-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Servicio de Difusion de la Creacion Intelectual

Automatic Vehicle Parking Using an
Evolution-Obtained Neural Controller

Franco Ronchetti, Laura Lanzarini

Institute of Research in Computer Science III-LIDI (III-LIDI)
National University of La Plata
La Plata, Buenos Aires, Argentina
{fronchetti,laural}@lidi.info.unlp.edu.ar

Abstract. Within the problems that can be solved with autonomous
robots, automatic parking is an area of great interest, since it presents a
complex scenario where the agent must go through a series of obstacles
to reach its goal. Existing solutions usually require some kind of external
mark for monitoring or global vision that indicates where the agent is at
a given time. This article presents an evolutionary strategy to generate
a robotic controller based on a neural network that successfully solves
the problem of vehicle parallel parking using only local information. The
performance of the fitness function is analyzed, focusing not only on
the agent reaching its goal, but also on it doing so in a manner that is
appropriate for the physics of a vehicle. Additionally, the Player/Stage
simulator is broadly discussed, since it is one of the most widely used
simulators nowadays in robotics.

Keywords: Evolutionary robotics, neuroevolution, automatic parking

1 Introduction and Related Works

Automotive companies have shown a strong interest in incorporating automatic
parking to the set of features offered in their vehicles. This problem, which
belongs to the area of robotics, already has some partial solutions available
in the market. There are high-end cars that have intelligent technology that
controls the movements of the steering wheel during parking. However, in this
case in particular, the driver is still responsible for the maneuver, operating the
accelerator and the brakes [1].

If the existing literature is analyzed, it can be observed that the central as-
pect that conditions how the controller is obtained is related to the information
available to determine the position of the vehicle. There are basically two alter-
natives: global vision or local sensors placed on the periphery of the vehicle. In
general, the first alternative is available in more expensive vehicles, while local
sensors can be found in medium-cost segments and above.

The strategies proposed are varied. Among the solutions that use the global
vision, [2] and [3] can be mentioned, where the automatic parking problem is
solved as if it were a geometry and kinematics problem rather than a control

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 71

https://core.ac.uk/display/15775442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

one, or [4], that defines a controller by combining a neural network with diffuse
rules. In [5], local information is used (such as an image from a CCD) to look
for marks or tracks on the floor. This simplifies the resolution of the problem by
limiting its application to the resolution of real problems. Some works, such as
[6] or [7], use diffuse logics systems, which in general requires additional work to
obtain the diffuse sets beforehand.

Neural networks have proven to be a highly useful tool to define robotic
controllers because they have the ability of representing the knowledge acquired
through a structure that, once trained, can operate in real time [8][9][10][11].

As regards how to obtain a neural controller with the ability of parking a
vehicle, there are solutions based on neural networks that carry out the adap-
tation by means of a training algorithm [12] [4]. These processes require a set
of patterns, generated by some expert, accurate enough for the robot to be able
to perform its task and broad enough to achieve a good generalization of the
controller. It should be mentioned that these solutions focus only on getting
the controller reach its goal, but they do not take vehicle physical aspects into
consideration.

In this paper, a solution is proposed that is based on a neural controller
whose adaptation is done through evolution rather than training. The method
uses local information only, and it does not need previous information to guide
controller behavior. The adaptive process is of interest not only in that the
controller is able to solve the problem, but also that it does so in an appropriate
manner.

2 The Simulator

The adaptation of a robotic controller through an evolutionary strategy is com-
putationally costly if done in a real robot. For this reason, a simulator that
reduces the time required to measure the fitness of the various controllers that
are generated during this process is required.

For this work, a scenario was configured on the Player/Stage platform be-
cause this is the Open Source simulator most widely used in the field of robotics
[13]. The platform correctly simulates, in real or accelerated time, a kinematics
system with various types of sensors and triggers, such as proximity IR sensors.
In addition to the various, already existing models, the simulator allows design-
ing a customized two-dimensional robot with its sensors. A test scenario where
different walls or obstacles are defined can also be designed. Figure 1-a shows the
model used positioned on a fragment of the scenario created for this problem.

It should be noted that even if the perception of reality by the robot increases
with the number of sensors, the complexity of the neural controller also increases.
Therefore, various experiments were carried out, and it was decided to leave the
lowest possible number of sensors required to solve the problem. Figure 1-a shows
the 10 sensors used numbered from 0 to 9.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 72

Xo Start

position
0 6 N i
7 Final
9 8 position

a) b)

Fig. 1. Model and scenario simulated in Stage. a) Vehicle with its 10 IR sensors. b)
Diagram of the initial and final positions of the route.

