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1 Introduction

Jets are sensitive probes of final-state effects in heavy ion collisions. The jet quenching

phenomenon is understood to arise from the interaction of hard-scattered partons with

the quark-gluon plasma produced in such collisions [1]. The first observable used to probe

this phenomenon at the LHC was the transverse momentum (pT) balance of back-to-back

jets [2–5]. Quenching imparts a net imbalance to dijets that exceeds the imbalance from

QCD radiation in vacuum, as measured in pp collisions. This additional imbalance is

expected based on the difference of the in-medium path-length traversed by the two jets.

However, jet-by-jet fluctuation of the quenching may also play a role, and could even be

dominant [6].

The dependence of quenching on the type of parton that initiates the jet may provide

insight into the underlying dynamics. Such a dependence could arise directly from the

interaction of the initiating parton with the medium. For example, radiative loss via gluon

bremsstrahlung is expected to be larger for jets initiated by gluons than for those from

quarks. Furthermore, for heavy quarks, radiation is expected to be suppressed in the

direction of propagation [7]. A dependence could also arise less directly, via the medium

interactions of subleading partons in the shower. For models in which quenching depends on

the shower multiplicity, e.g., jewel [6, 8], the relatively larger average parton multiplicity

of gluon-initiated jets would lead to a larger quenching effect.

In general, the type of parton that initiates the jet is difficult to determine experimen-

tally. A notable exception are jets produced by the fragmentation of bottom quarks. The
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corresponding b hadron may be identified, for example, by the presence of a soft lepton or

a displaced vertex inside the jet. The latter strategy was pursued in the CMS measurement

of the b quark jet (“b jet”) spectra and the corresponding nuclear modification factor in

PbPb collisions at a nucleon-nucleon center of mass energy of
√
sNN = 2.76 TeV [9]. How-

ever, there is a potential ambiguity in that measurement. Bottom quarks may be produced

not only directly in the hard scattering, but also in the subsequent splitting of gluons into

b quark pairs. Jets associated with b hadrons may contain a significant contribution from

gluon splitting, both from gluons that participate directly in the hard scattering, as well

as those that arise from final-state radiation in the parton shower process.

One way to suppress the contribution of gluon splitting, which tends to produce pairs

of b quarks with a relatively small opening angle, is to look at pairs of b jets that are back-

to-back in azimuth. As shown in the appendix, this configuration enhances the contribution

from primary b quarks, typically produced via the reaction gg → bb. The pT balance of

such b jets may then be compared with those of inclusive (i.e., nontagged) dijets. This

paper presents the first measurement of the pT balance of b jet pairs (“b dijets”) in PbPb,

using collisions recorded at
√
sNN = 5.02 TeV. The b dijet data are compared with that of

inclusive dijets to search for a possible dependence of the pT balance on the species of the

initiating partons.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon

pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass

and scintillator hadron calorimeter, each composed of a barrel and two endcap sections.

Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap

detectors over the range of about 3 < η < 5. Muons are detected in gas-ionization chambers

embedded in the steel flux-return yoke outside the solenoid. A more detailed description

of the CMS detector, together with a definition of the coordinate system used and the

relevant kinematic variables, can be found in ref. [10].

Events of interest are selected using a two-tiered trigger system [11]. The first level,

composed of custom hardware processors, uses information from the calorimeters and muon

detectors. The second level, known as the high-level trigger, consists of a farm of processors

running a version of the full event reconstruction software optimized for fast processing.

3 Event and object selection

This analysis is performed using PbPb and pp data recorded in 2015 at a center-of-mass

energy per nucleon pair of
√
sNN = 5.02 TeV. The PbPb and pp samples correspond to

integrated luminosities of 404µb−1 and 25.8 pb−1, respectively. Events were selected using

single-jet triggers in both pp and PbPb collisions. The jet triggers used in this analysis are

fully efficient with respect to the offline leading jet selection of pT > 100 GeV. For PbPb col-

lisions, b tagging algorithms are applied at the high-level trigger to reduce the data volume.
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This is achieved by performing a simplified version of the charged-particle tracking and ver-

tex reconstruction in regions of the detector delineated by high-pT jets. The efficiency of

the online b tagging with respect to the corresponding offline algorithm is evaluated using

single-jet triggers, and lies in the range of 70–90%, depending on collision centrality.

