
DBI-DeLP: a Framework for Defeasible
Argumentation over Databases

C. A. D. Deagustini, S. E. Fulladoza Dalibón, S. Gottifredi, and G. R. Simari

1 Laboratorio de Investigación y Desarrollo en Inteligencia Artificial,
Departamento de Ciencias de la computación e Ingenieŕıa,

Universidad Nacional del Sur - Av. Alem 1253, (8000) Bah́ıa Blanca, Buenos Aires
2 Área Agentes y Sistemas Inteligentes,

Universidad Nacional de Entre Ŕıos - Av. Mons. Tavella 1424, (3200) Concordia,
Entre Ŕıos

{cadd,sef,sg,grs}@cs.uns.edu.ar

Abstract. Nowadays Argumentation Systems in general, and DeLP in
particular, build arguments based on the context of a single and fixed
logical program. This leads to a practical limitation regarding the volume
of data in which the argumentation is supported, because integration of
constantly updated external data only can be made by the “hard-coding”
of facts (i.e., the explicit codification of facts in the program), which is
inneficient for massive data.
This paper introduces Database Integration for Defeasible Logic Pro-
gramming (DBI-DeLP), a framework that integrates Defeasible Argu-
mentation with Databases that may be updated by other external ap-
plications, allowing the execution of argumentation processes based on
masive external sources of data.

Keywords: Defeasible Argumentation, Databases.

1 Introduction

In the last decade argumentation has emerged as a sophisticated mechanism in
formalization of common sense reasoning finding application in diferent fields
of articial intelligence like legal systems, multi-agents negotiation and Decision
Support Systems among others, as can be seen in [2, 11, 4], and they have proven
its utility in those fields. Intuitivelly, in an argumentation system, an argument
is a piece of tentative information that supports a claim. The acceptance of this
claim will depend of a dialectical analysis (formalized through a proof procedure)
of the arguments in favor and against the claim and its argument[11]. Among
Argumentation Systems there are a particular kind called Rule Based Argumen-
tation Systems (RBAS) [10, 6, 1, 8]. In these kind of AS, arguments are built from
a specific knowledge base of inference rules, usually known as program. There-
fore an argument in these systems will be a set of rules from which the claim of
the argument can be inferred. In particular, these AS are specially interesting
in Artificial Intelligence (AI), because they allow common sense reasoning and
automatic argument building.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15775443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 C. A. D. Deagustini, S. E. Fulladoza Dalibón, S. Gottifredi, G. R. Simari

However, and besides its utility, Rule Based Argumentation Systems have
some drawbacks. Generally, argument are built only from local information, ma-
king them more subjectives, i.e., more affected by the agent’s particular vision
of the domain. Also, updating of knowledge in a continuous way is inefficient
due to the need of explicit codification of rules and facts in the program, and
there are no tools for the efficient incorporation of external applications’s data.

Here we present Database Integration for Defeasible Logic Programming (DBI-
DeLP), a framework that enables common sense reasoning over data stored in
Databases. For this, DBI-DeLP uses DeLP[8] to handle the argumentation pro-
cess, feeding it with the information from available domain data sources.

Like DeLP, in DBI-DeLP two kinds of information are considered: those that
are regarded as strict knowledge (which must preserve internal coherence, i.e.,
they can’t be contradictory) for example actor ←sean penn; and those that are
weak or tentative (which can be used if nothing could be posed against it),
for example good movie(Movie) −< genre(Movie, action), performs in(Movie,
schwarzenegger). This last one is interpreted as “an action movie in which Arnold
Schwarzenegger performs in is usually a good movie” Clearly information ob-
tained by using defeasible rules is tentative and does not need to be consistent
with other obtained this way, and using this kind of rules both a literal and
its complement can be derived, enabling the inclusion in a knowledge base of
contradictory information.

Since information stored in a database is potentially contradictory (both in
the sense of opposite data or data that can lead to complementary conclusions),
and given that we don’t want to restrict the content in this sense, database ob-
tained knowledge is represented as “weak facts” called Presumptions[9] denoted
Head−< and interpreted as “there are reasons to believe in Head”.

The paper is organized as follows: in Section 2 we review DeLP, the forma-
lism that supports DBI-DeLP; in Section 3 a possible structure that allows the
realization of argumentation processes over information stored in databases is
shown, and finally in Section 4 conclusions reached are given, and future lines
of work are identified.

