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Abstract. In this paper, we present a modified version of an algorithm
inspired on the T-Cell model, it is an artificial immune system (AIS),
based on the process that suffers the T-Cell. The proposed model (TCSA)
is increased with simulated annealing, for solving constrained (numeri-
cal) optimization problems. We validate our proposed approach with a
set of test functions taken from the specialized literature. We indirectly
compare our results with respect to GENOCOP III, a well known soft-
ware based on genetic algorithm.
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1 Introduction

Over the last years, a bio-inspired system has call the attention of some re-
searchers, the Natural Immune System (NIS) and its powerful capacity of in-
formation processing. The NIS is a very complex system with several defense
mechanisms against foreign organisms. The main purpose of the NIS is recog-
nize all cells of the host and categorize them in order to induce the appropriate
immune response. The NIS learns through the evolution to distinguish between
self and non-self. Besides, it has many desirable characteristics from the point
of view computational, such as: uniqueness, pattern recognition, diversity, tol-
erance faults, learning and memory, self-organization, robustness, cooperation
between different layers, among others. Thus, these characteristics and a well-
known about the functionality of the NIS are excellent motivations to develop
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2 An Immune Artificial Algorithm with Local Search

Artificial Immune Systems (AIS) to hand constrained problems. Besides, this
kind of heuristic has not been frequently used for solving constrained problems.

The main motivation of the work presented in this paper is to verify the be-
havior of this new version of T-Cell Model [2] which includes simulated anneal-
ing, as a local search, in order to improve the best found solution and decrease
the number of objective function evaluations performed by the algorithm with-
out negatively affect the quality of the solutions, in the context of constrained
problems.

The remainder of the paper is organized as follows. In Section 2, we define
the problem we want to solve. Section 3 describe the artificial immune systems
existing and some previous work, respectively. In Section 4 describes the pro-
posed algorithm. In Section 5, we present our experimental setup and results,
for last Section 6 our conclusions and some possible paths for future work are
presented.

2 Statement of the Problem

In a general way, a minimization problem can be expressed as:
minimize

f(X) i = 1, . . . , n (1)

here f designates the objective function and X = (x1, x2, . . . , xn)
T the design

variables vector (xl
i ≤ xi ≤ xu

i ). f is subjected to some functions. They are
inequality constraints (gj(X) ≤ 0, j = 1, . . . ,m), equality constraints (hk(X) =
0, k = 1, . . . , l) and side constraints with lower and upper limits indicated by
the superscripts l and u, respectively. These functions, which can be solved
analytically or numerically, may be linear or non-linear and contain the design
variables in an explicit or a non-explicit form.

3 Previous Work

According to [14] the main Artificial Immune System models are: Negative Se-
lection [13],[14], Clonal Selection [11, 18] and Immune Network Models [15] and
[14].

These SIA models have been used in several types of problems, but par-
ticularly, the use of artificial immune systems to solve constrained (numerical)
optimization problems is scarce. The previous related work that we found in the
specialized literature is described next.

Hajela and Yoo have proposed a hybrid between a Genetic Algorithm (GA)
and an AIS for solving constrained optimization problems. This approach works
on two populations. The first is composed by the antigens (which are the best
solutions), and the other by the antibodies (which are the worst solutions). The
idea is to have a GA embedded into another GA. The outer GA performs the
optimization of the original (constrained) problem. The second GA uses as its
fitness function a Hamming distance so that the antibodies are evolved to become

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 122



An Immune Artificial Algorithm with Simulated Annealing 3

very similar to the antigens, without becoming identical. An interesting aspect of
this work was that the infeasible individuals would normally become feasible as
a consequence of the evolutionary process performed. This approach was tested
with some structural optimization problems [19, 20].

Coello Coello and Cruz-Cortés have proposed an extension of Hajela and
Yoo’s algorithm. In this proposal, no penalty function is needed, and some extra
mechanisms are defined to allow the approach to work in cases in which there are
no feasible solutions in the initial population. Additionally, the authors proposed
a parallel version of the algorithm and validated it using some standard test
functions reported in the specialized literature [9].