3 Description of the Problem

Automatic parking belongs to a category of robotic problems called “homing”.
Here, the problem consists in a robot that has to reach a certain objective (or
“homing”) from a fixed position, or from any location on a given scenario. Vehi-
cles use a kinematic system known as Ackermann, which uses two back wheels
for traction and two front wheels to establish the turning angle. This system is
different from the traditional differential system used in most of scientific-use
robots.

In this work, the vehicle started at an initial position known as ready-to-
reverse. To define the target position, we first need to define the meaning of
”parking a vehicle”. In this context, the final position was not defined as an ab-
solute coordinate, but as an equation of the straight line in the system (z,y,),
where z, y are the coordinates of the robot and 6 is the inclination angle. A vehi-
cle is considered to have been parked correctly when its position is equal to the
variables (with an error margin) (xg,y, o). That is, the agent must approximate
variables x and 6, freeing variable y. Figure 1-b shows this event.

4 Strategy Proposed

The strategy developed is a populational metaheuristic based on an evolutionary
algorithm equivalent to the one proposed in [8]. The controller that is generated is
composed only by a neural network that controls the movements to be made. The
network receives local information and produces two outputs: one indicating the
speed of the vehicle, and another one indicating the turning angle for the wheels.
Each individual in the population has, in addition to other parameters required

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 73

for the process, a fixed-architecture neural network. That is, the evolutionary
process focuses on the modification of weights on the network. The process uses

Best 1] B HE S

Mean sio (I

Best by IS [T — ER -
species : H :

Mean by
species

S TR

e e . i

0 200 400 600 800 1000 0 200 400 800 800 1000
Generations Generations

Fig. 2. Fitness behavior of the various species in an execution. a) Original chart. b)
Enlargement reducing fitness scale.

speciation as tool to avoid local optima. Here, different groups of individuals
are grouped when the program starts based on their chromosome. Then, each
species is developed independently from the others, with an intervention among
them every certain number of generations. Various works have shown that the
exploration of the search space in a semi-parallel fashion markedly increases the
algorithm execution time and solves the search for the global optimum more
efficiently. An example can be found in [10]. The time during which species
remain isolated must be balanced. If this time is too long, a merely parallel
search may result. On the other hand, if it is too short, it would be the same
as having only one species. Figure 2 shows the behavior of the various species
throughout a specific execution. It can be seen how each species reaches different
optima.

To generate a new population of individuals, a probabilistic binary tourna-
ment is used, where a selection of candidates is created. Then, mutation parame-
ters are applied so that the new generation is a group of clones of the candidates
but with small modifications. In order to retain the fittest individuals, an 8%
elitism per species is used.

This evolutionary strategy does not replace a generation with the next one, as
genetic algorithms usually do, but it rather uses an algorithm with variable-size
population. To carry this out, individual life times must be properly assigned.
In this case, the method proposed in [14] was used.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 74

4.1 Neural Architecture

Neuronal networks are computational models with a great generalization capac-
ity, highly efficient for the resolution of two types of problems: clustering and
mapping functions which, given a certain input, produce the expected output.
For this reason, the most famous architectures do not usually take into account
temporal factors. By using a neural controller to command an autonomous robot,
some kind of memory must be implemented, since one data set must be inter-
preted in different ways at different times. To achieve this, recurrences are usually
introduced in network connections. That is, there can be connections from one
network layer to a previous one, lateral connections, or even connections within
one neuron.

There are few conclusive studies that define which architectures should be
used for certain problems where time is an essential variable. In [10], a hidden
layer of the network dedicated to controller memory is proposed. In [11], fully
connected architectures are used on the grounds that a “smaller” architecture
can be obtained by setting to zero certain arches of the network.

For this paper, two parameters that provide temporal information to the net-
work were used: network outputs of ¢ units of time backwards, and an odometer,
which provides the network with information about the distance traveled by the
robot at a given time. The latter is an escalated value to prevent the network
from being flooded by entering with high values. The rest of the network works
as a conventional feed-forward network.

Memory | -
e [Pass : \ ()
activity :] .
. — r,_,-"'JJI,I Speed
Robot EI S . s B
. Z X . - E —L— Steering angle
Sensors : : e —
: // ! Output Layer
! Hidden Layer

Input Layer

Fig. 3. Generic network architecture of the neural network used.

All neurons use hyperbolic tangent transfer functions, which allows limiting
network output values. Output neurons use a composite transfer function, where
after applying the hyperbolic tangent function, the following tiered function is
applied:

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 75

netOut = round(netOut x 10)/10; (1)

Thus, the network output is transformed to some 21 discrete values (10 positive,
10 negative, and zero). This helps different situations when driving the vehicle.

To set the speed and the turning angle of the agent, network outputs are
multiplied by the values 3 and 45, respectively. The tiered function defined in (1),
together with these limits, allows having an approximate resolution of 0.25km /h
for speed and 4 for turning angle. Figure 3 summarizes the general structure of
the neural network used.

