
This version is available at https://doi.org/10.14279/depositonce-6884

© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Andersch, M., Lucas, J., Álvarez-Mesa, M. A., & Juurlink, B. (2015). On latency in GPU throughput
microarchitectures. In 2015 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE. https://doi.org/10.1109/ispass.2015.7095801

Andersch, M., Lucas, J., Álvarez-Mesa, M. A., & Juurlink, B.

On latency in GPU throughput
microarchitectures

Accepted manuscript (Postprint)Conference paper |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/157752316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On Latency in GPU Throughput Microarchitectures

Michael Andersch, Jan Lucas, Mauricio Álvarez-Mesa, Ben Juurlink
Technische Universität Berlin

http://www.aes.tu-berlin.de

Abstract—Modern GPUs provide massive processing power
(arithmetic throughput) as well as memory throughput. Presently,
while it appears to be well understood how performance can
be improved by increasing throughput, it is less clear what the
effects of micro-architectural latencies are on the performance of
throughput-oriented GPU architectures. In fact, little is publicly
known about the values, behavior, and performance impact of
microarchitecture latency components in modern GPUs. This
work attempts to fill that gap by analyzing both the idle (static)
as well as loaded (dynamic) latency behavior of GPU micro-
architectural components. Our results show that GPUs are not
as effective in latency hiding as commonly thought and based
on that, we argue that latency should also be a GPU design
consideration besides throughput.

I. INTRODUCTION

GPUs as we know them today are intrinsically throughput-
focused devices designed to hide microarchitectural latency
through heavy use of thread-level parallelism. Over the last few
generations of commercial GPUs, throughput has increased
substantially (GT200 [2008]: 933 GFLOPS, GK110 [2013]:
5045 GFLOPS) as a result of both architectural innovations
and advancements in manufacturing technology.

With this work, we take a step back and question the
throughput-only focus in the design of GPU architectures.
Consequently, we work towards a better understanding of
latencies in GPUs by conducting a multi-step GPU microar-
chitecture latency analysis. In the first step, we determine and
interpret the values of global memory latencies in multiple
modern NVIDIA GPU microarchitectures. Afterwards, we em-
ploy the GPGPU-Sim [1] performance simulator to investigate
how global memory latency behaves in GPUs when executing
diverse real-world programs and, consequently, discuss how
latency and performance are related in throughput architectures
such as GPGPUs.

Tesla Fermi Kepler Maxwell
Unit

GT200 [3] GF106 GK104 GM107
L1 D$ × 45 30 ×

L2 D$ × 310 175 194
DRAM 440 685 300 350

TABLE I: Latencies of memory loads through the global
memory pipeline over four generations of NVIDIA GPUs.

II. STATIC LATENCY ANALYSIS

To generate the results, a single active thread chases
pointers through the global memory space while varying both
the stride as well as footprint of the data being touched.
Readings of the clock register yield an overall timespan for the
entire traversal. Then, per-access latency is computed for each
combination of stride and footprint [3]. Table I summarizes
the obtained latency values.

These experiments were performed on three different
GPUs, a GF106 chip derived from the NVIDIA Fermi ar-
chitecture, a GK104 chip derived from the NVIDIA Kepler
architecture and a GM107 chip derived from the NVIDIA
Maxwell architecture. In addition, the results are extended by
corresponding data from a similar analysis conducted by Wong
et al. [3] on a GT200 chip from the NVIDIA Tesla architecture.
All results are given in clock cycles in the clock domain of
the execution hardware, i.e. the hot clock frequency.

As the table shows, the latency properties of the
global/local memory space have undergone dramatic changes
over the four generations of GPUs analyzed here. Starting
with the Tesla architecture, accesses to global/local memory
were uncached and thus, the minimum latency one could
expect when using global memory instructions was the DRAM
latency. With the Fermi architecture, two levels of caching
were introduced into the global/local memory pipeline with
hit latencies of 45 and 310 clock cycles. Fermi’s DRAM
access latency is gigantic at almost 700 clock cycles. While
the L1 cache hit latency seems relatively low in context of
the L2 and DRAM access latencies, it is enormous from a
CPU designer’s point of view. For example, on Intel’s Haswell
microarchitecture, even the L3 cache hit latency of 36 cycles is
lower than Fermi’s L1 data cache hit latency despite Haswell’s
L3 cache being many times larger (up to 8MB L3 vs. up to
48KB L1) [2].

