
A framework for implementing a Distributed

Intrusion Detection System (DIDS) with

interoperabilty and information analysis

Pablo Davicino⋆, Javier Echaiz, and Jorge Ardenghi

Laboratorio de Investigación de Sistemas Distribuidos (LISiDi),
Departamento de Ciencias e Ingenieŕıa de la Computación

Teléfono: +54 291 4595135, Fax: +54 291 4595136
Universidad Nacional del Sur, Bah́ıa Blanca (8000), Argentina

{pmd,je,jra}@cs.uns.edu.ar,
WWW home page: http://lisidi.cs.uns.edu.ar

Abstract. Computer Intrusion Detection Systems (IDS) are primarily
designed to protect availability, condentiality and integrity of critical
information infrastructures. A Distributed IDS (DIDS) consists of sev-
eral IDS over a large network(s), all of which communicate with each
other, with a central server or with a cluster of servers that facilitates
advanced network monitoring. In a distributed environment, DIDS are
implemented using cooperative intelligent sensors distributed across the
network(s). A significant challenge remains for IDS designers to combine
data and information from numerous heterogeneous distributed agents
into a coherent process which can be used to evaluate the security of the
system. Multisensor data sensing, or distributed sensing, is a discipline
used to combine data from multiple and diverse sensors and sources in
order to make inferences about events, activities and situations. Today,
common environments consists in large networks of high bandwidth. In
these scenarios the amount of data produced by the sensors is extremely
large so the efficient processing becomes a critical factor.
In this article we propose a framework that aims to achieve the inter-
operability of the diverse heterogeneous agents that compose the typical
infrastructure of a DIDS. Also, we address the alert aggregation and
correlation problem proposing an alert processing software pipeline.

Keywords: distributed intrusion detection, alert correlation, alert ag-
gregation, security.

1 Introduction

An Intrusion Detection System (IDS) aims to solve the problem of identifying
unauthorized use, misuse or abuse of computer system resources by both system
insiders and external penetrators. Today the huge proliferation of heterogeneous

⋆ Partially supported by Comisión de Investigaciones Cient́ıficas (CIC) de la Provincia
de Buenos Aires.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 221

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15775507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

computer networks provides an additional complexity for the intrusion detection
problem. The high availability of connectivity and the lower cost of such com-
munications, gives greater access to outsiders and makes it easier for intruders
to avoid detection.

IDS’s attempt to identify intruders based of the concept that their behavior
is noticeably different from that of a legitimate user. Early in the research, two
major principles known as anomaly detection [6, 9] and signature detection [8,
13] had been explored. The former tries to flag all behaviour that is abnormal
for an entity, by building models of normal data and detecting deviations from
the normal model in observed data. The latter works by flagging behaviour that
is close to some previously defined pattern signature of a known intrusion.

The problem with the first approach relies in the fact that is complex to
design a model that can recognize fairly the boundaries between the normal
and abnormal behaviour. As a result, the system does not necessarily detect
undesirable behaviour, and the false alarm rates can be high. The flaw with
the second approach is its inability to detect intrusions that have not yet been
made known by the intrusion detection system. Also, the efficiently of the system
depends on continuous updates of the signature database.

In a Distributed Intrusion Detection System (DIDS) [14] conventional intru-
sion detection techniques are embedded inside inteligent agents that are deployed
over a large network. In a distributed enviroment IDS agents (sensors) commu-
nicate with each other in a cooperative scheme. Distributed monitoring allows
early detection of planned and coordinated attacks, thereby allowing Security
Administrators (or the system itself) to take preventive and proactive measures.
Different sensors can measure distinct features of network traffic or system activ-
ity, providing fundamentally different information wich can be used to improve
intrusion detection capabilities. Clearly there is a need for tools and techniques
for aggregate and combine the outputs of multiple IDSs, filter out incorrect alerts
and provide a high level view of the security state of the system being protected.

To address this issue researchers have proposed alert correlation [16], an
analysis process that takes the alerts generated by IDS agents and produces
compact reports on the security status of the components under surveillance. In
the real world, each sensor generates a lot of information. In this scenarios actual
alerts could be mixed with false alerts and the amount of information becomes
rapidly unmanageable. Although a number of correlation approaches have been
suggested, there is no consensus on what this process is or how it should be
implemented and evaluated. In particular, existing correlation schemes operate
on only a few aspects of the correlation process. As a result, it is not clear if and
how different parts of the correlation process contribute to the overall goals of
correlation.

