
Reasoning with Inconsistent Ontologies in

Possibilistic Defeasible Logic Programming

Sergio A. Gómez†, Carlos I. Chesñevar†‡, and Guillermo R. Simari†

†Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur
Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

Email: {sag,cic,grs}@cs.uns.edu.ar
‡Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. We present a preliminary framework for reasoning with pos-
sibly inconsistent Description Logic ontologies in Possibilistic Defeasible
Logic Programming. A case study is presented where we show how the
proposed approach works. The proposal presented is apt for being used
in the context of Semantic Web ontologies as it can be applied to the
Web Ontology Language OWL.

1 Introduction

The Semantic Web (SW) [1] is a vision of the Web where resources have precise
meaning defined in terms of ontologies. The Web Ontology Language (OWL) [2]
whose semantics is based on Description Logics [3] is the de facto standard for
the SW. Agents in the SW are supposed to reason over web resources by using
standard reasoning systems, thus being able to compute an implicit hierarchy
of concepts defined in an ontology and then checking the membership of indi-
viduals to those concepts. Over the last few years an alternative approach to
reasoning with ontologies called Description Logic Programming (DLP) [4] has
gained interest. The DLP approach relies on translating DL ontologies into the
language of logic programming, so standard Prolog environments can be used to
reason on them.

A possible anomaly in ontologies is inconsistency. An inconsistency is charac-
terized by a logical contradiction. Inconsistencies in ontologies prevent standard
reasoners from obtaining conclusions. Normally, this situation renders an ontol-
ogy useless unless the knowledge engineer debugs it (i.e., repairs the ontology
for making it consistent). As the knowledge engineer could not be available,
alternative approaches to automatically repairing the ontology consist of using
Belief Revision [5] techniques to either extract a maximally consistent subset
of the ontology or discard a minimally inconsistent subset of the ontology. Yet
another approach consists of using a non-standard reasoning mechanism for ac-
cepting inconsistency and just dealing with it (for instance using Paraconsistent

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 181

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15775503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Logics [6]). In this line of work, Gómez et al. [7] have applied defeasible argumen-
tation (in particular Defeasible Logic Programming [8]) to reason with possibly
inconsistent ontologies.

Possibilistic Defeasible Logic Programming (P-DeLP) [9] is a logic program-
ming language which combines features from argumentation theory and logic
programming, incorporating as well the treatment of possibilistic uncertainty
and fuzzy knowledge at object-language level. In this article, we show a prelim-
inary approach to reason with possibly inconsistent DL ontologies in P-DeLP.
For this we define the concept of weighted DL ontology which is an ontology
whose axioms have given numerical weights indicating their degree of certainty,
then the ontology can be interpreted as a P-DeLP program.

Outline: In Section 2, we present the fundamentals of Description Logics. Sec-
tion 3 reviews the fundamentals of Possibilistic Defeasible Logic Programming.
In Section 4, we introduce a framework for reasoning with possibly inconsistent
weighted ontologies in P-DeLP. Finally, Section 5 concludes.

2 Fundamentals of Description Logics

Description Logics (DL) [3] are a family of knowledge representation formalisms
based on the notions of concepts (unary predicates, classes) and roles (binary
relations) that allow to build complex concepts and roles from atomic ones. Let
C,D stand for concepts, R for a role and a, b for individuals. Concept descrip-
tions are built from concept names using the constructors conjunction (C �D),
disjunction (C �D), complement (¬C), existential restriction (∃R.C), and value
restriction (∀R.C). To define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as binary relations over
this domain. Further extensions are possible including inverse (P−) and tran-
sitive (P+) roles. A DL ontology consists of two finite and mutually disjoint
sets: a Tbox which introduces the terminology and an Abox which contains facts
about particular objects in the application domain. Tbox statements have the
form C � D (inclusions) and C ≡ D (equalities), where C and D are (possibly
complex) concept descriptions. Objects in the Abox are referred to by a finite
number of individual names and these names may be used in two types of as-
sertional statements: concept assertions of the type a : C and role assertions of
the type �a, b� : R.

