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Abstract 

 

Chronic valvular heart disease (CVHD) is common in Cavalier King Charles spaniel 

(CKCS) and has the potential to affect platelet activation or function.  

 

The present study objective was to determine platelet closure time, mean platelet 

component (MPC) concentration and platelet component distribution width (PCDW) 

in dogs with subclinical CVHD, and to assess the factors influencing these 

variables. A second objective was to assess platelet count, MPC concentration, 

PCDW, mean platelet volume (MPV), platelet volume distribution width (PDW), 

plateletcrit (PCT), mean platelet mass (MPM) and platelet mass distribution width 

(PMDW) in CKCS.   

 

Haematological values, closure time, murmur grade and echocardiographic 

variables were recorded in 89 CKCS. Associations between explanatory variables 

(sex, age, murmur grade, echocardiographic variables, platelet count, and 

haematocrit (HCT)) and outcomes (closure time, MPC concentration, and PCDW) 

were examined using multivariate regression analysis. Platelet indices were 

compared between CKCS and a group of 39 control dogs (non-CKCS). 

 

A model with 5 variables best explained variation in closure time (R2, 0.74), with 

greater than 60% of the variance of closure time explained by mitral valve 

regurgitant jet size. The model of best fit to explain variation in MPC concentration 

included only platelet count (R2, 0.24). The model of best fit to explain variation in 

PCDW included platelet count and sex (R2, 0.25). The MPC concentration, MPV, 

PDW, MPM and PMDW values were significantly higher, and the platelet count, 

PCT, PCDW and HCT values significantly lower, in the CKCS compared to control 

dogs.  

 

In the present study, a significant effect of mitral valve regurgitant jet size on closure 

time was consistent with platelet dysfunction. However, platelet activation, as 

determined by MPC concentration and PCDW, was not a feature of subclinical 

CVHD in CKCS. 
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1 Literature review 

 

1.1 Background 

 

Chronic valvular heart disease (CVHD), characterised by progressive 

myxomatous degeneration and thickening of the mitral valve leaflets, is the 

most common heart disease in dogs (Sisson et al. 1999). This disease is 

particularly common in CKCS, with echocardiographic evidence of mitral 

valve prolapse (MVP) reported in more than 80% of CKCS aged one to three 

years (Pedersen et al. 1999a). 

 

Decreased platelet number and increased platelet size (thrombocytopenia 

and macrothrombocytosis, respectively) are also common in the CKCS 

(Eksell et al. 1994, Smedile et al. 1997, Pedersen et al. 2002, Singh and 

Lamb 2005). Previous studies report the prevalence of thrombocytopenia 

(defined as a platelet count less than 100 x 109/L) as 31-56% (Eksell et al. 

1994, Olsen et al. 2001, Pedersen et al. 2002, Cowan et al. 2004, Olsen et 

al. 2004, Singh and Lamb 2005), with macrothrombocytosis (defined as 

greater than 30% of platelets with diameter ≥ 3µm or greater than 30% of 

platelets subjectively as large as or larger than a red blood cell) present in an 

overlapping 30-33% of dogs (Cowan et al. 2004, Singh and Lamb 2005).  

 

In all species, valvular heart disease has the potential to affect platelet 

activation or function as a result of turbulent high-velocity blood flow and fluid 

shear stress (Brown et al. 1975).  Increased platelet activation and reactivity 

would be expected initially; however, continuous stimulation and stress may 

lead to structural and biochemical changes associated with decreased 

platelet function (Tanaka and Yamane 2000). Alteration of platelet function in 

humans with heart disease contributes to the development of vascular 

remodelling, thromboembolic events, and fatalities (Michelson 2004). 
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There are conflicting reports regarding platelet activation and function in 

dogs with CVHD. A significant increase in closure time has been described in 

CKCS with moderate to severe mitral valve regurgitation (MVR) compared to 

those with minimal or mild regurgitation or healthy control dogs (Tarnow et al. 

2003, 2004, 2005). A significant inverse relationship has also been identified 

between plasma von Willebrand factor (VWF) concentration and regurgitant 

jet size, as well as a relative absence of high-molecular-weight VWF mul-

timers in samples obtained from dogs with moderate to severe MVR (Tarnow 

et al. 2004). Consequently, the prolonged closure time was thought to be a 

result of these quantitative and qualitative changes in VWF rather than an 

alteration of intrinsic platelet function. However, concurrent alteration of 

platelet function or platelet activation could not be excluded. 

 

Enhanced platelet-leukocyte aggregation, which is suggestive of platelet 

activation, has been identified in dogs with congestive heart failure, 

compared with results for age-matched control dogs (Tarnow et al. 2010a). 

In addition, decreased platelet lifespan has been reported in dogs following 

experimental induction of MVR, which would support the presence of 

younger platelets with increased activity (Tanaka et al. 2002). However, 

plasma concentration of thromboxane B2, platelet surface P-selectin 

expression, and thromboelastographic variables are not significantly different 

between CKCS with CVHD and moderate to severe MVR, compared with 

results for affected dogs with absent or minimal MVR or healthy control dogs 

of other breeds (Tarnow et al. 2005, Tarnow et al. 2010b). 

 

Aggregometric studies (Tanaka and Yamane 2000, Olsen et al. 2001, 

Tarnow et al. 2005) have also yielded conflicting results, with increased, 

decreased, and unchanged responses described in CKCS with advanced 

disease, compared with results for those with mild or no disease or healthy 

dogs of other breeds. Reasons for these discrepancies are unclear, but they 

may be explained by differences in laboratory methods, lack of 

standardisation of laboratory techniques, or differences in criteria for the 

classification of disease severity or control dogs. In addition, marked 

interbreed variability has been observed for the maximal aggregation 
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response (Cowan et al. 2004, Nielsen et al. 2007, Moesgaard et al. 2009) 

and breed composition of control groups has differed among studies. There-

fore, in contrast to humans, the extent of platelet activation in dogs with 

CVHD remains uncertain. 

 

Mean platelet component (MPC) concentration, which is measured by use of 

an optical-based haematology analyser, has emerged as a marker of platelet 

activation (Moritz et al. 2005). The MPC concentration is an estimate of 

platelet density, and decreased values are indicative of platelet activation 

(Ahnadi et al. 2004). In dogs, decreased MPC concentrations have been 

detected after exercise, in patients with inflammatory disease, and in 

association with immune-mediated thrombocytopenia (Moritz et al. 2003, 

Moritz et al. 2005, Bauer et al. 2012, Smith et al. 2014). It has been 

suggested that decreased MPC concentration is a more sensitive marker of 

platelet activation compared to P-selectin expression, in part because of the 

persistence of decreased MPC concentrations following activation despite 

the loss of cell-surface P-selectin (Macey et al. 1999, Moritz et al. 2005). The 

standard deviation (SD) of the platelet component concentration, known as 

the platelet component distribution width (PCDW), can also be calculated. 

This index is increased if both degranulated and non-degranulated circulating 

platelets are present, and it is considered another marker of platelet 

activation (Moritz et al. 2005). It is possible that MPC concentration and 

PCDW could provide additional information regarding the activation of 

platelets in dogs with heart disease. 

 

This chapter will review CVHD in the CKCS and its similarities to MVP in 

people; clinical and echocardiographic indices of heart disease severity; 

methods of platelet number, activation and function assessment (with 

reference to previous findings in the CKCS); automated platelet indices 

(including MPC concentration and PCDW) and the reported associations 

between selected platelet indices and valvular heart disease.  
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1.2 Chronic valvular heart disease in the Cavalier King 

Charles spaniel and other dog breeds 

 

1.2.1 Occurrence, pathology, inheritance and diagnosis 

 

Chronic valvular heart disease, defined as progressive myxomatous 

degeneration and thickening of the mitral valve leaflets, is the most common 

heart disease in dogs (Sisson et al. 1999, Borgarelli et al. 2008) and is 

estimated to account for 75–80% of all heart disease cases in dogs 

(Häggstrӧm and Pedersen 2005).  

 

Mitral valve prolapse is a fundamental and early feature of CVHD, and is 

defined as the protrusion of one or both valve leaflets to the atrial side of the 

plane of the mitral annulus during systole (Pedersen et al. 1999a). The 

degree of MVP correlates with the severity of MVR (Pedersen et al. 1996).  

 

Chronic valvular heart disease has a strong small-breed predisposition. It is 

particularly common in the CKCS and many dogs are affected from a young 

age. In Denmark, ultrasonographic evidence of MVP was present in 82% 

(54/66) of CKCS between one and three years of age and 97% (84/87) of 

CKCS greater than three years of age, with a left apical systolic murmur 

identified clinically in 50% of dogs by 6.2 years (Pedersen et al. 1999a). In a 

French study, there was ultrasonographic evidence of CVHD in 91% 

(139/152) of CKCS of all ages, and a left apical systolic murmur in 50% of 

dogs by 6.6 years (Chetboul et al. 2004). Similarly, an American study 

reported the presence of a left apical systolic murmur in 56% (220/394) and 

100% (10/10) of CKCS aged greater than four and 10 years, respectively 

(Beardow and Buchanan 1993). The latter study also reported that the age of 

referral for assessment of CVHD was lower in the CKCS with a mean age of 

6.25 years compared to a mean age of 12 years in other breeds. 

 

The pathological changes of CVHD are well described and are characterised 

by expansion of the extracellular matrix with glycosaminoglycans and 
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proteoglycans, disruption or loss of the collagen-rich fibrosa layer, and 

change in valvular interstitial cell phenotype (Kogure 1980, Pedersen and 

Häggstrӧm 2000). Morphologically, these changes result in enlargement and 

thickening of the mitral valve leaflets, inter-chordal hooding, elongation of the 

chordae tendineae and MVP (Pomerance and Whitney 1970, Pedersen et al. 

1995). Collectively, these changes result in valve leakage during systole 

(MVR) (Whitney 1974). As CVHD progresses, an increase in left ventricular 

filling pressures associated with volume overload may result in left atrial and 

later ventricular dilation (i.e. eccentric hypertrophy) (Kvart et al. 2002). The 

progression of CVHD is inevitable but typically slow. In some cases, left-

sided congestive heart failure will develop (Lord et al. 2010). 

 

The cause of CVHD in dogs is not known; however, a genetic component is 

suspected based upon the higher prevalence, and results of genealogical 

and genetic studies, in specific breeds (Lewis et al. 2011, Madsen et al. 

2011). Traditionally CVHD has been considered a complex polygenic 

threshold trait; a theory supported by more recent failure to identify 

association with any single major locus in genome-wide association studies 

(Madsen et al. 2011, French et al. 2012). Although traditionally described as 

a progressive, non-inflammatory disease, in recent years it has become 

apparent that canine CVHD is associated with immune system activation. A 

2006 study evaluated genomic expression patterns from the anterior mitral 

valve leaflet of four dogs with severe CVHD using an oligonucleotide 

microarray, and identified uniform activation of several pathways including 

those involved in immunity and inflammation (Oyama and Chittur 2006). 

Based upon this finding, it is possible that the immune system is involved in 

the development and/or progression of CVHD. 

 

A diagnosis of CVHD is commonly based on a combination of cardiac 

auscultation and two-dimensional, M-mode and colour-flow Doppler 

echocardiography (Muzzi et al. 2003). In brief, auscultation of a left-sided 

apical systolic murmur is consistent with MVR; two-dimensional and M-mode 

echocardiography permits identification of abnormal mitral valve thickening 

and prolapse and cardiac remodelling; and colour-flow Doppler 
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echocardiography enables estimation of the mitral regurgitant jet area, 

usually expressed as a percentage of the left atrial area (Pedersen et al. 

1999a, Muzzi et al. 2003). 

 

1.2.2 Disease-related variables of chronic valvular heart disease 

1.2.2.1 Clinical and echocardiographic indices of mitral valve 

regurgitant jet severity 

 

Murmur intensity/grade 

 

Cardiac murmur intensity is most commonly graded using a six point grading 

system, with grades I-IV/VI varying in intensity, and grades V/VI and VI/VI 

characterised by the presence of a precordial thrill and a murmur that is 

audible with the stethoscope lifted off the chest wall, respectively. The 

severity of MVR is positively associated with heart murmur grade on 

auscultation (Ljungvall et al. 2009) and with severity of CVHD (heart failure 

class) (Häggstrӧm et al. 1995). 

 

Colour-flow Doppler echocardiography 

 

The assessment of MVR severity in dogs with CVHD is important because 

mild MVR is clinically insignificant whereas severe regurgitation is 

haemodynamically consequential and associated with increased morbidity 

and mortality (Bonow et al. 1998). 

 

There is lack of a true gold standard in the assessment of MVR severity, with 

inherent advantages and disadvantages of each proposed method (Zoghbi et 

al. 2003). The Proximal Isovelocity Surface Area (PISA) method, a Doppler 

technique commonly used in people to quantify (as opposed to semi-

quantify) MVR has been reported to be an accurate ultrasonographic method 

of estimating the severity of MVR (Kittleson and Brown 2003, Gouni et al. 

2007, Chetboul and Tissier 2012). The PISA method permits assessment of 

the flow rate through the regurgitant orifice, measurement of the regurgitant 
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volume, and calculation of the regurgitant fraction (Chetboul and Tissier 

2012). The PISA method is not routinely used in dogs because it is time-

consuming and technically demanding (Gouni et al. 2007). Other limitations 

of the PISA method are that there is reduced accuracy in the absence of a 

circular orifice and that it cannot be used in the presence of multiple jets 

(which can occur with severe CVHD) (Chetboul and Tissier 2012). 

Furthermore, recently, the PISA method has been shown to be unreliable in 

the presence of eccentric jets, which are found in the majority of 

myxomatous degenerative valvular disease cases (Sargent et al. 2015). 

 

A simpler technique to assess MVR severity is the estimation of the mitral 

regurgitant jet size using colour-flow Doppler mapping. Estimation of the 

mitral regurgitant jet size is typically made from a left parasternal 4-chamber 

view. The method involves frame-by-frame analysis to identify and estimate 

the percentage of the left atrial area, as assessed by eye, occupied by the 

largest mitral jet (Figure 1.1) (Pedersen et al. 1999a, Pedersen et al. 1999b). 

A related, semi-quantitative measurement of mitral regurgitant jet size is the 

area of the regurgitant jet relative to the left atrial area (ARJ/LAA), also 

obtained from a left parasternal 4-chamber view. The latter method involves 

the calculation of the maximum ratio of the regurgitant jet area signal to the 

left atrial area, using colour-flow Doppler echocardiography and 

computerised planimetry (Muzzi et al. 2003, Chetboul and Tissier 2012). A 

disadvantage of both the mitral regurgitant jet size estimation and ARJ/LAA 

methods is the ability of several factors such as arterial blood pressure, left 

atrial pressure, jet orientation, gain settings and pulse repetition frequency to 

influence results (Zoghbi et al. 2003, Gouni et al. 2007). 

 

Despite its limitations, the ARJ/LAA method has been shown to correlate 

with quantitative Doppler techniques including mitral regurgitant volume (r = 

0.81, p < 0.001) (Muzzi et al. 2003), the effective regurgitant orifice area (r = 

0.79, p < 0.001) (Muzzi et al. 2003) and regurgitant fraction (r = 0.58, p < 

0.001) (Gouni et al. 2007) and is therefore a valid option for assessment of 

MVR severity in a clinical setting.  
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Figure 1.1: Mitral regurgitant jet size in 3 dogs with varying degrees of 

severity of CVHD.  

Left parasternal 4-chamber view. In Image A the regurgitant jet 

(arrow) is estimated to occupy less than 15% of the left atrial 

chamber, consistent with minimal MVR; in Image B the regurgitant 

jet is estimated to occupy 15% to 50% of the left atrial chamber, 

consistent with mild MVR and in Image C the regurgitant jet is 

estimated to occupy greater than 50% of the left atrial chamber 

consistent with moderate to severe MVR, as previously described 

(Tarnow et al. 2003). LA: left atrium. LV: left ventricle. 

 

1.2.2.2 Echocardiographic indices of left heart remodelling 

 

Persistent and haemodynamically significant MVR results in volume overload 

(Chetboul and Tissier 2012).  

 

Volume overload is first characterised by an increase in left atrial size, which 

is commonly assessed using the left atrial to aortic ratio (LA:Ao), obtained 

from the right parasternal short-axis approach at the level of the aortic valves 

(Thomas et al. 1993, Chetboul and Tissier 2012) (Figure 1.2). 
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Figure 1.2: Left atrial to aortic ratios in 2 dogs with varying 

degrees of severity of CVHD. 

Right parasternal short-axis view, at the level of the aortic valve as 

previously described (Thomas et al. 1993). Figure A: American 

College of Veterinary Internal Medicine (ACVIM) canine CVHD 

score A dog with a LA:Ao of 1; reference interval 1.03±0.09 

(Hansson et al. 2002). Figure B: ACVIM canine CVHD score C 

dog with a moderately-markedly dilated left atrium (LA:Ao of 2). 

 

With progression of MVR over time, there is a corresponding increase in 

volume overload that results in enlargement of the left ventricular chamber 

during end-diastole. This left ventricular eccentric hypertrophy, a marker of 

increased pre-load, may produce annular stretching and worsen the severity 

of MVR (O’Gara et al. 2008, Chetboul and Tissier 2012). The diameter of the 

left ventricle during diastole (referred to as the Left Ventricular Diameter 

during Diastole [LVDD]) is a commonly acquired index, obtained using M-

mode echocardiography at the level of the chordae tendineae as guided by a 

2-dimensional right parasternal short axis view (O’Gara et al. 2008, Chetboul 

and Tissier 2012). 

 

The Left Ventricular Diameter during Systole (LVDS) is obtained using the 

same approach as LVDD, and can be used to assess for impaired systolic 

function in advanced CVHD cases (Chetboul and Tissier 2012). An increase 

in LVDS, in spite of enhanced left ventricular ejection into a low pressure left 

atrium during systole, is consistent with systolic myocardial dysfunction 

(Chetboul and Tissier 2012). 