In this paper we propose a simple framework that aims to achive the in-
teroperability of the heterogenous agents that typically compose a DIDS. We
describe the inherent problematics of such distributed environment, such as the
high rate of generation of alerts and false positives. In this context we propose
a processing pipeline for alert aggregation, correlation and analysis.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 222

The remainder of this paper is structured as follows: Section 2 shows the
background for our research, summarizing the related work in the field of DIDS
and alert processing. Section 3 presents a prototype to implement a DIDS com-
posed of heterogeneous IDS agents, addressing the problems of alert aggregation
and correlation by proposing a technique for their processing. Section 4 describes
the general architecture of the system and the testing results. Finally the paper
is ended with the conlusion and future work in Section 5.

2 Related Work

In the last decade security in computing, and in particular intrusion detection,
have become an important topic of widespread interest in academic research area
and industry. Several approaches to intrusion detection and alert correlation have
been proposed. Our work is related to work by Cuppens, Ortalo and Lambda [3],
Cuppens [2], Debar and Wespi [5], Morin, Mé, Debar and Ducassé [11], Valdes
and Skinner [16].

All the schemes performs some sort of analysis on the data. Cuppens [2] uses
a central database for alert aggregation and analysis, using a similarity-based
technique. Valdes and Skinner also develops a similarity-based technique, using
a probabilistic approach to perform correlation of output data from mutiple
agents, relying in the concept of threads to mantain links between alerts. Debar
and Wespi uses features in the Tivoli Enterprise Console to perform correlation,
and focus on the abilities of a management system to reduce the amount of data
presented to a Security Administrator. The overall system relies in a pre-defined
attack scenario. This technique utilizes the fact that intrusions often require
several actions to take place in order to succeed. Low-level alerts are compared
against pre-defined attack scenario before the alerts can be correlated.

Our work, by comparison focuses on a simple framework which aims to pro-
duce practical and efficient alert correlation across heterogeneous intrusion de-
tecion sensors. In this context, interoperability is critical in order to provide a
proper base for information sharing among sensors and possibily other system
security components . In particular, correlation provides us with the potential
ability to see beyond the actual alerts themselves, and determine trends, recog-
nize patterns, and infer relationships between alerts in a distributed enviroment.

3 Prototype for Heterogeneous IDSs Interoperability

As organizations deploy multiple intrusion detection sensors at key points in
their networks, the effectiveness of the correlation process becomes critical. The
main objective of the correlation process is to produce a reduced and precise
overview of the security related activity on the network. Correlation is espe-
cially advantageous when heterogeneous sensors are employed because of the
potential to aggregate different views of the same incident. To facilitate inter-
operability of diverse sensors, the Internet Engineering Task Force (IETF) has

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 223

developed a standard format, called Intrusion Detection Message Exchange For-
mat (IDMEF), allowing sensors to generate messages in an XML syntax [4].

3.1 Alert Normalization

The first step in alert correlation is the normalization process. The goal of the
alert normalization component is to translate all attributes in each sensor alert
in a common format. In this way, information from heterogeneous agents can
be aggregated and correlated. Due the advantages and widespread utilization of
XML format, in our approach we choose the IDMEF as the tool for formalizing
the output data generated by each sensor. Figure 1 shows an example of an alert
IDMEF message.

In this way we model the alert correlation mechanism as a multicomponent
process, that receives as input a stream of alerts from multiple heterogeneos
intrusion detection systems. Today, mostly all IDSs systems academic or com-
mercial like Snort [13] or Prelude [17, 1] generates output alert information in
IDMEF format. For this reason we assume that there is no need to map the IDS
output to IDMEF. In our test we particulary deploy multiple Snort sensors over
networks under our domain. Each sensor has the Snort IDMEF plugin which
generates output data in IDEMF XML format.

<?xml version= ' 1 .0 ' encoding= 'UTF−8 ' ?>
< !DOCTYPE IDMEF−Message PUBLIC

'−//IETF//DTD RFC XXXX IDMEF v1 .0//EN '
' idmef−message . dtd '>

<IDMEF−Message>
<Alert ident= ' some ID '>

<Analyzer model= ' some IDS Analyzer ' />
<CreateTime ntpstamp= ' 0 xc28859cf . 0 x0 '>

2011−06−05−T13:23:12Z
</CreateTime>
<Target>

<Node>
<name>some node</name>

</Node>
</Target>
<Addit ionalData meaning= ' some data ' type= ' s t r i n g '>

value
</Addit ionalData>

</Aler t>
</IDMEF−Message>

Fig. 1. Example IDMEF alert.