A knowledge representation system based on DL is able to perform specific
kinds of reasoning, its purpose goes beyond storing concept definitions and as-
sertions. As a DL ontology has a semantics that makes it equivalent to a set
of axioms of first-order logic, it contains implicit knowledge that can be made
explicit through inferences. Inferences in DL systems are usually divided into
Tbox reasoning and Abox reasoning. In this paper we are concerned only with
Abox reasoning, more precisely with instance checking [3]. Instance checking
consists of determining if an assertion is entailed from an Abox. For instance,
T ∪ A |= a : C indicates that the individual a is a member of the concept C
w.r.t. the Abox A and the Tbox T .

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 182

3 Possibilistic Defeasible Logic Programming

The P-DeLP [9] language L is defined from a set of ground fuzzy atoms (fuzzy
propositional variables) {p, q, . . .} together with the conectives {∼,∧,←}. The
symbol ∼ stands for negation. A literal L ∈ L is a ground (fuzzy) atom ∼ q,
where q is a ground (fuzzy) propositional variable. A rule in L is a formula of
the form Q← L1 ∧ . . . ∧ Ln, where Q,L1, . . . , Ln are literals in L. When n = 0,
the formula Q ← is called a fact. The term goal will refer to any literal Q ∈ L.
Facts, rules and goals are the well-formed formulas in L.

Definition 1 (Certainty-weighted clause). A certainty-weighted clause, or
simply weighted clause, is a pair (ϕ, α), where ϕ is a wff in L and α ∈ [0, 1]
expresses a lower bound for the certainty of ϕ in terms of a necessity measure.

The original P-DeLP language is based on Possibilistic Gödel Logic or PGL,
which is able to model both uncertainty and fuzziness and allows for a par-
tial matching mechanism between fuzzy propositional variables. For simplicity,
Chesñevar et al. [9] restrict themselves to the fragment of P-DeLP built on
non-fuzzy propositions, and hence based on the necessity-valued classical propo-
sitional Possibilistic logic. As a consequence, possibilistic models are defined
by possibility distributions on the set of classical interpretations and the proof
method for P-DeLP formulas, written �, is defined based on the generalized
modus ponens rule:

(L0 ← L1 ∧ . . . ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)
(L0,min(γ, β1, . . . , βk))

which is a particular instance of the possibilistic resolution rule, and which pro-
vides the non-fuzzy fragment of P-DeLP with a complete calculus for determining
the maximum degree of possibilistic entailment for weighted literals.

In P-DeLP certain and uncertain clauses can be distinguished. A clause
(ϕ, α) is referred as certain if α = 1 and uncertain otherwise. A set of clauses Γ
is deemed as contradictory, denoted Γ � ⊥, whenever Γ � (q, α) Γ � (∼ q, β),
with α > 0 and β > 0, for some atom in L. A P-DeLP program is a set of
weighted rules and facts in L in which certain and uncertain information is
distinguished. As an additional requirement, certain knowledge is required to be
non-contradictory. Formally:

Definition 2 (Program). A P-DeLP program P (or just program P) is a pair
(Π,Δ), where Π is a non-contradictory finite set of certain clauses, and Δ is a
finite set of uncertain clauses.

Definition 3 (Argument. Subargument). Given a program P = (Π,Δ), a
set A ⊆ Δ of uncertain clauses is an argument for a goal Q with necessity degree
α > 0, denoted �A,Q, α�, iff: (i) Π∪A � (Q,α); (ii) Π∪A is non-contradictory,
and (iii) there is no A1 ⊂ A such that Π∪A1 � (Q, β), β > 0. Let �A, Q, α� and
�S, R, β� be two arguments, �S, R, β� is a subargument of �A, Q, α� iff S ⊆ A.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 183

Conflict among arguments is formalized by the notions of counterargument
and defeat.

