhetorical

questions are classified as conversational questions in the literature (Harper et al.,

2009). They might be used as an expression of opinion or to initiate a conversation

and not to express an information need.
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4.4 Summary

In this chapter, we draw from sociological theories to present a novel framework

to identify possible answerers to personal questions. We evaluate the framework on

questions on Twitter and demonstrate its effectiveness in identifying answerers. The

framework is robust to a wide range of proportions of network and content information

and categories of social media questions.
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Chapter 5

UNDERSTANDING AND IDENTIFYING ADVOCACY

Social media is emerging to be a popular information channel for sociopolitical

issues of broad importance e.g., elections and gun rights. It provides access to a wide

range of perspectives on these issues, enabling users to form independent opinions.

Owing to this, millions of people are using social media to seek information on these

important issues. This has given rise to individuals who use it to try and push their

agenda for political campaigns (Guo and Saxton, 2013). Media advocacy is defined

in the literature as “the strategic use of mass media to advance a social or public

initiative” (Jernigan and Wright, 1996). During the 2014 Indian elections, for example,

a set of individuals formed an organization called NaMo Brigade with the motto of

“Mission: Narendra Modi as PM” and used social media platforms to advocate for the

election of Narendra Modi as Prime Minister (Lulla, 2014).

Although these campaigns have considerable social media presence (Today, 2014),

it is difficult to identify individual accounts of advocates. Designing algorithms to

identify accounts of individual advocates can better inform users as they navigate

through social media spaces. People are accessing information about an issue, e.g., an

election, through social media can be notified whether a given account is an advocate

before reading their messages.

This task faces several challenges. First, advocates employ nuanced message

construction and propagation strategies to shape user opinion and increase the spread

of their messages, making it difficult to distinguish them from random users posting on

issues related to the campaign. Second, these strategies are very diverse, manifesting
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both in the activity patterns restricted to individual advocates like constructing persua-

sive messages, and multiple relational patterns like shared language and interactions,

making it a challenge to study them collectively in a unified model.

Theoretical constructs of strategies for message construction, propagation, and

community formation by advocates have been extensively studied in social sciences.

Social movement theory records persuasive language and high degrees of emotion in

the messages of advocates in their attempts to shape the opinion of people (McCarthy

and Zald, 1977). The literature on campaign communications (Farrell and Webb, 2006)

studies the widespread use of focused messaging for effective communication during

political campaigns. Also, distinctive language patterns shared among people with

similar affiliations foster easier communication of messages between them (Philipsen

et al., 1997). To increase the reach of messages during political campaigns, the utility

of popular users for widespread propagation has been studied in (González-Bailón

et al., 2013). Formation of social and interaction networks between advocates for

easier coordination and communication has been investigated in social movement

literature (McCarthy and Zald, 1977).

In this chapter, we model the nuanced message strategies, propagation strategies,

and community structure of advocates guided by sociological literature and integrate

them to identify advocates for political campaigns on social media. We primarily

focus on the following questions: How to model the nuanced strategies of advocates

for political campaigns on social media? How to integrate them to design a unified

framework for identifying advocates for political campaigns in social media?

The primary contributions of this work are:

• A definition of the problem of identifying advocates for political campaigns on

social media,
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Figure 8: The proposed framework to identify advocates for political campaigns on
social media

• A computational framework to gain insights into the strategies of the advocates

and identify them by collectively modeling their strategies, and

• Evaluation of the framework in identifying advocates of political campaigns in

the social media platform Twitter using two real-world datasets.

5.1 Problem Statement

In this section, we introduce notations and terms used and formally define the

problem statement. We first define some notations. The n mode vector product

of a tensor M ∈ RD1×D2×..×DN with x ∈ RDn is given by M×n x and results in a

tensor of size D1 ×D2 × ..×Dn−1 ×Dn+1 × ...×DN whose each element is given by

(M×n x)d1d2..dn−1dn+1...dN =
∑Dn

dn=1Md1d2..dNxdn . The set of advocates is denoted as

a and the set of random users using keywords related to the issue as v. The set of

users is denoted as u = [a,v] and the total number of users as N.
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We now define terms related to different kinds of strategies of advocates that can

be characterized. Message strategies deal with the construction of status messages of

advocates with the aim of shaping the opinions of people. We develop characterizations

on four types of message strategies possibly present in the status messages of advocates:

persuasive language, a high degree of emotion, topical focus and shared language

patterns. We construct the user word matrix S ∈ RN×l from the status messages with tf-

idf weighting, where l is the total number of words. Shared language patterns between

two users in u are modeled taking hashtags as instances of language patterns. For each

user ui ∈ u, we construct a vector of hashtags hui from his status messages. We define

matrices capturing shared hashtag information as Z1, where Z1
ij = jac_sim(hui ,huj).

jac_sim(x,y) indicates the Jaccard similarity between x and y.

Propagation strategies comprise of the strategies employed by advocates to increase

the spread of their messages. We model the propagation strategies of advocates from

their targeting and co-propagation behavior. For each user in ui ∈ u, let tau denote

the set of people targeted by the user. We define the targeting matrix T ∈ RN×R

where Tij is equal to the number of times ui has targeted rj where r =
⋃

i∈u tai and

R is the total number of users in r. We next define the co-propagation network as

P ∈ RN×N, where Pij is the number of times uj has propagated a message of ui.

Community structure deals with the patterns arising from the networks formed

by advocates to facilitate easier communication and coordination. We model the

community structures arising from social connections and interactions between advo-

cates. The social connection matrix is defined as Z2 ∈ RN×N. The value of Z2
ij is 1

if ui connects to uj and 0 otherwise. We also capture the interactions between the

users in Z3 ∈ RN×N where Z3
ij is equal to the number of times ui interacts with uj. In
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addition, we define the tensor Z to hold the information contained in the relational

matrices Z1,Z2 and Z3, where Zijt = Zt
ij.

We model the message strategies, propagation strategies, and community structure

and study them in a unified supervised learning framework to identify advocates for

political campaigns on social media. The problem statement can then be stated as

follows: “Given a set of advocates for a given political campaign on social media a

and a set of random users posting on the campaign v, their status message matrix

S, the targeting matrix T, the propagation network P, and the relational tensor Z,

determine if a new user x is an advocate of the political campaign.”

5.2 Quantifying Strategies

In this section, we study the different nuanced strategies employed by advocates

for political campaigns on social media drawing from theoretical constructs present in

sociological literature and present ways to model them. We first study the employed

strategies regarding their message strategies, propagation strategies, and community

structure. We explore each of them in detail and then present ways to model them to

derive characteristics possibly capable of distinguishing between advocates for political

campaigns and random users posting on the campaign.

5.2.1 Quantifying Message Strategies

Message strategies deal with patterns from the construction of the status messages

of advocates. Advocates can employ persuasive language in their status messages and

attempt to sway opinions of other users. Parallels can be seen in the sociological liter-
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ature which documents the high use of persuasive language during social movements

(McCarthy and Zald, 1977). The status messages of advocates can also contain a high

degree of emotions both positive; when they try to generate positive feelings about

their campaign, or negative; when they try to generate feelings of anger, fear, and

anxiety (McCarthy and Zald, 1977).

Message strategies of advocates can also manifest across a set of status messages.

For instance, advocates can concentrate their status messages around a small number

of topics in their attempts at effective communication, resulting in high topical focus.

Parallels can be seen in studies of campaign communications (Farrell and Webb, 2006),

which shows a widespread use of focused messaging. An advocate can also share

distinctive language patterns with other advocates to support common issues and

facilitate easier communication. Shared language patterns among people with similar

affiliations have been shown in speech codes theory to foster easier communication

(Philipsen et al., 1997). Next, we present ways to model characteristics arising from

persuasive language, emotions, focused messaging, and shared language patterns.

The use of persuasive language can be quantified by modeling theoretical principles

of persuasion (Cialdini, 1993). We consider two principles of reason and affinity

(Cialdini, 1993) and model their occurrence. People employ reason as a rational

justification for their views while persuading others. The number of words related to

reason (Gilbert and Henry, 2010) in the status messages of a user is used to quantify

reason. Expressions of affinity can also be used as a tool for persuasion by using

words conveying liking, compliments, and association. We use social words in the

LIWC corpus (Pennebaker et al., 2001) to model expressions of affinity and count

their occurrence in the messages of each user. We postulate that advocates in a use
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a higher number of words denoting persuasion than random users v posting on the

campaign.

The emotional content in the posts of the users in u can be modeled using the

positive and negative emotional words from the LIWC corpus (Pennebaker et al.,

2001). We postulate that advocates in social media use a higher number of emotional

words, both positive and negative than random users posting on an issue. A higher

use of emotion can be an indication that advocates have a strong belief in their

cause, which separates them from paid workers posting promotional comments for a

campaign, who display fewer emotions in their posts (Lee et al., 2013).

To model the topical focus of a user in u, we first compute the topic distribution

using LDA (Blei et al., 2003) on the user word matrix S. The topic model results in

the user topic matrix DT ∈ Rn×t, where DTij is the number of times a word of user

ui has been assigned to topic tj and t is the number of topics. The document-topic

matrix can be normalized DT to obtain DT′, where each row of DT′ contains the

probability distribution over topics of a user. The entropy of the topic distribution

from the corresponding row of DT for each user i to construct a vector ei where

ei =
∑j=t

j=1−DT′ijlog(DT′ij). It is evident that a lower value of entropy for a user

implies greater concentration on fewer topics in his messages and a higher value implies

distribution over a larger number of topics. Therefore, the higher the topical focus in

the status messages of a user, the lower the value of his entropy. We postulate that

advocates have a higher topical focus in their messages than random users posting on

the campaign.

We next model the shared language patterns among users in u and use hashtags as

instances of language patterns. For each advocate a ∈ a, let Z1
ab denote the amount of

hashtags he shares with any other advocate b 6= a ∈ a measured by Jaccard similarity.
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Similarly, let Z1
av , where v ∈ v is a random user posting on issues related to the

campaign. We postulate that an advocate for a political campaign shares a higher

amount of hashtags with other advocates than with random users in v posting on the

campaign. We evaluate these characteristics using the datasets in Section 5.3.3.

Until now, we characterized and modeled message strategies capable of distin-

guishing advocates for political campaigns from random users posting on the issue of

persuasive language, emotion, topical focus and shared language patterns with other

advocates. We next examine characteristics of propagation strategies employed by

advocates to increase the reach of these messages.