To reject noncollision processes such as beam-gas interactions, events are required to

have at least one reconstructed primary vertex and to deposit an energy of at least 3 GeV

in at least 3 towers in each of the two forward calorimeters. The forward calorimeters are

also used to estimate the collision centrality, evaluated as a percentile of the total inelastic

hadronic cross section, with the most central event corresponding to a centrality of 0%.

The anti-kT algorithm [12] is used to cluster jets from objects produced by the CMS

particle-flow algorithm [13], which combines information from the various subdetector sys-

tems. A radius parameter of R = 0.4 is used. In PbPb collisions, the heavy ion back-

ground is subtracted event-by-event with an algorithm that is a variant of an iterative

“noise/pedestal subtraction” technique [14]. The jet energy is calibrated as a function of

the η and pT following the procedure described in ref. [15].

The identification of b jets is achieved using the “combined secondary vertex” (CSV)

discriminator. This algorithm takes as input a number of properties of the reconstructed

secondary vertex (SV), such as its displacement, the number of associated tracks, and their

invariant mass (with the assumption that the tracks are originated by charged pions). For

events in which no SV is properly reconstructed, the displacement of selected tracks is used.

Details of the b tagging algorithms, and tracking and vertexing in general, can be found in

refs. [16] and [17], respectively. Simulated data samples produced with Geant4 [18] are

used to evaluate the b tagging performance and derive various corrections. These samples

are generated with pythia version 6.423 [19], tune Z2 [20]. To compare with PbPb data,

pythia events are embedded in an underlying event produced with the hydjet generator,

version 1.9 [21].

The performance of the CSV algorithm to identify b jet pairs offline is shown in figure 1.

The efficiency and purity are evaluated in simulation as a function of the b-tagging selection

variable for pp and PbPb collisions for different centrality intervals. A tight selection on the

CSV discriminator is applied in this analysis, as indicated in figure 1, leading to a purity in

the range of 85–95% for b dijets, with an efficiency in the range of about 10–35%, depending

on collision system and centrality. The degradation of the performance with increasing cen-

trality corresponds to a larger mistagging rate for fixed b tagging efficiency, as also observed

in ref. [9]. These jets are mistagged primarily due to vertices from false track combinations.

4 Data analysis

The pT balance of dijets is measured using the leading and subleading jets. This balance is

quantified by the ratio of the subleading to leading jet pT, denoted xJ. Dijets are selected

from the two highest pT jets within a window of |η| < 1.5. The pT of the leading and the

subleading jets are required to be above 100 and 40 GeV, respectively. This asymmetric pT
selection is chosen to ensure sensitivity to quenching effects. The subleading jet threshold

of 40 GeV is chosen to keep the subleading jet-finding efficiency reasonably high, as will be
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Figure 1. The b dijet purity vs. efficiency as a function of the value of the selection on the CSV

discriminator in simulation. The same CSV selection is applied to both jets. Several different

centrality intervals of PbPb, as well as pp collisions, are shown, as indicated in the legend. The

closed symbols indicate the working point used in this analysis.

described below. The leading jet threshold of 100 GeV is a compromise between statistical

precision, on one hand, and maintaining a large lever-arm with the subleading jet, on

the other. For the case of b dijets, the leading and subleading jets are chosen prior to

b-tagging selection. By restricting the analysis to the two highest pT jets in the event, the

contribution from gluon splitting processes is significantly suppressed.

Pairs of jets from a single hard scattering are referred to as “signal” pairs. To enhance

the contribution of such pairs, the jets are required to be back-to-back in azimuthal opening

angle with the selection of |∆φ| > 2π/3. The ∆φ distributions in pp collisions for inclusive

dijets and dijets for which both the leading and subleading jets are b tagged are shown

in the left panel of figure 2. The b-tagged dijets show a more pronounced tail at small

∆φ, which comes from a larger contribution of 3-jet topologies, as further discussed in

the appendix. The ∆φ distributions in central (0–10%) PbPb collisions are shown in the

right panel of figure 2. For inclusive dijets, an increased contribution (compared to pp

collisions) at small ∆φ arises from pairs of jets that are not from the same nucleon-nucleon

interaction. These combinatorial jet pairs tend to bias the xJ distribution towards low

values, i.e., towards large imbalance. To subtract this contribution from the selected dijet

pairs, we exploit the fact that such combinatorial pairs are uniform in ∆φ, and subtract the

contribution of pairs from a control region where combinatorial background dominates over

the signal pairs. The region is chosen to be |∆φ| < π/3, which is symmetric to the back-

to-back region with respect to the reaction plane, and thus receives the same contribution
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Figure 2. Distributions of the azimuthal opening angle (∆φ) between the leading and subleading

jets for pp (left) and central (0–10%) PbPb collisions (right) for inclusive dijets and b dijets. The

small-angle region (|∆φ| < π/3), the boundary of which is indicated by a dashed line, is used to

evaluate the combinatorial contribution in PbPb collisions. The vertical bars represent statistical

uncertainties, while the horizontal bars represent the bin widths.

from elliptic flow. Higher order anisotropies are assumed to be negligible for this range in

pT. Since combinatorial jets are unlikely to pass the b tagging selection, the near-angle

contribution is smaller for b dijets than inclusive dijets.