Definition 4 (Counterargument). Let P be a program, and let �A1, Q1, α1�
and �A2, Q2, α2� be two arguments in P. We say that �A1, Q1, α1� counterargues
�A2, Q2, α2� iff there exists a subargument (called disagreement subargument)
�S, Q, β� of �A2, Q2, α2� such that Π ∪ {(Q1, α1), (Q, β)} is contradictory. The
literal (Q, β) is called disagreement literal.

Defeat among arguments involves a preference criterion on conflicting argu-
ments, defined on the basis of necessity measures associated with arguments.

Definition 5 (Defeat). Let P be a program, and let �A1, Q1, α1� and �A2, Q2, α2�
be two arguments in P. We will say that �A1, Q1, α1� is a defeater for �A2, Q2, α2�
iff �A1, Q1, α1� counterargues argument �A2, Q2, α2� with disagreement subargu-
ment �A, Q, α�, with α1 ≥ α. If α1 > α then �A1, Q1, α1� is called a proper
defeater, otherwise (α1 = α) it is called a blocking defeater.

Definition 6 (Argumentation line). An argumentation line λ starting in an
argument �A0, Q0, α0� is a finite sequence of arguments [�A0, Q0, α0�, �A1, Q1, α1�,
. . . , �An, Qn, αn�, . . .] such that every �Ai, Qi, αi� defeats �Ai−1, Qi−1, αi−1�,
for 0 < i ≤ n, satisfying certain dialectical constraints (see below). Every argu-
ment �Ai, Qi, αi� in λ has level i. We will distinguish the sets

Sk
λ=

�

i=0,2,...,2�k/2�){�Ai, Qi, αi� ∈ λ} and Ik
λ=

�

i=1,3,...,2�k/2�+1){�Ai, Qi, αi� ∈ λ}

associated with even-level (resp. odd-level) arguments in λ up to the k-th level
(k ≤ n).

An argumentation line can be thought of as an exchange of arguments be-
tween two parties, a proponent (evenly-indexed arguments) and an opponent
(oddly-indexed arguments). In order to avoid fallacious reasoning, argumenta-
tion theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable w.r.t. a P-DeLP program P , namely:

1. Non-contradiction: given an argumentation line λ of length n the set Sn
λ

associated with the proponent (resp. Inλ for the opponent) should be non-
contradictory w.r.t. P .

2. No circular argumentation: no argument �Aj , Qj , αj� in λ is a sub-argument
of an argument �Ai, Qi, αi� in λ, i < j.

3. Progressive argumentation: every blocking defeater �Ai, Qi, αi� in λ is de-
feated by a proper defeater �Ai+1, Qi+1, αi+1� in λ.

To determine whether a given argument is ultimately undefeated (or war-
ranted) w.r.t. a program P , the P-DeLP framework relies on an exhaustive di-
alectical analysis. Such analysis is modeled in terms of a dialectical tree:

Definition 7 (Dialectical tree). Let P be a program, and let �A0, Q0, α0� be
an argument w.r.t. P. A dialectical tree for �A0, Q0, α0�, denoted T�A0, Q0, α0�,
is a tree structure defined as follows:

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 184

1. The root node of T�A0, Q0, α0� is �A0, Q0, α0�.
2. �B�, H �, β�� is an immediate child of �B, H, β� iff there exists an argumenta-

tion line λ = [�A0, Q0, α0�, �A1, Q1, α1�, . . . ,�An, Qn, αn�, . . .] such that
there are two elements �Ai+1, Qi+1, αi+1� = �B�, H �, β�� and �Ai, Qi, αi�
=�B, H, β�, for some i = 0, . . . , n− 1.

Nodes in a dialectical tree T�A0, Q0, α0� can be marked as undefeated and
defeated nodes (U-nodes and D-nodes, resp.). A dialectical tree will be marked
as an and-or tree: all leaves in T�A0, Q0, α0� will be marked U-nodes (as they
have no defeaters), and every inner node is to be marked as D-node iff it has at
least one U-node as a child, and as U-node otherwise.