LA 

A 

B 

LA 

Ao 
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Left atrial size and left ventricular internal dimensions prior to, and at the 

onset of, congestive heart failure have been reported in 18 CKCS (Lord et al. 

2010). Before the onset of congestive heart failure there was a slow increase 

in left atrial size, LVDD and LVDS until approximately 6-12 months prior to 

the onset of congestive heart failure, at which time there was a rapid rate of 

change suggesting that the rate of increase in left chamber size may be used 

to predict cardiac decompensation (Lord et al. 2010). 

 

1.2.3 Comparative features of canine chronic valvular heart 

disease and mitral valve prolapse in people 

 

It has been proposed that canine CVHD may be a suitable animal model for 

human MVP (Pedersen and Häggstrӧm 2000). 

 

Mitral valve prolapse in people has similar macroscopic and microscopic 

pathological features to CVHD in dogs (Pomerance and Whitney 1970). 

Mitral valve prolapse is a fundamental feature of both diseases (Pedersen 

and Häggstrӧm 2000). Both CVHD and MVP have a suspected genetic 

component, which is considered to be autosomal or polygenic in people 

(Devereux et al. 1982, Wilcken 1992) and polygenic in the dog (Häggstrӧm 

et al. 1992). In both species, there is an increasing prevalence with age 

(Whitney 1974, Davies et al. 1978) and males are at  higher risk than 

females of developing severe disease with increasing age (Davies et al. 

1978, Swenson et al. 1996). There is a MVP disease association with a small 

stature and narrow chest in both dogs and people (Schutte et al. 1981, Olsen 

et al. 1999). Furthermore both MVP and CVHD have a slowly progressive 

disease course (Pedersen and Häggstrӧm 2000). 
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1.3 Platelets and platelet function 

 

1.3.1 Platelet review 

 

1.3.1.1 Platelet function in primary haemostasis 

 

The control of haemorrhage (haemostasis) is essential for maintenance of 

life. Haemostasis is mediated through a complex series of pathways 

culminating in the development of a platelet plug (primary haemostasis) 

followed by the deposition of a stable fibrin clot (secondary haemostasis). 

 

Platelets, or thrombocytes, are disc-shaped, anucleate cytoplasmic 

fragments that play an essential role in primary haemostasis and 

maintenance of vascular integrity (Barger 2003, Drachman 2004). 

 

There are three main components to primary haemostasis that occur 

simultaneously: adhesion, activation and aggregation (Kelley 2013). Primary 

haemostasis is complex and a brief overview is provided below. 

 

Adhesion 

 

Following vessel damage, circulating platelets contact exposed 

subendothelial collagen and membrane-expressed tissue factor (Tvedten 

2012). Next, the glycoprotein (GP), VWF, assists the adhesion of platelets to 

subendothelial collagen and to each other (Tvedten 2012). Additionally there 

is direct binding of platelets to subendothelial collagen via the integrin α2β1 

and GP VI receptors (Brass et al. 2013, Kelley 2013). 

 

Activation 

 

Adhesion of platelets to subendothelial collagen initiates platelet activation 

(Kamath et al. 2001). There is activation of the platelet surface collagen 

receptor GP IIb-IIIa, platelet shape change from disc to sphere and 
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pseudopod formation, and release of stored contents from alpha and dense 

platelet granules (refer to Section 1.3.1.2). With activation, platelets 

synthesise and release thromboxane A2. Thromboxane A2 and alpha and 

dense granule contents attract more platelets to the growing platelet plug 

(Tvedten 2012, Brass et al. 2013). Platelet signalling mediates platelet shape 

change, promoting platelet spread over exposed subendothelial collagen 

(Kelley 2013). 

 

Aggregation 

 

Platelet aggregation is enhanced due to binding of plasma VWF, fibrinogen, 

and fibrin to activated GP IIb-IIIa (Brass et al. 2013). Aggregation of platelets 

leads to formation of the platelet plug and control of haemorrhage.  

 

An abnormality at any stage in the fibrin clot formation process can result in 

failed haemostasis (Kelley 2013). 

 

1.3.1.2 Platelet structure 

 

Platelet structure is complex and may can be divided into four sections: the 

peripheral zone, the structural zone, the organelle zone and the 

membranous system (Kelley 2013, White 2013). 

 

The peripheral zone forms the most external platelet layer (Kelley 2013, 

White 2013). This section contains the outer platelet membrane, which is 

comprised of a phospholipid bilayer interspersed with specialised proteins 

and GP receptors integral to platelet function (Boudreaux 2008). The 

previously mentioned GP VI and GP IIb-IIIa are examples of GP located 

within this bilayer.  Glycoprotein IIb-IIIa is the most common GP complex 

expressed on the surface of platelets (Boudreaux 2008).  

 

The structural zone of the platelet is located beneath the peripheral zone and 

contains structures required to maintain the disc-shaped form of quiescent 
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platelets during circulation, and change platelet shape during platelet 

activation (Kelley 2013, White 2013). Broadly speaking, the structural zone 

comprises both microtubules and a cytoskeletal network. Microtubules are 

defined as hollow, cylindrical structures, comprising protofilaments with α-β 

tubulin dimer composition. Beta-1 tubulin is the most common tubulin isoform 

and is primarily expressed in megakaryocytes and platelets (Boudreaux 

2008). A mis-sense mutation in the gene encoding β1-tubulin is responsible 

for macrothrombocytopenia in the CKCS (refer to Section 1.3.7.2.3). The 

cytoskeletal network, including actin and myosin, is responsible for 

microtubule contraction (and therefore assists with platelet shape change 

and proplatelet formation), granule movement and release, and thrombus 

retraction during platelet activation (Kelley 2013).  

 

The organelle zone, located beneath the structural zone within the platelet 

cytoplasm, contains mitochondria, glycogen stores and storage granules (of 

which there are three main types: alpha, dense and lysosomal) (Boudreaux 

2008, Kelley 2013, White 2013). Alpha granules are the most sizeable and 

numerous, and contain proteins including β-thromboglobulin (BTG), platelet 

factor 4 (PF4), fibrinogen and VWF (Boudreaux 2008).  Additionally alpha 

granules also contain the trans-membrane proteins GP IIb-IIIa and P-selectin 

(Boudreaux 2010a). Dense granule contents include adenosine diphosphate 

(ADP), GP IIb-IIIa and P-selectin, high concentrations of Ca2+ and serotonin 

(Boudreaux 2010a). 

 

The fourth platelet zone is the membranous system comprising the 

canalicular and dense tubular system (Kelley 2013, White 2013). The 

canalicular system comprises a series of interconnecting channels opening 

to the platelet surface and permitting external release of platelet granule 

contents during platelet activation (Boudreaux 2008). The dense tubular 

system, derived from smooth endoplasmic reticulum is responsible for 

platelet prostaglandin synthesis and is a site of calcium storage (Boudreaux 

2008).  
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1.3.1.3 Platelet production 

 

Mature megakaryocytes produce platelets via the process of proplatelet 

formation (Kelley 2013). Megakaryocyte maturation, including endomitosis, 

and formation of the demarcation system must occur before proplatelet 

formation can begin (Boudreaux 2010c). The latter involves in-folding of the 

megakaryocyte plasma membrane to create platelet cisternae (Boudreaux 

2010c).  

 

The first stage of proplatelet formation involves centrosome disassembly and 

movement of microtubules to the cell cortex (Italiano and Hartwig 2013). 

Secondly, thick pseudopodia arise from a single megakaryocyte pole 

(Italiano and Hartwig 2013). There is subsequent lengthening of the thick 

pseudopodia to form thin proplatelet processes (Italiano and Hartwig 2013). 

Thirdly the sliding movement of microtubules within thick pseudopodia and 

thin proplatelet processes together with actin-myosin complexes forces 

mediate elongation of these proplatelet processes (Italiano and Hartwig 

2013). Fourthly, within the tips of the proplatelet processes, microtubules 

loop upon themselves and re-enter the shaft to assemble at the proplatelet 

tip (Italiano and Hartwig 2013, Kelley 2013). The tips of the proplatelet 

processes, the main site of platelet assembly, is where microtubule coiling, a 

characteristic of circulating platelets, occurs (Kelley 2013). 

 

Eventually the megakaryocyte cytoplasm resembles a mass of proplatelet 

processes (Italiano and Hartwig 2013). Mature megakaryocytes are located 

close to endothelial cells permitting proplatelet processes to reach marrow 

sinusoids (Boudreaux 2010b). Proplatelet processes are released into the 

blood stream, followed by release of individual platelets from the proplatelet 

ends (Italiano and Hartwig 2013). 

 

1.3.1.4 Regulation of platelet production 

 

Primary haemostasis requires an adequate circulating platelet mass (Kelley 

2013). Platelet mass is defined as the volume of blood that is comprised 
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solely of platelets (refer to Section 1.3.3.3). Platelet mass is an indirect 

measure of the number of available thrombopoietin (TPO) receptors. 

 

Platelet mass is maintained primarily by the TPO/TPO-receptor system 

(Kuter 1996, Kelley 2013). Thrombopoietin is a cytokine that is produced 

primarily by the liver and to a lesser degree the kidney (Boudreaux 2010b). 

Receptors are present on both megakaryocytes and platelets.  When TPO 

binds to megakaryocytes thrombopoiesis occurs; however when TPO binds 

to platelets, there is internal degradation of TPO which renders it unavailable 

for binding to megakaryocytes (Kuter 1996, Kelley 2013). In health, platelet 

numbers are maintained within a narrow range, with the majority of TPO 

degraded by platelets and low basal concentrations maintaining platelet 

production (Kuter 1996, Kelley 2013).  

 

With a decrease in platelet mass (which occurs with a decrease in the 

number of platelets or a decrease in the number/function of platelet TPO 

receptors), there is an increase in TPO concentration, with consequent 

megakaryocyte stimulation and enhanced thrombopoiesis (Kuter 1996, 

Kelley 2013). 

 

Assuming there is consistent TPO receptor density, the number of receptors 

on numerous small platelets is equivalent to the number of platelet receptors 

on lesser numbers of large platelets. Thus platelet mass (and the number of 

TPO receptors), and not platelet number determines platelet production 

(Kuter 1996, Kelley 2013). 

 

1.3.2 Thrombocytopenia 

 

1.3.2.1 Causes of true thrombocytopenia 

 

Thrombocytopenia, defined as a low number of platelets in the peripheral 

circulation, occurs with decreased or defective platelet production, increased 
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platelet consumption or loss, increased platelet destruction or abnormal 

distribution (sequestration) (as reviewed by Feldman et al., 2000).  

 

Decreased or defective platelet production may result from drug, chemical or 

toxin exposure causing cytotoxicity or an idiosyncratic reaction; irradiation 

causing cell death and bone marrow suppression; viral or rickettsial 

infections; myelophthisis due to neoplasia or fibrosis; myelonecrosis; or 

genetic β-tubulin defects (Boudreaux 2010b). Increased platelet consumption 

relates to activation of the coagulation system and may occur for example in 

disseminated intravascular coagulation. Increased platelet loss may result 

from extensive trauma or external haemorrhage (Boudreaux 2010b). 

Increased platelet destruction most commonly occurs due to immune-

mediated mechanisms. Immune-mediated destruction of platelets is primary 

(idiopathic) or secondary to infectious agents, neoplasia or drug 

administration (Boudreaux 2010b). Platelet sequestration occurs with 

diseases associated with splenomegaly or less commonly liver or bone 

marrow disease (Boudreaux 2010b). 

 

1.3.2.2 Causes of artefactual thrombocytopenia 

 

Inappropriate blood sample collection and handling techniques may induce in 

vitro platelet activation and platelet aggregation (Tvedten 2012). 

  

Artefactual platelet aggregation may result in uneven distribution of platelets 

within a blood sample, and pre-analytical error, with all platelet counting 

methodologies (manual counting, blood smear estimate and automated 

counting) (Tvedten 2012). An artefactual decrease in platelet count i.e. 

pseudothrombocytopenia may result (Zelmanovic and Hetherington 1998).  
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Platelet activation may also occur during sample collection due to: 

 blood sampling from small peripheral veins or veins with decreased 

blood flow  

 blood sampling using small-bore needles or excessive syringe 

pressure 

 excessive agitation of samples during mixing as opposed to gentle 

inversion 

 overfilling of blood collection tubes or inadequate sample mixing with 

anticoagulant 

 prolonged blood storage time (Pewarchuk et al. 1992).  

 

In addition, in vitro platelet aggregation occurs in certain individuals when 

blood contacts particular anticoagulants (Boudreaux 2010b). 

Ethylenediamine tetra-acetic acid (EDTA)-dependent 

pseudothrombocytopenia is well described in humans (Bizzaro 1995), with 

only rare (single case reports) in the dog (Wills and Wardrop 2008) , horse 

(Hinchcliff et al. 1993) and miniature pig (Ragan 1972). In people, EDTA-

induced pseudothrombocytopenia involves autoantibody-mediated 

agglutination of platelets (Casonato et al. 1994). EDTA induces calcium 

chelation and promotes a conformational change in GP IIb/IIIa on platelets, 

leading to exposure of a cryptic antigen with subsequent anti-platelet 

antibody binding and platelet aggregation (Casonato et al. 1994, Fiorin et al. 

1998).  

 

Traditionally, it was believed that platelet clumping rarely occurred with other 

anticoagulants, including citrate (Shreiner and Bell 1973, Onder et al. 1980, 

Payne 1985), however, results of more recent studies appear to contradict 

this assumption. Lower platelet counts (due to increased platelet 

aggregation) have been reported in citrated human blood samples compared 

to EDTA-anticoagulated samples (Macey et al. 1999, Ahnadi et al. 2003). 

Likewise, Stokol and Erb (2007) reported that the median platelet count in 50 

dogs with neoplasia was significantly lower in citrate- compared to EDTA-
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anticoagulated blood, due to platelet aggregation occurring more frequently 

in the samples containing citrate.  

 

1.3.2.3 Breed variation in platelet characteristics 

 

Certain dog breeds have platelet indices that commonly lie outside non-

breed specific reference intervals. In the CKCS, thrombocytopenia is 

common and is usually accompanied by macrothrombocytosis (Brown et al. 

1994).  A review of CKCS platelet characteristics is presented (refer to 

Section 1.3.7).  

 

Other breed specific platelet variations include mild thrombocytopenia in 

greyhounds (Santoro et al. 2007) and thrombocytopenia and 

macrothrombocytosis in the Norfolk terrier (Gelain et al. 2010). The cause of 

the greyhound and Norfolk terrier breed specific platelet variations is 

currently unknown. 

 

1.3.3 Methods of platelet enumeration 

 

There are four major laboratory methods of counting platelets: 1) manual 

methods using microscopy, 2) automated methods using commercial 

analysers including a) impedance analysis and b) optical light 

scatter/fluorescence analysis, 3) directly measured plateletcrit (PCT) (from 

which a platelet count is derived) (Tvedten et al. 2008, Tvedten et al. 2012) 

and 4) immunoplatelet counting by flow cytometry (Harrison and Briggs 

2013). 

 

1.3.3.1 Manual methods 

 

Manual methods of assessing platelet number are manual counting and 

blood smear estimation by microscopy (Briggs et al. 2007). 
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Until recently, manual counting was considered the gold standard in people 

(Lancé et al. 2012). With this method, a glass counting chamber 

(haemocytometer) set on top of a microscope stage is used to count the 

number of platelets in a specific fluid volume (after the addition of 

erythrocyte-lysing agents), permitting calculation of the concentration of 

platelets in the fluid (Tvedten 2012). Manual counting however is laborious 

and subjective with a high degree of imprecision. Inter-observer coefficient of 

variation is typically reported to be approximately 10-25% (Harrison et al. 

2000, Briggs et al. 2007).  

 

The second manual method, blood smear estimation, involves estimation of 

platelet numbers during examination of a stained blood smear (Tvedten 

2012). Blood smear estimates, compared to manual counts, are obtained 

comparatively simply and quickly and provide a reasonable estimate of 

platelet numbers (Tvedten 2012).   

 

1.3.3.2 Automated methods 

 

Automated cell counting is based on either impedance or optical 

methodology (Harrison and Briggs 2013). 

 

Impedance 

 

The impedance principle (or Coulter principle) transformed blood counting in 

the 1950s, and in the late 1970s impedance-based automated platelet 

counts became commercially available (Harrison and Briggs 2013). Today it 

remains a common method in many modern instruments but has largely 

been replaced by optical counters. 

 

According to the impedance principle, cells are passed through an aperture 

in an electrode in an electrically conducting fluid. The passage of a cell 

produces a change in electrical resistance, proportional to the size of the cell 

(Tvedten 2012). Cell number and size are determined by the frequency and 
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magnitude of change in resistance, respectively. Impedance counters are 

calibrated to count cells within an appropriate species specific size interval 

via adjustment of electronic thresholds (Tvedten 2012). The presence of 

larger platelets may lead to analytical inaccuracy because 

macrothrombocytes can be misclassified as erythrocytes (Moritz and Becker 

2010, Tvedten 2012). This is a recognised problem in the CKCS breed (refer 

to Section 1.3.7.1.2).  

 

Optical 

 

Optical based cell counting methods were introduced in the 1970s (Lancé et 

al. 2012). Optical counters measure not only the size (volume) but also 

internal complexity of cells, based on assessment of light scatter at different 

angles (refractive index) or cell fluorescent intensity. This has reduced the 

analytical error associated with discrimination of cells based upon volume 

alone (Moritz and Becker 2010).  

 

Optical based haematology instruments used in referral veterinary 

laboratories include the Advia 120/2120 (Siemens Healthcare Diagnostics, 

Tarrytown, NY, USA) and Sysmex XT-2000iV (Sysmex Corporation, Kobe, 

Japan) (Tvedten 2012).  

 

Advia 120/2120 

 

The Advia 120/2120 uses the flow cytometer principle and contains a laser 

optical bench that consists of a flow cell, laser diode, and detector (Macey et 

al. 1999). The Advia 120/2120 differentiates platelets from other cells based 

on cell size (volume) and refractive index (density) (Macey et al. 1999).  