Coello Coello and Cruz-Cortés have proposed an algorithm based on the
clonal selection theory for solving constrained optimization problems. The au-
thors experimented with both binary and real-value representation, considering
Gaussian-distributed and Cauchy-distributed mutations. Furthermore, they pro-
posed a controlled and uniform mutation operator. This approach was tested
with a set of 13 test functions taken from the specialized literature on evolution-
ary constrained optimization [10].

Bernardino, Barbosa and Lemonge [8] proposed a genetic algorithm hy-
bridized with an artificial immune system (AIS-GA). The AIS is inspired in
the clonal selection principle and it is embedded into a standard GA search en-
gine in order to help move the population into the feasible region. They also
present a modified version of AIS-GA, an AIS-GA with a clearing procedure
AIS-GAC . This procedure is applied over the union of the new population and
the previous one, in order to create the new population. Both approaches are
applied over six mechanical engineering optimization problems.

4 Proposed Algorithm Based on TCELL

Here, an adaptive immune system model based on the immune responses medi-
ated by the T cells is adopted. Originally, this approach was used to solve static
optimization problems [3] and then it was extended to solve dynamic problems,
constrained problems and dynamic constrained problems [4], [5], [6], [1] and [7]
. It considers many of the processes that T cells suffer from their origin in the
hematopoietic stem cells in the bone marrow until they become memory cells.

TCSA (Constrained T-Cell with Simulated Annealing) is an algorithm in-
spired on the TCELL model [1], which we modified and add to it the well
known simulated annealing technique to solve constrained optimization prob-
lems. TCSA operates on four populations, corresponding to the groups in which
the T-cells are divided: (1) Virgin Cells (VC), (2) Effector Cells with cluster
denomination CD4 (CD4), (3) Effector Cells with cluster denomination CD8
(CD8) and (4) Memory Cells (MC). Each population is composed by a set of T
cells whose characteristics are subject to the population to which they belong.

Virgin Cells (VC) do not suffer the activation process. They have to provide
diversity. This is reached through the random acquisition of TCR receptors.
Virgin cells are represented by: 1) a TCR represented by a bitstring using Gray
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4 An Immune Artificial Algorithm with Local Search

coding (called TCRb) and 2) a TCR represented by a vector of real numbers
(called TCRr).

In our proposed algorithm, positive selection is in charge of eliminating the
cells that recognize the antigen with a low matching. On the other hand, negative
selection has to eliminate the cells that have a similar TCR, according to a Ham-
ming or an Euclidean distance, depending on whether the TCR is represented
by a TCRb or by a TCRr.

Effector Cells are composed by: 1) a TCRb or TCRr, if they belong to CD4
or CD8, respectively, 2) a proliferation level and 3) a differentiation level. The
goal of this type of cell is to explore in a global way the search space. Thus, CD4
explores the search space, taking advantage of the Gray coding properties (there
is only one bit of difference between two consecutive numbers), while CD8 uses
real numbers representation (big or small jumps).

The goal of the memory cells is to explore the neighborhood of the best found
solutions. These cells are represented by the same components that CD8.

In our proposal, the TCR identifies the decision variables of the problem,
independently of the TCR representation. The proliferation level indicates the
number of clones that will be assigned to a cell and the differentiation level
indicates the number of bits or decision variables (according to the TCR rep-
resentation adopted) that will be changed, when the differentiation process is
applied.

The activation of an effector cell, called cei, implies the random selection of
a set of potential activator (or stimulating) cells. The closest cell to cei (using
Hamming or Euclidean distance), according to the TCR in the set, is chosen to
become the stimulating cell, say cej . Then, cei proliferates and differentiates.