In addition to subtracting the combinatorial component, one also needs to correct for

the contribution of signal pairs that are lost when there is a combinatorial jet of higher pT
than the signal partner jet. To achieve this, an efficiency correction is derived, which is the

inverse of the probability that a partner jet of a given pT was found, i.e., not obscured by a

combinatorial jet of larger pT. This efficiency is again estimated from data using the small-

angle control region, |∆φ| < π/3. For a given centrality class, we obtain the spectrum of

the highest transverse momentum (pmax
T ) partner jet in this region in each event. Assuming

that all partner jets in this region are combinatorial, one can derive the probability that a

signal partner jet is obscured, as a function of pT. This efficiency for detecting the signal

partner jet is the cumulative distribution function of this pmax
T spectrum:

ε(pT) ≡ 1− 1

N

∫ ∞
pT

dN

dpmax
T

dpmax
T . (4.1)

The efficiency is obtained from a fit to the data in fine bins of centrality, using the

Gompertz function, f(pT) = exp[b exp(cpT)], where b and c are free parameters. The fits

obtained are shown in figure 3. For each event, the values of b and c for the given centrality

are obtained by linear interpolation. The function with these interpolated parameters is

then evaluated at the pT of the subleading jet.

Although the self-normalized quantities presented in this analysis do not depend on

the absolute b tagging efficiency, the relative efficiency as a function of the pT and η must

– 5 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
1

 (GeV)
T

p

40 50 60 70 80 90 100

S
u

b
le

a
d

in
g

 j
e

t 
fi
n

d
in

g
 e

ff
ic

ie
n

c
y

0.5

0.6

0.7

0.8

0.9

1

Centrality

0-2.5%
2.5-5%

5-7.5%

7.5-10%

10-15%

15-20%

20-25%

25-30%

30-100%

 (5.02 TeV PbPb)
-1

bµ404 

CMS

Figure 3. The efficiency of finding a signal partner jet as function of its pT in PbPb collisions,

as evaluated from the small-angle jet pair control region. The corrections are shown in the fine

centrality bins used in the analysis.

be taken into account. Corrections are derived from simulation for both the leading and

subleading jet. We also correct for the variation of the b tagging efficiency within the

centrality selections presented in this analysis.

In order to probe for quenching or other nuclear effects on the balance distributions, a

baseline is constructed using pp data as a reference. Since the deterioration of the jet pT
resolution with increasing collision centrality introduces an additional imbalance in the xJ
distributions, a direct comparison of PbPb and pp measurements does not solely reflect the

nuclear modifications. This issue is addressed by smearing the transverse momentum of the

jets in pp data by the amount that corresponds to the additional underlying event fluctu-

ations estimated from hydjet simulations that have been tuned to match the underlying

event density in PbPb data.

As in ref. [22], the jet pT resolution is parametrized according the following form,

typical for calorimeter energy resolutions.

σ(pT)/pT =
√
C2 + S2/pT +N2/p2T (4.2)

In pp collisions, the constant (C) and stochastic (S) terms are 0.06 and 0.8
√

GeV,

respectively. In PbPb collisions the S term has a slightly larger value of 1.0
√

GeV, due to

the underlying event subtraction. The noise parameter (N) depends on collision centrality,

according to N = 14.82−centrality (%)/5.40(GeV). This term is neglected in pp collisions.
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Source pp 30–100% 10–30% 0–10%

Combinatorial subtraction — 0.001 0.006 0.014

Subleading jet finding — 0.002 0.004 0.004

Energy scale 0.001 0.006 0.010 0.013

Jet resolution 0.007 0.008 0.010 0.012

Total 0.007 0.010 0.016 0.023

Combinatorial subtraction — 0.008 0.008 0.008

Subleading jet finding — 0.002 0.004 0.004

Tagging efficiency 0.002 0.003 0.003 0.009

Signal mistagging 0.002 0.004 0.006 0.006

Jet energy scale 0.001 0.006 0.010 0.013

Jet resolution 0.007 0.008 0.010 0.012

Total 0.008 0.014 0.018 0.023

Table 1. Absolute systematic uncertainties on 〈xJ〉 for inclusive (upper sub-table) and b (lower

sub-table) dijets.