For this work, the following architecture was used:

— 17 input neurons. 10 sensors, 1 odometer, and 6 neurons that indicate the
recent past (3 for output unit 1, and 3 for output unit 2).

— 10 hidden neurons.

— 2 output neurons. One to control speed and one to control turning angle.

4.2 Fitness function

Generally, when using a population evolutionary process, the metaheuristic con-
trolling population movements in the solution space receives special attention,
but the fitness function used is not particularly considered. [15] includes a survey
and analysis of various fitness functions used in works related to evolutionary
robotics.

To carry out a fitness function that evaluates the good performance of an
autonomous robot when maneuvering to park, the following aspects have to be
considered:

1. The agent reaching its objective.

2. Smooth movements. It is undesirable that a vehicle changes its speed or
turning angle abruptly.

3. Parking with the least possible number of maneuvers. Each time the agent
changes the sign of its speed is a maneuwver.

4. Travelling the least possible distance.

The first aspect is the main objective, so the individuals that do approach
the destination must be rewarded. The analysis of aspect #2 is important, since
in general, predicting the behavior of a neural network in time is difficult. The
third aspect, the same as the second, is related to the correct behavior of a
vehicle. The last one is an additional improvement but important nonetheless,
since it would not be desirable that a vehicle travels too many meters before
maneuvering.

Description of the Function The function developed for this paper, the same
as all functions used in evolutionary robotics, evaluates the behavior of the robot
in a series of steps. Here, the number of steps is given by time. The robot is evalu-
ated a maximum of 60 simulated seconds, or until it collides against an obstacle.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 76

When the evaluation loop ends, the fitness value is determined as the average
behavior during the evaluation, where this behavior is defined by the robot per-
forming smooth movements. Then, fitness is increased inversely proportionally
to the distance to the objective. Additionally, fitness is considerably reduced if
the robot collides. The function has 3 evolutionary stages that orient individuals:

— During the first stage, individuals are rewarded for approaching the objec-
tive. This is done when the evaluation process ends.

— After an individual reaches its target, the desired behavior is for it to stop.
For this reason, individuals are rewarded as they reduce their speed.

— Finally, when an individual effectively parks, the best solution is filtered
based on the number of maneuvers done and the distance traveled.

fitness = 0; numSteps = 0; numChanges = 0; target Reached = false;
while (simulationTime < 60) AND (notCrash) do
numSteps = numSteps + 1
Read sensor data, compute ANN, and update memory
if Changing the direction of movement then
numChanges = numChanges + 1
end if
softMov = Difference between last and current outputs
fitness = fitness 4 0.45°FtMov
if targetReached then
fitness = fitness + 0.1/m0botSpeedl
else
if distanceToTarget < validError then
target Reached = true
10 more seconds to evaluate
end if
end if
end while
fitness = fitness/numSteps;
fitness = fitness % 0.54istanceToTarget—1
if crash then
fitness = fitness % 0.3;
else
if (distanceToTarget < validError) AND (robotSpeed = 0) then
Fitness = fitness x (0.8trajectoryDistance=8 4 1y, (0‘8numchang5372 +1)
end if
end if

Fig. 4. Pseudo-code of the fitness function.

Figure 4 presents the pseudo-code of the function described here. All ex-
ponential expressions grant a higher fitness the smaller the input data. Each
expression is customized for the corresponding values. The function is called 3
times by each individual, positioning the robot in different places and different
parking spaces. This allows the neural network to perform a correct generaliza-
tion. It is considered that a vehicle reaches its target when the distance to it is
less than 0.2 meters, and it is considered that a vehicle parks when it reaches its
target and its speed is null.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 77

5 Experimental Results

First, a communications library was implemented to be able to use Matlab with
the Player/Stage platform. The evolutionary process is fully programmed in this
high-level language and with the help of the neural network toolbox it provides.

Various experiments were carried out with the implemented neural architec-
ture. A scenario with various spaces and parking manners was implemented for
network behavior generalization. Similarly, various tests were carried out con-
sidering different vehicle proximity sensor number, position and angle.

— .
[] Bl A B N L1

N '-I | X [§l N |

Fig. 5. Maneuver carried out by the best individual in the evolutionary process, in the
smallest parking space.

By optimizing the weights of a neural network, the cardinality of the solution
space is very high, so a great genetic diversity is required. For all experiments,
an initial population of 400 individuals created with a normal distribution with
mean 0 and standard deviation 0.5 grouped in 10 species was used. The mutation
parameters used ranged between 0.2 and 0.3, with a mutation degree between 0.3
and 0.03 [8]. The best controllers obtained in 50 separate runs of the evolutionary
process were analyzed, and it was verified that 100% of them parked correctly
with an error of +25cm.

