
Group Mutual Exclusion - Role Processes

Karina M. Cenci and Jorge R. Ardenghi

Laboratorio de Investigación en Sistemas Distribuidos
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur
{kmc,jra}@cs.uns.edu.ar

Abstract. This paper presents an extension to group mutual exclusion
(GME) where processes join a group with a role (shared, exclusive) in
each stage. The properties that must guarantee a solution to GME are:
mutual exclusion, bounded delay, progress and concurrency. For this new
situation, a new property role mutual exclusion is introduced. A solution
is proposed in a network with no share memory whose members commu-
nicate by messages. The proposed algorithm is composed of two players:
groups and processes, where groups are passive players and processes are
active players. For the coordination access to the resource, each group
has been assigned a quorum.

Keywords: Mutual Exclusion - Group Mutual Exclusion - Concurrency -
Distributed Systems

1 Introduction

Applications use resources to give users service. These applications may require the
exclusive use of resources. The use of protocols that guarantee mutual exclusion pro-
vides a solution of this problem. Several authors proposed different options using the
shared-memory or message-passing model ([1], [2], [10], [3], [8]). In distributed sys-
tems, applications need resources too, but there may be two different options: some
processes compete and some processes collaborate to give users service. There may
also be another situation where a resource can be shared by processes with common
property, i.e., they belong to the same group or they will not be in conflict while us-
ing the resource. Processes with different properties must use the resource in exclusive
mode. For example, database applications require a mutual exclusion property for data
inserting operation and concurrency property for data selecting operation. This situ-
ation is similar to the readers-writers problem (multiple readers-single writer). This
type of problem is solved by using protocols that guarantee group mutual exclusion
(GME). Properties of mutual exclusion and concurrency are important at the time of
the design.

The GME problem was first presented by Joung [6]. The solution presented was an
asynchronous algorithm for shared memory parallel computer system. Several quorum-
based algorithms [7] [12] [9] have been proposed for asynchronous message passing. The
Manabe-Park [9] algorithm prevents the unnecessary blocking, defined as the case in
which two processes are prevented from entering a critical section simultaneously even

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 302

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15775547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

if they are capable of doing so. Singh-Su [11] proposed a solution to the region synchro-
nization problem (such as mutual exclusion, group mutual exclusion, readers/writers)
using messages and satisfying the property of absence of unnecessary blocking. In [5],
the proposed algorithm is a distributed solution to the problem of group mutual ex-
clusion coordination, considering that the processes require some time to share the
resource in a group with a maximum concurrency of n processes.

In this paper, we present an extension to the problem of group mutual exclusion.
The process selects a role (shared, exclusive) to join the group in a stage. For this
situation, a new property is introduced: role mutual exclusion.

2 Preliminaries - Base Model

Let be a set of n processes P0, P1, ..., Pn−1; a set of m groups G0, G1, ..., Gm−1 and
a unique, non shareable, resource among the m groups. The processes may work alone
or in cooperation with other processes in a group. Any of the n processes is able to
participate in a group. Only one group at a time is allowed to use the resource.

Initially each process works alone. When the process wants to work in a team,
it selects a group. Each process may select any of the different groups with a finite
working time in the team. Figure 1 shows an example of the relation between the
groups and the processes. Where P1, P2 and P7 are linked to the group G1, the latter
is active and has the permission to use the resource. That means that all the processes
are using the resource concurrently. Processes P0 and P8 are linked to the group G0

that is competing to gain access to the resource.

Resource

Groups

ProcessesP
0

P
0

P
0

P
1

P
1

P
2

P
2

P
7

P
7

G
0

G
1

G
m-1

P
8

P
8

P
n-1

P
n-1

Fig. 1. Example of Relation between the players

The model of two players, posed in [4], proposed a general solution to this problem
using two players: groups and processes. Figure 2 shows the communication between
the players. The processes are active players and the groups are passive players. The
relation between the players is temporary. When the player group is activated, the
competition to access the resource begins.