5.2.2 Quantifying Propagation Strategies

We examine the propagation strategies of advocates for political campaigns on

social media, focusing on their targeting and co-propagation behavior. Social media

enables advocates to target specific users for propagating information. We propose

that advocates target popular users more frequently than random users posting on the

campaign as popular users help to get messages across to a wider audience (González-

Bailón et al., 2013). We then investigate how advocates assist each other in spreading

their messages.

We first model the targeting behavior of the users in u. Let r is the set of people

targeted by all users in u as defined in Section 5.1. Taking the number of users

connecting to a user as a measure of his popularity, we construct the vector c where ci

is the number of people connecting to ri. We postulate that the attention of advocates

is more skewed towards users with higher popularity than the attention of random

users posting on the campaign. To model this postulate, we compute the vector
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sta = Tc, where stak is the sum of number of times a user k targets an user ri

weighted by ci, the number of users connecting to tai. The value of stak is higher if

the user k targets popular users a higher number of times. Therefore, our postulate

is satisfied when advocates for a political campaign have a higher value of sta than

random users posting on the campaign.

We next model the co-propagation behavior of users in u. Advocates will be more

interested in propagating messages of other advocates, and also, their messages will

be more likely to be propagated by other advocates than random users posting on

the campaign. Based on this, we characterize advocates by their hubs and authority

scores (Kleinberg, 1999) in the information propagation network P. We compute

hubs and authority scores of users in u using the information propagation network

P and postulate that advocates have higher hub and authority scores than random

users posting on the campaign. We evaluate these characteristics using the datasets

in Section 5.3.4.

Until now, we proposed characteristics of advocates for political campaigns on social

media from their message strategies and propagation strategies along with methods for

modeling them. We next propose characteristics related to the community structure

arising from their relationships with other advocates for the campaign.

5.2.3 Quantifying Community Structure

Community structure deals with the patterns arising from the networks formed by

advocates to facilitate easier communication and coordination. Social media provides

opportunities for advocates to connect to each other through many different types

of relationships. Advocates can form social connections, interact with each other
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for coordination, and carry out conversations. The formation of networks of social

connections and interactions between advocates for communication and coordination

have been studied in theoretical studies of social movements (McCarthy and Zald,

1977). Social connections and interactions between advocates can give rise to the

similarity in community memberships. We now postulate a few underlying hypothesis

to establish the similarity in community memberships between advocates in social

media

We first present postulates are underlying community structure arising from social

connections and interactions of advocates. For each advocate a ∈ a, let Z2
ab be 1 if

a connects to b and 0 otherwise, where b is another advocate b 6= a ∈ a and Z2 is

defined in Section 5.1. Similarly, let Z2
av be 1 if a connects to b and 0 otherwise, where

v ∈ v is a random user posting on issues related to the campaign We then postulate

that advocates are more likely to form social connections with other advocates than

with random users posting on the campaign. We follow a similar procedure using

Z3 to postulate that advocates are more likely to interact with each other than with

random users posting on the campaign. These postulates underly that advocates

have similar community memberships for different types of relationships. Are these

community memberships of advocates are similar when measured across relationship

types?

To model this, we first select the users with whom the advocates have at least one

type of relationship with. For each advocate, we construct a vector coab, b 6= a ∈ a,

where each element is the number of types a pair of advocates have relations in.

Similarly, we construct the vector coav, v ∈ v, where each element is the number

of types of relations between a pair of advocate and a random user posting on the

campaign. We postulate that given an advocate has established one type of relationship
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with a user; he has a significantly higher propensity to form more types of relation

if the user is another advocate than if he is a random user posting on the campaign.

The postulate, if verified, underlies that community memberships of advocates are

shared across different relationship types, and hence, they can be jointly inferred by

efficiently combining different relationship types.

In this section, we draw from theoretical constructs in sociological literature to

propose different characterizations of the nuanced message strategies, propagation

strategies, and community structure of advocates for political campaigns on social

media. Next, we are going to use two real-world datasets from Twitter to evaluate

these characteristics in their ability to distinguish between advocates and random

users posting on the issue.

5.3 Evaluating Strategies

In this section, we describe the datasets used to evaluate our characterizations

of advocates of political campaigns in social media. We have two datasets from

Twitter, each related to a political campaign carried out using Twitter. We then use

these datasets to evaluate the ability of the proposed characterizations of strategies

to distinguish between advocates for a given political campaign and random users

posting on issues related to the campaign.

5.3.1 Datasets

We have two datasets related each related to a political campaign. The first dataset

is focused on advocates for the Indian election campaign. The rise of around 200
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Parameter Elections Gun Rights

Total # of Users 9390 7695
# of Tweets 20,362,442 19,275,481
# of Links 514,501 899,535
Users posting on the campaign 8500 7000
# of Advocates 890 695

Table 7: Statistics of the datasets of advocates.

million users of social media in India has made it an important platform for political

discourse during elections (Khullar and Haridasan, 2014). Independent groups like

NaMo Brigade (Lulla, 2014) were formed to advocate for the political campaign of

Narendra Modi. The second dataset is related to the issue of gun rights in the United

States. This campaign is focused on preserving gun rights, which is being questioned

in the wake of increasing gun-related violence. Organizations advocating to preserve

gun rights as the National Rifles Association (NRA) have considerable social media

presence (Palmer, 2014).

Although these organizations have a considerable media presence, it is a challenge

to obtain labels for individual users involved in advocacy. Previous literature proposes

the use of publicly compiled lists as an effective alternative for inferring affiliations of

social media users (Kim et al., 2010). The authors in (Bhattacharya et al., 2014) have

utilized lists in Twitter to characterize topical-identity based groups. Informed by this

literature, we identified two public Twitter lists, titled “NaMo Brigade” (Baruah, 2014),

for advocates for the election campaign of Narendra Modi and “NRA” (Robinson,

2014), for the advocates for gun rights.

To validate the datasets, we apply the mark and recapture technique, drawing

from population estimation methodologies (Brower et al., 1998). For each of the two

lists, we draw two random samples and estimate the total number of errors in the list

as follows. Let the probability of finding errors in the random samples r1 and r2 be pr1
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and pr2 . The number of errors in both the samples will then be given by er1 = pr1Ne

and er2 = pr2Ne, where Ne is the total number of errors to be estimated. The number

of errors in the intersection of the two samples is then er1r2 = pr1pr2Ne. The number

of errors in the dataset Ne can then be estimated as Ne = er1er2/er1r2 This is shown to

overestimate the population, and hence we use a variation to estimate the number of

errors as

Ne =
(er1 + 1)× (er2 + 1)

er1r2 + 1
− 1 (5.1)

A measure of uncertainty is given by the standard error, which estimates of the

variability of N if the above experiment is conducted repeatedly. This is computed as

follows

SE =

√
(er1 + 1)× (er2 + 1)× (er2 − er1r2)× (er1 − er1r2)

(er1r2 + 1)2 × (er1r2 + 2)
(5.2)

From the standard error, we then calculate the 95% confidence interval i.e. the range

within which the number of errors lies with 95% certainty as Ie = Ne ± 1.96 × SE,

where Ie is the 95% confidence interval of the error estimate.

We draw random samples of 10% of the size of the list and use external evaluators

to verify them. The evaluators are asked to assess whether a user is an advocate

of a given political campaign in social media. The definition of advocates is given

to “individuals who use social media to advance their agenda for a given political

campaign” strategically, according to the definition provided. The evaluators mark 1

if they think the member is an advocate and 0 otherwise. We then estimate the total

number of errors from Eq 5.1 and the confidence interval. The percentage accuracy

of the two lists ’NaMo Brigade’ and ’NRA’ are 92.10%± 5.29% and 90.07%± 6.27%

respectively. Validating the accuracy of the lists, we use their members as ground

truths for the set of advocates a.
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Factors Features Elections Gun Rights

Message
Strategy
Persuasion Reason 3.52* 6.52**

Liking 1.717*** 1.04***
Focus Entropy -3.63*** -0.21**
Emotion +ve 0.5731** 0.3669**

-ve 0.7782*** 0.2621**
Shared Language 3.8571*** 10.57***
Propagation
Strategy Targeting 2.15*** 1.91*

Hubs 2.91*** -.3185
Authorities 6.39*** 0.51*

Community
Structure

Following 1.5625*** 0.9086***
Followers 2.045* 0.9554***
Interactions 1.441*** 0.0112**
Multiple .468*** 4.08***

Table 8: Evaluating strategies using logistic regression coefficients with p-value from t
test ( *-p < 0.05,**-p < 0.01,***-p < 0.0001)

To construct the set v, we collect a set of random users who posted with hashtags

related to the given campaigns. We obtain the related hashtags from (RiteTag, 2014)

by giving the initial hashtag as “#modi” for the dataset related to the elections and

“#progun” for the dataset related to gun rights and assign the set of users posting

using the hashtags as v. We randomly sampled v, and a very few number of users

were ascertained as advocates, which we removed from the set. We collect the friends,

followers, profile, and statuses of both advocates in a and random users in v for the

two campaigns. Some statistics of the datasets is presented in Table 7.
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5.3.2 Evaluation

We now evaluate the characterizations of advocates to distinguish between advo-

cates and random users posting on the issue using the datasets. Characterizations

restricted to individual advocates such as persuasion, focus, emotion and propagation

strategies are evaluated using logistic regression. The positive class is given by the

advocates from the set a and the negative class consists of the random users posting

on the campaign from v. The regression coefficients for all the characterizations along

with the significance values derived from the t-test are shown in Table 8.

Characterizations of pairwise relational patterns such as shared language and

community structure are evaluated using a paired t-test. We present the coefficients

of the t-test along with its significance values in Table 8. We next evaluate the

characterizations grouping them into message strategies, propagation strategies, and

community structure.

5.3.3 Message Strategies

We first evaluate the ability of characterizations of message strategies to distinguish

between advocates and random users posting on the campaign. From Table 8, we

can see a strong evidence of the use of persuasive language by advocates in both the

datasets, indicative of the attempts of advocates to sway the opinions of others. A

significantly higher use of words denoting reason and affinity by advocates can be

observed, demonstrating that the proposed model of persuasive language is effective.