 

After dilution, blood cells are passed through a flow cell that is illuminated by 

a laser diode. The resultant light scatter signals are acquired at 2 different 

angles: 2-3° (low angle scatter) and 5-15° (high angle scatter) (Briggs et al. 

2007). These values are translated into volume and refractive indices by 

calculation, using the Mie theory of scattering of light (Brummitt and Barker 
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2000). Two light-scatter measurements are produced, and are displayed on 

a cytogram with platelets identified in the region corresponding to a volume 

of 1 to 60 fL and refractive index of 1.35 to 1.40. The platelet scatter 

cytogram (Figure 1.3) displays platelets with volumes of 0 fL to 20 fL and 

large platelets 21 to 30 fL, whereas the large platelet area of the red blood 

cell scatter cytogram (Figure 1.4) displays large platelets with volumes 

between 31 fL and 60 fL (Siemens 2002). The final platelet count is the sum 

of all platelets and large platelets, detected in the platelet and red blood cell 

scatter cytograms respectively (Briggs et al. 2007).  

 

Integrated analysis is used to assist discrimination of standard-sized 

platelets, large platelets, erythrocytes, erythrocyte fragments and erythrocyte 

ghosts (Brummitt and Barker 2000, Briggs et al. 2007). Erythrocyte 

fragments have a higher refractive index than platelets and as a result are 

located low and to the right of the graph, whereas red cell ghosts have a 

refractive index less than platelets and as a result are located above and to 

the left (Briggs et al. 2007).  

 

    

 

 

 

 

 

 

 

 

Figure 1.3: Platelet scatter cytogram. 

A graphical display of different light scatter signals with high-angle 

on the x axis, and the low-angle on the y axis. The platelet scatter 

cytogram depicts platelets (volumes of 0 fL to 20 fL), large 

platelets (21 to 30 fL), erythrocytes and erythrocyte ghosts and 

fragments. Graph reproduced with permission (copyright of 

Siemens). 

 

RBCs 
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Figure 1.4: Red blood cell scatter cytogram. 

Area labelled area 3 depicts large platelets with volume 31 to 60 

fL. Area labelled 1 is the platelet scatter cytogram (refer to figure 

1.3). Graph reproduced with permission (copyright of Siemens). 

 

Sysmex XT-2000iV 

 

By contrast to the Advia 120/2120 which uses size (volume) and refractive 

index (density) to identify platelets, the Sysmex XT-2000iV uses size and 

nucleic acid staining (Tvedten 2012).  

 

The Sysmex XT-2000iV provides both an optical and an impedance platelet 

count (PLT-O and PLT-I respectively). The optical platelet count is obtained 

using the reticulocyte channel. Firstly, the RNA/DNA of platelet membranes 

and granules and reticulated cells are stained with a fluorescent dye 

(polymethine). Secondly, each cell is passed through the flow cell illuminated 

by a laser diode. The fluorescent intensity of each cell is determined, and 

permits the differentiation of platelets and large platelets from erythrocytes 

and reticulocytes (Tvedten 2012).  

 

The majority of large automated haematology analysers are developed for 

use in people, with species adaptation necessary for animal use (Moritz et al. 

2004). Species adaptation is achieved with software packages used to 

modify analyser settings (Moritz et al. 2004). Table 1.1 lists the platelet 

counting principle of some automated haematology instruments that have 

been assessed in the veterinary literature. 
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Manufacturer Instrument Platelet counting principle 

Siemens Technicon H1 

 

 

 

Advia 120 

Advia 2120 

Optical (single scatter channel) 

(Bertazzolo et al., 2007) 

 

 

Optical 

Optical 

(Tvedten et al., 2012; Kelley et 

al., 2014; Davies et al., 2008) 

Sysmex corporation Sysmex XT-2000iV Impedance and optical 

(Willard and Tvedten 2011) 

Abbott diagnostics Cell-Dyn 3500* 

 

*Later Cell-Dyn models 

including the Cell-Dyn 4000 

and Cell-Dyn Sapphire 

provide impedance, optical 

and immunological counts 

Impedance 

(Tvedten et al., 2008) 

 

 

Table 1.1: Summary of some of the automated haematology 

instruments assessed in the veterinary literature for their ability to 

discriminate platelets from other cells. 

 

1.3.3.3 Plateletcrit  

 

Platelet count can also be derived from PCT. Plateletcrit refers to the volume 

of blood that is comprised solely of platelets, and is reported as a percentage 

(Tvedten 2012). 

 

Importantly, PCT is the most physiologically relevant platelet parameter 

(Northern and Tvedten 1992, Butkiewicz et al. 2006) because platelet 

function depends on total platelet mass rather than platelet number 

(Thompson and Jakubowski 1988, Smedile et al. 1997). Plateletcrit is 

measured by two different methods, the direct method (from which a platelet 

count is derived) or the calculated method.  
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Direct method 

 

With the direct method, the IDEXX VetAutoread Hematology analyser 

(IDEXX Laboratories, Westbrook, ME, USA) is used to perform a 

Quantitative Buffy Coat (QBC) analysis. Plateletcrit is measured directly from 

the width of the platelet layer in QBC tubes filled with blood and centrifuged 

(similar to the way in which haematocrit [HCT] is assessed). The 

VetAutoread converts the PCT to a platelet count (platelets/L), an index that 

is more familiar to clinicians. The actual method by which the VetAutoread 

converts PCT to platelet count is not publicly available (Tvedten et al. 2012).  

 

Calculated method 

 

The Advia 120/2120 reports a calculated PCT which is derived from the 

product of the platelet count and mean platelet volume [MPV] (Tvedten et al. 

2012). The PCT reported by the Advia 120/2120 is expressed as a 

percentage.  

 

The Sysmex XT-2000iV on the other hand, uses the impedance channel to 

determine MPV (and thus PCT), and is therefore unable to provide an 

accurate PCT in cases with macrothrombocytopenia (Lilliehöök and Tvedten 

2009). 

 

1.3.3.4 Immunoplatelet counting by flow cytometry 

 

Immunoplatelet counting by flow cytometry is the current platelet counting 

reference method for people (Harrison et al. 2000). With this method, 

monoclonal antibodies against specific platelet cell surface antigens are 

conjugated to a fluorophore and antigens are detected by their fluorescence 

as they pass through a flow cytometer (Harrison et al. 2000). This technique 

is currently not used in veterinary practice, and will not be discussed further. 
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1.3.4 Additional platelet indices provided by the Advia 120/2120 

 

In addition to the commonly reported platelet count, the Advia 120/2120 

provides additional platelet indices including MPV, platelet volume 

distribution width (PDW), MPC concentration, PCDW, mean platelet mass 

(MPM), platelet mass distribution width (PMDW) and platelet clump and large 

platelet indices (Tvedten 2012). The meaning of these platelet indices are 

briefly described below and summarised in Table 1.2. 

 

Several of these indices have been proposed to be markers of platelet 

activation. During activation, platelets swell due to fluid uptake and 

degranulate (Macey et al. 1999) resulting in an increase in MPV and a 

decrease in MPC concentration and MPM (Park et al., 2002). This is 

accompanied by an increase in the distribution width of each index (PDW, 

PCDW and PMDW) (Chapman et al. 2003, Stokol and Erb 2007).  

 

 

Table 1.2: Major Advia 120/2120 platelet indices 

 

Platelet parameter Abbreviation Unit Description 

Platelet count PLT 10
9
/L Platelet count 

Plateletcrit PCT % Volume of blood comprised of 

platelets 

Mean Platelet Volume MPV fL Average platelet size 

Platelet Volume Distribution 

Width 

PDW % Indicator of the variation in platelet 

size 

Mean Platelet Component 

Concentration 

MPC 

concentration 

g/L Measure for platelet refractive index, 

linearly related to platelet density 

Platelet Component 

Distribution Width 

PCDW g/L Indicator of the variation in platelet 

density 

Mean Platelet Mass MPM pg Measure for mass of platelet 

component 

Platelet Mass Distribution 

Width 

PMDW pg Indicator of the variation in platelet 

component mass 

Automated Platelet Clump 

Count  

APCC + (if APCC is > 300) Automated flag of platelet aggregates 

Large platelet LPLT + (%LPLT 10 to 11.9%) 

++ (%LPLT 12 to 14%) 

+++ (%LPLT > 14%) 

Platelets with a volume 21 to 60 fL 



26 
 

1.3.4.1 Mean platelet volume  

 

Mean platelet volume refers to the average volume of platelets (Bommer et 

al. 2008).  

 

An increase in platelet size may be real or artefactual: 

 

As summarised previously, an increase in MPV occurs with platelet 

activation (Park et al. 2002). However, MPV may increase for a variety of 

other reasons.  Unsurprisingly, breed-associated macrothombocytosisis is 

associated with an increased MPV (Tvedten et al. 2012). Additionally, an 

increased MPV occurs with accelerated thrombopoiesis (for example in 

cases with increased platelet consumption/loss or increased platelet 

destruction) (Brown et al. 1994, Wiwanitkit 2004, Boudreaux 2010b).  

 

Anticoagulant type, storage time, temperature and osmotic environment are 

also reported to affect platelet size and shape (Boudreaux 2010b). It has 

been suggested that only citrated canine blood samples are suitable for 

assessment of platelet size because platelets exposed to EDTA undergo an 

artefactual increase in size as assessed by light microscopy (Handagama et 

al. 1986). Although a later study in 69 healthy CKCS showed that 

macrothrombocytosis (defined as greater than 30% of platelets having a 

diameter of at least 3 μm on microscopic examination) was consistently 

identified in both EDTA and citrated samples of 22 dogs, agreement between 

MPV in both samples was not assessed (Cowan et al., 2004).  

 

1.3.4.2 Platelet volume distribution width  

 

Platelet volume distribution width provides an indicator of the variation in 

platelet size (Russell 2010).  In order to calculate the PDW, the SD of platelet 

volume is divided by the MPV and multiplied by 100 (Brummitt and Barker 

2000). In humans, PDW has been used to differentiate between destructive 

thrombocytopenia (immune-mediated thrombocytopenia) and hypoproductive 

thrombocytopenia (aplastic anaemia), for which there is an increase and 
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decrease in PDW respectively (Kaito et al. 2005). Despite the potential use 

of PDW and MPV in dogs, they are currently not routinely used in veterinary 

practice. Published reference intervals for PDW and MPV are available for 

dogs (Moritz et al. 2004), however due to the non-linear inverse relationship 

of these volume indices with platelet count, interpretation of changes in PDW 

and MPV requires consideration of an individual’s platelet count (Bommer et 

al. 2008).  

 

1.3.4.3 Mean platelet component concentration and platelet component 

distribution width  

 

Mean platelet component concentration is an automated platelet index, 

provided by the Advia 120/2120 (Macey et al. 1999). It is a measure of 

platelet refractive index, which is linearly related to platelet density, and 

inversely related to platelet activation (Ahnadi et al. 2004).  

 

Platelet component distribution width is an indicator of the variation in MPC 

concentration and PCDW is increased if both non-degranulated and 

degranulated circulating platelets are present. An increased PCDW is 

therefore an indirect marker of platelet activation (Moritz et al. 2005, 

Boudreaux 2010b).  

 

The calculation of MPC concentration is based upon the following formula: 

MPC concentration (g/dL) = (mean refractive index -1.333)/(0.0018/(g/dL)), 

where 1.333 = refractive index of water and 0.0018 (g/dL) = average 

refractive index increment (Chapman et al. 1998). The formula for PCDW is 

calculated as the SD of the platelet refractive index histogram (Siemens 

2002).  

 

Effects of factors other than platelet activation on MPC concentration have 

not been assessed in dogs. However, in one study involving 500 healthy 

people, MPC concentration increased from childhood (10-18 years) to adult 

age (18-45 years) and decreased thereafter (Giacomini et al. 2001). Macey 

et al. (1999) assessed changes in MPC concentration and P-selectin 
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expression in 20 human blood samples anticoagulated with EDTA, stored at 

room temperature, and assessed at timed intervals over a 3-hour period. The 

MPC concentration decreased and P-selectin expression increased over 

time. The relationship between age and MPC concentration, and the effect of 

storage time, in dogs is unknown.  

 

Mean platelet component concentration studies in people 

 

The MPC concentration has been used as an indicator of platelet activation 

in multiple human studies (Table 1.3). 

 

Disease/physiologic 

state 

Result Anticoagulant; 

time to analysis 

following 

venipuncture 

Reference 

Congestive heart failure 

(due to left ventricular 

systolic dysfunction) 

MPC concentration is lower in patients 

with congestive heart failure compared to 

healthy controls 

 

Sodium citrate; not 

recorded 

(Chung et al. 

2007) 

Coronary disease 

 

MPC concentration is lower in patients 

with acute myocardial infarction compared 

to patients with unstable angina  

EDTA; between 

30-240 minutes 

(Kennon et al. 

2003) 

Coronary disease MPC concentration is lower in patients 

with stable angina, unstable angina and 

acute myocardial infarction compared to 

healthy controls 

EDTA; immediately 

after collection 

(Pawlus et al. 

2010) 

Diabetes mellitus MPC concentration is lower in diabetes 

mellitus compared to healthy controls 

EDTA; within 60 

minutes 

(Bae et al. 

2003) 

Strenuous exercise 

(pre- and post-race 

sampling) 

Racing is associated with a decrease in 

MPC concentration 

EDTA; within 90 

minutes 

(Kratz et al. 

2006) 

Deep vein thrombosis 

 

MPC concentration is lower in patients 

with deep vein thrombosis compared to 

healthy controls  

EDTA; within 60 

minutes 

(Cay et al. 

2012) 

Anti-platelet therapy (pre- 

and post-clopidogrel 

sampling) 

 

Clopidogrel therapy is associated with an 

increase in MPC concentration 

EDTA; within 60 

minutes 

(Ahnadi et al. 

2004) 

 

Table 1.3: Studies that have used MPC concentration as an 

indicator of platelet activation in people.  

All reported results were statistically significant (p < 0.05). 
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Mean platelet component concentration studies in dogs 

 

The use of MPC concentration as an indicator of platelet activation in dogs 

has been reported in three studies to date: 

 

Two studies used MPC concentration to assess platelet activation after 

exercise. Moritz et al. (2003) reported a significant decrease in MPC 

concentration and increase in PCDW following short duration, strenuous, 

sled-pulling activity in 18 Siberian Huskies. By contrast, Bauer et al. (2012) 

reported no significant change in MPC concentration or PCDW following 

submaximal aerobic exercise in nine healthy beagles. These conflicting 

results may reflect differences in the type or duration of exercise, or be 

related to the smaller number of dogs (and lower power) in the latter study.  

  

Moritz et al. (2005) compared MPC concentration and P-selectin expression 

for the identification of platelet activation in 20 dogs with septic or non-septic 

inflammatory diseases. The proportion of dogs with decreased MPC 

concentration (16/20) was higher than the number of dogs with increased P-

selectin expression (13/20). Due to the lack of a gold standard, it was not 

known if MPC concentration was more sensitive or less specific compared to 

P-selectin expression as a marker of platelet activation. However, such 

conclusions must be interpreted with caution due to the low number of dogs 

in the latter study.  The PCDW was greater than the upper limit of the 

reference interval in 14 dogs.  

 

1.3.4.4 Mean platelet mass  

 

Mean platelet mass is a measure of the mass of platelet component 

excluding water (Zelmanovic 2006). A decrease in MPM would be expected 

following platelet activation due to degranulation.  
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Mean platelet mass is obtained using conversion of volume and refractive 

index by mathematical algorithm: 

MPM (in pg) = MPC concentration (in g/dL) x MPV (in fL) x 100 (Chapman et 

al. 1998). 

 

1.3.4.5 Platelet mass distribution width  

 

Platelet mass distribution width is an indicator of the variation in mass of 

platelet component excluding water.  

The formula for PMDW is calculated as the SD of the platelet mass 

histogram (Siemens 2002). 

 

1.3.4.6 Automated platelet clump count  

 

Assessment of platelet clumping may be subjective (examination of the 

frequency and degree of platelet aggregation at the blood smear feathered 

edge) or quantitative (using the Advia 120/2120 APCC index). 

 

The number of platelet clumps detected by the Advia 120/2120 corresponds 

to the number of events that fall within the platelet clump area, which 

originates from the noise cluster area in the peroxidase channel and extends 

to the right of the lymphocyte area (Siemens 2002, Stokol and Erb 2007). 

When the APCC is greater than 300, the Advia 120/2120 flags the sample by 

marking the platelet clumps index as ‘+’ (Siemens 2002). 

 

In a 2007 study that assessed APCC in dogs, the Advia 120/2120 flagged 

platelet clumps in 3 of 51 samples without visually detected clumps in 

smears (to provide a specificity of 94%) and failed to flag platelet clumps in 

44 of 49 samples in which large or frequent aggregates were detected 

visually (to provide a sensitivity of 10%) (Stokol and Erb 2007). The results of 

this latter study therefore suggest that APCC is poorly sensitive and highly 

specific at detecting platelet clumping and that APCC should not be used 
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independently to verify the presence or absence of platelet clumps (Stokol 

and Erb 2007).  

 

1.3.5 Assessing macrothrombocytosis 

 

In the majority of dog breeds, platelets are typically one quarter to half the 

size of an erythrocyte, and only occasionally larger than a red blood cell 

(Boudreaux 2010b). The term macrothrombocyte refers to a platelet of 

increased size; and macrothrombocytosis refers to the presence of increased 

numbers of large platelets in circulation (Bertazzolo et al. 2007). Assessment 

of macrothrombocytosis may be subjective or quantitative: 

 

 A platelet is subjectively defined as a macrothrombocyte if it is as 

large as or larger than a red blood cell (as assessed by light 

microscopy), and a diagnosis of macrothrombocytosis is made if more 

than 30% of platelets fulfil this criterion (Singh and Lamb 2005, Gelain 

et al. 2010).  

 

 Macrothrombocytosis can be quantitatively assessed using electron 

microscopy (Cowan et al. 2004). By this method, a platelet is defined 

as a macrothrombocyte if it has a diameter greater or equal to 3µm, 

and a diagnosis of macrothrombocytosis is made if more than 30% of 

platelets fulfil this criterion (Cowan et al. 2004).  