2 Background

In this section we give a brief summary of Defeasible Logic Programming (DeLP).
DeLP is a formalism that combines results of Logic Programming and Defea-
sible Argumentation. DeLP provides the possibility of representing information
in the form of rules in a declarative manner, and a defeasible argumentation
inference mechanism for warranting the entailed conclusions. These rules are the
key element for introducing defeasibility and they will be used to represent a
relation between pieces of knowledge that could be defeated after all things are
considered. Using these rules, common sense reasoning is defeasible in a way
that is not explicitly programmed.

A Defeasible Logic Program (or de.l.p. for short) is a pair (Π,∆) where
Π is a set of strict rules and facts, and ∆ is a set of defeasible rules. In a

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 82

DBI-DeLP: a Framework for Defeasible Argumentation over Databases 3

de.l.p. knowledge can be represented using strict rules, facts and defeasible rules.
Facts are ground literals representing atomic information or the negation of
atomic information using strong negation “∼” (e. g. a, or ∼ a). Strict rules are
denoted L0 ← L1, ..., Ln, and represents information that can not be refused,
i.e. if Body can be proven then Head is granted. Defeasible Rules (d-rules) are
denoted L0−< L1, ..., Ln. A d-rule represents tentative information that may
be used if nothing could be posed against it. A d-rule Head−< Body expresses
that “reasons to believe in the antecedent Body give reasons to believe in the
consequent Head”.

Definition 1. (Facts, Strict rules and Defeasible rules)
Given a literal L0, i.e. a ground atom or a negated ground atom, and a finite
not empty set of literals Body in the form L1, . . . , Ln:
– A fact is a literal L0 denoted “L0 ←”.
– A strict rule is an ordered pair “L0 ← Body”.
– A defeasible rule is an ordered pair “L0 −< Body”.

A defeasible rule with an empty body is called a presumption [9]. Presump-
tions are assumed to be true if nothing could be posed against them. In [8] an
extension to DeLP that includes presumptions is presented, where an extended
de.l.p. is a set of facts, strict rules, defeasible rules and presumptions.

Definition 2. (Presumption) A presumption is a literal. Given a literal L0, a
presumption is denoted “L0−<”.

From a DeLP program it will be posible to infer tentative information. These
inferences are called defeasible derivations, and are computed by backward chain-
ing aplying the usual SLD inference procedure used in logic programming.

Definition 3. (Defeasible derivation) Let P = (Π,∆) be a de.l.p and L a
ground literal. A defeasible derivation of L from P, denoted P ` L, consists
of a finite sequence L1, L2, . . . , Ln = L of ground literals, and each literal Li is
in the sequence because:
(a) Li is a fact or a presumption,
(b) there exists a rule Ri in P (strict or defeasible) with head Li and body

B1, B2, . . . , Bk and every literal of the body is an element Lj of the sequence
appearing before Li (j < i).

Since strong negation can appear in facts or in the head of defeasible rules,
observe that from a de.l.p. contradictory literals could be derived. However, the
set Π (used to represent non-defeasible information) must be non-contradictory,
i. e. no pair of contradictory literals can be derived from Π. Given a literal L, L̄
represents the complement with respect to strong negation.

In DeLP when contradictory literals are derived, a dialectical process is used
for deciding which literals are warranted. A literal L is warranted if there exists
a non-defeated argument A for L. An argument for a literal L, denoted 〈A,Li〉,
is a minimal non-contradictory set of d-rules A ⊆ ∆, that allows to derive L.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 83

4 C. A. D. Deagustini, S. E. Fulladoza Dalibón, S. Gottifredi, G. R. Simari

To establish if 〈A,Li〉 is a non-defeated argument, defeaters for 〈A,Li〉 are
considered. Counterarguments of 〈A,Li〉 are those arguments that disagree (are
in contradiction) at some point with 〈A,Li〉. A counter-argument is a defeater of
argument A if it is preferred to 〈A,Li〉 by some argument comparison criterion.

In this work we will not focus on the dialectical proof procedure used by
DeLP in order to determine which arguments prevail. More detailed information
regarding how the warrant procedure is performed can be found in [8].