High positive and negative emotional content, which can be used to generate strong

feelings about the campaign, is a strong characteristic in the tweets of advocates. This
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(a) (b) (c) (d)

Figure 9: Interacting with Influencers (a) random users posting on the election
campaign (ρ = 0.08) (b) advocates for election campaign (ρ = 0.15) (c) random users
posting on gun rights (ρ = 0.15) (d) advocates for gun rights (ρ = 0.20)

indicates that unlike workers who are paid to comment or post on a particular issue

leading to a lack of emotion in their posts (Lee et al., 2013), advocates show a higher

level of emotion in their messages.

A negative coefficient in the topical focus of advocates with high significance

demonstrates that they concentrate their posts around fewer topics for effective

messaging compared to random users posting on the campaign. In our experiments,

we assign the number of topics t=20. The speech code theory states that users with

common affiliations develop a common lingo to foster easier communication (Philipsen

et al., 1997). This is borne out by a significantly high coefficient of common hashtags,

showing that advocates share higher amount of hashtags with other advocates than

with random users posting on the campaign.

These observations indicate that the characterizations of message strategies drawn

from theoretical constructs from sociological literature and the proposed approaches

to modeling them are effective in distinguishing between advocates and random users

posting on the campaign. We next evaluate the ability of the characterizations of

the propagation strategies of advocates to distinguish between advocates and random

users posting on the campaign.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Retweet Patterns. Fraction of Users v/s Fractions of retweets in status for
(a) random users posting on and (b) advocates for the election campaign, (c) random
users posting on and (d) advocates related for gun rights. Fraction of users v/s no
of times users are retweeted by (e) random users posting on and (f) advocates for
election campaigns, (g) random users posting on, and (h) advocates for gun rights

5.3.4 Propagation Strategies

We first focus on the patterns arising from advocates targeting specific users, which

can be performed in Twitter through the mention feature. The number of people who

connect to the set of people targeted by the users in u, given by c in Section 5.2.2

can be measured by their follower count in Twitter. We first examine if the targeting

patterns of advocates differ from those of normal users posting on the issue. We plot

the targeting patterns of users in Fig 9 with the log of the number of mentions on

the y-axis and the log of the number of followers on the x-axis. For each plot, we fit

a line to the data that minimizes the least square error in the data and its slope, ρ,

given in the caption. A higher value of ρ indicates that people with a higher number

of followers are targeted more frequently.
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We can see that mentioning patterns of advocates from Fig 9 that Fig 9b and 9d

have a greater slope than that of random users posting on the campaign Fig 9a and

9c. Advocates might target popular users as they have the potential to increase the

reach of information. We model this notion in Section 5.2.2 and present the results

in Table 8. We can say from a significantly high coefficient value of the targeting

characteristic that the targeting patterns of advocates are more significantly skewed

towards popular users than those of random users posting on the campaign.

We next evaluate the characterizations of the co-propagation behavior of users in

u. Fig 10 (a), (b), (c), and (d) illustrates the number of times each user has been

retweeted. The logarithm of the times the user is retweeted in shown in the x-axis

and the fraction of users who have been retweeted the corresponding number of times,

choosing users with more than 100 tweets, on the y-axis. A larger fraction of advocates

is retweeted than random users posting on the campaign.

For each user in u, we next compute the ratio of a number of their retweets to his

total number of tweets. The retweet ratio is plotted on the x-axis and the fraction of

users with the retweet ratio on the y-axis, choosing users with more than 100 tweets,

in Fig 10 (e), (f), (g), and (h). A similar pattern can be observed, where the retweet

ratio of random users posting on the campaign follows a power law distribution and

those of advocates have a skewed distribution with a higher fraction of users actively

involved in information propagation. These observations are reflected in Table 8, in

the effectiveness of hubs and authority scores for distinguishing advocates and random

users posting on the campaign.

These observations indicate that the proposed characterizations of propagation

strategies drawn from sociological theories and approaches for modeling them can

effectively distinguish between advocates and random users posting on the campaign.
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We next evaluate the ability of the characterizations of the community structure in

their ability to distinguish between advocates for political campaigns and random

users posting on the campaign.

5.3.5 Community Structure

We first evaluate the characteristics of social relationships of advocates. From

Table 8, we can see that advocates tend to connect with each other significantly more

than with random users posting on the topic. This indicates advocates are utilizing

social media to build a strong network of connections with each other. Advocates

interact significantly more with other advocates for the campaign than with random

users posting on it, indicating that they maintain a high level of interactions with

each other. These provide evidence of a community structure between advocates.

We next examine if advocates tend to establish multiple types of relationships with

each other. From Table 8, we see that given that an advocate has established one type

of relationship with a user, he has a significantly higher propensity to form multiple

types of relation if the user is another advocate than if he is a normal user posting

on the campaign. These results indicate a strong network of social connections and

interactions between advocates, verifying our postulates. This also provides a basis to

infer community membership of users across different relationship types jointly.

Until now, we proposed a set of characteristics capable of effectively distinguishing

between advocates and random users posting on the issue. The set of characterizations

include both individual characteristics from their messages and propagation strategies

and multiple relational patterns like social connections, shared content patterns, and

interactions, forming a heterogeneous feature space. We next design a mathematical
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formulation to combine individual and multiple pairwise characteristics in a unified

framework to identify advocates for a political campaign.

5.4 A Unified Model

Integration of individual and relational characteristics in a unified, homogenous

space for classification can be performed by deriving latent variables from the relational

matrix (Tang and Liu, 2009). A difference here is that we have multiple types of

pairwise relations between users, and we need to derive latent dimension memberships

by jointly exploiting pairwise connections across multiple types of relations. Individual

characteristics can be then be combined with the latent variables derived from the

relational characteristics to construct features for classification.

Let the proposed individual characteristics are denoted as I, and the relational

characteristics are arranged in a tensor Z as defined in Section 5.1. Tensors have

been used in literature to analyze jointly multi-modal relationships in applications

such as community detection (Lin et al., 2011) and link prediction (Dunlavy et al.,

2011). We first factorize the tensor Z to derive latent dimension memberships from

the relational characteristics. Different types of connections between two users can

be captured by their similarity in their memberships of latent dimensions. Two users

who have pairwise relationships with each other across different types will have higher

similarity in their latent dimension memberships than two users who do not have

pairwise relationships with each other.

We factorize the tensor Z to obtain the user matrices U ∈ RN×K and V ∈ RN×K,

and the relationship type dimension matrix T ∈ RT×K, where K is the number of
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latent dimensions, by solving the following optimization problem

min
U,V,T

||Z − JU,V,TK||2F, (5.3)

where JU,V,TK ∈ RN×N×T is given by

JU,V,TK =
K∑
k=1

uk ◦ vk ◦ tk.

Here uk, vk, tk are the kth column vectors of U, V and T respectively. The symbol

◦ represents the vector outer product such that if the tensor Y = uk ◦ vk ◦ tk then

Yefg = (uk)e(vk)f(tk)g. Substituting this in Eqn 5.3, we get

f = min
U,V,T

||Z −
K∑
k=1

uk ◦ vk ◦ tk||2F, (5.4)

We optimize this function motivated by the conjugate linear optimization method

(Acar et al., 2011). We first arrange the vectors u,v and t in a single vector x = [u,v, t]

and calculate the gradient of f(x) with respect to each xnk where x1 = u,x2 = v,x3 = t.

f can be rewritten as

f =
1

2
||Z||2︸ ︷︷ ︸
f1

−〈Z,
K∑
k=1

x1
k ◦ x2

k ◦ x3
k〉︸ ︷︷ ︸

f2

+
1

2
||

K∑
k=1

x1
k ◦ x2

k ◦ x3
k||2︸ ︷︷ ︸

f3

(5.5)

The gradient of f is obtained by computing its partial derivative with respect to each

element in x denoted by xmk . So
∂f1
∂xmk

= 0 (5.6)

as Z is a constant with respect to xmk . The partial derivative of f2 with respect to

each element in x denoted by xmk can then be computed as follows.

∂f2
∂x1

k

= Z ×2 x
2
k ×3 x

3
k,
∂f2
∂x2

k

= Z ×1 x
1
k ×3 x

3
k,
∂f2
∂x3

k

= Z ×1 x
1
k ×2 x

2
k, (5.7)
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where ×n is the n-mode multiplication operator as defined as Section 5.1. The partial

derivative of f3 with respect to each term in x denoted by xmk can be computed as

∂f3
∂xmk

=
K∑
j=1

(
∏
r=1
r 6=m

xrTk xrj)x
r
j (5.8)

The overall gradient can then be computed as

∂f

∂xmk
=

∂f1
∂xmk

− ∂f2
∂xmk

+
∂f3
∂xmk

(5.9)

where ∂f1
∂xm

k
, ∂f2
∂xm

k
, ∂f3
∂xm

k
are as described in Eqn 5.6, Eqn 5.7 and Eqn 5.8 respectively. The

gradient descent step repeated for all values of m and k is continued until convergence.

As the objective function in Eqn 5.4 is convex, the optimization is guaranteed to

converge. The computational complexity of the iterations is low due to the high

sparsity of Z.

To give an intuitive understanding of the optimization term in Eqn 5.4, we rewrite

it as follows

min
U,V,T

||
T∑

t=0

Zt −UDtV
T||2F , (5.10)

where Zt represents the user relations of type t and Dt ∈ RK×K is a diagonal matrix

whose diagonal elements are the tth row of T. The matrices U and V contains the

latent dimension memberships of users jointly inferred across different relationship

types. If Zt∀t is symmetric then U = V. The matrix T contains the contribution of

each relation type to different dimensions. For example, a high value of t2 signifies

that high-scoring users in u2 form connections with high-scoring users in v2 through

relationship type 2. The latent features representing different kinds of pairwise

relationships between users can be obtained from any linear combination of U and V.

For our experiments, we use L = U+V after column normalization as latent features.

We combine the individual characteristics I and the latent features L to construct
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Method Elections Gun Rights
AUC F1 AUC F1

Random 0.4983 0.1607 0.5053 0.1536
Retweet Ratio 0.5804 0.1797 0.5078 0.1118
Volume 0.6830 0.2406 0.6519 0.2332
Bag of Words 0.7379 0.3515 0.7305 0.2919
Combine 0.7599 0.3604 0.7460 0.3065
Our Method 0.9301 0.6341 0.9431 0.6046

Table 9: Comparison with different baselines.

a feature set F = {I,L} for identifying advocates for political campaigns in social

media.