At the beginning, the proliferation level of each stimulated cell, cei, is given
by a random value within [1, 3],3 but then, it is determined taking into account
the proliferation level of its stimulating cell (cej). If the cei is better than cej ,
then cei keeps its own proliferation level; otherwise, cei receives a level which is
10% lower than the level of cej .

Memory cells proliferate and differentiate according to their proliferation
level a random value within [1, 2],4 and differentiation level (number of decision
variables5), respectively. Both levels are independent from the other memory
cells.

In TCSA algorithm, the constraint-handling method needs to calculate, for
each cell (solution), regardless of the population to which it belongs, the fol-
lowing: 1) the sum of constraint violations (sum res)6 and 2) the value of the
objective function (only if the cell is feasible).

We also use a dynamic tolerance factor (DTF), on equality constraints, in
order to not remove all infeasible solutions from populations. DTF virtually

3 This value was derived after numerous experiments.
4 This value was derived after numerous experiments.
5 This value was set thinking on performing an intensive local search.
6 This is a positive value determined by gi(x)

+ for i = 1, . . . ,m and |hk(x)| for k =
1, . . . , p.
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An Immune Artificial Algorithm with Simulated Annealing 5

expand feasible regions increasing the traditional tolerance factor according to
the sum of constraint violations of the cell. This DTF is used by CD4 and CD8
populations.

We consider a cei cell is better than a cej cell if 1) TCR’s cei is feasible and
TCR’s cej is infeasible, 2) both cells have feasible TCRs but objective function
value’s cei is lower than objective function value’s cej and 3) both cells have
infeasible TCRs but sum res’ cei is lower than sum res’ cej . This criterion is
used to perform population sort. Each type of cell has its own differentiation
process, which is blind to their representation and population.

Differentiation for CD4: the differentiation level of cei is determined by the
Hamming distance between the stimulated (cei) and stimulating (cej) cells.
Each decision variable and the bit to be inverted are chosen in a random
way. The bits change according to a probability probdiff−CD4.

Differentiation for CD8: the differentiation level for cell cei is related to its
stimulating cell (cej). If the TCRr of the cej is better than the TCRr of
the stimulated cell cei , then the level (for cei) is a random number within
[| dv/2 |, | dv |7]; otherwise, it is a random value within [1, | dv | /2], where
| dv | is the number of decision variables of the problem. Each variable to
be changed is chosen in a random way and it is modified according to x

′

=

x ± r where r = U(0,lu−ll)
10iter

U(0,1)
, x and x

′

are the original and the mutated
decision variables, respectively. lu and ll are the upper and lower bounds
of x, respectively. iter indicates the number of iterations until reaching the
maximum number of evaluations. At the moment of the differentiation of a
cell (cei), the value of the objective function of its stimulating cell (cej) is
taken into account. In order to determine if r will be added or subtracted
to x, the following criteria are considered: if cej is better than cei and the
decision variable value of cej is less than the value of cei, or if cei is better
than cej and the decision variable value of cei is less than the value of cej ,
then r is subtracted from x; otherwise, r is added to x. Both criteria aim to
guide the search towards the best solutions found so far.

Differentiation for MC: each variable to be changed is chosen in a random
way and it is modified using the following equation according to the differ-

entiation level: x
′

= x ± r where r =
(

U(0,lux−llx)
107iter

)U(0,1)

, x and x
′

are the

original and the mutated decision variables, respectively. U(0, w) refers to a
random number with a uniform distribution in the range (0,w). lux and llx
are the upper and lower bounds of x, respectively. iter indicates the number
of iterations until reaching the maximum number of evaluations for a change.
In a random way, we decide if r will be added or subtracted to x. If after
ten try the procedure can not find a x′ in the allow range a random number
with a uniform distribution is signed to it.

The general structure of our proposed algorithm for constrained optimization
problems is given next.