3.2 Alert Aggregation and Reduction

The goal of the alert aggregation process is to group together alerts using sim-
ilarity metrics. We use as metrics simple factors such as timestamps, IDS type,

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 224

IP matches and alert classification. After determining which alerts can be group
together, we remove redundant alerts. An alert is considered redundant if it not
match with a predefined criteria. A criteria could be quite simple, such as ingor-
ing certain kind of message from a particular sensor, or could have a complex
logic that analizes the actual state of the components involved.

Actually, our implementation only support static criteria specified as a con-
figuration parameter of the aggregation component. To specify the criteria we
choose to deploy a syntax similar to SQL or LINQ [10]. For example, is common
to private LAN Network IDS (NIDS) capture a lot of ARP or ICMP traffic that
not represent an attack (false positives). In this context, if we want to ignore
the alerts of pings captured by LAN NIDS sensor \snort lan" the aggregation
component could be parametrized as as indicated in the following pseudocode:

param← FROM sensornode=‘snort lan’ WHERE class LIKE = ‘Ping*’
insert criteria(param)

Additional examples could be alerts not appropriate for the environment,
such as Internet Information Services attacks on an Apache web server, or du-
plicate alerts. In either case, the goal is to remove information that is definitely
not relevant.

3.3 Alert Correlation

With alerts reduced to a more relevant and manageable subset, the next step is
determine wich alerts may be correlated. Intrusion correlation refers to the in-
terpretation, combination and analysis of information from all available sources
about the target system activity for the purpose of intrusion detection and re-
sponse. The goal of the correlation process is to combine alerts that represent
the independent detection of the same attack ocurrence by different intrusion
detection agents. In fact, in our model the data can be collected from various
sources, like firewalls, web server logs, NIDS, Host IDS (HIDS) and so on. The
correlation of alerts produced by heterogeneous resources can provide a number
of potential advantages. The only requisite is that the data are expressed in
IDMEF format.

The decision to fuse two alerts is based on time, source IP, target IP, ports,
name and classification. In principle could be virtually any field deemed rele-
vant in determining an attack. Following the idea presented in [7] we develop
a sliding-window mechanism to fuse alerts. The alerts within the time window
are stored in a queue, which is maintained in order in a time basis using the
timestamp associated to each alert. Like the aggregation criteria, the window
size is represented as a parameter passed to the correlation component:

param← SET INTERVAL timestamp1 TO timestamp2
insert wsize(param)

Where each timestamp conforms the time attributes specified by IDMEF.
When a new alert arrives, it is compared to the alerts in the queue starting

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 225

with the alert with the earliest timestamp. A match is found if the overlaping
attributes are equal. Upon finding a match, a new alert is generated as a result
of the merging of the original alerts. We call this new alert hyper-alert. The
merged alerts are assumed to be related to the same attack, so the timestamp
of the hyper-alert is assigned the earlier of both start-times and end-times. The
attributes fields of this new alert are set to the union of the values of the re-
spective alerts attributes. Later a new alert can be merged with the fused alerts,
generating in this way a new hyper-alert.

When the time difference between the oldest and the newest alert in the
queue exceeds the specified window size, the older alerts are removed from the
queue and passed to the data analysis component. In our experiments, at this
point we realized the importance of the window size. A value that is too low cause
related alerts to escape the merge process, while a value that is too high caused
unrelated alerts to be fused. Following the approach, different time windows and
queues could be used to correlate different types of attacks. In particular, we
found interesting the use a narrow time window to detect duplicate alerts. In
our experiments we choose an interval between 1 and to 2 seconds to detect
duplicate alerts. Table 1 shows the result of the fusion of two alerts in a hyper-
alert as a result of a port scanning attack. In this case the sliding window is set to
1.5 seconds. The columns named “Start” and “End” represent the timestamps
of the alerts. For simplicity we represent them as decimal numbers but they
are internally stored in the IDMEF format (eg 2011-06-07T18:23:00-02:00). The
pseudocode of the merging process is as follows:

function merge(alert1, alert2):alert
hyper alert ← new alert()
hyper alert.id ← get alert id() ▷ gets a globlal unique id
hyper alert.start time ← min(alert1.start time, ▷ minimum time value

alert2.start time)
hyper alert.end time ← min(alert1.end time,

alert2.end time)

for i = 1 to alert.attributeCount do ▷ generates the attributes
if (attr.name ̸= start time) ▷ of the hyper-alert

and (attr.name ̸= end time) then
hyper alert.attr ← alert1.attr ∪ alert2.attr

end if
end for
return hyper alert

end function

3.4 Data Analysis

At this point the system must extrapolate from the obtained set of data either to
determine events that may have occurred , or would be likely to occur. Clearly

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 226

Table 1. Example of alert fusion in a simple port scanning attack.

