
 Procedia Computer Science 94 (2016) 491 – 496

Available online at www.sciencedirect.com

1877-0509 © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.08.076

ScienceDirect

International Workshop on Applications of Software-Defined Networking in Cloud Computing
(SDNCC 2016)

A system architecture for real-time anomaly detection in large-scale
NFV systems

Anton Gulenkoa, Marcel Wallschlägera, Florian Schmidta, Odej Kaoa, Feng Liub *
aTechnische Universität Berlin (TU Berlin), Complex and Distributed IT Systems (CIT), 10587 Berlin, Germany

bHuawei European Research Center, Huawei Technologies Co., Ltd., 80992 Munich, Germany

Abstract

Virtualization as a key IT technology has developed to a predominant model in data centers in recent years. The flexibility
regarding scaling-out and migration of virtual machines for seamless maintenance has enabled a new level of continuous
operation and changed service provisioning significantly. Meanwhile, services from domains striving for highest possible
availability – e.g. from the telecommunications domain – are adopting this approach as well and are investing significant efforts
into the development of Network Function Virtualization (NFV). However, the availability requirements for such infrastructures
are much higher than typical for IT services built upon standard software with off-the-shelf hardware. They require sophisticated
methods and mechanisms for fast detection and recovery of failures. This paper presents a set of methods and an implemented
prototype for anomaly detection in cloud-based infrastructures with specific focus on the deployment of virtualized network
functions. The framework is built upon OpenStack, which is the current de-facto standard of open-source cloud software and
aims at increasing the availability and fault tolerance level by providing an extensive monitoring and analysis pipeline able to
detect failures or degraded performance in real-time. The indicators for anomalies are created using supervised and non-
supervised classification methods and preliminary experimental measurements showed a high percentage of correctly identified
anomaly situations. After a successful failure detection, a set of pre-defined countermeasures is activated in order to mask or
repair outages or situations with degraded performance.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Anomaly detection; Cloud; OpenStack; Fault tolerance; NFV

* Anton Gulenko. Tel.: +49 (30) 314-25286; fax: +49 (30) 314-21114.

E-mail address: anton.gulenko@tu-berlin.de

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.076&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.076&domain=pdf

492 Anton Gulenko et al. / Procedia Computer Science 94 (2016) 491 – 496

1. Introduction

The virtualization as a key IT technology in the last years reached a high level of maturity leading to the
implementation of IT services on virtualized platforms as a predominant model in data centers. The flexibility
regarding scaling-out and migration of virtual machines for seamless maintenance enabled a new level of continuous
operation and changed the service provisioning significantly. Meanwhile, not only standard IT services are deployed
on virtualized infrastructures, but also services from domains striving for highest availability possible – such as the
telecommunication branch – are adopting this approach as well and are investing significant efforts into the
development of standard products such as OpenStack1 to fit the requirements of modern Network Function
Virtualization (NFV) scenarios.

These efforts elevate the virtualization infrastructure to the next level of complexity. Critical services e.g. in
telecommunication scenarios require an availability of 99.9999% as a standard, which is expected from virtualized
solutions as well. The availability requirements for the infrastructures are even increasing, as telecommunication
providers widely deploy NFV setups in the context of e.g. OpenStack and thus run essential parts of the critical
infrastructure on typically off-the-shelf components. Such platforms lack availability features engineered over
decades by the telecommunication community and are still far away from the desired degree of availability. This
paper describes an approach and an implemented framework to enable reliable deployment and operation on
unreliable components. The basic approach is well-known from other domains, e.g. implementing secure channels
over unsecure public networks or building redundant storage arrays from standard hard disks. Analogously, we aim
at developing and deploying methods for extensive and in-depth monitoring of the vital system data for failure
detection and activation of fault tolerance mechanisms utilizing redundant components.

The monitoring system collects and analyses on-the-fly data from several hardware components and the core
operating and virtualization processes in order to detect anomalies that can lead to overall performance degradation,
violating the promised quality of service, and eventually lead to crashes of parts of the system. Detecting and
handling anomalies is a non-trivial issue which needs to span over a multitude of layers and components composing
an NFV system. Due to their large scale such systems must be designed to automatically detect and handle
anomalies.