3 A Defeasible Argumentation over Databases
Framework

DeLP provides a suitable framework for building real-world applications that
deal with incomplete and potentially contradictory information, but this kind
of applications usually generates massive amounts of data which are generally
stored in databases. Clearly, including this information into a DeLP program by
means of hard-coding of rules and facts is inefficient. Nevertheless, this new data
should be considered when new arguments and counter-arguments are builded,
as part of the system’s knowledge evolution. As an example, consider the le-
gal enviroment. New legal precedents are established each time a case resolu-
tion is given, and they obviously have to be taken into consideration by the
DeLP-builded application in subsequent argument processes. Besides, being da-
tabases the most popular digital storage system this days, digital records of cases
will certainly be supported this way, and probably there will be public available
legal databases storing potencially argument supporting data being updated by
other systems. Considering all things mentioned, to develop a framework that
allows the use of database stored knowledge by a Defeasible Argumentation lan-
guage DeLP will grant DeLP builded applications the possibility of give much
more precise and fair answers to queries they receive. In this section we introduce
DBI-DeLP, a framework that integrates DeLP with DataBases.

First we define elements included in DBI-DeLP formalism, next we identify
the elements that integrates the framework and describe their purpose, and then
we show the interaction between them.

Knowledge about a certain domain by different entities can be contradictory.
Since a DBI-DeLP based system may use information provided by several entities
through their databases, the use of facts to represent them is not possible because
it can lead to inconsistencies in the set of strict knowledge Π. Due to that, in
DBI-DeLP we introduce Operative Presumptions, which are presumptions used
to represent such knowledge.

Definition 4. (Operative Presumption) An operative presumption is a literal,
i.e. a negated or not negated ground atom, denoted “Head−<” such that Head
represents information stored in a relational database used by the system.

A DBI-DeLP program is a set of strict rules, facts, defeasible rules and o-
perative presumptions, where the set Π of strict rules and facts and the set ∆
of defeasible rules are fixed in the program’s logic; while the set Σ of operative

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 84

DBI-DeLP: a Framework for Defeasible Argumentation over Databases 5

presumptions is changed when databases it represents are modified. Σ is the set
of all potencial operative presumptions that can be obtained from information
mantained in all the databases the system uses. We will show in section 3.2
that the operative presumptions are dynamically builded only when needed for
each query the DBI-DeLP Server receives by means of a Presumption Retrieval
function, and discarded later when the query has been solved.

Definition 5. (DBI-DeLP Program) A DataBase-Integrated Defeasible Logic
Program P is a triplet(Π,∆,Σ) where Π is a set of facts and strict rules, ∆ is
a set of defeasible rules, and Σ is a set of Operative Presumptions.

3.1 Components of the Framework

Enabling Database records to be used by the inference process in DeLP involve
several aspects: first, accesible databases has to be identified, and access infor-
mation has to be mantained; also easy and fast addition of databases if they
became accesible is desirable, and finally both the DeLP inference mechanism
and schemas of databases it uses must remain unchanged so compatibility with
external systems is mantained, so a “traduction layer” between them is needed.
In order to do that, DBI-DeLP components that carried out different jobs are de-
fined. There are three major components in the Framework: DBI-DeLP Server,
which contains the DeLP core and is used to receive queries, solve them and give
answers; Domain Data Holder, which is a set of databases that keeps data about
the domain, and finally Domain Data Integrator which is the component that
bridges DeLP and Databases, that is, it translates a DeLP query into a SQL
query and turns the SQL answer into a DeLP specification. Each component of
the framework will be described next.

DBI-DeLP Server The DBI-DeLP Server component is in charge of getting
DeLP ground queries, build arguments and its counter-arguments based on the
knowledge it has, and giving answers and explanations of how they were builded.
It comprises two different parts, the execution of the inference mechanism, and
the knowledge that supports the results of the inference. This two aspects are
included in the DBI-DeLP server by two modules: DeLP Core and Domain Logic.

DeLP Core The argumentation process is carried out by the DeLP core. Basi-
cally it receives a query like good movie(commando)? from a client and tries to
build arguments for and against it, and give an answer that can be Yes if an
argument in favor is warranted, No if an argument against it is warranted, Un-
decided if neither arguments for or against it can be warranted, and Unknown
if the query includes literals that are not in the program´s language.