7 If the stimulating cell is better, then cei should change more decision variables
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6 An Immune Artificial Algorithm with Local Search

TCSA Algorithm

Initialize_VC();

Evaluate_VC();

Assign_Proliferation();

Divide_CDs();//

Positive_Selection();// eliminate the worst cells

Negative_Selection();// eliminate the most similar cells

while (A number of evaluations has not been performed) do

for i=1 to rep

Activate_CD4();

endfor

Sort_CD4();

Best_CD4_pass_CD8();

for i=1 to rep

Activate_CD8();

endfor

Sort_CD8();

Insert_CDs_en_MC();

for i=1 to rep

Activate_MC();

endfor

Sort_CM();

od

Simulated_Annealing();

Statistics();

The algorithm works in the following way. At the beginning, the TCRb and
TCRr from the virgin cells are initialized in a random way, according to the
TCR’s encoding. Then, each TCR of a virgin cell is evaluated. Then, the pro-
liferation levels are assigned. The virgins cells are divided taking into account
their feasibility. Next, TCRb and TCRr feasible from VC are selected to form
CD4 and CD8, respectively. If it is not possible to complete the required number
of cells for population the infeasible TCRs are selected. Each effector cell will
inherit the proliferation level of the virgin cell which received the TCR.

The negative and positive selections are applied to each effector population
(CD4 and CD8). The first selection eliminates 10% of the worst cells and the
second selection eliminates cells that are similar between them (keeping the best
from them). This mechanism works in the following way: for each effector cell,
we search inside its population the closer cell (using Hamming or Euclidean
distance according to the TCR’s cell) and the worst between them is eliminated.
This process reduces the effector’s population sizes.

A maximum number of objective function evaluations is allowed. Then the
actions are: to activate the CD4 population rep times; in other words, to perform
proliferation and differentiation of all the cells from CD4. The best cell between
the original cell and its clones is passed to the next iteration. Then, these cells
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An Immune Artificial Algorithm with Simulated Annealing 7

are sorted. The best solution from CD4 is used to replace the worst solution in
CD8. Next, the CD8 population is activated rep times and sorted.

The best solutions from CD4 and CD8 are inserted or are used to replace
the worst solutions in MC (depending on whether or not, MC is empty). Since
the representation schemes of the TCR, for CD4 and MC, are different, before
the insertion of the best cell from CD4 (with TCRb) into MC, the receptor has
to be converted into a real-values vector (TCRr). Next, the cells from MC are
activated a certain (predefined) number of times, rep.

To the best found solution we apply it the well known technique Simu-
lated Annealing, source code in C was taken from http://www.taygeta.com/

annealing. We use default parameters, except for the number of iterations, we
use 100 instead 400.

5 Numerical Experiments and Results

In order to validate TCSA we test it with fourteen constrained problems. Four
(G) test problems from [16] and benchmark of 10 general geometric programming
(GGP) test problems from [12]. Table 1 shows the main characteristics of these
problems. Some preliminary runs were performed, thus, the best results were
found with the following parameters. We used a population size, for VC of 200
cells. For CD4 and CD8 we used 5 cells and 2 cells for MC. The mutation
probability probdiff−CD4 was 0.5. The number of times that react the CD4, CD8
and MC populations was 10, except for GGP3, it was 100 times. 30 independents
runs were performed for each test problem. Measures reported are taken only
with respect to the runs in which a feasible solution was reached at the end.
These measures include the percentage deviation of the average (% Aver. Error)
and the best (% Best Error) objective function value from the optimum ((f −
optimum)/ | optimum | ×100) and the average computational effort (CEff) need
to reach a solution that satisfies | f − optimum |≤ 10−4optimum + 10−6 or a
maximum number of objective function evaluations be reach. Our results, are
indirectly compared with respect to GENOCOP III [17] a well known algorithm.
It performs 10 independent runs. The results are showed in table 2. The values in
bold and italic indicate that the algorithm found the optimum and best value,
respectively. For last - indicates any feasible solution was found.