The design of a solution for this problem requires an algorithm that satisfies the
followings requirements.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 303

Player Processi Player Groupk

Selects

Ok

Finish

Fig. 2. Communication between the players

– Mutual Exclusion: if some process is in a group, then no other process can be in a
different group using the resource simultaneously.

– Bounded Delay: a process attempting to participate in a group will eventually
succeed.

– Progress: when the resource is available (the critical section is empty), and some
groups are waiting, one group gains access to the resource at some later point.

– Concurrent Entering: if some processes are interested in a group and there is no
other process interested in a different group, the processes can participate in the
group concurrently.

Gl Pi Pj Pk

Remainder Remainder Remainder Remainder

entry entry

entry

entry

exit

exit

exit

exit

Critical

Section

Fig. 3. Concurrency in group g

Figure 3 shows an example of concurrency among processes. Group Gl is in the
critical section; Pi, the first associated process to the group, and Pk access together
to the critical section. At the moment process Pj selects group Gl, the latter is in the
critical section and the first associated process (Pi) is still working. Then process Pj

can access without waiting and work concurrently.

3 Definition of GME-RP

This section presents a variation of GME defined as GME-RP (Group Mutual Exclusion
- Role Process).

Let be a set of n processes P0, P1, . . ., Pn−1; a set of m groups G0, G1, . . ., Gm−1

and a unique, non shareable, resource among the m groups. The processes may work

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 304

alone or in cooperation with other processes in a group. Every time that a process
works in cooperation, it selects a role to participate in the group.

The roles are exclusive and shared. The exclusive role means that a process requires
some time to use the resource exclusively with respect to other exclusive processes of
the same group and concurrently with shared processes. Examples that correspond to
this situation are the following. (1) In a virtual class, students participate in shared
role in the class and tutors in exclusive role. The virtual class is the group that all
members want to join. Some processes access the virtual class (resource) as student
role (shared role) and others as tutor role (exclusive role). (2) In a political debate,
candidates participate in exclusive role and the public in shared role. The political
debate is the group that all members want to join.

G
1

P
k

P
i

P
j

P
l

G
1

P
k

P
l

P
i

P
j

G
1

P
k

P
l

P
i

P
j

G
1

P
k

P
l P

i

P
j

Group Group

Group
Group

Processes Processes

Processes

Processes

(a)

(b)

(c)

(d)

rol E

rol E

rol E

ro
l E

ro
l S

ro
l S ro

l S

Fig. 4. Model

Initially, each process works alone. Figure 4 (a) shows this situation. When the
process wants to work in a team, it selects a role and a group. Each process may select
any of the different groups with a finite working time in the team. The selected role
depends of the activities of the process in the selected group for this stage. Figure 4 (b)
shows the case in which process Pk is linked to group G1 with rolE (exclusive role).

Figure 4 (c) shows process Pk with rolE and process Pi with rolS (shared role)
associated to group G1. Figure 4 (d) shows four associated processes to group G1,
where two processes, Pk and Pl, with rolE and two processes, Pi and Pj , with rolS.

A solution to this problem requires an algorithm that satisfies the requirements of
GME:

– Mutual Exclusion

– Bounded Delay

– Progress

– Concurrent Entering

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 305

– Role Mutual Exclusion

and the following,

– Role Mutual Exclusion: means that some process with exclusive role is in a group,
then no other process with exclusive role in the same group can be using the
resource simultaneously.

4 Model GME-RP

This section presents a model to solve the problem of GME-RP. The proposed pattern
is based on the model of two players. The behaviour of the players is introduced first
and then, a design of an algorithm applying these concepts.

The behaviour of the player process is the following:
- When the player process wants to participate in a group, it first specifies its role,

time and finally the group.
- The process waits until the group allows the access.
- When the process finishes, it realeses the group.