5.5 Identifying Advocates

In this section, we evaluate the performance of our framework by answering the

following questions. How effective is our framework for identifying advocates for

political campaigns on social media? How good are the characteristics group in

identifying advocates? How robust is the proposed framework for variation in training

sizes?

5.5.1 Performance Evaluation

We classify the feature set derived in Section 5.4 using Linear Discriminant Analysis

and perform 10-fold cross-validation to evaluate the performance of the framework

in identifying advocates. We measure the performance using two metrics, AUC, and
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F1-measure and present the results in Table 9. We have the following baselines to

compare the performance of our framework.

• Random : We randomly assign labels to all the users.

• Retweet Ratio (Lumezanu et al., 2012): The fraction of retweets per

overall tweets is used as a feature.

• Activity : The total number of tweets of the users, is used for as a feature.

• Bag of Words : We use all the words in the status messages of users as features

after tf-idf weighting,

• Combine: We combine all the proposed baselines by concatenating all the

features.

We compare the performance of the baselines and the proposed framework and

illustrate the results in Table 9. The random assignment gives an AUC value of

around 0.5, and the F1 measure is low for both the datasets indicating the difficulty

of the problem. The retweet ratio is used to characterize the propagating behavior

of biased users in (Lumezanu et al., 2012). We model a wider range of propagation

strategies advocates employ in social media, and as we can see from Table 10, where

our characterizations of propagation strategies outperform the retweet ratio. From

Table 9, we see that advocates are more active than random users posting on the

campaign. We model specific patterns in the messages based on the strategies of

advocates and hence outperform this baseline that considers only the total number of

messages.

The “Bag of Words” performs better than the other baselines, but the number of

features here is high. We model specific strategies of advocates related to the message,

propagation and community structure instead of using all the posted words, enabling

us to outperform this baseline. Combining all the baselines gives a slight improvement
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in the performance, indicating the potential benefits of integrating heterogeneous

information. The proposed framework outperforms the baselines demonstrating that

it effectively models and integrates characteristics useful for identifying advocates for

political campaigns. This signifies the ability of the framework in understanding the

strategies and model them to to identify advocates effectively. We perform the t-test

between the results of our framework and the baselines and find that the difference is

significant.

In summary, we can say that our framework outperforms the baselines demonstrat-

ing that it effectively models and integrates strategies useful for identifying advocates

for political campaigns. We next analyze the contributions of different characteristic

groups in identifying advocates.

5.5.2 Contributions of Characteristic Groups

We separately select characteristics related to message strategies, propagation

strategies, and community structure and present them to the classifier. We compare

the performance of different characteristic groups in identifying advocates using AUC

and F1 measure with 10-fold cross validation and illustrate the results in Table 10.

We first examine the performance of message strategies by combining individual

characteristics and the latent features from shared content. From Table 10, we can see

that the characterizations of message strategies like persuasion, emotion, focus, and

shared linguistic patterns outperform random characteristics by a significant margin.

This demonstrates that proposed characterizations of messages strategies contribute

significantly in identifying advocates.

The performance of characteristics related to propagation strategies is much
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Method Elections Gun Rights
AUC F1 AUC F1

Random 0.4983 0.1607 0.5053 0.1536
Mess Strat 0.8240 0.4303 0.8517 0.4727
Prop Strat 0.8210 0.3689 0.5707 0.1904
Mess+ Prop Strat 0.8804 0.5152 0.8680 0.4934
Comm Struct 0.8918 0.5117 0.8859 0.4834
Overall 0.9301 0.6341 0.9431 0.6046

Table 10: Performance of different groups

higher in the dataset related to elections than in the dataset related to gun rights.

This is an indication that advocates in election campaigns place more emphasis

on information propagation. On combining characterizations from both message

strategies with propagation strategies, we observe an improvement in performance.

This demonstrates the contribution of characterizations of propagation strategies in

identifying advocates.

The characteristics related to community structure perform well in both the

datasets. This indicates that advocates in social media have strong relationships

with other advocates of the issue and display strong interactions with each other. A

combination of all the three characteristic groups performs significantly better than

individual characteristic groups demonstrating the effectiveness of our framework for

integrating these characterizations.

In summary, we can say that all the proposed characteristic groups contribute

significantly to identifying advocates for political campaigns in social media. We next

evaluate the robustness of the framework to variations of training data size and assess

its effect on identifying advocates.
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5.5.3 Performance with Varying Training Sizes

We now answer the following questions: How does the framework perform with

varying proportions of training data? How effective is the framework when we use the

labels of popular users, potentially more accessible, for training?

We vary the relative proportion of training and testing sizes from α = {10%−90%}

with increments of 10%. For each value of α, we take the mean performance of 100

random samples with α% used for training and the rest for testing. We repeat the

procedure for the different values of α and illustrate the results in Figure 11.

In many cases, the labels of popular users might be well known, and the labels

might be therefore potentially easier to obtain. To evaluate the framework in this

scenario, we take the number of followers of a user as an indication of his popularity

and sort the users in decreasing number of their followers. For each value of α, we

select the users in the top α% of followers for training and the rest for testing and

obtain the performance. We repeat the procedure for all the values of α and illustrate

the results in Figure 11.We make the following observations from the figure.

The performance of the algorithm is significantly higher than the nearest baseline

for all relative proportions of training data for both methods of sampling. The

performance slightly increases for higher proportions of training data but is overall

robust for varying size of training data. Finally, random selection of training data

performs only slightly better than selecting users with a high number of followers.

This demonstrates that labels of just the popular users, which are potentially easier

to obtain, can be effective in identifying advocates for political campaigns on social

media.

In summary, the experiment demonstrates that the framework is robust to variation
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(a) (b)

(c) (d)

Figure 11: Effect of size of training data with training data randomly chosen and
chosen ordered according to the number of followers for election dataset with (a) AUC
(b) F1 measure and dataset on the gun rights with (c) AUC and (d) F1 Measure

in training data size and can also effectively identify advocates for political campaigns

even when only the labels of popular users are known.

5.6 Summary

We present a framework to identify advocates for political campaigns on social

media. We characterize advocates through their message strategies, propagation

strategies, and community structure and propose different characterizations based on

them. We evaluate the performance in identifying advocates of two political campaigns

on the social media platform Twitter.
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Chapter 6

IDENTIFYING RHETORICAL QUESTIONS

A popular way in which users express their views is through rhetorical ques-

tions(Paul et al., 2011). Rhetorical questions are defined as “posts that have the form

of a question but serve the function of a statement” (Anzilotti, 1982). For example,

the rhetorical question “Would somebody willingly die for a claim he knew was a lie?

”, where “he” refers to Christ, has the syntax of the question but is posted by the

user to expresses his religious beliefs. Information seeking systems can be misled into

finding responses to rhetorical questions, distracting them from addressing genuine

information needs. Identifying them will assist in filtering them out.

Linguistic studies have provided theories for the function of the rhetorical questions

by examining user motivations (Ilie, 1994). Rhetorical questions are stated as an

indirect speech act (Schmidt-Radefeldt, 1977), meaning that the user posting rhetorical

questions but implies the message from its context. It is hard to determine if the

example question is rhetorical only from its text. However, when examining the post

before the question, it is clear that the question is rhetorical. This indicates that

rhetorical questions are likely to share context with the recent post of the user posting

it.

The ability of rhetorical questions to imply a message can also be harnessed by

the user to strengthen or mitigate a statement he previously made, as proposed in

studies of conversation structure (Frank, 1990). In the previous example, the user

posts the rhetorical question to mitigate the strong statement made in his most recent

status message. Similarly, the user can employ rhetorical questions to strengthen a
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statement in his last message. This indicates that rhetorical questions that it is likely

to show a shift in the degree of sentiment from his last message.

I propose a framework to identify rhetorical questions in social media by modeling

the motivations of the user to post them and evaluate it on two datasets of questions

from the social media platform Twitter. Specifically; I address the following questions:

How to model the motivations of the user for posting rhetorical questions to identify

them? Are approaches based on motivations of the user useful in identifying rhetorical

questions in social media? The primary contributions of the paper are the following:

• Formally defining the problem of identifying rhetorical questions in social media;

• Demonstrating the applicability of linguistic theories of user motivations to

employ rhetorical questions in social media data;

• Proposing a framework to identify rhetorical questions in social media by mod-

eling user motivations; and

• Evaluating the framework using two real-world datasets of questions posted on

the social media platform Twitter.

6.1 Problem Statement

The outline of the proposed framework for identifying rhetorical questions is

illustrated in Figure 12. We now define some terms in the framework related to the

questions and the most recent status message from the user posting it. Let R denote

the set of rhetorical questions, and the set of randomly sampled questions be denoted

by S. The combined set of questions is denoted by F = [R,S] and the total number

of questions be denoted by Q. For each question q ∈ F , we collect the most recent
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Figure 12: RhetId: The proposed framework to identify rhetorical questions in social
media

status message the user posted previous to the question, and denote the set of most

recent status messages asM.

We construct a dictionary of words, W , used in the questions and the last message

of the users posting it. Let W be the number of words in the dictionary. We then

construct word vectors from the content of the questions, the length of each being W .

We then concatenate the question-word vectors to construct the question word matrix

F ∈ RQ×W from the question set F , whose each element Fij is given by

Fij =


n qi has used wj n times, qi ∈ F , wj ∈ W ,

0 otherwise.
(6.1)

Similarly, we construct message word vectors from the content of the previous message

of the users posting the questions, each of length W . We concatenate the vectors to

construct the message word matrix M ∈ RQ×W from the setM. The ith row of the

question word matrix Fi has a corresponding row Mi which contains word frequencies

of the most recent status message of the user posting it. We concatenate the two
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matrices F and R vertically to form the matrix P ∈ R2Q×W . The first Q rows of P

contain the word frequencies of the questions from the matrix F, and the last Q rows

contain the word frequencies of the most recent status messages from the matrix M.

A single post will only use a small subset of the total number of words, resulting in P

being sparse.

The problem can then be formally stated as follows: “Given the question set Q,

consisting of a set of known rhetorical questions R and randomly sampled questions S,

and the post word matrix P, determine if a new question q is a rhetorical question”.

6.2 Motivations behind Rhetorical Questions

Rhetorical questions share the form of a question, and it is difficult to identify them

using syntactic characteristics (Li et al., 2011). Understanding the motivations of the

user in posting rhetorical questions, might give us more clues for identifying them.