Definition 8 (Warrant). An argument �A0, Q0, α0� is ultimately accepted as
valid (or warranted) with a necessity degree α0 w.r.t. a program Piff the root of
the tree T�A0, Q0, α0� is marked as U-node (i.e., Mark(T�A0, Q0, α0�) = U).

4 Reasoning with DL Ontologies as P-DeLP Programs

In the presence of inconsistency, traditional DL reasoners issue an error message
and stop further processing of ontologies. Thus the burden of repairing the ontol-
ogy is on the knowledge engineer. However, the knowledge engineer is not always
available and in some cases, such as when dealing with imported ontologies, he
has neither the authority nor the expertise to correct the source of inconsistency.
Therefore, we are interested in coping with inconsistencies such that the task of
dealing with them is automatically solved by the reasoning system. We propose
performing such a task by translating DL ontologies into P-DeLP programs.
By doing so we gain the capability of reasoning with inconsistent ontologies.
However we also lose some expressiveness in the involved ontologies. As Def. 11
shows, certain restrictions will have to be imposed on DL ontologies in order to
be expressed in the P-DeLP language.

Our proposal is based in part in the work of [4] who show that the processing
of ontologies can be improved by the use of techniques from the area of logic
programming. In particular they have identified a subset of DL languages that
can be effectively mapped into a Horn-clause logics.

Definition 9 (Weighted axiom. Weighted assertion). Let C,D stand for
concept names, P,Q for role names, and a, b for individual names. Let A be an
axiom of the form C � D, C ≡ D, � � ∀P.D, � � ∀P−.D, P � Q, P ≡ Q,
P ≡ Q−, or P � P+. Let ω be a real number such that 0 ≤ ω ≤ 1. A weighted
axiom is pair (A, ω). Let B be an assertion of the form a : C or �a, b� : P . A
weighted assertion is a pair (B, ω).

Definition 10 (Weighted ontology). Let T be a set of weighted axioms and
A be a set of weighted assertions. A weighted ontology Σ is a pair (T,A). The
set T is called weighted terminology (or just weighted Tbox) and A is called
weighted assertional box (or weighted Abox for short).

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 185

Example 1. In Fig. 1, we present a weighted ontology Σ = (T,A) based on the
fictional universe of the Highlander movies. The meaning of weighted terminol-
ogy T is as follows: Axiom (1) says that a man is apparently a ——mortal;
axiom (2) expresses that men from the Highlands that keep their heads on are
supposed to be immortals; axiom (3) implies that every beheaded man does not
keep his head on, and (4) says that immortals that still are known to be in the
game have their heads on. The weighted assertional box A expresses that Joe,
Duncan and Connor are men; Duncan and Connor are Highlanders, Connor has
been beheaded, and it is known that Connor and Duncan have been in the game.

Tbox T :

(1) (Man � Mortal, 0.6)
(2) (Man � Highlander � Keeps head � ¬Mortal, 0.8)
(3) (Beheaded � ¬Keeps head, 1)
(4) (In The Game � Keeps head, 0.9)

Abox A:

(5) (JOE : Man, 1)
(6) (DUNCAN : Man, 1)
(7) (CONNOR : Man, 1)
(8) (DUNCAN : Highlander, 1)
(9) (CONNOR : Highlander, 1)
(10) (CONNOR : Beheaded, 1)
(11) (DUNCAN : In The Game, 1)
(12) (CONNOR : In The Game, 1)

Fig. 1. A weighted ontology Σ = (T, A)

As noted by Grosof et al. [4], for DL sentences to be mapped into Horn-logic
rules, they must satisfy certain constraints. Conjunction and universal restric-
tions appearing in the right-hand side of inclusion axioms can be mapped to
heads of rules (called Lh-classes). In contrast, conjunction, disjunction and exis-
tential restriction can be mapped to rule bodies whenever they occur in the left-
hand side of inclusion axioms (called Lb-classes). As equality axioms “C ≡ D”
are interpreted as two inclusion axioms “C � D” and “D � C”, they must
belong to the intersection of Lh and Lb (called Lhb classes).