The behaviour of the player group is the following:
- The moment the player group becomes active, a time to use the resource is

assigned to it. This time is that of the first process.
- While the player group is waiting to access the resource (entry section)

. A request from a player process may arrive. The request is added to the
active queue. The group checks the process role of the request.
If it is shared, the group compares the duration of the process with its own
duration. If it is longer, it then sets the associated time to the maximum
duration of the new player process.
If it is exclusive, the group adds the duration of the process to its asso-
ciated time.

- While the player group is using the resource (critical section):
.A request from a player process may arrive. The group checks the process
role of the request.
If it is shared, the duration of this process is compared to the remainder
(group duration - elapsed duration). If it is not longer the group then adds
the request to the active queue and accepts it. Otherwise, this request is
added to the waiting queue until the next stage.
If it is exclusive, the duration of this process is added to the sum of the
duration of the requests with exclusive role of the active queue, and the
total is compared with the remainder (group duration - elapsed duration).
If it is not longer the group then adds the request to the active queue and
accepts it. Otherwise, this request is added to the waiting queue until the
next stage.

When the player group is in a critical section and a new request arrives, it does an
acceptance test (1).

(a) Shared Role tpodurnreq ≤ timegroup− tpouse

(b) Exclusive Role
∑

Req
j,E

∈LP

tpodurj + tpodurnreq ≤ timegroup− tpouse (1)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 306

where Reqj,E ∈ LP means all the accepted requests with exclusive role to use the
resource in this stage.

5 Algorithm GME-RP

The algorithm presented uses messages for the communication. In a distributed en-
vironment, we have to consider the communication time (delay time). We assume a
reliable network, with an estimated communication time tc, and a finite resource time
use. The communication time is necessary to adjust the remainder time, to accept or
not a new player process while the player group is in the critical section. We define the
following variables:

– tci,k: Delay estimation of the communication between group Gk and process Pi

– tpoduri: Process time associated to the group in a stage
– rolei: Process role associated to the group in a stage
– gtpok: Group time in a stage

Considering the defined variables, the acceptance test is the following:


(a) Shared Role tpoduri ≤ remaindertimek − tci,k

(b) Exclusive Role
∑

Req
j,E

∈LP

tpodurj + tpoduri ≤ remaindertimek − tci,k (2)

where remaindertimek = (gtpok - tpousek).
The process, in each stage, sends two messages to the group and receives one

message from the group.

– Req-Process (Gk, Pi, tpoduri, rolei): process Pi sends a request message to group
Gk to participate during a period tpoduri with rolei.

– Rep-Process (Gk, Pi): process Pi receives the reply to its request from Gk, that
allows access to the resource.

– Rel-Process (Gk, Pi): process Pi sends a message to group Gk to inform that the
period of time in the group has finished and it is unlinked.

The variables of group Gk are the following: state (Inactive, Active, CS, Exit),
LP: keeps information of all linked processes, LW: keeps information of all waiting
processes for the next stage, LG: keeps information of all waiting requests of lock,
gtpok: keeps the time to use the resource. The group communicates with the processes
and with other groups. The messages received from the process are:

– Req-Process(Gk, Pi, tpoduri, rolei) this message is received from a process. If the
group is Inactive then it changes its state to Active, adds the request to the LP
list and adjusts the group time (gtpok) to the process time (tpoduri).
If the group is Active the request is added, and obtains the request role. If the
role is exclusive, the group adds the duration of the process to its associated time.
If the role is shared, the group time is compared with the process time. If it is
shorter then it adjusts its current time to the process time.
If the group is in CS it obtains the request role. If the role is shared, the group
checks its remainder time with the process time. If it is longer, the group accepts

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 307

the request process, allows it to participate in this stage, and adds the request to
the LP list. Otherwise, the process has to wait for the next stage and adds the
request to the LW list. If the role is exclusive, the group checks its remainder time
with the sum of all pending requests duration with exclusive role in LP plus the
new request process duration. If it is longer, it accepts the process request, permits
it to participate in this stage, and adds the request to the LP list. Otherwise, the
process has to wait for the next stage and adds the request to the LW list.