 

The number of macrothrombocytes may also be quantitatively assessed 

using an automated haematology instrument such as the Advia 120/2120 or 

Sysmex XT-2000iV. The Advia 120/2120 classifies platelets with a volume 

21 to 60 fL as large, and flags the presence of large platelets in the sample 

using the large platelet index when greater than or equal to 10% of the 

platelets fall within this range (Table 1.4) (Siemens 2002). The Advia 

120/2120 also reports the actual number of large platelets. 
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Advia 120/2120 large platelet index severity 

level 
% Large platelets 

+ ≥ 10 to 11.9 

++ 12 to 14 

+++ > 14 

 

Table 1.4: Advia 120/2120 large platelet index severity level - 

percentage of large platelets in each category 

 

The Sysmex XT-2000iV has also been used to determine macrothrombocyte 

count. In one study utilising the Sysmex XT-2000iV, a PLT-O cytogram was 

regated with a subjective algorithm based on the appearance of the PLT-O 

cytograms from dogs without large platelets, and this algorithm was then 

applied to all original PLT-O counts. The reported number of large platelets 

per sample was the difference between the original PLT-O count and the 

regated optical count (with the latter representing the number of normal sized 

platelets) (Tvedten et al. 2008). 

 

1.3.6 Analysis of platelet function 

   

The following tests of platelet function are based on different biologic 

principles, 1) platelet aggregometry, 2) CT, 3) thromboelastography and 4) 

platelet activation markers: 

 

1.3.6.1 Platelet aggregometry; a low shear assay 

 

Platelet aggregometry involves the assessment of platelet aggregation after 

exposure to certain agonists and provides an assessment of platelet function 

(Tvedten 2012). There is no standardised method for assessing platelet 

aggregation in dogs, with test procedures and aggregating substances 

varying between institutions and studies (Tanaka and Yamane 2000).  
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Optical (turbidometric) aggregometry 

 

Optical aggregometry was introduced in the 1960s (Carr Jr 1997). Using this 

method, agonists are added to platelet-rich plasma to cause platelet 

aggregation (Jandrey 2012). As aggregation progresses the platelet-rich 

suspension clears, resulting in increased light transmission (Jandrey 2012). 

This alteration in light intensity is detected by a spectrophotometer and 

recorded digitally or by chart recorder. Results are reported as the 

percentage increase in light transmission relative to the pre-agonist baseline 

aggregation (Dosh and Steinhubl 2010). Disadvantages of this method are 

that platelets aggregate under low shear stress conditions and that the 

absence of other cellular elements (such as red and white blood cells) may 

result in suboptimal mimicry of in vivo platelet aggregation (Dosh and 

Steinhubl 2010). In addition, the need for centrifugation to create the platelet-

rich plasma may predispose to platelet aggregation prior to analysis (Jandrey 

2012). Despite these problems, optical aggregometry has been widely used 

in veterinary science (including CKCS platelet aggregation studies, refer to 

Section 1.4.1.1). 

 

Whole blood impedance aggregometry 

 

The technique of whole blood impedance aggregometry, introduced in the 

1980s, may avoid some sample preparation issues associated with optical 

aggregometry (Jandrey 2012). Additionally, due to the use of whole blood, 

impedance aggregometry may be more physiologically appropriate than 

optical aggregometry (Jandrey 2012). With this technique two electrodes are 

placed in a sample containing anticoagulated whole blood and electrical 

impedance is assessed pre- and post- addition of a platelet agonist. During 

aggregation, platelets form a monolayer on electrodes and change (increase) 

the impedance of an electrical current (Jandrey 2012).  The degree of 

aggregation is thus assessed as the increase in electrical impedance 

following addition of an agonist. 
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1.3.6.2 Platelet function analyser; a high shear assay 

 

The platelet function analyser (PFA-100, Siemens Healthcare Diagnostics 

Product GmbH, Marburg, Germany), is a point of care, bench-top platelet 

function analyser developed for use in people and validated for use in dogs 

(Mischke and Keidel 2002). The PFA-100 is a sensitive screening tool for 

general defects in primary haemostasis (Clancey et al. 2009a). 

 

The PFA-100 evaluates both platelet adhesion and aggregation by 

simulating high-shear blood flow at a site of endothelial damage (Callan and 

Giger 2001). This is achieved by rapid in vitro flow of a citrated whole blood 

sample through an aperture in a disposable collagen-coated membrane 

containing ADP or epinephrine (Tvedten 2012). The high shear blood flow 

causes platelet activation and adhesion to the membrane, mediated primarily 

by VWF (Tarnow and Kristensen 2010). The subsequent release of platelet 

granules and presence of agonist causes platelet aggregation via GP IIb-IIIa 

(Tarnow and Kristensen 2010). The time it takes for a platelet plug to form 

and occlude blood flow through the membrane aperture is measured in 

seconds and is called the CT (Tarnow and Kristensen 2010) (Figure 1.5). 

Epinephrine does not consistently cause platelet aggregation in dogs and 

collagen-epinephrine cartridges are therefore considered to be less accurate 

in the dog, and the use of collagen-ADP cartridges are more commonly 

recommended (Clemmons and Meyers 1984, Tvedten 2012). 
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Figure 1.5: Cross-sectional diagram of the Platelet Function 

Analyser  

(PFA-100) instrument (Siemens Healthcare Diagnostics Product 

GmbH, Marburg, Germany). 

Blood is passed rapidly through an aperture in an agonist 

containing collagen-coated membrane to mimic in vivo platelet 

adhesion and activation. The time is takes for a platelet plug to 

form and occlude blood flow is the closure time (adapted from 

Jandrey 2012). 

 

The PFA-100 CT is sensitive to platelet function, platelet number, HCT and 

drug therapy: 

 

In the absence of macrothrombocytosis, there is an inverse relationship 

between CT and platelet count less than 150 x 109/L (Mischke and Keidel 

2003). 

 

Additionally in dogs there is an inverse relationship between CT and HCT 

(Mischke and Keidel 2003). Reasons for the latter include increased blood 

flow (associated with decreased blood viscosity) and altered blood cell 

distribution (more central flow of platelets within in vivo and in vitro 

capillaries) with lower HCT values (Mischke and Keidel 2003). One study 

investigated the change in CT (using collagen-ADP cartridges) following 

haemodilution of whole blood samples using fresh autologous platelet-rich 

plasma. The initial samples with HCT 0.39-0.54 L/L produced a mean CT +/- 

SD of 57.8 +/- 5.75 seconds, whereas the haemodiluted samples, with HCT 
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of 0.33 and 0.27 L/L, produced significantly prolonged CT of 61.1 +/- 4.64 

seconds and 64.3 +/- 6.79 seconds respectively. Overall, an increase in CT 

has been demonstrated in dogs with a HCT less than 30-40% (Callan and 

Giger 2001, Mischke and Keidel 2003, Clancey et al. 2009b).  

  

Furthermore, non steroidal anti-inflammatory drug administration (specifically 

aspirin and ketoprofen therapy) has been shown to increase CT in dogs 

when collagen-ADP and/or collagen-epinephrine cartridges are used (Keidel 

and Mischke 1998, Mischke and Keidel 2003, Gaal et al. 2007, Nielsen et al. 

2007).  

 

1.3.6.3 Thromboelastography 

 

Thromboelastography was introduced in the late 1940s (Hartert 1948, 1951). 

Thromboelastography assesses the changes in viscoelastic properties of 

whole blood during clot formation under low shear conditions (Kol and 

Borjesson 2010). The use of whole blood permits assessment of the 

influence of circulating plasma and cellular components on platelet function 

and clot formation. Thromboelastography therefore may more accurately 

reflect in vivo haemostasis and more efficiently predict haemostatic kinetics 

compared to routine plasma-based assays (Hoffman 2001). 

 

Thromboelastography measurements include reaction time, kinetics, 

maximum amplitude and alpha angle which provide an indicator of the time 

to initial fibrin formation, speed of clot formation, speed of clot strengthening 

and clot strength respectively (Jandrey 2012). 

 

1.3.6.4 Platelet activation markers 

 

Platelet activation markers are available and used in humans, infrequently 

utilised in animals and potentially useful for application to veterinary studies 

(refer to Section 1.4.1.4). Platelet activation markers may be classified as 

direct (platelet surface-associated P-selectin expression and BTG and PF4 
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plasma concentrations) and indirect (soluble P-selectin and thromboxane B2 

plasma concentrations).   

 

In addition, as previously discussed (in Section 1.3.4), several of the Advia 

120/2120 derived platelet indices, including MPV, MPC concentration and 

MPM (and their respective distribution widths PDW, PCDW and PMDW) are 

also (direct) markers of platelet activation. 

 

Platelet surface P-selectin expression  

 

Platelet activation results in degranulation and release of proteins such as P-

selectin, which are subsequently transported to the cell membrane. This 

causes a change in the number of cell surface molecules on circulating 

platelets, which may be measured by immunofluorescent flow cytometry 

(Macey et al. 1999, Moritz et al. 2005): 

 

In short, platelets are marked with fluorescence-conjugated antibodies 

against activation-dependent markers such as P-selectin and passed 

through a flow cytometer (Zelmanovic and Hetherington 1998). The number 

of positive events determines the number of activated platelets and the 

degree of fluorescence relates to the number of activation dependent 

markers on each platelet (Zelmanovic and Hetherington 1998). 

 

Immunofluorescent flow cytometry is reported as sensitive and specific 

(Zelmanovic and Hetherington 1998, Ahnadi et al. 2004). However, the 

sensitivity of the test has been questioned relative to MPC concentration 

(Moritz et al. 2005).  Disadvantages of P-selectin expression assessment 

include expense and prolonged sample preparation time (approximately 60 

minutes) (Zelmanovic and Hetherington 1998). 
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Soluble P-selectin 

 

Soluble P-selectin is the soluble circulating isoform of P-selectin, which is 

detectable in blood by enzyme-linked immunosorbent assay (ELISA) 

methods (Blann et al. 2003).  Soluble P-selectin concentration is a less 

established marker of platelet activation compared to platelet bound P-

selectin.  

 

Platelet specific granular proteins i.e. β-thromboglobulin and platelet 

factor 4  

 

Platelet alpha granules contain a variety of proteins including BTG and PF4 

(Kamath et al. 2001). Both BTG and PF4 are specific to platelets, found in 

similar quantities within alpha granules and are released during platelet 

activation (Kamath et al. 2001). Therefore increased plasma concentrations 

are associated with increased in vivo platelet activation (Kamath et al. 2001). 

Detection of BTG and PF4 is achieved using an ELISA or radioimmunoassay 

(Kamath et al. 2001). 

 

Plasma metabolite thromboxane B2  

 

Plasma thromboxane B2 is the stable, inactive metabolite of plasma 

thromboxane A2. Plasma thromboxane A2 is generated by platelets from 

arachidonic acid in response to platelet agonist stimulation (Boudreaux and 

Catalfamo 2010). Generation of thromboxane A2 causes platelet aggregation 

and release of dense granule contents (Boudreaux and Catalfamo 2010). 

Measurement of plasma thromboxane B2 concentrations, via 

radioimmunoassay or ELISA, are reported methods of assessing platelet 

activation (Fuse and Kamiya 1994, Tarnow et al. 2005, Nielsen et al. 2007). 

 

Mean platelet component concentration  

Refer to Section 1.3.4.3 
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1.3.7 Platelet evaluation and variation in the Cavalier King 

Charles spaniel 

 

Cavalier King Charles spaniels have a high prevalence of inherited, 

subclinical thrombocytopenia and macrothrombocytosis (Eksell et al. 1994, 

Pedersen et al. 2002, Cowan et al. 2004, Singh and Lamb 2005). These 

conditions have posed several unique challenges with regard to accurate 

enumeration of platelet numbers, and evaluation of their function, in this very 

popular breed.  The relevant literature pertaining to these issues is presented 

in the following pages, starting first with a review of the counting and 

evaluation methods, and followed by a review of the disorder itself. 

 

1.3.7.1 Platelet evaluation in the Cavalier King Charles spaniel 

 

1.3.7.1.1 Manual methods 

 

Prior to the availability of modern optical haematology instruments, manual 

methods of platelet counting were preferred for the CKCS breed because of 

the relative inability of impedance haematology instruments to distinguish 

large platelets from red blood cells (Brown et al. 1994, Eksell et al. 1994).  

 

One study in CKCS (Singh and Lamb 2005) reported that there was no 

statistically significant difference in platelet counts obtained by manual 

counting and blood smear estimation, however Olsen et al. (2004) reported 

that at lower platelet counts (less than or equal to 100 x 109/L), blood smear 

estimation underestimated platelet counts compared with manual counting, 

and theorised that this could be due to large platelets localising in the 

feathered edge of the blood smear. Furthermore, a later study by Tvedten et 

al. (2008) supported this theory, reporting that CKCS with greater than 50% 

macrothrombocytes (n=6) and CKCS with less than 50% macrothrombocytes 

(n=16) had 7.1 times and 2.4 times the number of platelets at the feathered 

edge of the blood smear than in the monolayer, respectively (Tvedten et al. 

2008). 
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1.3.7.1.2 Automated cell counting 

 

Impedance 

The majority of platelet studies in the CKCS breed (n=6) have utilised 

impedance based instruments due to the unavailability, until recently, of 

optical based instruments. Five of these studies reported that impedance 

counters underestimated platelet count compared to manual methods 

(manual counting or blood smear estimation), due to an inability to 

consistently distinguish large platelets from erythrocytes (Eksell et al. 1994, 

Olsen et al. 2001, Olsen et al. 2004, Bertazzolo et al. 2007, Tvedten et al. 

2008). The sixth study found no statistically significant difference between 

manual counting, blood smear estimation or impedance based counting and 

concluded that automated or blood smear estimates are sufficient to count 

platelets (Singh and Lamb 2005).  

 

Optical 

Five studies have utilised optical haematology analysers in the evaluation of 

platelet indices in the CKCS.  

 

The first of these assessed one of the earliest optical haematology 

instruments, the Technicon H1 (Technicon Instruments Corporation, Tarry 

Town, NY; now Siemens), precursor of the Advia 120 (Bertazzolo et al. 

2007). The latter study reported strong correlation between platelet counts 

obtained by the Technicon H1 and an impedance counter (Hemat 8, SEAC, 

Florence, Italy) and blood smear estimation. There was however poor 

agreement between the Technicon H1 and the Hemat 8 and blood smear 

estimation. This poor agreement was proposed to be due to inaccurate 

classification of large platelets as erythrocytes (Bertazzolo et al. 2007). 

 

The second study compared optical (Sysmex XT-2000iV PLT-O), impedance 

(Sysmex PLT-I and Cell-Dyn 3500), manual, and QBC plateletcrit-derived 

platelet counts (Figure 1.6). When platelet counts were greater than 164 x 

109/L (i.e. cases not likely to have macrothrombocytosis) all methods 

(excluding QBC plateletcrit platelet count) provided similar counts.  At lower 



41 
 

counts however, the differences between methods were greater. Overall, 

both optically and manually obtained platelet counts underestimated platelet 

numbers at lower counts, compared to the QBC plateletcrit, but performed 

better than impedance methods in these circumstances (Tvedten et al., 

2008). The latter study contested the traditional belief that manual counting is 

more accurate than automated, at least for the Sysmex PLT-O.  

 

 

 

Due to copyright restrictions, this figure has been removed.  

 

  

 

 

 

 

 

Figure 1.6: Optical (PLT-O), impedance (PLT-I and CELL-DYN), 

manual and QBC plateletcrit platelet counts in 27 CKCS. 

Figure reproduced from Tvedten et al. (2008). At lower platelet 

counts, PLT-O and manual counting performed better than PLT-I 

and Cell-Dyn, consistent with the improved ability of optical 

haematology instruments (such as the Sysmex XT-2000iV), to 

discriminate large platelets compared to impedance ones.  

 

The third study to use an optical haematology analyser in the evaluation of 

platelet indices in the CKCS,  reported an association between β1-tubulin 

mutation and macrothrombocytopenia and used the Advia 120 to obtain 

platelet counts (Davis et al. 2008) (refer to Section 1.3.7.2.3). 

 

A fourth study assessed the validity of the Advia 2120 generated PCT by 

comparing it to the QBC derived platelet count (the gold standard for platelet 

mass, Section 1.3.3.3) (Tvedten et al. 2012). To enable direct study 

comparisons, units of the Advia 120 PCT (%) were converted to units of the 

QBC derived platelet count (x10/L9) by multiplication of an estimated 
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conversion factor (i.e. 1000) (Tvedten et al. 2012). Bland Altman analysis 

showed fair agreement between the Advia 2120 PCT (x1000) and the QBC 

derived platelet counts, but the former had a negative bias  of 26 x 109/L, 

with underestimation of PCT particularly at lower PCT values (Tvedten et al. 

2012). The 95% limits of agreement were -149 to 97 x 109/L. 

 

Lastly, a recent CKCS study used both the Advia 120 and 2120 to determine 

platelet counts and PCT, and concluded that the use of PCT (as determined 

by the Advia 120/2120), compared to platelet count, avoided overestimation 

of low platelet mass in CKCS with disease (Kelley et al. 2014). 

 

1.3.7.1.3 Plateletcrit 

 

The PCT, derived from QBC analysis, is considered to be the gold standard 

for evaluating platelet mass in the CKCS (and other dogs with 

macrothrombocytosis) (Tvedten et al. 2012). In CKCS, the PCT is typically 

within reference intervals regardless of platelet count (Bertazzolo et al. 2007, 

Tvedten et al. 2012). Plateletcrit is therefore of value in these dogs to enable 

differentiation between inherited macrothrombocytopenia (PCT within 

reference intervals) and clinically relevant thrombocytopenia (decreased 

PCT) (Tvedten et al. 2008). A PCT reference interval for CKCS has not been 

established; however, Tvedten et al. (2012) reported a mean PCT and 95% 

confidence interval (for 31 clinically healthy CKCS) as 0.27% and 0.1-0.44% 

respectively (Tvedten et al. 2012). 