In this section, we will explore the possible motivations for users to post rhetorical

questions. We draw concepts from linguistic literature to model these motivations,

and design measures potentially useful for identifying rhetorical questions based on

them. We collect two datasets of questions from the social media platform Twitter to

evaluate the designed measures. We first present the two datasets with some relevant

statistics. We then propose measures to quantify the concepts and use the datasets to

verify if they are effective in identifying rhetorical questions in social media.
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6.2.1 Datasets

The datasets consist of questions collected from the social media platform Twitter.

To collect rhetorical questions, we use questions which the user has labeled as rhetorical

with appropriate hashtags following (Ma et al., 2014), where users have shown to

employ hashtags to label their intention behind the tweet. We collect questions

containing the hashtags related to rhetorical questions, along with “?” appended to

each hashtag from the Twitter Streaming API, denoting them as positive examples for

the two datasets respectively. Tweets containing “?” have been shown to be questions

with high precision in (Cong et al., 2008). We obtain the hashtags most related to

rhetorical questions from (RiteTag, 2014) and construct two datasets with questions

containing “#rhetoricalquestion” and “#dontanswerthat” as positive examples. To

construct negative examples for the two datasets, we randomly sample some tweets

equal to the number of positive examples containing “?”. For each question in the two

datasets, we collect the most recent status message from the user and construct the

matrix P from the questions and most recent status messages using methods in the

Twitter public API (Kumar et al., 2013a). Some statistics of the datasets are given in

Table 11.

The questions that constitute the negative examples might themselves have some

rhetorical questions, so we use human assessments to validate the negative examples.

The number of questions in the negative examples are large, and evaluating the entire

set might be expensive. To address this, we apply the mark and recapture technique

used in population estimation methodologies (Brower et al., 1998). This technique

involves drawing two random samples and using human assessments to estimate the
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Parameter Dataset 1 Dataset 2

# Questions 32,336 15,840
# Rhetorical Questions 16,168 7,920
# Randomly Sampled Questions 16,168 7,920
# Prev Status Messages 32,336 15,480
Avg Length (No of Words) 5.1300 5.3089
Word Frequency 1.7458 1.2424
Lexical Density 0.4678 0.4385

Table 11: Two Datasets containing questions posted in Twitter with relevant statistics.
The positive examples of the first dataset contain the hashtag #rhetoricalquestion
and the positive examples of the second dataset contain the hashtag #dontanswerthat

error. The error in the overall sample is then estimated from the number of errors in

the two samples and their intersection.

We draw two random samples and assign the probability of finding errors in the

random samples r1 and r2 be pr1 and pr2 . The total number of errors in the samples

will be given by

er1 = pr1Ne, er2 = pr2Ne,

where Ne is the total number of errors to be estimated. The number of errors in the

intersection of the two samples is then

er1r2 = pr1pr2Ne.

The number of errors in the dataset Ne , accounting for overestimation, is given by

Ne =
(er1 + 1)× (er2 + 1)

er1r2 + 1
− 1, (6.2)

with the standard error, SE, computed as

SE =

√
(er1 + 1)× (er2 + 1)× (er2 − er1r2)× (er1 − er1r2)

(er1r2 + 1)2 × (er1r2 + 2)
. (6.3)

We draw two random samples of 1% of the size of the list from both the datasets

and combined them. We then use human evaluators from Amazon Mechanical Turk
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to verify them. The definition of rhetorical question is given to them as “posts that

have the form of a question, but serve the function of a statement”. The evaluators

mark 1 if they think the question is a rhetorical question and 0 otherwise. The 95%

confidence interval of the error is computed as Inte = Ne± 1.96SE and the accuracy of

the negative examples as 1− Inte. We compute the accuracy of the negative examples

as 92.51%± 8.3%. After validating the negative examples using the method described

above, we use them in our experiments.

We next propose postulates to quantify the motivations of the user to post rhetorical

questions drawing concepts from linguistic theories. We verify the postulates using the

first dataset and later present the evaluation of the framework on both the datasets.

We now state the postulates and using the dataset, examine if they can distinguish

between rhetorical questions and randomly sampled questions.

6.2.2 Implying a Message

The first motivation for the user is to imply a message (Schmidt-Radefeldt, 1977),

which indicates that the rhetorical question shares the context of his most recent status

message. We characterize this by postulating “Rhetorical questions are more likely

to share context with the most recent status message from the user than randomly

sampled questions share with the most recent post of their user”. We obtain the

topical distribution of messages P using LDA (Blei et al., 2003). We compute the

cosine similarity in topic distributions of the question and the most recent message to

measure the shared context between them and assign it to sr. We repeat this for a

randomly selected question from the set of negative examples and assign it to sn. We

repeat this procedure for all the rhetorical questions in R.
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(a) Shared topics (b) Degree change of sentiment

Figure 13: (a) Shared topics with the previous status message of rhetorical and
randomly selected questions (b) Change of degree in sentiment of rhetorical and
randomly selected questions from previous status messages. The x-axis in the two
contains the questions arranged in descending order of the values of shared topics and
degree change of sentiment respectively.

The results are plotted in Figure 13a. The quantity of topics rhetorical and

randomly sampled questions share with their previous status messages is plotted in

descending order on the y-axis. The figure indicates that rhetorical questions share a

greater amount of topics with their previous status messages than randomly sampled

questions. To test the significance of this observations, we perform a paired t-test.

The null hypothesis is given by H0 : sr = sn and the alternate hypothesis is given by

H1 : sr > sn. A t-test verifies the postulate with p < 0.0001.

6.2.3 Modifying Expressed Sentiment

The second motivation for the user is to strengthen or mitigate the sentiment

expressed in his last status message (Frank, 1990). This indicates that the rhetorical

question will have a shift in the degree of the sentiment from his last status message.

We state the postulate as “Rhetorical questions show a higher shift in the degree with

the most recent status message of the user posting it than randomly sampled questions

do with the last post of their user”. We first construct the word level sentiment matrix
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O ∈ RW×C using (Hu et al., 2013). Here C denotes the number of sentiment levels.

To compute the sentiment in each word, we multiply it with the sentiment level vector

c = {−5, 5}. We then compute the sentiment of each tweet as m = POcT . We select

the elements of m containing the sentiment of the questions to construct mq and

the most recent status messages to construct mp. We compute the degree shift as

d = |mq −mp|. We select the elements corresponding to rhetorical questions and

assign it to dr. We randomly select an equal number of elements of d corresponding

to negative examples and assign it to dn. The paired t-test on dr and dn verifies the

postulate with p < 0.0001.

The results are plotted in Figure 13b. The degree of sentiment shift in rhetorical

and randomly sampled questions from their previous status messages is plotted in

descending order on the y-axis. The figure indicates that rhetorical questions share a

greater amount of topics with their previous status messages than randomly sampled

questions. To test the significance of this observations, we perform a paired t-test.

The null hypothesis is given by H0 : dr = dn and the alternate hypothesis is given by

H1 : dr > dn. A t-test verifies the postulate with p < 0.0001.

6.3 The Proposed Framework to Identify Rhetorical Questions

In this section, we present a framework to model the postulates and integrate them

to identify rhetorical questions in social media. We first describe our approach to

model the two motivations in detail and integrate them into an optimization function.

We then present a method to solve the optimization function and derive a set of latent

representations to be used for classification. We finally present the time complexity of

the framework to analyze its scalability.
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6.3.1 Modeling Shared Context

We now present a model for the first motivation. The first motivation that we

explore is by a user to imply a message using the context of his recent message

(Schmidt-Radefeldt, 1977). In the example introduced, the most recent status message

before the question says “RT @PastorKentB: our pride keeps us from seeing who

Jesus is... John 8...the Pharisees are too concerned with themselves to see the son

of God!”. In this example, it is clear that the asker is implying a message using the

context derived from his previous post. This indicates that the question shares context

with the most recent post of the user. The analysis in Section 6.2.2 showed that

rhetorical questions share context with the previous message of their user as compared

to randomly sampled questions. We next propose a method to compute the shared

context between the question and the previous posts.

We first use latent dimensions to obtain concise representations of the questions

and the previous messages. The latent dimension representation of P is given by the

matrix U ∈ R2Q×K , with K latent dimensions. To capture the shared context between

the question and the most recent message of the user, we make their latent dimensions

in the corresponding rows of U close to each other. We do this by formulating a cost

function that penalizes the distance between the corresponding rows of the matrix U

and then minimizes the cost function. The cost function is defined as follows

F1 =
1

2

2Q∑
i=1

2Q∑
j=1

||Mij

(
U(i, ∗)−U(j, ∗)

)
||22, (6.4)

where each element of matrix M, Mij, is 1 if |j − i| = Q and 0 otherwise. Note that

in the matrix P, the question and the previous statement of the user corresponding to

it are Q rows apart. Therefore, the value of Mij is 1 if row j of the matrix P contains

the most recent message of the user posting the question whose word vector is in
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a row i of P. This loss function proposes a penalty if the latent dimensions of the

question are far from the latent dimensions of the most recent status message of the

user posting it, thus modeling the first motivation. The loss function can be rewritten

as

F1 =

2Q∑
k=0

UkLUT
k = tr(UTLU) = ||UTL1/2||2F ,

(6.5)

where L is the Laplacian matrix of a graph whose adjacency matrix is M. We next

develop a loss function to model the second motivation concerning modifying the

sentiment the user expresses in his previous message.

6.3.2 Modeling the Shift in the Expressed Sentiment

The second motivation that we explored is to strengthen or mitigate the sentiment

expressed in the previous messages (Frank, 1990). In the example provided, the asker

employs the rhetorical question “Would somebody willingly die for a claim he knew a

lie?” is to mitigate the strength of his previous statement “RT @PastorKentB: our

pride keeps us from seeing who Jesus is... John 8...the Pharisees are too concerned

with themselves to see the son of God!”. A possible reason can be that he considers the

previous statement too offensive and he wants to make a milder statement to mitigate

the effect of its earlier statements. This indicates that there might be a shift in the

degree of the sentiment of the rhetorical question from the previous statement of the

user. The analysis in Section 6.2.3 showed that rhetorical questions show a greater

shift in the sentiment degree from the previous message of their user as compared to
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randomly sampled questions. We next propose a method to compute the shift in the

sentiment degree between the question and previous posts.