The developed system framework facilitates real-time anomaly detection in large-scale NFV deployments.
Anomalies are detected by performing deep cross-layer data collection and mining the collected data through a
variety of data analysis techniques. The results are used to select and execute appropriate restoration routines. The
data collection implements a continuous feedback loop notifying the restoration engine about the success of the
executed routines. The developed methods and tools are included in a productive OpenStack installation, but can be
generalized for different systems for Cloud and resource management.

The remaining of the paper is organized as follows. The next section lists related work on fault tolerance for
virtualized environments, in particular related to continuous operation of NVF-based systems. Section 3 describes
the global architecture and the functionality of the deployed components. Subsequently, in Section 4 we describe the
system prototype and give preliminary performance evaluation results. Finally, Section 5 concludes with an outline
of future extensions to the presented system.

2. Related work

The importance of anomaly detection in NVF-based systems running in a Cloud management system is reflected
in a wide range of research publications. Gaikwad et al. for example developed an integrated workflow for finding
anomalies in scientific workflows and execution of applications in cloud-based infrastructures. The authors used an
auto-regression approach based on statistical methods for online monitoring in order to find anomalies in the
collected data1. F²PM is a framework for a machine learning system that predicts the Remaining Time to Failure
(RTTF) of software services3. The F²PM system collects time series of system-level features such as CPU, memory
and swap, using the Lasso regularization as a feature selection method. The authors compared failure prediction
approaches on all parameters using an e-commerce application use case.

Alonso et al. describe the Lasso Regularization on e-commerce environment as well4 and categorize machine-
learning classifiers detecting dynamic and non-deterministic software anomalies. The applied method monitors the

493 Anton Gulenko et al. / Procedia Computer Science 94 (2016) 491 – 496

system and reduces the recorded features by around 60% with Lasso Regularization using Random Forest for
classification. The achieved validation errors are less than 1%. In addition, alternative methods based on Decision
Trees, LDA/QDA, Naive Bayes, Supported Vector Machines and K-nearest neighbors were compared as well.

As cloud infrastructure and NFV services are distributed and further producing a large amount of logs, such logs
can be used for root-cause analysis of error situations in the running services5. The tool LOGAN inspects the
divergence of current logs from a reference model and highlights logs likely to contain hints to the root cause. The
paper presents the designed reference model for problem diagnosis which serves as a basis for detecting crucial log
messages for the running system. Furthermore, LOGAN is able to analyze a large volume of logs and helps
operators to save time during problem diagnosis by automatically highlighting high value logs.

3. Architecture for real-time anomaly detection

The suggested architecture is an extension of a typical cloud infrastructure utilized by telecommunication
providers for NFV deployments. The three pillars – cloud management, cloud resources and anomaly detection
pipeline are described in the following.

A continuous operation of telecommunication services can only be guaranteed if the underlying cloud platform
itself is highly available. We assume OpenStack as an underlying infrastructure, as it currently viewed as the de-
facto standard for open-source cloud software and is deployed in many data centers, so we were able to monitor and
process real-word systems and information. OpenStack consists of a multitude of components that work together in
order to deliver the desired Cloud management services. A full description of all services and their interfaces would
go beyond the scope of this paper and the general architecture of OpenStack is well known1. To achieve high
availability, every OpenStack controller service must run in a replicated fashion. At the top of the stack we place a
pair of load balancers. A virtual IP address serves as an entry point for all services of the stack. The load balancers
are running in an active-passive replication mode and upon failure of the active node the passive node will
automatically take its place.

The replicated OpenStack installation consists of multiple instances of the controller node and some additional
instances of the network node each running on separate physical machines. For load balancing, the OpenStack

Figure 1: OpenStack service distribution over multiple physical machines

494 Anton Gulenko et al. / Procedia Computer Science 94 (2016) 491 – 496

controller services rely on the native clustering capability of the deployed message queue server and the stateless
property of the OpenStack controller services. The relational database used by OpenStack must be replicated as well
in order to avoid data loss. The Glance image service requires shared storage, which can be provided by a distributed
file system like Ceph†. Figur presents the OpenStack services distributed on multiple physical machines and an
example NFV infrastructure deployed on top of OpenStack.