While all latencies have seemingly decreased on Kepler
compared to the previous generation, an important parameter
of the memory system is not visible in the table: On Kepler,
the L1 data cache is accessible only by local memory accesses
but no longer by global memory accesses. As local memory
is utilized almost exclusively for thread-private stack data and
register spilling, this new behavior of the L1 cache means that
most memory accesses that were purposefully introduced by
the programmer (i.e. global memory accesses) have a minimum
latency of an L2 cache hit (175 cycles).

Finally, on the Maxwell architecture, this trend continues:
Whereas the L1 data cache became local-only on Kepler,
it has disappeared completely in the Maxwell design. In
addition, the access times for both the L2 cache and DRAM
have increased compared to the Kepler generation, effectively
making Maxwell’s global/local memory pipeline slower than
Kepler’s on every level from a latency point of view.

III. DYNAMIC LATENCY ANALYSIS

In this section, we follow up the analysis of static latency
in the previous section with a discussion of dynamic latency,
i.e. latency as measured in the GPU during execution of real-
world workloads. For this purpose, we employ the GPGPU-
Sim GPU timing simulator [1] with additional instrumentation

1

for latency analysis. For simulation accuracy, we choose a pre-
validated GPU configuration that is included with GPGPU-Sim
and that resembles a GF100 GPU with the NVIDIA Fermi
architecture.

A key question raised by the static latency results seems
to be what exactly constitutes the latency of a given memory
access, i.e. where in the memory pipeline (high-latency) mem-
ory requests spend most of their time. To find an answer, we
modified the simulator to track all memory requests generated
by instructions (but not those generated by, for example, cache
line evictions or instruction cache fills) and to emit timestamps
whenever a given memory request moves from one stage of
the memory pipeline to the next. With this information, we
can construct diagrams showing a breakdown of the lifetime
of memory requests into different latency components. The
results of this experiment are shown in Figure 1 for a kernel
performing breadth-first search.

3

-

4

0

4

0

-

7

8

7

8

-

1

1

5

1

1

5

-

1

5

3

1

5

3

-

1

9

0

1

9

0

-

2

2

8

2

2

8

-

2

6

5

2

6

5

-

3

0

3

3

0

3

-

3

4

1

3

4

1

-

3

7

8

3

7

8

-

4

1

6

4

1

6

-

4

5

3

4

5

3

-

4

9

1

4

9

1

-

5

2

8

5

2

8

-

5

6

6

5

6

6

-

6

0

4

6

0

4

-

6

4

1

6

4

1

-

6

7

9

6

7

9

-

7

1

6

7

1

6

-

7

5

4

7

5

4

-

7

9

1

7

9

1

-

8

2

9

8

2

9

-

8

6

6

8

6

6

-

9

0

4

9

0

4

-

9

4

2

9

4

2

-

9

7

9

9

7

9

-

1

0

1

7

1

0

1

7

-

1

0

5

4

1

0

5

4

-

1

0

9

2

1

0

9

2

-

1

1

2

9

1

1

2

9

-

1

1

6

7

1

1

6

7

-

1

2

0

5

1

2

0

5

-

1

2

4

2

1

2

4

2

-

1

2

8

0

1

2

8

0

-

1

3

1

7

1

3

1

7

-

1

3

5

5

1

3

5

5

-

1

3

9

2

1

3

9

2

-

1

4

3

0

1

4

3

0

-

1

4

6

7

1

4

6

7

-

1

5

0

5

1

5

0

5

-

1

5

4

3

1

5

4

3

-

1

5

8

0

1

5

8

0

-

1

6

1

8

1

6

1

8

-

1

6

5

5

1

6

5

5

-

1

6

9

3

1

6

9

3

-

1

7

3

0

1

7

3

0

-

1

7

6

8

1

7

6

8

-

1

8

0

6

Latency Range

0

20

40

60

80

100

L
a
t
e
n
c
y
B
r
e
a
k
d
o
w
n

[
%
]

SM Base

 L1toICNT

 ICNTtoROP

 ROPtoL2Q

 L2QtoDRAMQ

 DRAM(QtoSch)

 DRAM(SchToA)

 Fetch2SM

Fig. 1: Breakdown of per-bucket memory fetch latency into
pipeline stages for BFS kernel.