To obtain the sentiment distribution of each post, we compute Q ∈ R2Q×C as

Q = UVTO. Here, we represent the latent dimensions of words present in the

questions and the most recent status messages as V ∈ RW×K . We next need to model

the notion that rhetorical questions show a greater shift in the sentiment degree from

the previous message. To do this, we design a cost function that penalizes a small

shift in the degree of sentiment between the two posts and then minimize the cost

function. Let q ∈ R1×C and p ∈ R1×C be the sentiment distribution of the question

and the most recent status message of the user. The loss function for this question

can be defined as

f2 = qDpT =
K∑
i

K∑
j=1

qiDijpj, (6.6)

where

Dij =



c−1
2
− |i− j| if

(
c+1
2
− i
)(

c+1
2
− j
)
> 0.

c−1
2

+ 1 if
(
c+1
2
− i
)(

c+1
2
− j
)
< 0.

0 if
(
c+1
2
− i
)(

c+1
2
− j
)

= 0.

(6.7)

The higher the degree of the sentiment shifts between qi and pj, the lower the value

of Dij. We also have a higher penalty if there is a change in sign. Aggregating

this loss function over all the questions, we obtain the following loss function F2 =

tr((QD)TMQ). We next integrate the two motivations into a unified framework to

identify rhetorical questions.
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6.3.3 Integrating the Models

Let us factorize the post-word matrix minU≥0,V≥0 ||P −UVT ||2F . We make the

derived sentiment matrix Q closer to the post level sentiment matrix T obtained

from (Hu et al., 2013) using the regularization factor ||Q−T||2F . We use the latent

dimensions of the question from U to identify rhetorical questions with the least

square loss function ||I(UW −Y)||2F . Here I ∈ RQ×Q is a diagonal matrix where

each diagonal element Iii = 1, if the ith question is labeled or 0 otherwise. W ∈ RK×2

contains the weights given to each latent feature. Y ∈ R2Q×N is the output of the

classifier, and we label together the question and the most recent status message of

the user. Each row of Y is given by {1,0} if the question labeled as rhetorical, {0,1}

if the question is labeled as not rhetorical and {0,0}, if the question is not labeled.

We then integrate this to form the final objective function, which is,

min
U,V≥0,W

||P−UVT ||2F + α||UTL1/2||2F + βtr((QD)TCQ)

+ ||I(UW −Y)||2F + ||Q−T||2F + η(||U||2F + ||V||2F ). (6.8)

Here, α and β control the contributions of the models based on the two motivations.

We next minimize the optimization function to obtain the update rules for the latent

dimension matrices U, V and the weight matrix W. We consider U and V as

nonnegative to ensure an intuitive decomposition of the matrix P into its constituent

parts. We randomly sample a fraction of the questions for training. We later use the

matrices to determine whether the unlabeled question is rhetorical or not. The update

rules for the three latent dimension matrices for U, V and W is provided below. The

detailed derivation along with the complexity analysis to demonstrate the scalability
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of the algorithm is illustrated in the appendix.

Uij ← Uij
(PV + L− + M+ + TOTV)ij

(UVTV + αLU + ηU + L+ + M− + βAVTB + QOTV)ij
, (6.9)

Vij ← Vij
(PTU + OTTU)ij

(VUTU + βBUTA + ηV + OOTVUTU)ij
,

W←W − 2δUT I(UW −Y), (6.10)

where A = CU, B = ODTOTV, Ls = (IYWT )s, Ms = (IUWWT )s, s = {+,−}.

6.3.4 Deriving the Question Labels

We now present a procedure to employ the derived matrices U, V and W to

obtain the labels denoting whether a question is rhetorical or not. We compute Ŷ,

the estimated value of Y as

Ŷ = UW. (6.11)

We then select the rows of Ŷ corresponding to the questions in the test dataset to

construct Ŷtest ∈ RQ×2. For each row of Ŷtest, we compare the values in the two

columns. We assign the question in the row as rhetorical if the value in the first

column is greater than the second column and not rhetorical otherwise.

The framework is summarized in Algorithm 1. The inputs of the framework is

the post word matrix P ∈ R2Q×W and the parameter values of α, β and η. The output

of the framework is the labels of the questions as rhetorical or not. We first randomly

initialize the latent dimension matrices U, V and the weight matrix W. We then

compute the post sentiment matrix Q. We then randomly pick questions for training

and change the corresponding rows of the label matrix Y and the indicator matrix I.

We then compute the objective function from Eqn 6.10. We use alternate gradient

descent to minimize the objective function in iterations, and the latent matrices U,
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ALGORITHM 4: RhetId: Identifying Rhetorical Questions
Data: P, α, β, η
Result: Labels of Questions as rhetorical or not.
Randomly initialize U, V and W;
Compute post sentiment matrix Q;
Randomly pick rows of Y to assign labels ;
Construct I;
Compute objective function F from Eq.(6.8);
while F does not converge do

Update U, V and W from Eq. (6.10);
Update F ;

end
Compute Ŷ = UW and obtain Ytest;
Obtain labels of the test questions from Ytest;

V and the weight matrix W are updated in each iteration. The objective function

is updated in each iteration, and the procedure is repeated until the function value

converges. The label matrix is then estimated by Eqn 6.11 and the labels of the

unlabeled questions are obtained from the corresponding rows of Ŷtest by comparing

the values in the two columns.

6.4 Derivation of Latent Dimension Matrices

We here provide detailed derivation of the update equations in latent dimension

matrices U, V and the weight matrix W.

6.4.1 Computation of document-latent dimension matrix U

We now present the closed form solution to the minimization problem in Eq.(6.8)

to obtain the latent representations of questions and use it to identify rhetorical
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questions. Motivated by (Ding et al., 2006), we first introduce an algorithm to find

optimal solutions for the three matrices U, V, and W. The key idea is to optimize

the objective on one variable while fixing others. The algorithm will keep updating

the matrices until convergence with the following update equations. We first present

a derivation of the latent dimension matrix U from the objective function and follow

a similar procedure to derive latent dimension matrix V and the weight matrix W.

Solving the optimization function in Eq. (6.8) on U, we get

min
U≥0
JU =||P−UVT ||2F + α||UTL1/2||2F + βtr((QD)TMQ).

||I(UW −Y)||2F + η||U||2F + ||Q−T||2F .

(6.12)

Let ΛU , be the Langrangian multiplier for the condition U ≥ 0. The lagrangian

function L(U) is then given as

L(U) =JU − Tr(ΛUU).

=||P−UVT ||2F + α||UTL1/2||2F + βTr((QD)TMQ) + ||I(UW −Y)||2F + η||U||2F

+ ||Q−T||2F − Tr(ΛUU).

=Tr(P−UVT )(P−UVT )T + αTr(UTL1/2)(UTL1/2)T + βTr((QD)TMQ)

+ Tr(I(UW −Y))(I(UW −Y))T + Tr(Q−T)(Q−T)T + ηTr(UUT ).

=Tr(PPT −PVUT −UVTPT + UVTVUT + αUTLU + βDTQTMQ+

IUWWTUT IT − IUWYT IT − IUW − IYWTUT IT + IYYT IT + QQT + TTT

− 2QTT + ηUUT − ΛUU).

(6.13)
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By setting the derivative of L(U) with respect to U ∂L(U)
∂U

= 0, we get

1

2
ΛU =−PV + UVTV + αLU + IUWWT − IYWT + ηU + βAVTB + QOTV −TOTV,

(6.14)

where A = MU, B = ODTOTV.

The matrix W can have negative elements so we split the components containing

W, IYWT and IUWWT into positive and negative elements described as follows.

Let a given matrix be denoted as E and E+ and E− be the positive and negative

components of E respectively. These matrices are defined as

E = E+ − E−,E+ =
|E|+ E

2
,E− =

|E| − E

2
. (6.15)

Substituting this in the Eq. (6.14)

ΛU =−PV + UVTV + αLU + (IYWT )+ − (IYWT )− − ηU− (IUWWT )+

+ (IUWWT )− + βAVTB + QOTV −TOTV.

(6.16)

The Karush-Kuhn-Tucker condition (Boyd and Vandenberghe, 2004) for the non-

negative constraint U ≥ 0 gives

ΛU(i, j)U(i, j) = 0. (6.17)

We substitute Eq. (6.14) in Eq. (6.17) and rearrange this equation to get the

update rule for U as

Uij ← Uij
(PV + M− + L+ + TOTV)ij

(UVTV + αLU + ηU + M+ + L− + βAVTB + QOTV)ij
, (6.18)

where A = MU, B = ODTOTV, Ls = (IYWT )s, Ms = (IUWWT )s.
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6.4.2 Computation of word-latent dimension matrix V

We follow a similar procedure to derive the latent dimension matrix V from the

objective function. Solving the optimization function in Eq. (6.8) with respect to V,

we get

min
V≥0
JV =||P−UVT ||2F + βtr((QD)TMQ) + ||Q−T||2F + η(||V||2F ).

(6.19)

Let ΛV , be the langrangian multiplier for the condition V ≥ 0. The langragian

function L(V) is then given as

L(V) =JV − Tr(ΛVV).

=||P−UVT ||2F + βTr((QD)TMQ) + +η||V||2F + ||Q−T||2F − Tr(ΛUU)

=Tr(P−UVT )(P−UVT )T + βTr((QD)TMQ) + Tr(Q−T)(Q−T)T + ηTr(VVT )

=Tr(PPT −PVUT −UVTPT + UVTVUT + βDTQTMQ + QQT + TTT − 2QTT

ηVVT − ΛUV)

(6.20)

By setting the derivative of L(V) with respect to V, ∂L(V)
∂V

= 0, we get

1

2
ΛV =−PTU + VUTU−OTTU + βBUTA + ηV + OOTVUTU,

(6.21)

where A = MU, B = ODTOTV. The Karush-Kuhn-Tucker condition (Boyd and

Vandenberghe, 2004) for the non-negative constraint V ≥ 0 gives

ΛV (i, j)V(i, j) = 0. (6.22)
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We substitute Eq. (6.21) in Eq.(6.22) and rearrange this equation to get the update

rule for V as

Vij ← Vij
(PTU + OTTU)ij

(VUTU + βBUTA + ηV + OOTVUTU)ij
,

(6.23)

where A = MU, B = ODTOTV.