Figure 5 shows the execution of the best controller obtained after 900 genera-
tions in a reduced parking space. Figure 6, on the other hand, shows the behavior
of the agent during the maneuver. The chart to the left (a) shows network output
in time, represented by the number of evaluations (approximately 4 per second).
The controller behaves as desired, with smooth movement changes. The chart on
the right (b) shows the distance between the vehicle and the desired destination.
It should be noted that when the vehicle finishes maneuvering, speed becomes
null.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 78

e Distance to target

Unit out
Meters

i
0 20 40 60 80 100 120 140 160
Steps

b)

Fig. 6. Performance of the robot when maneuvering for parking. a) Neural network
outputs. b) Distance to the objective.

6 Conclusions and Future Work

A method was developed for obtaining a neural robotic controller that allows ma-
neuvering for parallel parking. The study of an appropriate neural architecture
and the handling of temporal information are of vital importance in evolutionary
robotics problems.

The controller obtained was able to successfully generalize the maneuver
for different parking spaces, using only local information from the vehicle. This
allows taking the controller to the practice with a real agent.

The versatility of the Player/Stage platform allows carrying out optimization
studies at the positions of the proximity sensors, based on conditions of real
vehicles.

Currently, work is being done on the strategy to solve various additional
automatic parking problems, such as:

— Use of the controller developed as module to generate a behavior that is
more robust and allows different parking maneuvers, such as 90 parking, or
searching for the ready-to-reverse position.

— Parking in reduced spaces that require many maneuvers. In general, there
are only a few works that were able to support this problem, since a detailed
analysis of different situations is required.

— Decision on the best maneuver to use, so that the agent can select different
controllers to perform the best maneuver for the problem at hand.

References

1. Ford Technology. Active park assist. hassle-free parallel parking. http://www.
ford.com/technology/.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 79

10.

11.

12.

13.

14.

15.

. D. Maravall and J. de Lope. Multi-objective dynamic optimization with genetic

algorithms for automatic parking. Soft Comput. A Fusion of Foundations, Method-
ologies and Applications., 11:249-257, 2006.

J-Y. Lee, M-S. Kim, and J-J. Lee. Design of fuzzy controller for car parking prob-
lem using evolutionary multi-objective optimization approach. IEEE International
Symposium on Industrial Electronics., 2006.

W.A. Daxwanger and G.K. Schmidt. Skill-based visual parking control using neu-
ral and fuzzy networks. IEEE International Conference on Systems, Man and
Cybernetics., 2:1659-1664, 1995.

J. Xu, G. Chen, and M. Xie. Vision-guided automatic parking for smart car. IEEE
Intelligent Vehicles Symposium., 2000.

. Y. Zhao and E. G. Collins Jr. Robust automatic parallel parking in tight spaces

via fuzzy logic. Robotics and Autonomous Systems, 51(2-3):111-127, 2005.

Y-W. Ryu, S-Y. Oh, and S-Y. Kim. Robust automatic parking without odome-
try using an evolutionary fuzzy logic controller. International Journal of Control
Automation and System, 6(3), 2008.

F. Ronchetti and L. Lanzarini. Robotic controller obtained through a speciation-
based metaheuristic. INNS International Educational Symposium on Neural Net-
works, 2011.

L. Lanzarini, G. Osella Massa, and H. Vinuesa. Modular creation of neuronal
networks for autonomous robot control. Revista Iberoamericana de Inteligencia
Artificial, 11(35):43-53, 2007.

G. Capi and K. Doya. Evolution of recurrent neural controllers using an extended
parallel genetic algorithm. Robotics and Autonomous Systems, 52:148-159, 2005.

A. L. Nelson, E. Grant, J.M. Galeotti, and S. Rhody. Maze exploration behaviors
using an integrated evolutionary robotics environment. In Journal of Robotics and
Autonomous Systems, pages 159-173, 2004.

H. Milton, F.S. Osrio, F. Heinen, and C. Kelber. Seva3d: Using artificial neural
networks to autonomous vehicle parking control. IEEE WCCI (World Conference
on Computational Intelligence), 2006.

R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence, 2(2-
4):189-208, 2008.

L. Lanzarini, C. Sanz, M.Naiouf, and F. Romero. Mixed alternative in the assign-
ment by classes vs conventional methods for calculation of individuals lifetime in
gavaps. Proceedings of the 22nd International Conference on Information Technol-
ogy Interfaces, ITI 2000, 953-96769-1-6:383-389, 2000.

A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions in evolutionary
robotics: A survey and analysis. Robotics and Autonomous Systems, 57(4):345—
370, 2009.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 80