– Rel-Process(Gk, Pi) this message comes from a process to release its link with the
group. The latter, obtains the request role and removes the request from the LP
list. If the LP list is empty, the group releases the resource. If there are waiting
processes in the LW list then the group begins a new stage.
If the LP list is not empty and there are pending requests with exclusive role, the
group allows one of them to access.

The messages received from the other groups are:

– Req-Group(Gl, priori) this message comes from group Gl that requires the lock. The
group Gk grants the lock if available. If the lock is not available two different cases
may occur: (a) The priority of the received message is less than the priority of the
message the lock has been given to. In this case the request is delayed. (b) If the
priority is higher it requests the lock from the appropriate group and grants it the
highest priority.

– Rec-Group(Gl, Gk) this message comes from group Gl, affirmative response to the
message Req-Group of requirement lock. If group Gk has all the locks,it changes
the state to CS, informs all the processes with shared role that are linked to the
group and allows the first request with exclusive role to access.

– Rel-Group(Gl, Gk) this message comes from group Gl requiring the lock. This will
be successful if group Gk is not in the critical section.

– Rep-Rel-Group(Gl, Gk) this message comes from group Gl releasing the lock that
was given to group Gk. The lock is granted the highest priority requirement.

– Lib-Group(Gl) this message comes from group Gl that releases the lock. If there
are outstanding requirements, it chooses the highest priority and grants the lock.

Figure 5 shows group Gk in CS, with its linked processes. The LP list shows the
processes ordered according to their arrival time. Processes P1, P2, P4 and P5 are
concurrently in CS. At x + 2, a new request from process P6 with exclusive role and
tpodur=4 arrives. Since the sum of the time of all exclusive requests is greater than
(gtpok − tpousek − t7,k) and the group is in the CS the process P7 has to wait for the
next stage.

The messages among the groups correspond to the competition to gain access to
the resource. The algorithm uses messages to obtain permission from the other groups.
Each group has an associated quorum (set of groups) to request permission of access.
To select the quorum, we use the Maekawa method [8]. The size of the quorum is

√
m,

where m is the number of groups. When the group obtains all the permissions the
resource can be used and this is informed to its associated processes.

5.1 Correctness and Complexity

In this section, we show the correctness of the proposed algorithm. The algorithm sat-
isfies the properties of mutual exclusion, progress, concurrent entering and role mutual
exclusion.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 308

Gk

gtpo
k

P1

P2

P4

P5

LP = {(P , 3, Exclusive),1 (P , 4, Shared), (P , 4, Exclusive), (P , 6, Shared), (P , 8, Shared)}

(P , tpodur , role).

gtpo = 8

2 3 4 5

i i i

k

x x+2

New Request (P , 4, Exclusive)
6

(a) Group CS - Request from Pk 6

Gk

gtpo
k

P1

P2

P4

P5

LP = {(P , 3, Exclusive),1 (P , 4, Shared), (P , 4, Exclusive), (P , 6, Shared), (P , 8, Shared)}

(P , tpodur , role).

gtpo = 8

2 3 4 5

i i i

k

x x+2

New Request (P , 4, Exclusive)
6

(b) Group CS - Request from P has to waitk 6

P3 P6

LW = {(P , 4, Exclusive)}6

Fig. 5. Group and Processes

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 309

Theorem 51 Role Mutual Exclusion satisfied the proposed algorithm.

For role mutual exclusion to be achieved, at most one process with exclusive role
should enter the critical section at any time. If group Gk is in CS and allows process
Pi with exclusive role to access, then it waits until Pi finishes to allow another process
(Pj) with exclusive role to access.

Theorem 52 The maximum number of processes associated to a group is n.

When each process makes a request for the same group simultaneously, all the
requests are added to the active queue. When the group grants the locks of its quorum,
it can access all the processes with shared role and one process with exclusive role
concurrently. If there is only one request with exclusive role then it can access the n
processes concurrently.

Theorem 53 The proposed algorithm ensures bounded delay.