5 Systematic uncertainties

The sources of systematic uncertainties in 〈xJ〉 for the inclusive dijet and b dijet measure-

ments are summarized in table 1 and discussed directly below.

Combinatorial jet pair subtraction. The systematic uncertainty in the combinatorial

background subtraction in PbPb collisions is evaluated by varying the contribution of the

near-angle control region. For inclusive dijets, where the near-angle region is dominated

by combinatorial jets, the size of the contribution is varied by 30%, which is sufficient to

cover the nonclosure of the subtraction procedure in simulation (the difference between the

output of the analysis procedure and the generated input for the simulation). For b dijets,

the number of jet pairs in the near-angle control region is reduced by the b tagging require-

ment, and is much less centrality-dependent than for inclusive dijets. Simulations based

on hydjet embedding show that the dominant contribution in this region corresponds to

signal jets from gluon splitting. We therefore use the entire yield in the near-angle region in

pp data to estimate the systematic uncertainty in the subtraction procedure in PbPb data.

Subleading jet finding efficiency. The uncertainty on the efficiency correction for

finding the subleading jet is attributed to several effects: a contribution of signal jets in

the near-angle control region (|∆φ| < π/3), the finite centrality binning used and the

imperfect description of the Gompertz fit function employed. The systematic uncertainty

associated with these corrections is evaluated from the nonclosure in hydjet-embedded

simulated samples.
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Jet energy scale. The uncertainty on the (inclusive) jet energy scale in pp collisions is

evaluated from in-situ studies to be 1% for the η range used in this analysis [15, 22]. The

same jet energy scale and uncertainty are found to apply to b jets, based on studies of Z →
bb. In-situ studies were also carried out in peripheral PbPb collisions in ref. [4], albeit with

limited statistics. A 4% uncertainty is assigned to cover the observed difference between

data and simulation. The modification of jet fragmentation pattern due to quenching is

also a source of systematic uncertainty on the jet energy scale that can be as large as 5%

for the most central collisions [23, 24]. Finally, underlying event subtraction leads to an

uncertainty in the jet energy scale of up to 2% for central collisions [4, 25].

To propagate the uncertainties to the xJ distributions, the correlation between the

leading and subleading jet energy scales must be taken into account. For a given jet pair,

the ratio xJ is insensitive to an overall shift of the jet energy scale by a multiplicative factor.

Such a shift does, however, effectively change the leading and subleading jet thresholds.

The total correlated shift from the above mentioned sources was estimated to be as large

as 6.5% in central events. For b dijets, there is an additional systematic uncertainty due

to the bias of the b tagging on the jet energy scale, which was evaluated in simulation and

found to be 1% in pp collisions and 2% in PbPb collisions.

There is also a component of the systematic uncertainty that is uncorrelated between

the leading and subleading jet. The subleading jet is also more sensitive to the underlying

event subtraction systematics than the leading jet is. To be conservative, we applied

the entire uncertainty of 2% to the subleading jet, independently of the leading jet. In

addition, to cover the pT dependence of the modification of the fragmentation pattern due

to quenching, the jet energy scale is shifted by a fixed amount, up to 2 GeV in central events.

Jet energy resolution. The uncertainly from the jet resolution is propagated by varying

the resolution parametrization in eq. (4.2). The effect on the xJ distribution is evaluated by

applying these alternate smearing parametrizations to particle-level jets. In pp collisions,

the C and S parameters are varied by 0.02 and 0.2
√

GeV, respectively. For PbPb collisions,

in addition, the N term is varied by 2 GeV, which covers the difference in underlying event

between data and simulation, and the variation of the resolution within the wide centrality

bins. Although the results are not unfolded for the resolution effects, the uncertainty is

fully included in the data points in order to correctly evaluate any theoretical models that

fold in the resolution effects for comparison.

Tagging efficiency (b jets only). The tagging efficiency has a fairly flat pT dependence,

such that it has only a mild effect on the observed mean xJ values (〈xJ〉). The values of

the corrections are varied by 50% as a conservative estimate of the systematic uncertainty

in these corrections. This is sufficient to cover possible differences in data and simulation

observed with studies of the b jet tagging efficiency in control samples in data [9, 16].