Domain Logic Domain Logic is the knowledge of the Domain the system has. It is
expressed as a DBI-DeLP program. For example a movie Argument-based Reco-
mmender System[3] using DBI-DeLP could have strict rules like
child restricted(Movie) ← has violence(Movie) and defeasible rules like
has violence(Movie)−< director(Movie, quentin tarantino), and dinamically add
operative presumptions like film genre(pirates of the caribbean, comedy) and

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 85

6 C. A. D. Deagustini, S. E. Fulladoza Dalibón, S. Gottifredi, G. R. Simari

film genre(pirates of the caribbean, action) if different categorizations for the
film Pirates of the Caribbean are founded in the domain data.

Domain Data Holder (DDH) Domain Data Holder is a masive, potencially
contradictory set of domain related data which is used for founding grounds
in the argument building process. In the current version of the framework, the
data is stored in independent relational databases which are accesed via an
Open DataBase Connectivity (ODBC) driver, allowing databases to be in any
DataBase Management System (DBMS) that has its ODBC driver implemented,
like MySQL, SQLite or dBASE. Every database in the DDH has to be set up with
its own ODBC connection before it can be used by the DBI-DeLP server. There
isn’t a theoretical limit in the number of databases included in the DDH, and
the addition or remove of a database has no effect on the others (but obviosly
the knowledge is altered so if a previous query is launched again the answer
obtained may vary). Also there aren’t restrictions about how tables and fields
should be named, or how the database schema should be, but configuration for
each database is needed so the server knows what tables and fields to include
in the SQL query it sends to the DBMS. Nonetheless configuration is as simple
as adding rows to tables in a database that keeps information about relations
between predicates and databases in the DDH.

Domain Data Integrator (DDI) As said before, we will not change the
representational structure of DeLP and the databases it will use. Therefore,
in order to enable the communication between them, we should establish an
intermediate layer. Integration between the DBI-DeLP Server and the DDH is
made by the final component in the framework architecture: the Domain Data
Integrator (DDI), which is responsible for transforming DeLP queries into SQL
queries, and formatting resulting Datasets into presumptions so the data can be
used by DeLP in the argumentation process. Information needed by the DDI to
performs traductions is provided by the Predicate Traduction Database.

Predicate Traduction DataBase As stated before, this database mantains infor-
mation about relations between predicates and databases. In this version of the
framework it has four tables:
– Predicates table: has information about correspondence between predicate’s

functors and data sources.
– Parameters table: mantains the equivalence between a predicate’s parameter

and a pair (table, field).
– RelatedTables table: keeps information about the tables that take part in

the SQL JOINS needed to obtain information about a particular predicate.
– ForeignKeys table: mantains a list of the pairs (primaryKey, foreignKey) on

which the SQL JOINS have to be made.

3.2 Query Solving Process in DBI-DeLP

In this section we discuss the interaction between the components that integrates
the framework in the query solving process. Figure 1 show how this is done. The
process is executed each time DBI-DeLP Server receives a query.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 86

DBI-DeLP: a Framework for Defeasible Argumentation over Databases 7

Fig. 1. The DBI-DeLP argumentation process

When the defeasible derivation procedure in DBI-DeLP is looking support for
a literal, besides the search for strict rules, facts and defeasible rules as in DeLP,
a search for presumptions (using condition (a) of Definition 3) is launched, in
order to retrieve from the databases, if exists, some information offering support
to the literal. This involves determining what databases (and which tables and
fields) are expected to have useful data for the literal, getting that data if it
exists, and make them available to the DeLP core which build answers to the
query based in this information (along with the rest of the Domain Logic), and
finally give the answers to the client that has realized the query. Therefore,
for each strict rule Head ← Body or defeasible rule Head −< Body, where the
inference procedure is trying to prove Head (in order to resolve a received query),
there will be a call to the Presumption Retrieval function for every literal Li in
Body, which represents the function objectives.

Definition 6. (Function Objective) Given a strict rule L0 ← L1, . . . , Ln, or a
defeasible rule L0−< L1, . . . , Ln, where L0 is the literal the inference procedure
is trying to prove, we call Function Objective to each literal Li (1 ≤ i ≤ n) in
the form func(p1, . . . , pn), where func is the predicate’s functor and p1, . . . , pn
is a list of the predicate’s parameters.