Suppose a process Pi makes a request to group Gk and is waiting indefinitely. This
means that:

(a) Another group (Gl) stays indefinitely in the critical section. This situation
would happen if the arrival of all new processes are accepted. This is not possible
because, when a new request arrives and Gl is in critical section, the group performs
the acceptance test. If the test is fine, the group accepts the request for this stage.
Otherwise, it waits for the following stage.

(b) Gk waits indefinitely to access the critical section. Each group request has an
associated priority (Gk, priori). This priority will eventually be the highest and grants
the access to the critical section.

The complexity of an algorithm can be measured using different topics, like the
number of access to shared memory, the delay time between entries in the critical
section and the number of exchanged messages. The election of the measure depends on
the type of the algorithm. For this algorithm the complexity is measured in function of
the number of the messages requires. Let q = |Sk|. In the best case: If the group has one
associated process, it will require 3+3(q−1) messages; if it has l associated processes, it
will require 3l+3(q−1) messages. With the maximum number of processes associated,
n requests for the same group simultaneously, the algorithm requires 3n + 3(q − 1)
messages. If in average, each group has to yield once, the number of messages required
is 5(q− 1) to grant the permission. If each group has to yield the permission at most p
times, then it requires 3l + 3(q − 1) + 2p(q − 1) messages with l associated processes.

Conclusions

In this paper we proposed an extension of the group mutual exclusion problem, called
group mutual exclusion role process (GME-RP). The model for this problem considers
that processes have a role and an associated time to share the group. This should be
the time they will work cooperatively in the group in each stage. Designing a solution
to this problem requires satisfying the properties of GME and the role mutual exclusion
property.

A solution is presented using messages for the communication among processes and
groups. The groups have been assigned a quorum, that is used in the competition to
get the permission to access the resource. The algorithm guarantees the properties and
in the best case, with l processes linked, it requires 3l + 3(q − 1) messages.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 310

References

1. J. Anderson and Y. J. Kim. Adaptive mutual exclusion with local spinning. Pro-
ceedings of the 14th International Symposium on Distributed Computing, October
2000.

2. H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusion. Distributed
Computing, 15(3):177–189, 2002. Proceedings of 19th Annual ACM Symposium
on Principles of Distributed Computing, Julio 2000.

3. D. Barbara and H. Garćıa-Molina. Mutual exclusion in partitioned distributed
systems. Distributed Computing, 1:119–132, 1986.

4. K. M. Cenci and J. Ardenghi. Modelos dos actores para grupos de procesos. In
XIV Congreso Argentino de Ciencias de la Computación (CACIC 2008), 2008.

5. K. M. Cenci and J. R. Ardenghi. Group mutual exclusion based on priorities.
JCS&T, 11(1):21–26, April 2011.

6. Y. J. Joung. Asynchronous group mutual exclusion (extended abstract). In Pro-
ceedings of the 17th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC’98), pages 51–60, June 1998.

7. Y. J. Joung. Quorum-based algorithms for group mutual exclusion. IEEE Trans-
actions on Parallel and Distributed Systems, pages 463–476, May 2003.

8. M. Maekawa. A
√
N algorithm for mutual exclusion in decentralized systems.

ACM Transactions on Computer Systems, 3(2):145–159, May 1985.
9. Y. Manabe and J. Park. A quorum-based extended group mutual exclusion al-

gorithm without unnecessary blocking. In Proceedings of th Tenth International
Conference on Parallel and Distributed Systems, pages 341–348, 2004.

10. M. Raynal. Algorithms for mutual exclusion. Technical report, MIT Press, Cam-
bridge, MA, 1986.

11. Gurdip Singh and Ye Su. Efficient synchronization in message passing systems. In
22nd International Conference on Advanced Information Networking and Applica-
ciones, pages 219–226, 2008.

12. M. Toyomura, S. Kamei, and H. Kakugawa. A quorum-based distributed algorithm
for group mutual exclusion. In Proceedings of the Fourth International Conference
on Parallel and Distributed Computing, Applications and Technologies, pages 742–
746, 2003.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 311