AlertID Classification Agent Start End Source Target

15 Simple Portscan snort sen1 17.5 19.1 190.11.12.1 192.168.15.33
17 Simple Portscan snort sen2 17.4 19.2 190.11.12.1 192.168.15.33
23 Hyper-Alert {15, 17} 17.4 19.1 190.11.12.1 192.168.15.33

this process uses more complex logic than does the correlation component, but
the same general principles apply. The principal difference is that an induction
process is used to extrapolate or interpolate information from the dataset ob-
tained, rather than simply determine relationships. Examples of this could be
predicting the next step of an attack, deducing missing components, or creating
attack scenarios as suggested in [12, 18].

In our current prototype the induction component has not been implemented
yet. Instead of it, the information gathered as output from the correlation pro-
cess is presented to the Security Administration in a format similar to Table 1.
This information could help the Security Administrator to infer the intention or
presence of an attack.

4 Architecture and Testing

As pointed out in Section 3, the schema for reach an interoperability between het-
erogeneous intrusion detection agents, contains several components structured
as a software pipeline as shown in Figure 2. In a similar way the next subsec-
tion describe the general architecture of the system and the components used to
testing it.

4.1 Architecture

The architecture of the prototype consists in three major components: the IDS
Sensors, the Processing Unit and and the Administrative Tool. Figure 3 shows
the interaction between the components. We choose a simple architecture with
the aim to meet the goals of simplicity and efectiveness in the integration process
between applications.

Fig. 2. Alert processing pipeline.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 227

Fig. 3. System Architecture.

Alert Sensor. The alert sensor (agent) captures information about the
resources that is monitoring. In the case of NIDS, the information is about
the network activity in some specific segment. On the other hand, HIDS
gather data about local activity in a host. As we pointed out in Section
3.1, we assume that each component generates output data in normalized
IDMEF format. In this way, further monitoring components could be easily
added to the system.

Processing Unit. The processing unit is the core of our prototype. It con-
tains the software pipeline showed in Figure 2. As the data left the IDS
agents, it enters in the processing unit which forward them to the first stage
of the pipe. At the same time, the processing unit is responsible of the alert
storage. As alerts left the queues described in Section 3.3, they are buffered
for storage in a relational database. Some IDS such Snort has special plu-
gins that can interact directly with a database like MySQL. Snort defines
a database schema with a set of tables to store the information generated
by each sensor. Datamining techniques like [15] can be used with the stored
information to perform further data analysis.

Administrative Tool. This component is represented by an application
that allows the Security Administrator to gain access to the output data
generated by the processing pipeline, and the information stored in the re-
lational database. The application also allows to monitor the real-time state
of each sensor and to adjust the parameters presented in Sections 3.2 and
3.3. Finally the application represents the interface between the administra-

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 228

tor and the database, allowing to perform tasks like delete records, merge
alerts, change alert data and add aditional information.

4.2 Testing

We developed a testing procedure using two Snort sensors deployed over a in-
ternal network inside our laboratory. Each sensor runs over an Ubuntu Server
10.04 LTS x64 in a virtualized enviroment provided by a Citrix Xen Server. Each
server also runs a MySQL database for storage information about both alert ID-
MEF and unified output data generated by Snort. In the latter case, we use the
Snort Barnyard plugin.

At this point our work is in this initial phase, so our tests focus only in
the deployment and debugging of our architecture. Besides the normal traffic
produced by our own machines in all day working, there is no additional traffic
in the internal network. With that dynamic and simple port scan attacks, we
saw and efficient processing and correlation of alerts detecting effectively the
threat. Also by parametrizing the system, we observate the reduction of the
false positives, mainly produced by ICMP and ARP traffic.

In a second phase, is our intention to test the system with known data sets
of alerts, as Defcon. The final test will be the deployment of the sensors over a
public network.