6.4.3 Computation of feature weight matrix W

We next follow a similar procedure to derive the weight matrix W from the

objective function. Unlike the latent dimension matrices U and V, the weight matrix

is not constrained to be non-negative. We, therefore, solved it by gradient descent

with additive updates. Solving the optimization function in Eq. (6.8), we get

min
W
JW = ||I(UW −Y)||2F . (6.24)

JW can be expanded as

JW =Tr(I(UW −Y))(I(UW −Y))T

=Tr(IUWWTUT IT − IUWYT IT − IUW − IYWTUT IT + IYYT IT ).

(6.25)

The gradient JW with respect to W, ∂JW
∂W

= 0, is given by

∂JW
∂W

← UT I(UW −Y). (6.26)

We obtain the updates by gradient descent with the following update equation

W←W − 2δUT I(UW −Y), (6.27)

where δ is the gradient step.
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6.5 Algorithm Complexity

The complexity of the algorithm comes mainly from two sources: the computation

of the objective function in Eq. (6.8) and the update equations in Step 7 of Algorithm

1.

We first concentrate on the objective function. Computing the first term ||P−

UVT ||2F is low owing to the sparse nature of P. The computational complexity of

the second term ||UTL1/2||2F is low due to the sparsity of the Laplacian matrix L.

The computation of Q takes O(WKC). The third and the fourth term each has a

complexity of O(QC2). The complexity of ||I(UW−Y)||2F is O(QK) multiplications.

The complexity is considerably lessened due to the low value of K and the sparsity of

P making the computation scalable.

We next focus on the complexity of the update equations. The complexities of PV

and PTU are low due to the sparsity of P. The complexity of IYWT is O(Q). The

terms UVTV and VUTU have a time complexity of O(WK2). The time complexity

of IUWWT is O(QK2). The computation of A has a low complexity due to the

sparsity of C. The complexity of B is O(WCK) is reduced due to the low value of

K and C. The complexity of AVTB and BUTA is O(WK2). The complexity of

QOTV is O(WK2) and OOTVUTU is O(WK2). The complexity of UT I(UW−Y)

is O(QK).This complexity of the update equations is low owing to the low value of K

and C.

From the above discussion, we can say that the framework is scalable and hence

can be used to large datasets usually seen in social media. We next design experiments

to evaluate the framework to identify rhetorical questions in social media data.
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6.6 Experimental Evaluation

In this section, we use the two datasets of questions posted on Twitter described

in Table 11 to conduct experiments to answer the following questions that help in

understanding the concepts involved in the framework better: How does the proposed

framework perform in identifying rhetorical questions in social media? What is the

effect of the varying proportion of information from different motivations models

on the performance of the framework? What is the effect of varying proportions of

training data on the performance of the framework? We first describe the experiment

settings and then address each of these questions.

6.6.1 Experimental Settings

We now present the metrics and baselines used for evaluating the algorithm. We

use accuracy, AUC and F1 metrics to evaluate the algorithm and values are averaged

over the positive and negative class. We choose AUC and F1 as they can handle

the imbalance in the dataset. The following baselines are employed as performance

benchmarks and compared with our framework.

• Random Label Assignment: Whether the question is rhetorical or not is

assigned randomly. This is repeated for 100 trials, and the mean value of the

metrics is presented. This baseline is employed to demonstrate the difficulty of

the problem.

• Topics: We construct topic distributions of the questions using (Blei et al.,

2003). We present the predicted topics for classifying whether the questions are

rhetorical or not rhetorical.
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• BOW: We use the entire content contained in the candidate questions and

present it for classifying whether the questions are rhetorical or not. The

baselines Topics and BOW are introduced to evaluate the content information

in the question for identifying whether the question is rhetorical.

• InfoNeeds (Zhao and Mei, 2013): The paper uses features such as tweet length

and the use of capital letters in addition to BOW to classify whether a question

posted in social media is seeking for information.

• Qweet (Li et al., 2011): The algorithm uses linguistic features such as quotations,

exclamations in addition to BOW to classify whether a question posted in social

media is seeking information. We employ the baselines Qweet and InfoNeeds

to determine if identifying rhetorical questions is similar to identifying questions

not conveying information needs.

• PrevMsg (Bhattasali et al., 2015): The algorithm identifies rhetorical questions

by directly combining the textual features of questions and the neighboring

statements. This baseline is included to evaluate whether information from the

context of the question is useful in identifying whether the question is rhetorical

or not.

• RhetId (SC): This implements our algorithm using only the motivation of

shared context (SC) i.e α = 1, β = 0 in Eq. (6.8). This is introduced to assess the

contribution of the motivation for implying a message in identifying rhetorical

questions in social media

• RhetId (SS): This baseline uses only the motivation of sentiment shift (SS),

i.e., α = 0, β = 1 in Eq. (6.8). This is introduced to assess the contribution

of this motivation for modifying the previously expressed sentiment identifying

rhetorical questions in social media.
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We evaluate the proposed framework and the baselines with the following metrics

suitable for the unbalanced datasets

Area Under the Curve (AUC): This metric computes the area under curve

created by plotting the true positive rate against the false positive rate. The true

positive rate defines how many of the rhetorical questions are identified correctly

during the test. The false positive rate determines how many of the non-rhetorical

questions are correctly identified as not rhetorical by the framework. The framework

is repeatedly applied on the data to create the curve plotting the true positive rate

and the false positive rate. The area under this curve is then computed and presented

to evaluate the framework.

Accuracy (Accu): The accuracy computes the ratio of total number of questions

correctly identified as either rhetorical or not rhetorical and the total number of

questions. The accuracy is computed as

Accu =

∑R
i=1 TPi +

∑S
j=1 TNj

R + S
,

where TPi denotes the true positives and is 1 if the ith rhetorical question is identified

as a rhetorical question and 0 otherwise and R denotes the number of rhetorical

questions. Similarly, TNj denotes the true negatives and is 1 if the jth non-rhetorical

question is identified as a non-rhetorical question and 0 otherwise, and S denotes the

number of non-rhetorical questions.

F1 Measure (F1): The precision computes the ratio of the number of correctly

identified rhetorical questions and the total of all correctly identified questions. The

recall measures the ratio of the number of correctly identified rhetorical questions to

the total number of rhetorical questions. The F1-measure computes the harmonic
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Dataset 1 Dataset 2
Methods AUC Accuracy F1 AUC Accuracy F1

Random 50.66 50.48 50.46 50.27 49.93 49.42
Topics 63.28 56.73 56.72 65.92 59.39 58.39
BOW 64.54 61.24 61.15 66.82 63.15 63.11
PrevMsg 65.35 63.86 63.93 66.76 65.47 65.48
InfoNeeds 67.55 61.43 61.04 67.72 64.06 64.03
Qweet 63.50 64.07 64.07 67.41 64.82 64.72
RhetId (SC) 71.45 64.24 63.63 73.71 66.29 68.15
RhetId (SS) 69.49 63.17 62.83 72.10 64.88 64.69
RhetId (SC&SS) 72.61 65.31 65.07 74.08 67.04 69.73

Table 12: Performance evaluation of the algorithm. It beats the proposed baselines
by a significant margin in both the datasets.

mean of precision and recall and is denoted by

F1 =
2
∑R

i=1 TPi
2
∑R

i=1 TPi +
∑S

j=1 FPj +
∑R

i=1 FNi

,

where TPi denotes the true positives and is 1 if the ith rhetorical question is identified

as a rhetorical question and 0 otherwise, R denotes the number of rhetorical questions

and S denotes the number of non-rhetorical questions. FNj denotes the false negatives

and is 1 if the ith rhetorical question is identified as a non-rhetorical question and 0

otherwise. Similarly, FPj denotes the false positives and is 1 if the jth non-rhetorical

question is identified as a rhetorical question and 0 otherwise.

6.6.2 Performance Evaluation

We now evaluate the performance of the algorithm using Accuracy, AUC, and F1

measure, and compare it with the baselines. We set the number of latent dimensions

I = 50. We randomly select 50% of the candidate questions for training and the rest

for testing, experimenting with different values of α and β. Later in the section, we
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will study the variation of the performance with the various values of the parameters

and training data size. We illustrate the results in Table 12.

From Table 12, we see that the baseline Topics shows an improvement over

the performance of the random assignment in both the datasets showing linguistic

characteristics are useful to identify rhetorical questions. The performance, however,

is worse than BOW. This indicates that there is not a large difference in the topics

of rhetorical questions and randomly sampled questions.

The algorithms InfoNeeds (Zhao and Mei, 2013) and Qweets (Li et al., 2011)

give a small improvement over BOW in both the datasets indicating that linguistic

characteristics for categorizing information seeking questions are not similar to the

characteristics of rhetorical questions. Hence, we need to use concepts unique to

rhetorical questions to identify them. The algorithm PrevMsg (Bhattasali et al.,

2015) gives an improvement over BOW in both the datasets, showing the importance

of contextual information for the identification of rhetorical questions.

The improvement by RhetId (SC) and RhetId (SS) in both the datasets

demonstrates that modeling motivations of users by utilizing specific relations of

the questions and it’s contextual guided by linguistic literature will better help in

identifying them. This also demonstrates the ability of the framework to model these

motivations. The significant improvement in RhetId (SC&SS) in both the datasets

shows that integrating motivations of rhetorical questions are useful for identifying

them in social media. It also shows that the two concepts supplement each other for

identifying rhetorical questions and the effectiveness of the framework for integrating

these concepts. A paired t-test showed that the method improves significantly over

the baselines in both the datasets.

In summary, the proposed framework significantly outperforms the baselines and

113



(a) AUC values for different
values of α and β for Dataset
1

(b) AUC values for different
values of α and β for Dataset
2

(c) Accuracy values for dif-
ferent values of α and β for
Dataset 1

(d) Accuracy values for dif-
ferent values of α and β for
Dataset 2

(e) F1 values for different val-
ues of α and β for Dataset 1

(f) F1 values for different val-
ues of α and β for Dataset 2

Figure 14: Performance of the framework for different values of α =
{0.1, 0.2, 0.5, 1, 2, 5, 10} and β = {0.1, 0.2, 0.5, 1, 2, 5, 10} for (a), (c), (e) Dataset
1 (b), (d), (f) Dataset 2. The framework is robust to the different values of the
parameters.

is useful in identifying rhetorical questions in social media in both the datasets. The

results show that modeling the motivations of the user to post rhetorical questions

drawing concepts from linguistic theories is useful in identifying them. In the next

section, we will examine the variation of the performance with different proportions

of information modeling the motivations of implying the message and modifying the

expressed sentiment.
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6.6.3 Evaluation of Robustness across Parameter Values

In the model presented in Eq. (6.8), α and β control the proportion of information

modeling the motivations of implying the message and modifying the expressed

sentiment respectively. To evaluate the framework for different proportions of two

motivations, we set α = [0.1, 0.2, 0.5, 1, 2, 5, 10] and β = [0.1, 0.2, 0.5, 1, 2, 5, 10] and

plot the values for AUC, Accuracy and F1 measure in Figure 14 for both the datasets.