All solutions, for all test problems, found by TCSA are feasible. We can see
that our algorithm was able to reach solutions which errors are close to zero in
five test functions (G1, G3, GGP5, GGP6 and GGP7), in both mean and best
percentage error. But for G5, GGP1, GGP2, GGP3, GGP4, GGP8, GGP9 and
GGP10 the only errors close to zero are for the best found solutions.

Comparing our average performance with respect to GENOCOP III our
TCSA obtained better results in ten test problems (G3, G5, GGP1, GGP2,
GGP4, GGP6, GGP7, GGP8, GGP9 and GGP10). TCSA was outperformed
in remaining four test problems. Comparing our best performance with respect
to GENOCOP III our TCSA obtained better results in ten test problems (G3,
G5, GGP1, GGP2, GGP3, GGP4, GGP7, GGP8, GGP9 and GGP10). Our pro-
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8 An Immune Artificial Algorithm with Local Search

Table 1. Test Problems

Problem dimension inequality equality optimum Maximum
constraints constraints Evaluations

G1 13 9 0 -15.0 8,000
G2 8 6 0 7049.33 52,800
G3 7 4 0 680.6301 46,200
G5 10 8 0 24.3062 46,500
GGP1 7 14 0 1227.23 9,000
GGP2 6 1 4 -0.3888 10,000
GGP3 8 6 0 7049.24 7,970
GGP4 8 4 0 3.9511 17,900
GGP5 5 6 0 10122.6964 12,800
GGP6 3 1 0 -83.2535 16,100
GGP7 4 2 0 -5.7398 12,100
GGP8 8 4 0 -6.0482 18,000
GGP9 10 7 0 1.1437, 19,900
GGP10 11 9 0 0.1406 300,000

Table 2. GGP test instances

Problem TCSA GENOCOP III
% Aver. Error % Best Error CEff % Aver. Error % Best Error CEff

G1 0.02 0.00 7985 0.00 0.00 8393
G2 71.30 3.38 52,024 5.59 0.54 52,460
G3 0.03 0.00 40040 0.05 0.01 46,165
G5 5.08 0.60 46,404 40.43 8.67 46,462
GGP1 10.03 0.82 9,008 10.08 4.52 9,045
GGP2 6.54 0.00 8,597 - - -
GGP3 38.32 0.62 8,105 12.35 2.60 7,970
GGP4 3.36 0.07 17,909 5.54 0.89 17,975
GGP5 0.21 0.00 12,661 0.20 0.00 12,866
GGP6 0.10 0.00 14,119 0.12 0.00 16,115
GGP7 0.05 0.00 9,550 0.42 0.02 12,145
GGP8 1.32 0.03 18,005 2.46 0.18 18,023
GGP9 34.22 0.00 18,631 75.18 40.22 19,990
GGP10 28.72 0.01 300,000 - - -
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posed algorithm was outperformed in G2. Note both algorithm have the same
best performance in G1, GGP5 and GGP6. Only for GGP3 TCSA performed
more objective function evaluations than GENOCOP III.

GENOCOP III was not able to find feasible solutions for GGP2 and GGP10
while TCSA was it. If worth noting that TCSA uses a local search whilst GENO-
COP III does not. This fact could help TCSA in those cases where GENOCOP
III could not find any feasible solution. Even when for some cases the TCSA’s
performance is not good it can find feasible solutions in all runs.

6 Conclusions and Future Work

This paper presents a modified version of the Artificial Immune System T-Cell
Model for solving constrained optimization problems which includes a simulated
annealing at the end of the search process in order to improve the best found
solution, it was called TCSA.

Our proposed algorithm was found to be competitive in the benchmark used.
The approach was able to converge to feasible solutions in all cases tested. Our
analysis of the benchmark adopted made us realize that these test functions re-
quire small step sizes. Obviously, a lot of work remains to be done in order to
improve the quality of the solutions found, so that the approach can be compet-
itive with respect to the algorithms representative of the state-of-the-art in the
area.

As future work, we plan to improve the mutation operators in order to find
more quickly the frontier between the feasible and infeasible regions and also to
improve the quality of the found solutions.
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