 

1.3.7.1.4 Mean platelet volume 

 

In the CKCS there is an inverse relationship between platelet size and 

platelet count. More specifically dogs with larger platelets have lower platelet 

counts (Brown et al. 1994, Cowan et al. 2004, Olsen et al. 2004, Singh and 

Lamb 2005).  

 

One CKCS study assessed MPV generated by the impedance haematology 

instrument Hemat 8 (SEAC, Florence, Italy) and did not find a significant 
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difference in CKCS with or without macrothrombocytes (11.6 and 12.1 fL 

respectively) (Bertazzolo et al. 2007). The same study also assessed the 

laser cell counter, Technicon H1, and reported that the MPV with or without 

macrothrombocytes was 5.2 and 6.6 fL respectively, approximately only half 

that obtained from the impedance instrument. This suggests that both 

instruments (impedance and older optical) are inaccurate in breeds with 

macrothrombocytosis due to an inability to detect large platelets (Bertazzolo 

et al. 2007). However another method to classify the presence or absence of 

macrothrombocytes was not used. 

 

1.3.7.2 Platelet variation in the Cavalier King Charles spaniel 

 

1.3.7.2.1 Thrombocytopenia 

 

The majority of platelet studies in the CKCS have defined thrombocytopenia 

as a platelet count less than 100x 109/L. This reference interval was 

originally selected to stringently define dogs with thrombocytopenia (Eksell et 

al. 1994, Pedersen et al. 2002). Using this definition, the reported 

prevalences of thrombocytopenia arising from various studies in the CKCS 

are 32/102 (31%) (Eksell et al. 1994), 9/17 (53%) (Olsen et al. 2001), 59/106 

(56%) (Pedersen et al. 2002), 36/69 (51%) (Cowan et al. 2004), 15/43 (35%) 

(Olsen et al. 2004) and 83/152 (55%) (Singh and Lamb 2005), based on 

manual platelet counts obtained using a haemocytometer. A further study 

assessing platelet number with blood smear estimation (as opposed to 

manual counting) reported a slightly lower prevalence of thrombocytopenia of 

9/41 (22%) (Bertazzolo et al. 2007). 

 

Despite these studies, the prevalence of thrombocytopenia in the CKCS, as 

assessed by a modern optical automated haematology instrument, has not 

previously been reported. However in two CKCS studies utilising the Sysmex 

XT-2000iV and Advia 2120, prevalences (using a definition of 

thrombocytopenia as a platelet count less than 100 x 109/L) can be 
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estimated from the graphs to be (10/27) 37% and (19/43) 44% respectively 

(Tvedten et al. 2008, Tvedten et al. 2012). 

 

The majority of studies reporting the frequency of thrombocytopenia in the 

CKCS originate from northern Europe (and in particular Denmark and 

Sweden); with only one Australian study to date (Singh and Lamb 2005). The 

latter study defined the lower limit of the reference interval for platelet count 

as  200 x 109/L because this was the limit used by common references 

(Barger 2003, Boudreaux 2010b) and commercial laboratories, and set by 

their impedance auto analyser. The latter study reported the frequency of 

thrombocytopenia as 90% with 25% of cases having severe 

thrombocytopenia (platelets less than 50 x 109/L). If however, the same the 

lower limit of 100 x 109/L was used, the frequency of thrombocytopenia, as 

reported above, was 55% (Singh and Lamb 2005) which is similar to the 

prevalence of thrombocytopenia found in CKCS residing in Denmark and 

Sweden (Pedersen et al., 2002, Eksell et al., 2004., Olsen et al., 2001, 

2004). 

 

Thrombocytopenia in the CKCS is typically mild-moderate. The range of the 

mean and median platelet counts from CKCS platelet studies (Table 1.5) are 

87.5-178 x 109/L and 92-238 x 109/L respectively, with an overall range of 

20-489 x 109/L. 
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Count 

method 

Number 

of dogs 

Mean 

platelet 

count 

(x10
9
/L) 

Range 

(x10
9
/L) 

Standard 

deviation 

(SD) 

(x10
9
/L) 

Median 

(x10
9
/L) 

Interquar-

tile range 

(IQR) 

(x10
9
/L) 

95% 

Confidence 

interval 

(x10
9
/L) 

Study 

origin 

Study 

Manual 

count 
102 178 NS 104 NS NS NS Sweden 

(Eksell 

et al. 

1994) 

Manual 

count 
18 124 NS 95 NS NS NS Denmark 

(Olsen 

et al. 

2001) 

Manual 

count 
105 NS 25-394 NS 92 56-153 NS 

Denmark, 

Sweden 

(Peder

sen et 

al. 

2002) 

Manual 

count 
69 119 20-305 78 108 NS NS 

Tennessee, 

USA 

(Cowa

n et al. 

2004) 

Manual 

count 
152 87.5 NS NS NS NS 78.3-97.8 

New South 

Wales, 

Australia 

(Singh 

and 

Lamb 

2005) 

Blood 

smear 

estimate 

41 NS NS NS 238 NS NS Italy 

(Berta

zzolo 

et al. 

2007) 

Manual 

count 
27 NS 30-415 NS NS NS NS Sweden 

(Tvedt

en et 

al. 

2008) 

Blood 

smear 

estimate 

27 NS 26-489 NS NS NS NS Sweden 

(Tvedt

en et 

al. 

2008) 

 

Table 1.5: Previously reported platelet counts in the CKCS. 

 

1.3.7.2.2 Macrothrombocytosis 

 

A study assessed 14 CKCS with a variety of diseases and found that more 

than 30% of platelets were larger in diameter (greater than 3.7µm) than 

platelets from healthy dogs of other breeds (Holme et al. 1981). Brown et al. 

(1994) subsequently investigated platelet size in 10 healthy CKCS, reporting 

a significantly larger platelet diameter in the CKCS compared to healthy dogs 

of other breeds, with median values of 2.5 to 3.75µm and 1.25 to 2.5µm 
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respectively. Platelet diameter in the CKCS showed bimodal distribution with 

44.5% platelets ranging in size from 1.25 to 2.5µm and 30% from 3.75 to 

5.0µm (Brown et al. 1994). Both studies used an eyepiece graticle to 

estimate platelet diameter. 

 

Approximately one-third of CKCS appear to have macrothrombocytosis, as 

reported in two studies totalling 219 individuals; 46/152 (30%) (Singh and 

Lamb 2005) and 22/67 (33%) (Cowan et al. 2004).   

 

1.3.7.2.3 Macrothrombocytopenia 

 

Macrothrombocytopenia is defined as macrothrombocytosis and 

thrombocytopenia occurring together. 

 

The CKCS breed has a high prevalence of macrothrombocytopenia 

(Pedersen et al. 2002). Several studies suggest that approximately half of all 

CKCS have platelet variations without bleeding tendencies, characterised by 

the presence of thrombocytopenia – as assessed by manual count – in 31-

56% of dogs (Eksell et al. 1994, Olsen et al. 2001, Pedersen et al. 2002, 

Cowan et al. 2004, Olsen et al. 2004, Singh and Lamb 2005), and 

macrothrombocytosis affecting an overlapping 30-33% of dogs (Singh and 

Lamb 2005). 

 

The majority of CKCS with inherited platelet variation have 

macrothrombocytopenia (i.e. macrothrombocytosis is seen most often in 

combination with thrombocytopenia). The first CKCS study to demonstrate 

this graphically, by plotting MPV against platelet count, was published in 

2012 (Tvedten et al. 2012). No automated haematology instrument, prior to 

the Advia 120 has reportedly produced a reliable MPV in the CKCS. 

Macrothrombocytosis or thrombocytopenia alone appears to be an 

uncommon finding.  

 

In one study, 70% of CKCS with macrothrombocytosis had a platelet count 

less than 100x 109/L (Singh and Lamb 2005). Another study in CKCS 
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reported a significantly lower platelet count (median 63.5 x 109/L) in cases 

with macrothrombocytosis, compared to those with platelet size within 

reference interval (median 118 x 109/L; Mann-Whitney U = 290, p = 0.011) 

(Cowan et al. 2004). In the latter study however, there was some variability 

as to whether thrombocytopenia only 20/43 (47%), macrothrombocytes only 

8/43 (18%) or both conditions were present 15/43 (35%) (Cowan et al. 2004). 

 

The subclinical nature of macrothrombocytopenia in the CKCS is consistent 

with adequate platelet function, and is likely reflects the greater functional 

activity of macrothrombocytes (Smedile et al. 1997). 

 

Macrothrombocytopenia exhibits an autosomal recessive pattern of 

Mendelian inheritance (Pedersen et al. 2002, Singh and Lamb 2005). Singh 

and Lamb (2005) demonstrated an equal prevalence in both sexes, 

generation trait skipping, that parents of affected dogs were often related and 

that all progeny from two affected parents would be affected. The latter study 

also reported a high prevalence of affected dogs (90%), consistent with low 

numbers of non-carriers (Singh and Lamb 2005). 

 

The autosomal recessive nature of macrothrombocytopenia in the CKCS 

was confirmed by the identification of a mis-sense mutation at coding 

nucleotide 745 in the gene encoding β1-tubulin (Davis et al. 2008). The 

mutation results in the substitution of asparagine for aspartic acid at amino 

acid position 249. The latter forms part of the microtubule intraprotofilament 

binding site and the net result is impaired microtubule assembly (unstable α-

β tubulin dimers within microtubule protofilaments). Impaired microtubule 

assembly leads to altered proplatelet formation and release by 

megakaryocytes and results in macrothrombocytopenia (Davis et al. 2008). 

The lack of bleeding diathesis in macrothrombocytopenic CKCS suggests 

that the microtubule defect does not alter platelet function significantly (Davis 

et al. 2008). Additionally, preservation of an adequate platelet mass is likely 

responsible for maintenance of platelet function in macrothrombocytopenic 

dogs (Davis et al. 2008). 
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The prevalence of the mutation is high in the United States with an estimated 

92% of CKCS either homozygous or heterozygous for the mutation (Davis et 

al. 2008). In contrast, in Ireland, 65% of CKCS were reportedly homozygous 

or heterozygous for the mutation (Davis et al. 2008). Platelet numbers were 

significantly different among groups based on the presence or absence of 

the β1-tubulin gene mutation; with low platelet counts (generally less than 

100 x 109/L), intermediate platelet counts (approximately 200 x 109/L) and 

higher platelet counts (typically greater than 250 x 109/L) correlated with a 

homozygous, heterozygous and clear state for the mutation respectively 

(Davis et al. 2008). There are currently no reports of the prevalence of the 

mutation in other parts of the world. 

 

Older studies have reported the β-1 tubulin isotype to be megakaryocyte-

specific (Schwer et al. 2001). In contrast, a more recent study which 

investigated the distribution of β-tubulin isotypes in human tissue reported β-

1 tubulin to be relatively ubiquitous, with highest expression in the heart, 

brain, ovary and thymus (Leandro‐García et al. 2010).  
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1.4 Valvular heart disease and platelet function in people 

and dogs 

 

In all species, valvular heart disease has the potential to affect platelet 

activation or function (Goldsmith et al. 2000). Resultant turbulent high-

velocity blood flow and fluid shear stresses may decrease platelet function 

via increased fragmentation of circulating VWF high molecular weight 

multimers (Tarnow et al. 2004) or increase platelet activation following 

damage to the vascular endothelium and cellular components of blood 

(Brown et al. 1975, Stein and Sabbah 1976, Goldsmith et al. 2000). The 

associations between valvular heart disease and platelet activation or 

function are not well understood, with conflicting results reported in the 

human and veterinary literature.  

 

In people, many studies have reported increased platelet activation in heart 

failure. However, only small numbers have specifically assessed platelet 

function in people with valvular disease (such as MVP) and many include 

patients receiving drug therapies with the potential to alter platelet function 

(Chung and Lip 2006). In addition, it is often unclear if cases are subclinical 

or clinical, preventing assessment of the association of platelet function with 

varying severities of heart disease.  

 

Multiple studies in dogs have assessed platelet function exclusively in 

patients with valvular disease (i.e. CVHD), using numerous methods 

including aggregometry, PFA-100 testing and thromboelastography; however 

in contrast to the medical literature, few veterinary studies have used platelet 

activation markers for this purpose.  Unlike their medical counterparts, the 

majority of canine studies excluded cases receiving drug therapies and 

included only subclinical CVHD cases (as reviewed by Tanaka and Yamane, 

2000).  

 

This section of this thesis will review platelet function in dogs with CVHD as 

assessed by platelet aggregometry, PFA-100 CT and thromboelastography, 
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followed by a review of the relatively small number of studies available on 

platelet activation markers in dogs with CVHD and the comparatively larger 

numbers of studies reporting platelet activation markers in people with 

valvular heart disease (including MVP). 

 

1.4.1 Platelet function and associations with chronic valvular 

heart disease 

 

1.4.1.1 Platelet aggregometry 

 

Most of the published aggregometry-based studies in CKCS have 

demonstrated an increased platelet aggregation response with varying 

degrees of severity of subclinical CVHD (regardless of MVR status), 

suggesting increased platelet reactivity (Olsen et al. 2001, Tarnow et al. 

2005, Nielsen et al. 2007). In one of these studies the increased aggregation 

response was found to be dependent on a platelet count greater than or 

equal to 100 x 109/L (Olsen et al. 2001) (Table 1.6). However, other studies 

reported decreased platelet aggregation in various dog breeds with clinical 

CVHD (Tanaka and Yamane 2000) and in CKCS with varying degrees of 

severity of subclinical CVHD (Cowan et al. 2004). It was suggested that this 

decreased platelet aggregation could be due to chronic platelet activation 

and subsequent platelet exhaustion (Tanaka and Yamane 2000) (Table 1.6). 

The latter authors reported that the concentrations of ADP that produced 

50% of the irreversible maximum aggregation (the enhancement of platelet 

sensitivity concentration) were significantly higher in New York Heart 

Association (NYHA) class III-IV (n=20) compared to class I-II cases (n=12), 

consistent with decreased platelet aggregation in more advanced/clinical 

CVHD cases. However, 9/32 (28%) of dogs were receiving angiotensin 

converting-enzyme blocker therapy, and the latter has been reported in the 

human literature to inhibit platelet activation (albeit inconsistently) (Chung 

and Lip 2006). 
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Contradictory aggregometry results may reflect differences in the severity of 

heart disease between the study populations, although the lack of 

association between platelet aggregation response and CVHD severity in 

studies by Olsen et al. (2001) and Tarnow et al. (2005) is not highly 

supportive of this theory.  Alternatively the differences may reflect the 

different methodologies used (optical versus whole blood impedance 

aggregometry), or represent a lack of standardisation in canine platelet 

aggregation studies (Cowan et al. 2004, Tarnow et al. 2005).  

 

 Increased platelet 

aggregation 

Decreased platelet 

aggregation 

Platelet aggregation within 

reference interval 

Conditions 10 CKCS with varying degrees 

of severity of subclinical CVHD 

and platelets ≥ 100 x 10
9
/L, 

compared with control dogs and 

CKCS with platelets < 

100x10
9
/L (Olsen et al. 2001) 

 

31 CKCS with varying degrees 

of severity of subclinical CVHD 

and platelets ≥ 100 x 10
9
/L, 

compared with control dogs 

(Tarnow et al. 2005). (Dogs with 

platelets < 100x10
9
/L were 

excluded from the study) 

 

12 CKCS with mild MVP and 

regurgitant jet size ≤ 20% 

(Nielsen et al. 2007) compared 

to control dogs. (Dogs with 

regurgitant jet size > 20% were 

excluded from the study). 

69 CKCS with varying degrees 

of severity of subclinical CVHD, 

compared to control dogs and 

regardless of platelet count 

(Cowan et al. 2004) 

 

 

32 dogs (various breeds) with 

symptomatic CVHD (New York 

Heart Association class III or IV 

cases), compared to control 

dogs (Tanaka and Yamane 

2000) 

 9 CKCS with varying degrees 

of severity of subclinical CVHD 

and platelets < 100 x 10
9
/L 

(Olsen et al. 2001) 

 

Table 1.6: Summary of the results of platelet aggregation studies 

in dogs with CVHD. 

 

1.4.1.2 Platelet function analyser closure times 

 

Platelet function analyser (PFA-100)-based studies have consistently 

reported increased CT in CKCS with mild-marked subclinical CVHD 
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suggesting decreased platelet function in such cases (Tarnow et al. 2003, 

Tarnow et al. 2005) (Tables 1.7 & 1.8 respectively). However, unlike 

aggregometry-based tests, CT was affected by quantitative and qualitative 

changes in circulating VWF (Tarnow et al. 2005).   

 

Continuous high shear stress from turbulent blood flow (associated with 

valvular regurgitation) results in increased fragmentation of circulating VWF 

high molecular weight multimers due to proteolysis of VWF (by the plasma 

metalloprotease, ADAMTS13, that cleaves VWF under high shear stress) 

(Tarnow et al. 2004). Therefore, the described increase in closure time likely 

reflects an alteration in VWF rather than a change in intrinsic platelet function 

(Tarnow et al. 2005). A decrease in VWF high molecular multimers is likely to 

be inversely proportional to increasing shear force because of the positive 

association between closure time and the degree of valvular regurgitation 

(Tarnow et al. 2003). Platelet aggregation at high shear rates is reliant on 

circulating VWF (Tarnow et al. 2005). Therefore, in vitro platelet function 

assays based on physiologic high shear rates and adhesion to a contact 

surface (e.g. PFA-100) will detect platelet dysfunction if a qualitative VWF 

defect is present; whereas low shear tests such as platelet aggregometry will 

be unaffected (Tarnow et al. 2005).  