Mistagging (b jets only). The effect of mistagging signal (i.e., not combinatorial)

dijets where one or both jets is not associated with a b quark is evaluated by inverting

the b tagging selection for both the leading and subleading jets, both independently and
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Figure 4. Distributions of xJ in pp collisions for inclusive dijets (left) and b dijets (right). System-

atic uncertainties are shown as shaded boxes, while statistical uncertainties are shown as vertical

lines. The data are compared to simulations performed using powheg and pythia, as described

in the text.

simultaneously. The systematic uncertainty associated with mistagging is based on the

imbalance of the inverted selections, taking into account the purity of the b dijet selection

in simulation, which is around 85–90%, depending slightly on centrality.

6 Results

The pT balance, as quantified by the distribution of xJ, is presented for both inclusive

and b dijets. Both sets of dijets use leading and subleading jet pT thresholds of 100 and

40 GeV, respectively, selected from jets in |η| < 1.5. Figure 4 shows the distribution in pp

collisions. The data are compared with simulations performed with pythia 6, which was

found to give an adequate description of the dijet balance for inclusive jets. The agreement

of pythia 6 with data is notably worse for b dijets, where the simulated distribution is

broadened towards imbalanced jet pairs. This broad feature is not observed in the b dijet

data, which instead shows an xJ distribution that resembles that of inclusive dijets. It

was found that improved agreement could be obtained by reweighting the contributions

of heavy-flavor production processes in pythia 6, a procedure which is discussed in the

appendix. The reweighted distribution is also shown in figure 4. Finally, the data are also

compared to simulations based on next-to-leading order matrix elements, as encoded in the

hvq package [26] of the powheg box [27] (v2) generator. Hadronization in the powheg

method [28, 29] is performed by matching the matrix elements to parton showers, which

in this case are generated with pythia 8.212 [30], tune CUETP8M1 [31]. The powheg +

pythia 8 simulations are found to give a good description of the b dijet data.

Figure 5 shows the xJ distributions for inclusive dijets and b dijets for three different

centrality selections of PbPb collisions. Here the data are compared to the reference ob-
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tained from pp data by smearing the pT of each jet according to a parametrization of the

resolution for the given centrality class. Figure 6 shows the 〈xJ〉 values from these distri-

butions, as well as the difference between the 〈xJ〉 in PbPb and the smeared pp reference.

The data are plotted as a function of the number of participants estimated from a Monte

Carlo Glauber model [32, 33]. The number of participants is weighted by the number of

collisions to account for the hard scattering bias within each bin. Both the inclusive dijet

and b dijet data show a tendency towards increasing imbalance with increasing central-

ity. While the reference data also become more imbalanced because of resolution effects,

the magnitude of the effect is clearly smaller. The effect is understood to result from jet

quenching, as observed in previous inclusive dijet results [3, 34]. For inclusive dijets, a

clear quenching signal is observed already for the 30–100% centrality bin. For b dijets,

on the other hand, the imbalance is compatible with the pp reference in the 30–100% bin.

In the 10–30% bin, the b dijet data point lies between the inclusive dijet one and the pp

reference, within two standard deviations of both. Only in the most central bin (0–10%)

is the b dijet quenching significant at the level of about three standard deviations, with a

value close to that observed for inclusive dijets.

7 Conclusions

In this paper, transverse momentum (pT) correlations of b quark jet pairs (b dijets) have

been measured in PbPb collisions for the first time, and compared to results from pp

collisions. In pp collisions, a similar pT balance distribution was observed for inclusive

dijets and b dijets. For the latter case, powheg was found to give a better description

than pythia 6 alone (without reweighting), suggesting that next-to-leading order effects

are important for the modeling of this observable. This should be taken into consideration

for models of parton energy loss in nucleus-nucleus collisions, which often use leading order

calculations or generators as input. In PbPb collisions the net pT imbalance was observed

to be larger in the most central collisions for b dijets, as had already been observed for

inclusive dijets. This effect can be understood to originate from the energy loss of partons

in the quark-gluon plasma. In the most central bin, the observed quenching effect is of

comparable magnitude for b dijets and for inclusive dijets, the latter of which contains a

mixture of quark and gluon jets. Insofar as parton energy loss is thought to depend on the

type of parton that initiates the parton shower, this measurement can place constraints on

the underlying dynamics of the interaction of the parton with the quark-gluon plasma.
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Figure 5. Distributions of xJ in PbPb collisions for inclusive dijets (left) and b dijets (right).