5 Conclusions and Future Work

In this paper we describe a framework for the interoperability of heterogeneous
IDS agents in the implementation of a Distributed Intrusion Detection System
(DIDS). We highlight the principal issues when dealing with multiple IDS agents
depoyed over a distributed enviroment. We address the aggregation, correlation
and reduction problems over a software processing pipeline, and we present the
typical architecture of the system.

We believe that the simplicity of our approach is the key for the success, due
to it facilitates the integration of external components and applications. Also, we
believe that our work is in its initial phase with a lot of future work to do. In this
context, we contemplate the implementation of an overlay network to distribute
the information generated by the multiple IDS agents in the system. Turn we
want to develop a several interfaces to the Normalization module. In this way, we
relax the limitation that every agent in the systems generates output in IDEMF
format. In this way each vendor could produce their own raw data and interface
with first stage of the pipeline to make the mapping.

Finally, we believe that will be a key point of our implementation develop
the dynamic nature of the sliding window parameter. We contemplate future
research of datamining techniques to analize further the information stored in
multiple distributed databases inside the system.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 229

References

1. Blanc, M., Oudot, L., Glaume, V.: Global intrusion detection: Prelude hybrid ids.
Tech. rep. (2003)

2. Cuppens, F.: Managing alerts in a multi-intrusion detection environment. Com-
puter Security Applications Conference, Annual 0, 0022 (2001)

3. Cuppens, F., Ortalo, R.: Lambda: A language to model a database for detection of
attacks. In: Debar, H., M, L., Wu, S. (eds.) Recent Advances in Intrusion Detection,
Lecture Notes in Computer Science, vol. 1907, pp. 197–216. Springer Berlin /
Heidelberg (2000)

4. Curry, D., Debar, H.: Intrusion detection message exchange format data model and
extensible markup language (xml) document type definition. Intrusion Detection
Working Group (January 2003)

5. Debar, H., Wespi, A.: Aggregation and correlation of intrusion-detection alerts.
In: In Recent Advances in Intrusion Detection, LNCS 2212. pp. 85–103. Springer-
Verlag (2001)

6. Denning, D.E.: An intrusion-detection model. IEEE TRANSACTIONS ON SOFT-
WARE ENGINEERING 13(2), 222–232 (1987)

7. Eskin, E.: Modeling system calls for intrusion detection with dynamic window sizes.
In: In Proceedings of DARPA Information Survivabilty Conference and Exposition
II (DISCEX (2001)

8. ah Kim, H.: Autograph: Toward automated, distributed worm signature detection.
In: In Proceedings of the 13th Usenix Security Symposium. pp. 271–286 (2004)

9. Lazarevic, A., Ozgur, A., Ertoz, L., Srivastava, J., Kumar, V.: A comparative study
of anomaly detection schemes in network intrusion detection. In: In Proceedings
of the Third SIAM International Conference on Data Mining (2003)

10. Meijer, E., Beckman, B., Bierman, G.: Linq: reconciling object, relations and xml
in the .net framework. In: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data. pp. 706–706. SIGMOD ’06, ACM, New York,
NY, USA (2006)

11. Morin, B., Mé, L., Debar, H., Ducassé, M.: A logic-based model to support alert
correlation in intrusion detection. Inf. Fusion 10, 285–299 (October 2009)

12. Ning, P., Cui, Y., Reeves, D.S.: Constructing attack scenarios through correlation
of intrusion alerts. In: In Proceedings of the 9th ACM conference on Computer
and communications security. pp. 245–254 (2002)

13. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings
of the 13th USENIX conference on System administration. pp. 229–238. LISA ’99,
USENIX Association, Berkeley, CA, USA (1999)

14. Shetty, P.: DISTRIBUTED INTRUSION: Detection Systems. VDM Verlag, Saar-
brucken, Germany, Germany (2010)

15. Vaarandi, R.: Real-time classification of ids alerts with data mining techniques. In:
Proceedings of the 28th IEEE conference on Military communications. pp. 1786–
1792. MILCOM’09, IEEE Press, Piscataway, NJ, USA (2009)

16. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., M, L., Wespi,
A. (eds.) Recent Advances in Intrusion Detection, Lecture Notes in Computer
Science, vol. 2212, pp. 54–68. Springer Berlin / Heidelberg (2001)

17. Zaraska, K.: Prelude ids: current state and development perspectives. Tech. rep.
(2003)

18. Zhu, B., Ghorbani, A.A.: Alert correlation for extracting attack strategies. Inter-
national Journal of Network Security 3, 244–258 (2006)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 230