The Presumption Retrieval function makes use of the follow functions in order
to setup the SQL Queries DBI-DeLP needs to execute and format the SQL results
so the DeLP Core can use them. The Obtain Instanciated Parameters function
receives a list of paremeters from an objective literal and returns those that

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 87

8 C. A. D. Deagustini, S. E. Fulladoza Dalibón, S. Gottifredi, G. R. Simari

are ground. Then the Obtain Instanciated Fields function takes a list of fields
and a list of parameters and returns those fields corresponding to instanciated
parameters. Finally, the Generate Operative Presumption function receives a
functor’s name and a list of values and returns a predicate where functor’s name
is the predicate’s functor and the list of values is the predicate’s parameters.

Next we present, by means of an algorithm, the process used by DBI-DeLP
to obtain Operative Presumptions for a Function Objective.

Algorithm 1 Presumption Retrieval

1: function presumptionRetrieval(funcObjective Li):operativePresumptionsList
2: Decompose Li into its Functor func and a list of parameters p1, . . . , pn
3: instanciatedParameters ← obtainInstanciatedParameters(p1, . . . , pn)
4: Execute a SQL Query in the form “SELECT DSN, User, Pass FROM predicates

WHERE name = func”
5: for each DSN obtained do
6: fieldsToRetrieve ← Execute a SQL Query in the form “SELECT Table,

Field FROM parameters WHERE parameters dsn id = predicates dsn id”
7: whereFields ← obtainInstanciatedFields(fieldsToRetrieve, p1, . . . , pn)
8: Execute a SQL Query in the form “SELECT Table, Field FROM arguments

WHERE arguments dsn id = predicates dsn id”
9: joinTables ← Execute a SQL Query in the form “SELECT Table FROM

relatedTables WHERE relatedTables dsn id = predicates dsn id”
10: joiningFields ← Execute a SQL Query in the form “SELECT Table, Field

FROM foreignKeys WHERE foreignKeys dsn id = predicates dsn id”
11: results ← Execute a SQL Query in the form “SELECT fieldsToRetrieve

FROM joinTables ON joiningFields WHERE whereFields = instanciated-
Parameters”

12: for each result resi obtained do
13: operativePresumptionList[i] ← generateOperativePresumption(func,

resi)
14: end for
15: end for
16: return operativePresumptionsList

Finally, we show an example of the complete query solving process in DBI-
DeLP:
1. DBI-DeLP server receives a query like good movie(demolition man)?.
2. DeLP core starts the search of a rule that has good movie(X) as its head

and finds good movie(Movie)−<performs in(Movie, Actor), famous(Actor).,
so the server tries to find proofs for performs in(demolition man, Actor).
The proof search occurs in all the Domain Logic, but for this paper purpose
we will only show how presumptions are obtained.

3. In order to do that, DDI takes performs in(demolition man, Actor) and de-
compose it in two parts: its functor performs in, and a list of its parameters,
in this case [demolition man, Actor]. Then the DDI looks in the Predicate
Traduction DataBase for information about performs in, searching for the
ODBC Data Source Name (DSN), tables and fields related to the predicate.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 88

DBI-DeLP: a Framework for Defeasible Argumentation over Databases 9

4. DBMS that manages the Predicate Traduction DataBase answers the queries
the DDI sent. That way DDI knows which tables to look for information,
and how the fields are named. For the sake of simplicity, let’s assume that
we have in our DDH a database with a table named film actor that has
one field called film and another called actor name. Observe how the name
inconsistency between the predicate called performs in and the table called
film actor is solved by means of a syntactic-level traduction.

5. Now that knows where to look for information, DDI executes SQL queries
using that information. In this example, it will execute “SELECT film, ac-
tor name FROM film actor WHERE film = demolition man” to the database
the DSN points to. Notice that only grounded arguments are used for
WHERE conditions by the DDI.

6. The DBMS answers the query with the actors that performs in the movie
Demolition Man. The results are obtained in a list where each element has
a row(demolition man, actor’s name) format.

7. DDI takes that results and format them as Operative Presumptions. For
example, if we have two results row(demolition man, sylvester stallone) and
row(demolition man, wesley snipes), they are transformed to
performs in(demolition man, sylvester stallone) −< true. and
performs in(demolition man,wesley snipes)− <true., according to DeLP’s
syntax. Then all the results obtained are sent to the DeLP core as a list
of presumptions. DeLP core unifies the second argument on each result with
the argument in famous(Actor), so for example it now will search proofs for
famous(sylvester stallone), starting the process all over again.