 

The form of turbulent blood flow does not appear to be an important factor in 

platelet hypofunction (as assessed by CT), nor is it thought to be breed 

specific (Clancey et al. 2009a). Other studies have demonstrated increased 

closure times in a variety of dog breeds with various cardiac diseases 

including subaortic stenosis (Tarnow et al. 2005, Clancey et al. 2009a, 

Moesgaard et al. 2009).  
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 Control mixed breed  

Absent or minimal 

MVR (n=15) 

(Jet size ≤ 10%) 

Control CKCS 

Absent or minimal 

MVR (n=53) 

(Jet size ≤ 15%) 

 

Mild  

MVR (n=15) 

(Jet size > 15 ≤ 50%) 

 

Moderate-severe 

MVR (n=18) 

(Jet size > 50%) 

Closure 

time 

(seconds) 

62 (55-66) 55 (52-64) 75 (60-84) * 87 (66-102) ** 

 

Table 1.7: Closure times (using collagen/adenosine diphosphate 

cartridges) with varying degrees of subclinical mitral regurgitation 

as assessed by the mitral regurgitant jet size (From Tarnow et al., 

2003).  

Data reported as median and 25th-75th percentiles. Results are 

different from the control CKCS at * p < 0.01 and ** p <0.0001. 

 

 Control mixed breed  

Absent or minimal  

MVR (n=14) 

(Jet size ≤ 10%) 

Control CKCS 

Absent or minimal  

MVR (n=14) 

(Jet size ≤ 20%) 

 

Moderate-severe 

MVR (n=17) 

(Jet size ≥ 50%) 

Closure 

time 

(seconds) 

 

62 (58-68) 64 (57-84) 106 (94-114) ** 

 

Table 1.8: Closure times (using collagen/adenosine diphosphate 

cartridges) with varying degrees of subclinical mitral regurgitation as 

assessed by the mitral regurgitant jet size (From Tarnow et al., 2005).  

Data reported as median and 25th-75th percentiles. Results are 

different from the control CKCS and control mixed breed dogs at ** p 

< 0.0001. 

 

1.4.1.3 Thromboelastography 

 

Only a single study has used thromboelastography to assess platelet 

function in CKCS with varying degrees of severity of subclinical CVHD 

(Tarnow et al., 2010); out of 25 dogs, 11 had absent or minimal MVR, and 14 

had severe MVR (regurgitant jet size greater than of equal to 50%). A control 

group of 8 dogs was also included. These authors reported there were no 
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statistically significant differences in thromboelastography variables (R, K, 

MA and α) between the groups, results that did not support global 

hypercoagulability in CKCS with subclinical CVHD (Tarnow et al. 2010b). 

 

1.4.1.4 Platelet activation markers 

 

Platelet surface P-selectin expression  

 

Martini et al. (1996) investigated platelet surface associated P-selectin 

expression in people with varying degrees of severity of MVP. The latter 

study investigated 39 people with absent or mild to moderate MVR, 15 

people with severe MVR and 5 healthy controls and found no difference in P-

selectin expression between groups (Martini et al. 1996). It was not specified 

if the cases were subclinical or clinical and therefore it is unclear whether 

they were congestive heart failure cases or heart disease cases alone. 

 

In contrast, Chung et al. (2007) reported higher P-selectin surface 

expression by flow cytometry, consistent with increased platelet activation, in 

people with acute decompensated congestive heart failure due to impaired 

left ventricular systolic function (22 NYHA class III-IV patients), compared to 

people with stable congestive heart due to impaired left ventricular systolic 

function (53 NYHA class I-II and15 class III-IV patients) and healthy controls 

(n=23). Due to the fact, however, that the number of valvular cases in the 

latter study was not published, an association between decompensated 

valvular disease and increased platelet activation cannot be ascertained. To 

be included in the stable congestive heart failure group there had to be no 

hospital admission for greater than or equal to 3 months. 

 

A single study in dogs has shown no significant difference in platelet surface 

associated P-selectin expression, assessed by flow cytometry, in 31 CKCS 

with either subclinical CVHD or subaortic stenosis compared to control dogs, 

suggesting that platelets do not circulate in a pre-activated form in either 

disease (Tarnow et al. 2005). 
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Soluble P-selectin 

 

In people, multiple studies have reported a significant increase in soluble P-

selectin concentration in congestive heart failure compared to controls 

(O’Connor et al. 1999, Gibbs et al. 2001, Yin et al. 2003), including one study 

that included a high proportion (30/74) of valvular heart disease cases (Yin et 

al. 2003). In addition, soluble P-selectin concentrations increased with 

congestive heart failure severity in the latter study. 

 

Soluble P-selectin concentration, as an indicator of platelet activation, has 

not been investigated in dogs with any form of heart disease. 

 

Platelet specific granular proteins i.e. β-thromboglobulin and platelet 

factor 4 

 

The concentrations of platelet specific proteins released from alpha granules, 

in particular BTG and PF4, have been used to assess platelet activation in 

people with MVP and/or MVR with conflicting results. Approximately half of 

all these studies report BTG and/or PF4 concentrations consistent with in 

vivo platelet activation (Cudillo et al. 1983, Fisher et al. 1983, Arocha et al. 

1985, Tse et al. 1997). By contrast, the other half of the literature reports no 

significant difference in BTG or PF4 concentrations between MVP patients 

and controls (Scharf et al. 1982, Lin et al. 1989, Martini et al. 1996).  

 

Commercial antibodies against canine BTG are currently unavailable 

therefore no studies have been performed in dogs (Christopherson et al. 

2012). 
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Plasma metabolite thromboxane B2  

 

To the author’s knowledge, no studies have studied thromboxane B2 

concentrations in valvular disease in people. A single study reported no 

significant difference in plasma thromboxane B2 concentration assessed by 

ELISA, in CKCS with varying degrees of severity of subclinical CVHD 

compared to a control population (Tarnow et al. 2005). 

 

Mean platelet component concentration  

 

Chung et al. (2007) reported a decrease in MPC concentration, consistent 

with increased platelet activation, in people with stable congestive heart 

failure due to impaired left ventricular systolic function (53 NYHA class I-II 

and 15 class III-IV patients) compared to healthy controls (n=23) but not in 

acute decompensated congestive heart failure cases (22 NYHA class III-IV 

patients) compared to controls. However, as the number of MVP cases was 

not reported, an association between valvular disease and increased platelet 

activation could not be ascertained.  MPC concentration, as an indicator of 

platelet activation, has not been investigated in dogs with any form of heart 

disease (including valvular disease). 

 

1.4.2 Significance of increased platelet activation/function in 

dogs with chronic valvular heart disease 

 

From the foregoing review, it is apparent that the nature and extent of 

platelet dysfunction associated with valvular disease in dogs is not 

completely clear.  In addition, the consequence(s) of potentially altered 

platelet function in dogs with CVHD is unclear. It is theorised that activated 

platelets may contribute to the development of vascular changes such as 

arteriosclerosis of intra-myocardial coronary arteries and myocardial 

microthrombosis (Patterson et al. 1961, Jönsson 1972, Whitney 1976, 

Tarnow et al. 2005). One study reported that these changes were 

accompanied by focal myocardial necrosis/fibrosis (Patterson et al. 1961). 
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This could result in decreased myocardial oxygenation (and progression of 

heart disease) (Falk and Jönsson 2000). Studies in both dogs and people 

have reported an association between intra-myocardial coronary 

arteriosclerosis and risk of sudden death (Burke and Virmani 1998, Falk and 

Jönsson 2000).  

 

More recently, a study reported that 21 dogs with congestive heart failure 

due to CVHD had significantly advanced intra-myocardial arteriosclerosis 

and myocardial fibrosis compared to 21 age-matched control dogs 

euthanased for reasons not associated with cardiac disease (Falk et al. 

2006). A direct association between the degree of arterial change and clinical 

signs of CHVD has also been demonstrated (Falk et al. 2007). 

 

Arterial pathology is common in the CKCS breed (Buchanan et al. 1997, 

Karlstam et al. 2000). Karlstam et al. (2000) reported pulmonary artery 

lesions (including moderate to severe intimal thickening) associated with 

moderate to severe CVHD in seven consecutive CKCS post mortem 

examinations. Additionally, another CKCS study reported the presence of 

intimal thickening and breaks in the internal elastic lamina of the femoral 

artery with associated thrombosis and vascular occlusion (Buchanan et al. 

1997). 

 

In conclusion, a direct link between arterial pathology and CVHD in dogs has 

not been determined; however, both conditions commonly coexist. It has 

been theorised that activated platelets could contribute to the development of 

vascular changes and myocardial microthrombi and subsequently, heart 

disease progression, and that narrowing of intra-myocardial arteries due to 

coronary arteriosclerosis could produce high shear stresses which in turn 

could activate platelets (Tarnow et al. 2005).  
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2 Project Aims and Hypotheses 
 

As noted in the literature review, few studies have assessed platelet 

activation markers in CVHD in dogs. Therefore, the present study sought: 

 

1. To determine the frequency of CVHD in a population of CKCS in Western 

Australia. 

 

2. To characterise and compare platelet indices in the above CKCS 

 To assess automated platelet indices in the CKCS. 

 Due to the inherent variation in platelet number and size in the 

CKCS, the assessment of individual platelet indices in this 

breed is of interest. The exploration of individual platelet 

indices (such as PCT) and the association between platelet 

indices (such as MPV and platelet count) forms the basis for 

the first aim of this present study. 

 To assess the agreement between two platelet counting methods 

(blood smear estimate and optical count) in CKCS with 

macrothrombocytopenia.  

 Despite improved accuracy over impedance counters, the 

Advia 120 may have some difficulty differentiating large 

platelets from erythrocytes at lower counts (Tvedten et al. 

2012). Therefore a further aim was to assess the agreement 

between platelet counting methods (Advia 120 and blood 

smear estimation). We hypothesise that despite improved 

accuracy over impedance counters, the Advia 120 may still 

underestimate platelet counts in cases of macrothrombocytosis 

(Tvedten et al. 2012). 

 To assess the prevalence of macrothrombocytopenia in a population 

of CKCS in Western Australia. 

 The prevalence of macrothrombocytopenia has not previously 

been reported in Western Australia. We hypothesise that 

Western Australian CKCS have a high prevalence of 
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macrothrombocytopenia as previously reported in another 

Australian state and overseas. 

 To assess the validity of the Advia 120 APCC for the detection of 

platelet clumps in dogs. 

 No previous study has reported on the APCC in clinically well 

dogs. Therefore a minor aim was to assess the validity of the 

Advia 120 APCC for detecting platelet clumps in dogs.  

 

3. To document platelet activation and function and in dogs with subclinical 

CVHD.  

 Significantly longer closure times have been described in CKCS with 

moderate to severe MVR than for those with minimal or mild 

regurgitation or healthy control dogs (Tarnow et al. 2003, Tarnow et 

al. 2004, Tarnow et al. 2005). This finding is due to quantitative and 

qualitative changes in VWF, rather than an alteration of intrinsic 

platelet function. Concurrent alteration of platelet function or platelet 

activation however cannot be excluded. A relatively novel marker of 

platelet activation, MPC concentration, has been reported in dogs 

(Moritz et al. 2003, Moritz et al. 2005, Bauer et al. 2012) but the 

change in MPC concentrations in CVHD is unknown. A 2005 study by 

Moritz et al., suggested that MPC concentration may be more 

sensitive than P-selectin at detecting platelet activation. From MPC 

concentration, the PCDW, an indicator of the variation in platelet 

density is derived. PCDW is high if both non-degranulated and 

degranulated circulating platelets are present. An increased PCDW is 

therefore also a marker of platelet activation (Moritz et al. 2005, 

Boudreaux 2010b).  

 

4. To determine the factors associated with alterations in markers of platelet 

activation and function in dogs with subclinical CVHD.  

 We hypothesise that as heart disease advances, MPC concentration 

will decrease (representing platelet activation), and PCDW will 

increase (representing a variation in platelet density) and that closure 
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time will increase with advancing heart disease severity (representing 

decreased platelet function). Additional confounding factors, such as 

platelet count and HCT, will also be explored.  

  



61 
 

3 Materials and methods 

 

3.1 Animals 

 

Cavalier King Charles Spaniels  

Client-owned CKCS were prospectively recruited from the Murdoch 

University Veterinary Hospital (MUVH), primary care veterinary practices, 

and CKCS breeders. Recruitment was sought via distribution of recruitment 

flyers to CKCS owners who attended MUVH, posting of a recruitment flyer, in 

the March 2012 edition of the MUVH’s bulletin, posting of a recruitment flyer 

in the April 2012 Western Australian Division of the Australian Veterinary 

Association’s Bulletin, phone contact of CKCS breeders who had previously 

attended MUVH for heart scoring, email contact with referring veterinarians 

and informal word-of-mouth recruitment. 

 

Dogs were recruited from September 2011 through June 2013. Dogs were 

eligible for inclusion if they were greater than or equal to 6 months old and 

apparently healthy (defined as the absence of systemic or organ-related 

disease, other than the presence of a left apical systolic murmur or dental 

disease) as determined by an interview with the owner and results of a 

health questionnaire and physical examination. Dogs that received any drug 

(other than a routine prophylactic antiparasitic drug or vaccination) within 8 

weeks prior to participation were excluded. Age, sex, and body weight of 

each dog were recorded. 

 

Control dogs 

A control group of healthy dogs of breeds other than CKCS was included for 

comparison of platelet indices. Client-owned dogs that were not of CKCS 

breed were retrospectively recruited on the basis of review of the MUVH 

database for the period of November 2011 through May 2013. Dogs were 

included if they were greater than or equal to 6 months old, were apparently 

healthy (defined as the absence of systemic or organ-related disease, other 

than the presence of dental disease, cutaneous masses less than 1 cm 
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diameter that appeared non-painful, or orthopaedic disease), and had 

haematologic analysis performed by use of the Advia 120. Dogs that 

received any drug (other than routine prophylactic antiparasitic drugs or 

vaccinations) within 8 weeks prior to participation or had a heart murmur or 

incomplete medical records were excluded. The reason for admission, 

signalment (age, sex, and breed), body weight, platelet count, MPC 

concentration, PCDW, MPV, PDW, PCT, large platelet index and HCT were 

recorded. 

 

Signed owner consent was obtained for all CKCS participating in the study. 

The study was approved by the Murdoch University Animal Ethics 

Committee (R2443/11). 

 

3.2 Clinical heart evaluation 

 

3.2.1 Murmur intensity/grade 

 

Cardiac auscultation of each CKCS was performed prior to 

echocardiographic assessment by a Diplomate of the European College of 

Veterinary Internal Medicine - Companion Animals (Internal Medicine) or 

Fellow of the Australian and New Zealand College of Veterinary Scientists in 

Small Animal Internal Medicine. The presence or absence, intensity (grades I 

through VI) (Table 3.9), location, and character of each murmur were 

recorded (Tilley et al. 2006).  

 

Murmur grade Murmur intensity 

I Very soft 

II Soft 

III 
Moderate (as loud as the 

heart sounds S1, S2) 

IV Loud 

V Loud with precordial thrill 

VI Very loud 

 

Table 3.9: Cardiac murmur intensity and grading system. 
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3.3 Echocardiography 

 

Echocardiography was performed with an ultrasonography system 

(ACUSON SequoiaTM 512, Siemens, San Jose, CA). Each CKCS was 

examined while positioned in right and left lateral recumbency. No chemical 

restraint was used. All examinations were performed by a single investigator, 

an Internal Medicine Resident (Linda Tong), and all recorded images were 

reviewed by a Diplomate of the European College of Veterinary Internal 

Medicine - Companion Animals (Cardiology) (Anne French). Examinations 

were performed both with and without colour flow mapping by use of a 4- to 

10-Hz and 1- to 4-Hz electronic sector transducer, respectively. 

 

3.3.1 Echocardiographic evaluation of left heart remodelling 

 

The LVDD and LVDS were measured by use of M-mode echocardiography 

at the level of the chordae tendinae as guided by a 2-dimensional right 

parasternal short axis view (Thomas et al. 1993). LVDD and LVDS were 

measured when the left ventricle was at its largest and smallest diameter 

respectively. Measurements were made using a leading edge methodology 

(from the anterior-most edge of endocardial lines); to include the proximal but 

not the distal endocardium for each measurement (Sahn et al. 1978). A 

simultaneous ECG was not recorded during echocardiography. The reported 

measurement (in cm) for each dog was the mean of 3 measurements 

normalised on the basis of body weight by use of the following equations 

(Cornell et al. 2004): 

LVDDN = LVDD/(body weight in kg)0.294 

LVDSN = LVDS/(body weight in kg)0.315 

Reference intervals for LVDDN and LVDSN were 1.27 to 1.85 and 0.71 to 

1.26, respectively (Cornell et al. 2004). 

 

Left atrial and aortic root diameters were measured by use of a 2-

dimensional right parasternal short-axis view at the level of the aortic valve 

(Thomas et al. 1993) when the left atrium was subjectively, at its maximal 
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diameter. These diameter measurements were used to calculate LA:Ao. The 

reported LA:Ao was the mean of 3 ratios calculated from 3 paired 

measurements. The criterion for left atrial enlargement was LA:Ao greater 

than 1.5. 

 

Cardiac remodelling was defined as the presence of left atrial enlargement 

(LA:Ao greater than 1.5), left ventricular enlargement (LVDDN or LVDSN 

above reference interval), or both (Hansson et al. 2002, Häggstrӧm et al. 

2008). 

 

3.3.2 Echocardiographic assessment of mitral valve regurgitation 

 

Presence of MVR and estimation of the severity was made with colour flow 

Doppler echocardiography by use of the left apical 4-chamber view with the 

dogs positioned in left lateral recumbency (Thomas et al. 1993). Images 

were analysed frame by frame to estimate the percentage of the left atrium 

occupied by the largest mitral jet (jet size) as previously reported (Tarnow et 

al. 2003). Mitral valve regurgitation was subsequently classified as absent to 

minimal (jet size < 15%), mild (jet size 15% to 50%), or moderate to severe 

(jet size greater than 50%), as reported elsewhere (Tarnow et al. 2003, 

Tarnow et al. 2004). 