In the graph, several latency buckets on the left are entirely
filled with SM base time, i.e. the time a request spent in the
SM before accessing the L1 data cache. This indicates that all
requests in these latency buckets were L1 cache hits. Once we
start moving to the right side of the graph, all the memory
pipeline stages are present within each bucket, meaning that
most of the requests making up the respective buckets missed
in at least the L1 and potentially also the L2 caches and went
to DRAM for completion.

Overall, the breakdown reveals two important pipeline
stages that contribute significantly to the overall latency for
loads to global memory, namely the DRAM access scheduling
(orange) and L1 miss queue (dark blue) ones. The former
means that long-latency requests spend a significant amount of
time waiting to be selected for DRAM access, indicating that
request latency could potentially be reduced through usage of
a different DRAM scheduling algorithm. The latter means that
the request spent time traversing a loaded queue - in this case,
the one between the SM’s L1 cache and the interconnection
network. Other workloads similarly showed queueing and
arbitration as the two key latency contributors.

Long latencies by themselves are not problematic from
a performance standpoint, though. Performance only suffers
once latency becomes exposed, i.e. cannot be hidden through
the execution of other independent work from the same or
other in-flight threads. We employ GPGPU-Sim to determine
the fraction of load instruction latency that is exposed to in-
vestigate how often this occurs in our BFS example workload.

4

-

3

3

6

3

-

9

3

1

2

3

-

1

5

3

1

8

3

-

2

1

2

2

4

2

-

2

7

2

3

0

2

-

3

3

2

3

6

2

-

3

9

1

4

2

1

-

4

5

1

4

8

1

-

5

1

1

5

4

1

-

5

7

0

6

0

0

-

6

3

0

6

6

0

-

6

9

0

7

2

0

-

7

4

9

7

7

9

-

8

0

9

8

3

9

-

8

6

9

8

9

9

-

9

2

8

9

5

8

-

9

8

8

1

0

1

8

-

1

0

4

8

1

0

7

8

-

1

1

0

7

1

1

3

7

-

1

1

6

7

1

1

9

7

-

1

2

2

7

1

2

5

7

-

1

2

8

6

1

3

1

6

-

1

3

4

6

1

3

7

6

-

1

4

0

6

Latency Range

0

20

40

60

80

100

L
a
t
e
n
c
y
B
r
e
a
k
d
o
w
n

[
%
]

exposed latency

hidden latency

Fig. 2: Breakdown diagram showing wich fraction of global
memory load latency was exposed during execution of BFS.

The results of the analysis are shown in Figure 2. Once
again, we classify dynamic instructions into buckets depending
on their overall latency, and then compute hidden and exposed
latency percentages within each bucket. The figures show that
latency is, in fact, performance-critical in BFS. The fraction
of latency that is exposed is significant, sometimes close to
100% and more than 50% for most of the global memory load
instructions.

IV. CONCLUSIONS

While many GPU architects seek ways to increase through-
put performance and programmability, the role of microarchi-
tecture latency in GPU designs has not received much attention
to this point. In this work, we have conducted an evaluation
and analysis of latency, both static and dynamic, in a multitude
of past and current GPU processor designs.

In the static latency analysis, the last four generations
of NVIDIA GPU architectures (Tesla, Fermi, Kepler, and
Maxwell) were the subject of microbenchmarking to deter-
mine the latencies of the important global memory pipeline.
Interestingly enough, the results showed that the latency of
said pipeline has increased on newer architectures.

In the dynamic latency analysis, we used a GPU perfor-
mance simulator and an exemplary workload to determine two
key contributors to dynamic memory load latency, queueing
and arbitration. Lastly, we showed that latency is performance-
critical for this particular workload, even though the architec-
ture it is running on is a throughput architecture.

REFERENCES

[1] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
Proceedings of the International Symposium on Performance Analysis

of Systems and Software (ISPASS), 2009.

[2] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne,
R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,
S. Jourdan, S. Gunther, T. Piazza, and T. Burton, “Haswell: The Fourth-
Generation Intel Core Processor,” IEEE Micro, vol. 34, no. 2, Mar 2014.

[3] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU Microarchitecture through
Microbenchmarking,” in Proceedings of the International Symposium

on Performance Analysis of Systems Software (ISPASS), 2010.

2