Definition 11 (Lh, Lb and Lhb classes (adapted from [4])). Let A be an
atomic class name, C and D class expressions, and R a property. In the Lh

language, C�D is a class, and ∀R.C is also a class. Class expressions in Lh are
called Lh-classes. In the Lb language, C �D is a class, and ∃R.C is a class too.
Class expressions in Lb are called Lb-classes. The Lhb language is defined as the
intersection of Lh and Lb. Class expressions in Lhb are called Lhb-classes.

Definition 12. (T mapping from DL sentences to logic programming
rules (adapted from [4])) Let A,C,D be concepts, X,Y variables, P,Q prop-
erties. The T mapping from the language of DL to the language of P-DeLP
is defined in Fig. 2. Besides, intermediate transformations of the form “(H1 ∧
H2) ← B” will be rewritten as two rules “H1 ← B” and “H2 ← B”. Sim-
ilarly transformations of the form “H1 ← H2 ← B” will be rewritten as
“H1 ← B ∧H2”, and rules of the form “H ← (B1 ∨B2)” will be rewritten as
two rules “H ← B1” and “H ← B2”.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 186

T (C � D) =df Th(D, x) ← Tb(C, x), if C is an Lb-class and D an Lh-class

T (C ≡ D) =df

�

T (C � D)
T (D � C)

, if C and D are Lhb-classes

T (� � ∀P.D) =df Th(D, y) ← P (x, y), if D is an Lh-class

T (� � ∀P−.D) =df Th(D, x) ← P (x, y), if D is an Lh-class
T (a : D) =df Th(D, a), if D is an Lh-class

T (�a, b� : P) =df P (a, b)
T (P � Q) =df Q(x, y) ← P (x, y)

T (P ≡ Q) =df

�

Q(x, y) ← P (x, y)
P (x, y) ← Q(x, y)

T (P ≡ Q−) =df

�

Q(x, y) ← P (y, x)
P (y, x) ← Q(x, y)

T (P+ � P) =df P (x, z) ← P (x, y) ∧ P (y, z)
where:

Th(A, x) =df A(x)
Th((C �D), x) =df Th(C, x) ∧ Th(D, x)
Th((∀R.C), x) =df Th(C, y) ← R(x, y)

Tb(A, x) =df A(x)
Tb((C �D), x) =df Tb(C, x) ∧ Tb(D, x)
Tb((C �D), x) =df Tb(C, x) ∨ Tb(D, x)
Tb((∃R.C), x) =df R(x, y) ∧ Tb(C, y)

Fig. 2. Mapping from DL axioms to logic programming rules

Definition 13 (Interpretation of a weighted ontology). Let Σ = (T,A) be
a weighted ontology such that T = {(s1, α1), . . . , (sn, αn)} and A = {(a1, β1), . . . ,
(am, βm)}, then:

Trad(T) = {(T (s1), α1), . . . , (T (sn), αn)}

Trad(A) = {(T (a1), β1), . . . , (T (am), βm)}.

Besides, if the cardinal k of T (si) = {f1, . . . , fk} is greater than 1, then the
translation of (si, αi) is (fi, αi), . . . , (fk, αi). Let Prop(·) be the propositional-
ization operator for a first-order theory (each propositional term “p(a)” gen-
erated from a predicate “p(x)” and a constant “a” will be noted as “p a”).
The interpretation of Σ, noted as Interpretation(Σ), is the P-DeLP program
P = (Prop(Trad(T)),Prop(Trad(A)).