 

3.3.3 Canine chronic valvular heart disease score  

 

Based upon clinical and echocardiographic findings, CKCS were grouped 

according to the ACVIM canine CVHD scoring system (Atkins et al. 2009) 

(Table 3.10). 
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ACVIM canine 

CVHD score 

Criteria 

A 

No identifiable structural disorder of the heart, but high risk for 

developing heart disease (eg. every Cavalier King Charles Spaniel 

without a heart murmur) 

B1 
Asymptomatic patients that have no radiographic or 

echocardiographic evidence of cardiac remodelling 

B2 

Asymptomatic patients that have haemodynamically significant valve 

regurgitation, as evidenced by radiographic or echocardiographic 

findings of left-sided heart enlargement 

C 
Past or current clinical signs of heart failure associated with structural 

heart disease 

D 
End-stage disease with clinical signs of heart failure caused by 

CVHD that are refractory to standard therapy 

 

Table 3.10: The American College of Veterinary Internal Medicine 

canine chronic valvular heart disease scoring system. 

 

3.4 Platelet haematology 

 

3.4.1 Blood collection and handling 

 

A blood sample (10 mL) was collected from each CKCS via jugular 

venipuncture with a 21-gauge needle and 10-mL syringe. Two millilitres of 

blood were transferred into a tube containing K3EDTA (Vacuette, Greiner 

Bio-One GmbH, Kremsmünster, Austria), which was used for automated 

haematologic and blood film assessment. Four millilitres were placed into 

two 2-mL tubes containing 3.8% sodium citrate (Sarstedt, Nϋmbrecht, 

Germany), which were used for closure time assessment. The remaining 4 

mL of blood was stored for use in another study. All tubes were filled to the 

manufacturer’s specified volume. Blood was mixed with the anticoagulant by 

gentle inversion of tubes immediately after sample collection. Blood tubes 

were mechanically rotated with a blood tube rotator (Innovative Medical 

Systems Corp, Ivyland, PA.) until processing. Blood was stored at room 

temperature (approximately 25°C).    
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3.4.2 Assessment of platelet number and function 

 

Blood samples were analysed using the Advia 120 haematology system and 

manufacturer-developed multispecies software (version 3.1.8.0-MS, Siemens 

Healthcare Diagnostics, Tarrytown, NY).  All samples were processed within 

40 minutes after collection. Platelet count, MPC concentration, PCDW, MPV, 

PDW, PCT, MPM, PMDW, large platelet index, APCC and HCT were 

recorded. 

 

Assessment of macrothrombocytosis was also made by dividing the number 

of large platelets (reported as a number x 109/L) by the total Advia 120 

platelet count and multiplying this number by 100. If the result was greater 

than 30%, then the dog was considered to have macrothrombocytosis. 

 

Closure time was determined by use of the PFA-100 analyser and collagen-

ADP cartridges in accordance with the manufacturer’s instructions. All 

samples were processed within 60 minutes after collection. Each sample 

was assayed in duplicate. When the coefficient of variation was greater than 

15%, the results were rejected, and a duplicate assay was repeated. Results 

for dogs with a HCT < 0.35L/L were excluded (Clancey et al. 2009b).  

 

3.4.3 Assessment of blood smears 

 

Blood films were prepared from each CKCS sample within 60 minutes of 

sample collection and stained with modified Wright stain (Hematek Stain 

Pak, Siemens, Healthcare Diagnostics Inc., Tarrytown, NY, USA) by use of 

an automated staining instrument (Hematek 1000, Siemens Healthcare 

Diagnostics).  

 

All microscopic examinations were performed under 100-1000X 

magnification, as detailed below. A 10X ocular lens was used in all 

examinations. One investigator (Linda Tong), who was not aware of the 

platelet count, examined each blood film. Blood smear platelet estimates 
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were determined by counting the number of platelets in 10 consecutive oil 

immersion (100X) objective fields in the monolayer area of each blood 

smear. The average number of platelets per field was multiplied by 15 x 

109/L to obtain the platelet estimate as previously described (Tvedten et al. 

2008). 

 

The percentage of macrothrombocytes was determined by counting the 

number of platelets that were subjectively as large as or larger than a red 

blood cell, in the same 10 consecutive oil immersion (100X) objective fields 

used for blood smear estimation (Figure 3.7). The number of 

macrothrombocytes counted was divided by the total number of platelets in 

those fields to provide a macrothrombocyte percentage. If more than 30% of 

the platelets were macrothrombocytes, a diagnosis of macrothrombocytosis 

was made; as previously reported (Brown et al. 1994, Singh and Lamb 

2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Blood smear from a 3-year-old CKCS demonstrating 

macrothrombocytes 

(platelets subjectively assessed to be as large as or larger than a 

red blood cell) (arrows). 
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Figure 3.8: Blood smear from a 3-year-old CKCS demonstrating 

platelet size variation. 

Normal sized platelet (arrow head) and macrothrombocyte 

(arrow). 

 

The number and size of platelet aggregates were estimated in 5 consecutive 

high-power fields (hpf) (400X magnification) at the feathered edge of each 

blood film. This protocol was a modification of that described in a study 

(Bertazzolo et al. 2007) in which the number and size of platelet aggregates 

were estimated in fields by use of oil immersion (1000X magnification). The 

number of platelet aggregates was judged on a scale of 0 to 3 as follows: 0 = 

absent, 1 = sparse with 1 or 2 aggregates/5 hpfs, 2 = moderately frequent 

with 3 to 5 aggregates/5 hpfs, and 3 = numerous with greater than 5 ag-

gregates/5 hpfs. The size of aggregates was assessed on a scale of 1 to 3 

as follows: 1 = small (3 to 8 platelets), 2 = medium (9 to 20 platelets), and 3 = 

large (greater than 20 platelets). 
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3.5 Statistical analysis 

 

Descriptive variables with continuous data (age, body weight, platelet count, 

MPC concentration, PCDW, and HCT) were tested for normality by use of 

the Shapiro-Wilk test. A normal distribution was determined when there was 

failure to reject the null hypothesis of normality at P < 0.05. Normally dis-

tributed data were summarised as mean and 95% CI. Non-parametric data 

were summarised as median and IQR. Comparisons were made between 

groups by use of Student t tests for parametric variables and the Mann-

Whitney U test for nonparametric variables. Estimated frequencies of select 

variables were summarised as proportion and 95% CI. The distribution of sex 

for each group was compared by use of a Fisher exact test. Comparisons 

among 3 or more categories within CKCS cohorts were performed by use of 

an analysis of variance (ANOVA) for parametric responses or a Kruskall-

Wallis test for nonparametric responses. Pairwise post hoc comparisons 

were performed by use of the least squares mean or the Mann-Whitney U 

test, respectively, with a Bonferonni correction for overall type I error. 

Significance was set at P < 0.05 for all comparisons. 

 

Measured variables for the CKCS group were summarised as described 

previously. Associations between possible explanatory variables (sex, age, 

murmur, jet size, LA:Ao, LVDDN, LVDSN, platelet count, and HCT) and 

outcomes (closure time, MPC concentration, and PCDW) were assessed 

with multivariate regression models using SAS version 9.4 (SAS Institute, 

NC, USA).  The model of best fit was selected on the basis of the Cp statistic 

and consideration of the R2. All possible subsets were evaluated. The best 

models for subsets were selected on the basis of the smallest Cp statistic 

with the least bias (i.e., the Cp statistic closest to p, where p is the number of 

variables in the model). The simplest subsets that explained the outcome 

were chosen with the selected Cp statistic and R2. The proportion of variance 

explained by the explanatory variable or variables, partial R2, and cor-

responding P value were reported. 
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The level of agreement between platelet-counting methods (blood smear 

estimation and the Advia 120) was assessed using Bland-Altman analysis. 

 

A comparison between automated platelet clump flag and visual detection of 

platelet clumping was calculated using Kappa statistics, with GraphPad® 

software on-line calculator (http://graphpad.com/quickcalcs/kappa1.cfm). 

 

The confidence intervals of proportions were calculated with an on-line 

calculator (http://vassarstats.net/prop1.html). 
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4 Results 

 

4.1 Animals 

 

A total of 89 CKCS fulfilled the inclusion criteria; 47 were female (34 spayed 

and 13 entire) and 42 male (38 castrated and 4 entire).  In the control group, 

39 dogs fulfilled the inclusion criteria; 20 were female (17 spayed and 3 

entire) and 19 male (16 castrated and 3 entire). The breeds in the control 

group are detailed in Table 4.11.  

 

Breeds Number of dogs 

Cross breed 15 

Greyhound 4 

Poodle 3 

Labrador retriever 2 

Maltese 2 

Jack Russell terrier 2 

Staffordshire bull terrier 2 

Pekingese 1 

Dachshund 1 

Blue heeler 1 

Cocker spaniel 1 

Schnauzer 1 

Australian cattle dog 1 

German shorthaired pointer 1 

German shepherd dog 1 

Shih Tzu 1 

 

Table 4.11: Dog breeds of the control group (n=39). 

 

There was no significant difference in the frequency of sex between groups 

(P = 0.150; Fisher exact test). 
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Ages and bodyweights of the CKCS and control dogs are summarised in 

Tables 4.12 and 4.13 respectively.  There were significant differences 

between both age and bodyweight of CKCS and control dogs (P < 0.001 and 

P = 0.01, respectively; Mann Whitney). 

 

Age (years) CKCS Control dogs 

Range  0.6-15 0.8-15 

Median  4 9.8 

Interquartile range (IQR) 2-6 5.5-12.3 

 

Table 4.12: Ages of the CKCS (n=89) and control dogs (n=39). 

 

 

 

 

 

 

 

 

Table 4.13: Bodyweight of the CKCS (n=89) and control dogs 

(n=39). 

 

4.2 Heart disease 

 

4.2.1 Murmur grade  

 

A left apical systolic murmur was detected in 51 of 89 CKCS (57%; 95% CI, 

46% to 66%).  Of the 51 CKCS with a murmur, 24 (47%) were aged 6 years 

or less. The frequencies of the murmur grades are listed in Table 4.14 and 

the relationship between age and murmur grade is displayed in Figure 4.9. 

There was a positive relationship between murmur grade and age. 

 

 

Bodyweight (kg) CKCS Control dogs 

Range  5-18 3-35 

Median  10.1 20.5 

IQR  8.2-11.6 6.4-29 
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Murmur grade Number of CKCS 

0 38 

I 20 

II 13 

III 9 

IV 7 

V 2 

VI 0 

 

Table 4.14: Frequency of murmur grades in the CKCS (n=89). 

 

 

 

Figure 4.9: Murmur grade and age of each CKCS (n=89). 
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4.2.2 Regurgitant jet size 

 

Mitral valve regurgitation was detected by use of colour-flow Doppler 

echocardiography in 86 of 89 (97%; 95% CI, 90% to 99%) CKCS. The 3 

dogs that had no evidence of MVR were 8 months old, 3 years old, and 4 

years old).  

 

The number of dogs within each regurgitant jet size group is detailed in Table 

4.15. 

 

Severity group Regurgitant jet size (%) n 

Absent-minimal < 15 52 

Mild 15 to 50 14 

Moderate-severe > 50 23 

 

Table 4.15: Regurgitant jet size severity group for 89 CKCS with 

subclinical CVHD.  

 

4.2.3 Echocardiographic indices of left heart remodelling  

 

The results of echocardiographic indices of cardiac remodelling (LA:Ao, 

LVDDN and LVDSN) are shown in Table 4.16 and Figure 4.10. 

 

Left atrial enlargement was evident in 22 of 89 CKCS. Four of 89 CKCS had 

left ventricular enlargement during diastole. Left ventricular enlargement 

during systole was not detected in any CKCS. 

 

 LA:Ao  LVDDN  LVDSN 

Range  1-2.08 0.95-2.06 0.51-1.26 

Mean  1.40 1.40 0.86 

95% CI (mean)  1.35-1.45 1.35-1.44 0.83-0.89 

 

Table 4.16: Mean LA:Ao, LVDDN and LVDSN values for the 

CKCS (n=89). 
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Figure 4.10: LA:Ao, LVDDN and LVDSN values for each CKCS 

(n=89).  

In each graph, the dotted line indicates the upper limit of the 

reference interval.   

 

4.2.4 Canine chronic valvular heart score  

 

The ACVIM canine CVHD scores are summarised below (Table 4.17). As 

only subclinical cases were included in the present study, no dogs were 

classified in Stage C or D 

 

ACVIM canine CVHD Stage Number of CKCS 

A 3 

B1 73 

B2 13 

C 0 

D 0 

 

Table 4.17: The ACVIM canine CVHD scores of the CKCS (n=89). 
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4.3 Platelet enumeration 

 

Cavalier King Charles spaniel Advia 120 and blood smear derived platelet 

counts and control dog Advia 120-derived platelet counts are summarised in 

Table 4.18 and displayed in Figure 4.11. There was a significant difference 

between the Advia 120-derived platelet counts in the CKCS and control dogs 

(P < 0.001; Mann Whitney).  Thrombocytopenia, defined as an Advia 120-

derived platelet count less than 100 x 109/L, was identified in 18 of the 89 

(20%; 95% CI, 13% to 30%) CKCS but was not identified in any of the 

control dogs.  

 

Platelet count  

(x 109/L) 

CKCS Control 

dogs 

Advia 120 Blood 

smear 

estimate   

Advia 120 

Range 27-565 33-642 123-699 

Median 213 220.5 315 

IQR 143-306 132-296 171-402 

 

Table 4.18: Platelet counts (obtained by the Advia 120 and blood 

smear estimation) in the CKCS (n=89) and (by the Advia 120) in 

the control dogs (n=39).  
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Figure 4.11: Platelet counts of the CKCS (obtained by blood 

smear estimation and the Advia 120; n= 89) and control dogs 

(obtained by the Advia 120; n=39). 

Both control dogs with a platelet count of < 200 x 109/L were 

Greyhounds. The dotted line indicates a platelet count of 100 x 

109/L.   

 

Analysis of the agreement between platelet counting obtained by smear 

estimation and the Advia 120 was made using Bland–Altman agreement 

analysis (Figure 4.12). 

  

The plot of the difference between smear estimation and Advia 120 values 

against their means according to the Bland and Altman design, showed a 

bias of -1.82 x 109/L, with a SD of 38.58, and with 92.1% of differences within 

the agreement limits (mean ± 2SD). This confirmed good agreement 

between platelet counting methods with clinically insignificant variation.  
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Figure 4.12: Bland Altman plot of two counting methods (blood 

smear estimation and Advia 120) in the CKCS (n=89). 

The difference of platelet values (blood smear-Advia 120) (y-axis) 

is plotted against the mean value (x-axis). The middle solid line is 

the mean of the difference. The dotted lines represent the 95% 

limits of agreement (-77.43 to 73.81). The bias (SD) was -1.82 

(38.58). 

 

The correlation between platelet counts obtained by blood smear estimation 

and Advia 120 was analysed using Spearman’s rank correlation (Figure 

4.13). There was a significant association (r = 0.9633 (0.94-0.98), P < 

0.0001). 
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Figure 4.13: Correlation between blood smear estimate and Advia 

120 platelet counts 

 

4.4 Selected haematological and platelet function indices 

 

4.4.1 Plateletcrit  

 

Plateletcrit data for the CKCS and control dogs are summarised in Table 

4.19 and Figure 4.14. The PCT was significantly lower in the CKCS 

compared to control dogs (CKCS: median 0.24%, IQR 0.19-0.29%; control 

dogs: median 0.27%, IQR 0.23-0.36%; P < 0.011; Mann Whitney), but a 

large amount of overlap between the CKCS and control dog results. Despite 

a large number of CKCS with thrombocytopenia, the majority of CKCS had 

PCT within canine reference interval (0.13-0.4%) (Kelley et al., 2014). 
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Plateletcrit (%) CKCS Control dogs 

Median  0.24 0.27 

Range  0.7-0.48 0.11-0.61 

IQR 0.19-0.29 0.23-0.36 

 

Table 4.19: Plateletcrit results of the CKCS (n=89) and control 

dogs (n=39). 

 

 

 

Figure 4.14: Plateletcrit result of each CKCS (n=89) and control 

dog (n=39).  

The dotted lines represent a reference interval of 0.13-0.4% 

(Kelley et al. 2014). 

 

4.4.2 Mean platelet volume  

 

The MPV data for the CKCS and control dogs are summarised in Table 4.20 

and Figure 4.15. The MPV was significantly higher in the CKCS compared to 

control dogs (CKCS: median 11.2 fL, IQR 8.8-16.1 fL; control dogs: median 
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8.6 fL, IQR 8.0-9.1 fL; P < 0.001; Mann Whitney). The reported MPV 

reference interval is 8.56-14.41 fL (Moritz et al. 2004). 

 

MPV (fL) CKCS Control dogs 

Median  11.2 8.6 

Range  7.1-29.4 6.8-11.7 

IQR  8.8-16.1 8.0-9.1 

 

Table 4.20: Mean platelet volume results of the CKCS (n=89) and 

control dogs (n=39). 

 

 

 

Figure 4.15: Mean platelet volume result of each CKCS (n=89) 

and control dog (n=39). 

The dotted lines represent a reference interval of 8.56-14.41 fL (Moritz 

et al. 2004). 

 

The percentage of large platelets in both CKCS and control dogs, as 

determined by MPV, is displayed in Figure 4.16. Based upon a definition of 
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greater than 30% circulating large platelets, 19 of the 89 CKCS were 

classified as having macrothrombocytosis when assessed by the Advia 120 

(Figure 4.16).  Four of these 19 dogs had greater than or equal to 70% 

circulating large platelets. When macrothrombocytosis was assessed by a 

different methodology, blood smear assessment, five of 89 CKCS were 

classified as having macrothrombocytosis. Two of these 5 dogs were 

classified as having 70% or more macrothrombocytes by the Advia 120. 

 

 

Figure 4.16: Percentage of large platelets (as assessed by the 

Advia 120) for each of the CKCS (n=89) and control dogs (n=39).  

Each data point above the dotted line represents a CKCS with 

greater than 30% circulating large platelets (n = 19).  

 

The MPV was inversely related to platelet count in the CKCS (Figure 4.17) 

but not in the control dogs; the latter group had similar MPV across platelet 

counts (Figure 4.18). 
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Figure 4.17: Graph displaying the relationship between MPV and 

platelet count for 89 CKCS. 