Systematic uncertainties are shown as shaded boxes, while statistical uncertainties are shown as

vertical lines. The top, middle and bottom rows show the 0–10, 10–30 and 30–100% centrality

selections, respectively. The data are compared to a reference obtained by smearing pp according

to the jet resolution for the given centrality class, as described in the text.
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Figure 7. The distributions of xJ (left) and ∆φ (right) in pp collisions before flavor process

reweighting. Data are shown in solid points, while the stacked histograms show the contributions of

different processes in pythia 6 (see text for details). The bottom set of panels show the difference

between data and simulation (MC).

A Heavy flavor subprocess reweighting

Whereas tunes of pythia 6 used to compare to LHC data give a reasonable description

of the dijet balance for inclusive jets (e.g., in ref. [34]), they fail to adequately describe

the angular and pT correlations between b jet pairs for the kinematic range probed by

this measurement, as shown in the xJ and ∆φ distributions in figure 7. To understand

the nature of this discrepancy simulated bb events are separated into three categories,

depending on the number of outgoing b (or b) quarks in the 2→ 2 hard scattering. In the

flavor creation process (denoted FCR), both of the outgoing particles are b quarks. The

gluon fusion reaction (gg → bb) dominates, with a small contribution from quark-antiquark

annihilation (qq → bb). In the flavor excitation process (FEX) only one of the outgoing

particles is b quark. In this case, a virtual gluon in one of the protons has split into a bb

pair and one of the b quarks enters the hard scattering. In the process referred to here as

gluon splitting (GSP), neither of the outgoing particles is a b quark. The parent may be

a gluon that participates in the hard scattering or a gluon that appears elsewhere in the

event, for example in a parton shower.

The discrepancy of pythia 6 with the data is driven by the poor modeling of the FEX

contribution, which tends to give b dijet pairs that are too asymmetric in pT. This discrep-

ancy was already noted by the CDF Collaboration [35], and may be understood as follows.
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Category FCR GSP FEX Data Simulation

|∆φ1,2| > 2π/3 57% 17% 26% 56% 46%

|∆φ1,3| > 2π/3 11% 27% 62% 37% 49%

|∆φ1,3| < π/3 0% 83% 17% 7% 5%

Table 2. Relative contributions of the three heavy-flavor production sub-processes in pythia 6

to the jet pair categories, as well as the relative abundance of the three categories in data and

simulation.

Process Default Reweighted

FCR 53% 70%

FEX 33% 9%

GSP 14% 21%

Table 3. Contributions of the three production processes to selected dijets in pythia 6 before and

after reweighting.

The partner b quark in the FEX process is treated as initial-state radiation. The pythia

6 tunes require large initial-state radiation to describe TeV scale collider data. However,

such tunes over-predict the probability that the partner b quark at mid-rapidity and enters

the kinematic selections used in this analysis. While an improved modeling of this process

can be achieved by softening the initial-state radiation, this would have an impact on other

observables, in particular the overall dijet pT balance. Instead, the contribution of the

three heavy-flavor production modes are reweighted according to the following procedure.

Three exclusive categories of events are defined, using jets within |η| < 1.5:

• The two highest pT jets are b-tagged and back-to-back (|∆φ1,2| > 2π/3);

• The first and third highest pT jet are b-tagged and back-to-back (|∆φ1,3| > 2π/3);

• The first and third highest pT jet are b-tagged and nearby (|∆φ1,3| < π/3).

In simulation, these categories are found to be dominated by FCR, FEX, and GSP

events, respectively. The contribution of each process in simulation is reweighted such that

the relative abundance of these three categories of events are the same as in data. The

relative contributions of the three heavy-flavor production sub-processes to these categories

are shown in table 2. Also shown in table 2 are the relative occurrences of the three

categories in data and simulation. Finally, table 3 shows the relative contribution of the

three production processes to selected b dijets before and after the reweighting. The

contribution of the FCR process to the selected b dijet events is found to be at the level of

70% in pythia 6 after the reweighting procedure is applied. Figure 8 shows the improved

agreement of the xJ and ∆φ distributions between data and simulation after reweighting.
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Figure 8. The distributions of xJ (left) and ∆φ (right) in pp collisions after flavor process reweight-

ing. Data are shown in solid points, while the stacked histograms show the contributions of different

processes in pythia 6 (see text for details). The bottom set of panels show the difference between

data and simulation (MC).
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IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour,

S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci,

M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov
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