Example 2. Consider again the weighted ontology Σ = (T,A) presented in Ex. 1.
In Fig. 3 we present a logical program Trad(T) ∪ Trad(A). And in Fig. 4, we
present the P-DeLP program P = Interpretation(Σ). Notice that as there are
three constants (viz., joe, duncan and connor), and three first-order rules (viz.,
(1)–(4)), twelve rules are generated in the propositional program, i.e. four for
every instantiation of each rule with each one of the three constants.

Definition 14 (Instance checking). Let Σ = (T,A) be a weighted ontology.
Let C be a concept name, a an individual name. Let � be real number such that
0 ≤ � ≤ 1. The individual a is a member of the concept C with strength � iff
there is a warranted argument �A, C(a), �� w.r.t. Interpretation(Σ).

Example 3. Consider the program P in Ex. 4 that corresponds to the inter-
pretation of the ontology Σ from Ex. 1. We will show how the operation of

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 187

instance checking works in P-DeLP for deciding the membership of the indi-
viduals Joe, Duncan and Connor to the concept Mortal. First, consider the
case of Joe: An argument �A,mortal joe, 0.6� can be obtained, where A =
{(mortal joe ← man joe, 0.6)}. This argument has no defeaters and is thus
warranted, therefore we conclude that JOE is a member of the concept Man

with strength 0.6 (see Fig. 5.(a)). Second, consider the case of Duncan: As
in the case of Joe, there is an argument �B1,mortal duncan, 0.6�, with B1 =
{(mortal duncan ← man duncan, 0.6)}. But this argument is defeated by �B2,∼
mortal duncan, 0.8�, where

B2 = {(∼mortal duncan ← man duncan ∧

highlander duncan ∧ keeps head duncan, 0.8),

(keeps head duncan ← in the game duncan, 0.9)}.

As this argument B2 is undefeated, we reach the conclusion that DUNCAN is a
member of the concept ¬Mortal with strength 0.8 (see Fig. 5.(b)). Last, consider
the case of Connor: Yet again there is an argument expressing that Connor is
mortal since he is a man: �C1,mortal connor , 0.6�, with

C1 = {(mortal connor ← man connor , 0.6)};

as in the case of Duncan, this argument is defeated by another that says that
Connor in immortal because he is a Highlander, i.e. �C2,∼mortal connor , 0.8�
where

C2 = {(∼mortal connor ← man connor ∧

highlander connor ∧ keeps head connor , 0.8),

(keeps head connor ← in the game connor , 0.9)}.

However, in this case there is another (undefeated) argument C3 that defeats C2,
namely �C3,∼keeps head connor , 1�, where

C3 = {(∼keeps head connor ← beheaded connor , 1)}.

In this way, the argument C1 gets undefeated again, and we conclude that
CONNOR is a member of the concept Mortal with strength 0.6 (see Fig. 5.(c)).

5 Conclusions and Future Work

We have presented a preliminary framework for reasoning with inconsistent on-
tologies by using the Possibilistic Defeasible Logic Programming machinery. The
proposed approach allows for determining the degree of tentativeness for the
membership of an individual to a class in the potential presence of inconsistency
w.r.t. a Description Logic ontology. Axioms and assertions in an ontology are
qualified with degrees of certainty which are used to determine the degree of

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 188

Set of rules T (T):
(1) (mortal(x) ← man(x), 0.6)
(2) (∼mortal(x) ← man(x) ∧ highlander(x) ∧ keeps head(x), 0.8)
(3) (∼keeps head(x) ← beheaded(x), 1)
(4) (keeps head(x) ← in the game(x), 0.9)

Set of facts T (A):
(5) (man(joe), 1)
(6) (man(duncan), 1)
(7) (man(connor), 1)
(8) (highlander(duncan), 1)
(9) (highlander(connor), 1)
(10) (beheaded(connor), 1)
(11) (in the game(duncan), 1)
(12) (in the game(connor), 1)