We make the following observations from the figures.

From Figure 14, the general trend is that performance of the framework is main-

tained across different values of the parameters in both the datasets. This shows

that the performance is robust to various proportions of information modeling the

two motivations, indicating that effectiveness of the framework for integrating them.

The performance is higher when both α β have non-zero values in both the datasets

indicating that both motivations are important in identifying rhetorical questions. The

framework outperforms baselines for all combination of the parameters in both the

datasets demonstrating the effectiveness of the framework in modeling the motivations.

In summary, the framework performs well over different proportions of information

modeling topic similarity and sentiment shift and is robust to their variation. An

appropriate combination of information from the two motivations can optimize the

effectiveness of the framework for identifying rhetorical questions in social media.

6.6.4 Identification with Less Training Data

We now evaluate the variation of performance of the framework with different

proportions of training data for both the datasets. This experiment enables us to assess
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(a) AUC values for different
training data size for Dataset
1

(b) AUC values for different
training data size for Dataset
2

(c) Accuracy values for dif-
ferent training data size for
Dataset 1

(d) Accuracy values for dif-
ferent training data size for
Dataset 2

(e) F1 values for different
training data size for Dataset
1

(f) F1 values for different
training data size for Dataset
2

Figure 15: Performance of the framework for proportions of training data for (a), (c),
(e) Dataset 1 (b), (d), (f) Dataset 2. The algorithm performs well for sufficiently low
proportions of training data.
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the amount of training information required for the framework and the adaptability of

the framework when less amount of training information is available. This experiment

will also help assess the robustness of the framework for varying proportions of training

data. We use the training and testing data from the previous experiments. We train

the model with different percentages of the training data set from 10% to 90% in

steps of 10% and measure the performance of the framework keeping the testing data

constant. We illustrate the results in Fig 15 and make the following observations.

From Fig 15 we can say that more training data is beneficial for increasing the

performance of the framework in both the datasets. The framework outperforms

the nearest baseline (Li et al., 2011), for relatively low proportions for training data

(50%-60%), demonstrating that it performs well for sufficiently small training data

sizes. It is usually difficult to obtain the labels for rhetorical questions in social

media, and this shows that the framework can apply when the labels are few. The

performance shows consistent trends in all three metrics, showing that the framework

efficiently utilizes the training data points across two datasets to identify rhetorical

questions.

In summary, the results demonstrate that the framework can learn from a small

amount of training data in both the datasets, and it efficiently utilizes training data

to identify rhetorical questions in social media. The framework consistently performs

well across all proportions of training data and hence is robust to its variations.
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6.7 Further Applications of Identifying Rhetorical Questions

We now discuss the possible implications of identifying rhetorical questions in

social media data. We first focus on applications related to improving information

seeking systems and then discuss applications in studying social media campaigns.

One implication of our work is in developing better information seeking systems

in social media. People post questions in their status messages to request personal

information that is better obtained from their social circles (Morris et al., 2010). Social

media platforms provide timely information and hence is also used by people in the

search for time-critical information during natural disasters (Ranganath et al., 2015b).

Information seeking systems can be misled into identifying rhetorical questions as

genuine and try to find responses to them, leading to wastage of resources. Rhetorical

questions are categorized as conversational questions, and identifying responders to

them can initiate conversations and provide social support to users. One possible future

direction can concentrate identifying appropriate responders to rhetorical questions in

social media.

Social media is used in political campaigns owing to its broad reach and easy access.

Examples can be advocacy groups in election campaigns or attempts of radicalization

by groups like the ISIS (Guo and Saxton, 2013). Advocates of social media campaigns

adopt nuanced strategies of message construction to shape user opinion (Ranganath

et al., 2016). Rhetorical questions which can be disguised as a question, but employed

by users to state their views in a nuanced manner, can be useful for social media

campaigners. Rhetorical questions are important means of persuasion (Petty et al.,

1981), and algorithms for identifying them can play a crucial part in monitoring the

behavior of social media activists.
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6.8 Summary

We develop a framework to identify rhetorical questions by modeling the possible

motivations of the user for posting them. We focus on two motivations of the user, to

imply a message and strengthen or mitigate the degree of a statement he previously

made. We evaluate the framework on questions posted in Twitter and demonstrate

its effectiveness in identifying rhetorical questions in social media.
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Chapter 7

CONCLUSION AND FUTURE WORK

This chapter concludes the dissertation by summarizing the contributions of the

work and exploring possible future directions

7.1 Conclusion

Online social media provides a new platform for people seeking information, as it

enables them to reach out to a large number of people. However social media is not

designed for information seeking, leading to users not getting adequate responses for

their information needs. Designing algorithmic frameworks to facilitate information

seeking in social media can help users fulfill their resource needs and social media

platforms to increase their user satisfaction.

Facilitating information seeking in social media can give rise to several challenges.

Information needs to be expressed in social media are personal to the asker and

time-critical requiring prompt and satisfactory responses. The presence of people

who try to shape seekers perspective on political issues can hinder them from getting

balanced perspectives. Users can express viewpoints in the form of rhetorical questions,

and this can mislead resource seeking systems. To address these challenges, we design

an algorithmic framework to facilitate resource seeking in social media which makes

the following contributions; identifying suitable responders for personal, time-critical

requests; identifying users who push their agenda to shape user perspectives on a
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given campaign; filtering out questions which do not seek resources to enable systems

to better focus on genuine requests.

We draw from social foci theory to postulate that users who share context with

the asker in the question domain are suitable to answer personal questions. We

develop an algorithm to rank candidate responders according to their shared question-

related context with the asker and evaluate it on personal questions posted on

Twitter. We demonstrate its effectiveness in identifying responders to a wide range of

question categories, with shared context measured by integrating network and content

information.

Social media is a real-time platform and is hence used to seek information where

promptness of reply is of the essence. We propose criteria to estimate the time taken

for a user to respond to a question to identify responders who can provide timely and

relevant answers. Our algorithm integrates information related to the responder’s

future availability, past response behavior, and interests. We evaluate the algorithm

on the questions posted on Twitter during two natural disasters to demonstrate its

effectiveness in identifying responders to time-critical questions.

An important component of information seeking behavior is present to identify

advocates for political campaigns on social media. I characterize advocates through

their message strategies, propagation strategies, and community structure and propose

different characterizations based on them. I integrate heterogeneous information

derived from these diverse characterizations and demonstrate that the characterizations

can identify advocates effectively for political campaigns on social media. I also analyze

contributions of individual characteristic groups like message strategies, propagation

strategies, and community structure in identifying advocates.

Information seeking in social media goes hand in hand with users employing it
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to express their viewpoints through rhetorical questions. It is difficult to identify

rhetorical questions due to their similarity in syntactical form with other questions,

and therefore we propose an algorithm that modeling the possible motivations of

the user for posting them. We focus on two motivations of the user, to imply a

message and strengthen or mitigate the degree of a statement he previously made.

We demonstrate the effectiveness of the framework on questions posted on Twitter.

Through this systematic study on facilitating information seeking in social media,

I focus mainly on two aspects: proposing concepts which can help in identifying

responders who are most likely to satisfy personal, time-critical and financial requests

in online social media; and introducing notions capable of differentiating between

between genuine resource requests and rhetorical requests , which in turn, can increase

the efficiency of systems facilitating resource seeking.

7.2 Future Work

This work can be extended in the following future directions

7.2.1 Resource Seeking in Social Media Campaigns

Resource seeking plays a vital role in conducting campaigns conducted for crisis

response, elections and social issues. During emergencies, users have been shown to

propagate time-critical requests to their followers to increase its reach. Identifying

responders in such situations will require an understanding of the interplay between

information propagation and information-seeking behavior of social media users.

Identifying users who are providing a false response to questions will help to increase
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the effectiveness of social media as a quality information source during campaigns.

Analyzing different kinds of requests made by actors in a campaign can give insight

into their type of informational needs and hidden ambitions. Rhetorical questions are

a powerful tool and can be utilized by political and commercial entities to influence

the opinion of the users. Studying the effects of rhetorical questions on different sets

of users by social media campaigns will throw interesting insights into the ways in

which various social media users respond to persuasive techniques.

7.2.2 Facilitating Financial Requests

Facilitating financial requests has several challenges and provides ample oppor-

tunities for future research. Estimating social influence of contribution amounts by

taking network effects into consideration will provide insight into how contributors are

affected by the donation behavior of their neighbors. Incorporating features like teams,

contributor and request profile information to estimate amounts can further improve

the performance of the framework in identifying contributors for a given request.The

financial resources with each contributor are limited and lead to competition among

the requesters. Modeling the effect of competition among requesters for identifying

contributors will bring new insights on how people compete in a resource-constrained

environment. Moving beyond the problem of responder identification, identifying

borrowers who are prone to default and predicting them out at an early stage will

help in increasing the satisfaction of the contributors and increase their faith in the

platform.
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7.2.3 Analyzing Conversations in Social Media

Another area we can extend the work is to facilitate conversations in social media.

Conversations can be viewed as extensions of requests, where a large number of

people discuss together on a task that they need to fulfill or a topic in which they

have a different opinion. Identifying respondents who can help in different stages of

conversations can help in taking them forward and increase the rate of satisfactory

completion. Literature in dialog modeling is focused on formulating the next reply to a

two-person conversation with chatbots. Extending this to formulate responses to multi-

person conversations will help in bridging concepts of natural language conversations to

resource seeking in social media. Analyzing response to these rhetorical questions and

understanding the conversation dynamics driven by them is an interesting direction

of future work. Designing algorithms to identify potential responders to rhetorical

questions can help to increase user engagement in social media conversations.
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