8. The argument and counter-argument building process is carried out, and
then answers and explanations are sent to the client. For example, if fa-
mous(sylvester stallone) can be proved, good movie(demolition man) suc-
ceed, and if there are no counter-arguments the answer is YES.

4 Conclusions and Related Work

We have shown how DeLP can be combined with DataBase technologies in order
to achieve argumentation over a large amount of data. This approach is more
efficient than explicit codification of facts because other systems may “give” data
to ours without the need of complex interfaces. This can lead to definitions of
new architectures for Argument-based Recommender Systems[3], as well as Desi-
cion Support Systems (DSS). Formalism was introduced, an architecture for a
framework that allows argumentation over databases has been presented, and the
process of obtaining data from databases and using them in argument building
was shown. As for future work, there are several lines identified: Semantic-level
traduction between predicates and database schemas research is desirable, effi-
ciency test with several huge databases needs to be performed, reasoning over
databases schemas, mechanisms for resolving non-ground queries have to be de-
veloped, and new rules’s learning based on obtained data.

To the best of authors’s knowledge, there isn’t work done regarding to the
integration of relational databases technologies with defeasible argumentation

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 89

10 C. A. D. Deagustini, S. E. Fulladoza Dalibón, S. Gottifredi, G. R. Simari

systems. However, there is research related to the use of non-monotonic rea-
soning to resolve inconsistencies in databases by means of database repair [7,
12]. Altough this approach can resolve inconsistencies in databases allowing rea-
soning on data stored in them, database repair is conducted by the explicit
addition, modification or suppression of tuples in databases. Instead we have
used a conflict resolution strategy based in defeasible argumentation, therefore,
in our approach there no modification of information stored in the databases.

Another approach that uses databases as the basis of a reasoning process is
presented in [5]. The aim of the reasoning mechanism is to address the diferent
conflicts that may arise when merging several databases. Nevertheless, databases
used in this work are deductive databases, i.e. databases that are made of an
extensional part (a set of positive or negative ground literals) and an intensional
part (a set of first order function-free clauses). Deductive databases have some
known drawbacks that are not present in DBI-DeLP, like the need to define
criteria for using a law included in the database as a deduction rule or a coherence
rule. In DBI-DeLP this does not happen because rules are only used to build
arguments. Also other known drawback is that in deductive databases there is
the posibility of infinite loops in the deduction process. This is also avoided in
DBI-DeLP with constraints over the argumentation lines [8].

References

1. Amgoud, L., Kaci, S.: An argumentation framework for merging conflicting knowl-
edge bases: The prioritized case. In: In Proc. of the ECSQARU-2005 Conf., LNAI
3571. pp. 527–538. Springer (2005)

2. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171, 619–641 (July 2007)

3. Chesñevar, C.I., Maguitman, A.G., Simari, G.R.: A first approach to argument-
based recommender systems based on defeasible logic programming. In: In Proc.
10th Intl. Workshop on Non-Monotonic Reasoning. pp. 109–117 (2004)

4. Chesñevar, C.I., Maguitman, A.G., Simari, G.R.: Argument-based user support
systems using defeasible logic programming. In: AIAI. pp. 61–69 (2006)

5. Cholvy, L., Garion, C.: Answering queries addressed to several databases according
to a majority merging approach. J. Intell. Inf. Syst. 22, 175–201 (March 2004)

6. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-
based, admissible argumentation (2005)

7. Eiter, T., Fink, M., Greco, G., Lembo, D.: Repair localization for query answering
from inconsistent databases. ACM Trans. Database Syst. 33(2) (2008)

8. Garćıa, A.J., Simari, G.R.: Defeasible logic programming an argumentative ap-
proach. TPLP pp. 95–138 (2004)

9. Nute, D.: Defeasible reasoning: a philosophical analysis in prolog. In: Fetzer, J.
(ed.) Aspects of Artificial Intelligence. pp. 251–288. Kluwer AP (1988)

10. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-Classical Logics 7(1) (1997)

11. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer (2009)
12. Santos, E., Martins, J.a.P.a., Galhardas, H.: An argumentation-based approach to

database repair. In: 19th European Conference on Artificial Intelligence (ECAI).
pp. 125–130 (2010)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 90