We extended the replicated OpenStack installation through additional components for monitoring the vital service
parameters, for anomaly detection, and with a self-stabilization framework that contains a selection of
countermeasures to mask and/or repair failures. The current setup including the cloud management component, the
execution of VNF services, and the self-stabilization pipeline is depicted in Figure . In the following, the individual
components of the self-stabilization pipeline are described in more detail.

The first step in this process is to collect monitoring data in all hosts and other components in the system, so the
framework can identify, isolate, and evaluate indicators for the detection of anomalies. The basic data to collect
represents the usage of different resources in each host. This includes CPU and RAM usage, I/O operations of
different partitions and mount points, and network I/O metrics of different network interfaces and protocols. Such
resource usage metrics are collected both on the physical nodes and inside of every virtual machine. In addition, the
virtualization stack is queried for information. For example the virtualization library Libvirt offers an APIs to
retrieve resource usage information of VMs. Open vSwitch6 is a widespread software switch used for implementing
virtual networks and offers remote APIs to retrieve network I/O metrics about its virtual bridges and ports. This list

 http://ceph.com/

Figure 2: System architecture for anomaly detection in an NFV system

495 Anton Gulenko et al. / Procedia Computer Science 94 (2016) 491 – 496

has to be extended to all subsystems and components involved in the NFV stack. An important non-functional
requirement for the data collection, as well as for the entire anomaly detection pipeline, is to consume only a small
portion of the systems resources. In particular, the operation of the virtualized services should not be impacted by the
anomaly detection.

The monitoring data is collected in a data sink which is responsible for converting the data from all data sources
into a common internal format. Information about the system architecture is used to associate incoming data streams
with the correct system components.

The data analysis step receives the uniform data and condenses it into higher-level information. A variety of data
analysis or data mining techniques are used here. The simplest approach is to use a complex event processor and
manually define thresholds for the metrics that are known to indicate anomalies. However, this requires detailed
expert knowledge to define such thresholds and even experienced administrators can miss certain patterns or
dependencies hidden in the data. The major challenge for the failure prediction and failure recovery is related to the
definition of sets of characteristic values that indicate the presence of an anomaly or failure. Such feature vectors can
be engineered top-down based on anticipated behavior of the system in case of failures. However, such a systematic
approach is less visible for large, productive environments, so usually a bottom-up approach – inserting failures and
measuring the system parameters – is applied. The collection of such feature vectors serves as a starting point for a
similarity search in order to detect and then recover failures in a running server. Thus, the main challenge of the data
analysis step is to develop and deploy corresponding retrieval mechanisms, which can separate the noise in a running
infrastructure from the current processing state and detect anomalies as precisely as possible.

Therefore, we developed and implemented advanced techniques based on online unsupervised clustering and
classification algorithms capable of handling continuous data streams. Multiple analysis steps are be chained
together and executed on different hosts to achieve scalability. For example, every virtual and physical host performs
an analysis of all locally collected data and forwards these intermediate results to a higher-level analysis which
combines all information for a group of hosts and finally forwards its own results to a global analysis step which
performs root cause analysis using the distilled information about the entire NFV system. All data analysis steps
have access to a catalog of known anomalies to improve the analysis results.

The output of the data analysis are system state events sent to the self-stabilization engine. The purpose of this
engine is to execute recovery actions in the cloud management platform or directly within the NFV resources. Pre-
defined actions from the recovery action catalog are used to guide the system back to a “healthy” state. The recovery
action catalog can include recipes for an orchestration tool to run actions on the service layer or the underlying cloud
system. Possible actions include migrating a VM to another hypervisor or changing the configuration of an
OpenStack service such as a DHCP agent in Neutron. Recovery actions can be combined and executed on different
layers simultaneously. Through the continuous data monitoring and analysis, the decision engine will receive
continuous feedback on the success of the implemented recovery routines. Based on that it can execute additional
recovery or mitigation routines or contact an administrator as a last resort.