Fig. 3. First-order P-DeLP program that interprets ontology Σ = (T, A)

membership of individuals to concepts. This approach continues previous work
of ours [7] that translates DL ontologies into Defeasible Logic Programming
and uses generalized specificity to compare arguments. One advantage of the
approach presented in this paper is that it allows to better characterize the
preference criterion between axioms and thus arguments that are built when
considering them, since the comparison criterion is no longer syntactically de-
termined by the form of the underlying program that represents the ontology.
One drawback of our approach is that the propositionalization of a first-order
theory produces lots of facts that are irrelevant (notice that given a knowledge
base with p k-ary predicates and n constants, there are possible pnk instanti-
ations, see Ex. 2), impacting the computational efficiency of the method. As
part of our current research work, we are interested in applying this proposal
to ontology integration and studying what the intrinsic logical properties of the
approach are.

Acknowledgments: This research is funded by Projects PIP 112-200801-02798
(CONICET, Argentina), PGI 24/ZN10, PGI 24/N006 (SGCyT, UNS, Argentina)
and Universidad Nacional del Sur.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

2. McGuiness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview
(2004) http://www.w3.org/TR/owl-features/.

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The
Description Logic Handbook – Theory, Implementation and Applications. Cam-
bridge University Press (2003)

4. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logics. WWW2003, May 20-24, Budapest,
Hungary (2003)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 189

Set of propositional rules that interprets the Tbox T :

(1.j) (mortal joe) ← man joe, 0.6)
(2.j) (∼mortal joe ← man joe ∧ highlander joe ∧ keeps head joe, 0.8)
(3.j) (∼keeps head joe ← beheaded joe, 1)
(4.j) (keeps head joe ← in the game joe, 0.9)
(1.d) (mortal duncan ← man duncan, 0.6)
(2.d) (∼mortal duncan ← man duncan ∧ highlander duncan ∧ keeps head duncan, 0.8)
(3.d) (∼keeps head duncan ← beheaded duncan, 1)
(4.d) (keeps head duncan ← in the game duncan, 0.9)
(1.c) (mortal connor ← man connor , 0.6)
(2.c) (∼mortal connor ← man connor ∧ highlander connor ∧ keeps head connor , 0.8)
(3.c) (∼keeps head connor ← beheaded connor , 1)
(4.c) (keeps head connor ← in the game connor , 0.9)

Set of propositions that interprets the Abox A:

(5) (man joe, 1)
(6) (man duncan, 1)
(7) (man connor , 1)
(8) (highlander duncan, 1)
(9) (highlander connor , 1)
(10) (beheaded connor , 1)
(11) (in the game duncan, 1)
(12) (in the game connor , 1)

Fig. 4. Propositionalization of the program presented in Fig. 3

�A, mortal joe, 0.6�U

�B1, mortal duncan, 0.6�D

�B2,∼mortal duncan, 0.8�U

�C1, mortal connor , 0.6�U

�C2,∼mortal connor , 0.8�D

�C3, beheaded connor , 1�U

(a) (b) (c)

Fig. 5. Dialectical trees for mortal joe, mortal duncan and mortal connor

5. Ribeiro, M.M., Wassermann, R.: Base Revision for Ontology Debugging. J. Log.
Comput. 19(5) (2009) 721–743

6. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with Inconsistent Ontologies.
In Kaelbling, L.P., Saffiotti, A., eds.: Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, Scotland (August
2005) 454–459

7. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: Reasoning with Inconsistent Ontologies
Through Argumentation. Applied Artificial Intelligence 24(1) (2010) 102–148

8. Garćıa, A., Simari, G.: Defeasible Logic Programming an Argumentative Approach.
Theory and Practice of Logic Programmming 4(1) (2004) 95–138

9. Alsinet, T., Chesñevar, C.I., Godo, L.: A level-based approach to computing war-
ranted arguments in possibilistic defeasible logic programming. In Besnard, P.,
Doutre, S., Hunter, A., eds.: COMMA. Volume 172 of Frontiers in Artificial Intel-
ligence and Applications., IOS Press (2008) 1–12

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 190