4. Prototype

Several parts of the architecture are already implemented on a dedicated testbed of 20 physical machines. The
basis is an installation of OpenStack Liberty with a three-fold replicated controller node and a two-fold replicated
network node. A pair of replicated load balancers provides a reliable access to all OpenStack services. The
remaining nodes are used as compute nodes hosting the virtual machines. To simulate the workload of an NFV
installation, the open source IMS core implementation Project Clearwater ‡ is executed on top of OpenStack.
OpenStacks own orchestration module Heat is used to deploy the virtual infrastructure, and the lightweight
configuration management tool Ansible§ configures all virtual machines to run their respective VNFs.

 http://www.projectclearwater.org/
 https://www.ansible.com/

496 Anton Gulenko et al. / Procedia Computer Science 94 (2016) 491 – 496

The data collection is implemented in the Go programming language and collects between 130 and 180 metrics
on a typical Linux machine. The data is mainly obtained by parsing the /proc file system in short time intervals. On
hypervisor nodes, additional 22 metrics are collected for every hosted virtual machine by querying the Libvirt API
and 7 metrics for every virtual network interface inside Open vSwitch. This adds up to about 500 metrics on a small
sized compute node. When collecting the data in 300ms intervals and sending it over the network in a dense binary
format the CPU usage does not exceed 3% of a single 3.3 GHz processor. Since many of the metrics do not change
frequently, the sampling rate could be selectively lowered to further reduce the resource overhead.

Preliminary evaluation of the collected data indicates a high degree of reliable recognition of pre-defined failure
scenarios, exceeding 95%. These results need to be further investigated in terms of the execution environment and
the impact of production “noise” – concurrently running processes, user interaction, and varying load – in order to
make a reliable statement on the efficiency and the precision of the framework. This is part of the future work
described in the following.

4. Conclusion and future work

This paper presents a set of methods, an implemented prototype, and preliminary evaluation for anomaly
detection in cloud-based infrastructure with specific focus on deployment of virtualized network functions (VNF).
The framework is built upon OpenStack, which is the current de-facto standard in open-source data center cloud
software. Our system architecture targets the NFV use case as the demands for fault tolerance are especially high in
the case of telecommunication providers, which are used to execute services on dedicated and specialized hardware.
However, the flexibility and the cost effectiveness of virtualized solutions motivate service providers to deploy
virtualized solutions and simultaneously research software-based methods for increasing their fault tolerance. The
presented research aims at solving this problem by providing an extensive monitoring solution that collects a
significant set of data and analyzes it with supervised and non-supervised machine learning techniques. The
computed indicators are used to activate pre-defined countermeasures to mask or even repair outages or situations
with degraded performance.

In the next steps the testing environment will be extended by components for injecting general fault scenarios like
overload or memory leaks, together with fault scenarios specific to NVF environments. Based on the collected data,
additional unsupervised machine learning algorithms will be implemented inside the data analysis framework.
Further, a visualization of the current system state will help to evaluate the success of the anomaly detection and to
find correlations between different system layers. New cloud-related optimization technologies introduce layer
violations, which further exacerbate anomaly detection in NFV infrastructures. Such technologies, like the DPDK**
will be taken into consideration and further set our solution apart from conventional monitoring and fault detection
systems.

References

1. OpenStack [Online]. Available: https://www.openstack.org/.
2. Prathamesh Gaikwad: "Anomaly Detection for Scientific Workflow Applications on Networked Clouds" in 2016 International Conference on

High Performance Computing & Simulation (HPCS), Insbruck, Austria.
3. Alessandro Pellegrini, Pierangelo Di Sanzo, Dimiter R. Avresky: "A Machine Learning-Based Framework for Building Application Failure

Prediction Models," in 2015 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), Hyderabad, India.
4. Javier Alonso, Lluis Belanche, Dimiter R. Avresky: "Predicting Software Anomalies Using Machine Learning Techniques," in 2011 10th IEEE

International Symposium on Network Computing and Applications (NCA), pp. 163-170.
5. B. C. Tak, S. Tao, L. Yang, C. Zhu and Y. Ruan: "LOGAN: Problem Diagnosis in the Cloud Using Log-based Reference Models," in 2016

International Conference on Cloud Engineering (IC2E), Berlin, Germany.
6. Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, and Pravin

Shelar: "The Design and Implementation of Open vSwitch," in 12th USENIX Symposium on Networked Systems Design and Implementation,
Oakland, CA, USENIX Association, 2015, pp. 117--130

** http://www.dpdk.org/