The dotted line indicates a platelet count of 100 X 109/L.  
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Figure 4.18: Graph displaying the relationship between MPV and 

platelet count for 39 control dogs. 

The dotted line indicates a platelet count of 100 X 109/L. 

 

Two control dogs had a platelet count less than 200 x 109/L (123 x 109/L and 

143 x 109/L) but MPV within reference interval (8.56 and 14.4 fL 

respectively). Both dogs were Greyhounds, a breed also recognised for 

inherited thrombocytopenia, but not macrothrombocytosis.  

 

4.4.3 Platelet volume distribution width  

 

The PDW data for the CKCS and control dogs are summarised in Table 4.21 

and Figure 4.19. The PDW was significantly higher in the CKCS compared to 

control dogs (CKCS: median 59.7%, IQR 52.4-68.5%; control dogs: median 

57.4%, IQR 53.2-59.3%; P = 0.044; Mann Whitney), with a large amount of 

overlap between groups. The reported PDW reference interval is 55.71-

66.90% (Moritz et al. 2004). 
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Platelet volume distribution width (%) CKCS Control dogs 

Median  59.7 57.4 

Range  44.3-78.2 44-67.2 

IQR  52.4-68.5 53.2-59.3 

 

Table 4.21: Platelet volume distribution width results of the CKCS 

(n=89) and control dogs (n=39). 

 

 

 

Figure 4.19: Platelet volume distribution width of each CKCS 

(n=89) and control dog (n=39).  

The dotted lines represent a reference interval of 55.71-66.9% (Moritz 

et al. 2004).  

 

 

4.4.4 Advia 120 large platelet count 

 

The Advia 120 large platelet data for the CKCS and control dogs are 

summarised in Table 4.22. 
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The large platelet count was significantly higher in the CKCS compared to 

control dogs (CKCS: median 20 x 109/L, IQR 9-30 x 109/L; control dogs: 

median 8 x 109/L, IQR 4.5-13 x 109/L; P < 0.001; Mann Whitney). 

 

Advia 120 large platelet count (x 109/L) CKCS Control dogs 

Median  20 8 

Range  2-47 2-40 

IQR  9-30 4.5-13 

Advia 120 large platelet percent (%) CKCS Control dogs 

Median 9.78 2.55 

Range 0.48-72.41 0.71-12.7 

IQR 2.6-24.1 1.53-3.87 

 

Table 4.22: Advia 120 large platelet results of the CKCS (n=89) 

and control dogs (n=39). 

 

4.4.5 Assessment of platelet clumping – Cavalier King Charles 

spaniel 

 

Platelet aggregates were visually identified in 44 of 89 samples. Number of 

platelet aggregates was judged as sparse, moderately frequent, and 

numerous in 26, 9, and 9 blood films, respectively. Aggregate size was 

classified as small, medium, or large in 14, 16, and 14 samples, respectively. 

In the 18 CKCS with thrombocytopenia, sparse, moderately frequent, and 

numerous numbers of aggregates were identified in 3, 3, and 5 samples, 

respectively. Small, medium, and large aggregates were identified in 7, 2, 

and 2 samples, respectively. No platelet aggregates were identified in the 

remaining 7 CKCS. There was no significant difference in closure time, MPC 

concentration, or PCDW between CKCS with and without platelet aggregates 

(P = 0.095; Student t test) or between categories for number of aggregates 

(P = 0.134; ANOVA) or size of platelet aggregates (P = 0.06; ANOVA). 

 

Platelet clumping results in the CKCS using two methods (visual clump 

assessment and the Advia 120 clump flag) are summarised in Table 4.23.  
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Visual 

clump size 

Visual 

clump 

number 

Visual 

assessment 

results 

(number of 

dogs) 

Advia 120 clump  

flag +ve (APCC > 

300) 

(number of dogs) 

Advia 120 clump 

flag –ve (APCC ≤ 

300) 

(number of dogs) 

3 3+ 4 2 2 

3 2+ 3 1 2 

3 1+ 7 3 4 

2 3+ 1 1 0 

2 2+ 4 2 2 

2 1+ 11 6 5 

1 3+ 4 4 0 

1 2+ 2 2 0 

1 1+ 8 5 3 

N/A 0 45 26 19 

Total  89 52 37 

 

Table 4.23: Platelet clumping results in the CKCS using visual 

clump assessment and the Advia 120 clump flag (n=89). 

 

To determine how the automated platelet clump flag compared with visual 

detection of platelet clumping, the number of samples with APCC less than 

or equal to 300 (Advia 120 clump flag –ve) or greater than 300 (Advia120 

clump flag +ve) and those with or without visual detection of platelet clumps 

were compared using Kappa statistics. For this comparison visual platelet 

scores were dichotomised into “visual clumping” (size and number 1 through 

to 3+) and “no clumping” (number 0) (Table 4.24). 
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 Advia 120 clump  

flag +ve 

Advia 120 clump  

flag -ve 

Total 

Visual clumping 26 18 44 

No visual clumping 26 19 45 

Total 52 37 89 

 

Table 4.24: Visual platelet scores (clumping/no clumping) against 

the Advia 120 platelet clump flag in the CKCS (n=89). 

 

There were 45/89 observed agreements. The Kappa statistic (95% 

confidence interval) was 0.013 (-0.191 to 0.217), consistent with a poor 

strength of agreement. The standard error of Kappa was 0.104. The Advia 

120 flagged clumps in 26 of 45 samples without visually detected clumps 

(specificity of 42%) and failed to flag clumps in 18 of 44 samples in which 

platelet clumps were detected visually (sensitivity of 59%). 

 

Subsequently, clump size and clump number (Table 4.25 and 4.26 

respectively) were individually compared with the results of the Advia 120 

clump flag. The results demonstrate that an increase in clump size does not 

result in an improved ability of the APCC to detect clumps.  

 

Clump size Advia 120 clump flag +ve Advia 120 clump flag -ve 

1 11 3 

2 9 7 

3 6 8 

 

Table 4.25: Clump size (based on visual assessment) compared 

with the Advia 120 platelet clump flag status in the CKCS. 
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Clump number Advia 120 clump flag +ve Advia 120 clump flag -ve 

1+ 14 12 

2+ 5 4 

3+ 7 2 

 

Table 4.26: Clump number (based on visual assessment) 

compared with the Advia 120 platelet clump flag status in the 

CKCS. 

 

4.4.6 Closure time – Cavalier King Charles spaniel 

 

Closure time was recorded for 76 of 89 CKCS. Closure time was unavailable 

for 12 CKCS because of failure to perform duplicate assays with the PFA-

100 and for 1 CKCS because it had an HCT less than 0.35 L/L. The median 

closure time was 73 seconds (IQR, 62 to 102 seconds; Table 4.27). The 

reported reference interval for CT is 52-86 seconds (Callan and Giger 2001). 

Closure time was greater than the upper limit of the reference interval for 27 

CKCS. 

 

The closure time data for the CKCS is summarised in Table 4.27 and Figure 

4.20. 

 

Closure time (seconds) CKCS 

Median  73 

Range  52-210.5 

IQR  62-102 

 

Table 4.27: Closure times in the CKCS (n=76). 
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Figure 4.20: Closure time result in the CKCS (n=76).  

The dotted line represents a previously reported upper end of the 

reference interval limit of 86 seconds (Callan et al. 2001).  Twenty 

seven (35.5%) closure time results were above the reference 

interval. 

 

4.4.7 Mean platelet component concentration 

 

The MPC concentration data for CKCS and control dogs are summarised in 

Table 4.28 and Figure 4.21. The MPC concentrations were significantly 

higher in the CKCS compared to control dogs (CKCS: mean 209 g/L, 95% CI 

of the mean 207-211 g/L; control dogs: mean 204 g/L, 95% CI of the mean 

199-208 g/L; P = 0.017; Student t test). There was a large amount of overlap 

between groups.  

The reported MPC concentration reference interval is 140-186.3 g/L (Moritz 

et al. 2004). 
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MPC (g/L) CKCS Control dogs 

Mean  209 204 

Range  184-241 168-233 

95% CI of the mean 207-211 199-208 

 

Table 4.28: Mean platelet component concentration results of the 

CKCS (n=89) and control dogs (n=39). 

 

 

 

Figure 4.21: Mean platelet component concentration of each 

CKCS (n=89) and control dog (n=39). 

The dotted lines represent a reference interval of 140-186.3 g/L 

(Moritz et al. 2004).  

 

4.4.8 Platelet component distribution width   

 

The PCDW data for the CKCS and control dogs are summarised in Table 

4.29 and Figure 4.22. The PCDW was significantly lower in the CKCS 

compared to control dogs (CKCS: mean 41 g/L, 95% CI of the mean 39-43 

g/L; control dogs: mean 54 g/L, 95% CI of the mean 50-57 g/L; P < 0.001; 
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Student t test), with a large amount of overlap between groups. The reported 

PCDW reference interval is 45.8-70.5 g/L (Moritz et al. 2004). 

PCDW (g/L) CKCS Control dogs 

Mean  41 54 

Range  27.4-68.8 35.2-75.7 

95% CI of the mean 39-43 50-57 

 

Table 4.29: Platelet component distribution width results of the 

CKCS (n=89) and control dogs (n=39). 

 

 

Figure 4.22: Platelet component distribution width of each CKCS 

(n=89) and control dog (n=39). 

The dotted lines represent a reference interval of 45.8-70.5 g/L (Moritz 

et al. 2004).  

 

4.4.9 Haematocrit  

 

The HCT data for the CKCS and control dogs are summarised in Table 4.30 

and Figure 4.23. The HCT values were significantly lower in the CKCS 

compared to control dogs (CKCS: mean 0.41 L/L, 95% CI of the mean 0.4-

0.42 L/L; control dogs: mean 0.5 L/L, 95% CI of the mean 0.48-0.52 L/L; P < 



93 
 

0.001; Student t test). The HCT reference interval is 0.42-0.62 L/L (Moritz et 

al., 2004). 

 

Haematocrit (L/L) CKCS Control dogs 

Mean  0.41 0.5 

Range  0.34-0.47 0.37-0.6 

95% CI of the mean  0.40-0.42 0.48-0.52 

 

Table 4.30: Haematocrit results of the CKCS (n=89) and control 

dogs (n=39). 

 

 

 

 

Figure 4.23: Haematocrit of each CKCS (n=89) and control dog 

(n=39). 

The dotted lines represent a reference interval of 0.42-0.62 L/L 

(Moritz et al. 2004). The majority of the CKCS and control dogs 

had HCT within reference intervals.  
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4.4.10 Mean platelet mass  

 

The MPM data for the CKCS and control dogs are summarised in Table 4.31 

and Figure 4.24. The MPM was significantly higher in the CKCS compared to 

control dogs (CKCS: median 2.10 pg, IQR 1.66-2.62 pg; control dogs: 

median 1.59 pg, IQR 1.51-1.67 pg; P < 0.001; Mann Whitney), with a large 

amount of overlap between groups. The reported MPM reference interval is 

1.32-1.92 pg (Moritz et al. 2004).  

 

Mean platelet mass (pg) CKCS Control dogs 

Median  2.10 1.59 

Range  1.36-3.59 1.32-2.23 

IQR  1.66-2.62 1.51-1.67 

 

Table 4.31: Mean platelet mass results of the CKCS (n=89) and 

control dogs (n=39). 

 

 

Figure 4.24: Mean platelet mass of each CKCS (n=89) and 

control dog (n=39). 

The dotted lines represent a reference interval of 1.32-1.92 pg (Moritz 

et al. 2004).  
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4.4.11 Platelet mass distribution width  

 

The PMDW data for the CKCS and control dogs are summarised in Table 

4.32 and Figure 4.25. The PMDW was significantly higher in the CKCS 

compared to control dogs (CKCS: median 0.87 pg, IQR 0.67-1.0 pg; control 

dogs: median 0.61 pg, IQR 0.56-0.65 pg; P < 0.001; Mann Whitney), with a 

large amount of overlap between groups. The reported PMDW reference 

interval is 0.51-0.84 pg (Moritz et al. 2004). 

 

Platelet mass distribution width (pg) CKCS Control dogs 

Median  0.87 0.61 

Range  0.49-1.31 0.46-0.86 

IQR  0.67-1.00 0.56-0.65 

 

Table 4.32: Platelet mass distribution width results of the CKCS 

(n=89) and control dogs (n=39). 
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Figure 4.25: Platelet mass distribution width of each CKCS (n=89) 

and control dog (n=39). 

The dotted lines represent a reference interval of 0.51-0.84 pg (Moritz 

et al. 2004).  

 

4.5 Association analysis 

 

Platelet activation and function has the potential to be affected by turbulent 

high-velocity blood flow and fluid shear stress associated with valvular heart 

disease. Association analysis was performed to investigate platelet activation 

and function in dogs with varying severity of subclinical mitral regurgitation. 

 

4.5.1 The association of closure time with heart disease and 

selected haematological indices 

 

The association of closure time with measures of CVHD severity, platelet 

count (Advia 120), HCT, age, sex and bodyweight was explored using 

multiple regression analysis. 
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Complete data were available for 76 CKCS (Table 4.33). A model with 5 

variables best explained the variation in closure time, with regurgitant jet size 

exerting the largest effect. The LA:Ao, age, sex, body weight, and HCT had 

no significant effect on closure time in the multiple linear regression 

analyses. Closure times differed significantly (P < 0.001; ANOVA) among 

regurgitant jet sizes; CKCS with a jet size greater than 50% had a 

significantly (P < 0.001; least squares mean) longer closure time than did 

CKCS with a jet size less than 15% or CKCS with a jet size of 15% to 50% 

(Table 4.34; Figure 4.26). 

 

 

Table 4.33: Results of multiple regression analyses of data for 

CKCS (n=76). 

 

 

 

 

 

 

 

 

Variable Explanatory variable Partial R
2
 Model R

2
 Cp 

statistic 

P value 

Closure 

time  

(n=76) 

                    

Regurgitant jet size 0.61 0.61 35.2 < 0.001 

LVDDN 0.06 0.67 23.2 0.001 

Murmur grade 0.03 0.70 16.7 0.009 

Platelet count 0.02 0.72 13.0 0.026 

LVDSN 0.02 0.74 8.6 0.015 

Model                      n/a 0.74 8.6 0.015 

MPC 

concentration 

(n=89)               

Platelet count 0.24 0.24 -1.8 < 0.001 

Model    n/a 0.24 -1.8 < 0.001 

PCDW  

(n=89) 

                          

Platelet count 0.21 0.21 1.25 < 0.001 

Sex 0.04 0.25 4.86 0.030 

Model n/a 0.25 4.86 0.030 
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Severity group Regurgitant jet size (%)* n Closure time (s) 

Absent-minimal < 15 43 67 (64-70) 

Mild 15 to 50 12 78 (65-92) 

Moderate-severe > 50 21 138 (122-155)† 

 

Table 4.34: Regurgitant jet size and corresponding closure time 

values (mean [95% CI]) for 76 CKCS. 

*Regurgitant jet size was < 15%, 15% to 50% and > 50% for 52, 

14, and 23 CKCS respectively; in the 89 CKCS, however, CT was 

not determined in 13 dogs, hence the results for 76 CKCS in this 

table. † Value differs significantly (P < 0.001) from the value for 

the other regurgitant jet sizes. 
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Figure 4.26: Graph displaying closure time for 76 CKCS that had 

regurgitant jet size < 15% (n = 43), 15% to 50% (n = 12), and > 

50% (n = 21). 

The closure time was significantly (P < 0.001; least squares mean) 

longer for CKCS with regurgitant jet size > 50%, compared with 

closure time for dogs with regurgitant jet size < 15% or 15% to 

50%. 

  

4.5.2 The association of mean platelet component concentration 

and platelet component distribution width with heart 

disease and selected haematological indices 

 

The association of MPC concentration and PCDW with measures of CVHD 

severity, platelet count (Advia 120), HCT, age, sex and bodyweight was 

explored using multiple regression analysis. 
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Complete data were available for 89 CKCS. The model that best explained 

the variation in MPC concentration included only platelet count (Table 4.33). 

The model that best explained the variation in PCDW included platelet count 

and sex. The relationship between MPC concentration and platelet count 

(Figure 4.27) and between PCDW and platelet count (Figure 4.28) are 

graphed. 

 

Five of the 7 data points with the highest platelet counts and lowest MPC 

concentrations represented samples without platelet clumping (Figure 4.27). 

 

There was a significant negative association of MPC concentration with 

platelet count (R2 = 0.24, P <0.001) (Table 4.33).  

 

There was a significant positive association of PCDW with the platelet count 

(R2 = 0.21, P < 0.001). In addition, sex was found to be a weak component of 

the model (R2 = 0.04, P = 0.030) (Table 4.33).  
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Figure 4.27: Graph displaying the relationship between MPC 

concentration and platelet count for 89 CKCS. 

The red data points represent dogs with a MPV of > 20 fL i.e. the 

dogs with larger platelets. Multiple regression analysis revealed 

that a model containing only 1 variable (platelet count) best 

explained the variation in MPC concentration (model R2, 0.24; P < 

0.001). 
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Figure 4.28: Graph displaying the relationship between PCDW 

and platelet count for 89 CKCS (42 males [white squares] and 47 

females [black circles]). 

The PCDW increases with increasing platelet count (consistent 

with increased variation in platelet density with increasing platelet 

count). The red data points represent dogs with a MPV of > 20 fL 

i.e. the dogs with larger platelets. Multiple regression analysis 

revealed that a model containing 2 variables (platelet count and 

sex) best explained the variation in PCDW (platelet count partial 

R2, 0.21; model R2, 0.25 [P = 0.03]). 

 

4.5.3 The association of mean platelet volume with heart disease 

and selected haematological indices 

 

The association of MPV with measures of CVHD severity, platelet count 

(Advia 120), HCT, age, sex and bodyweight was explored using multiple 

regression analysis. 
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There was a significant negative association of MPV with the platelet count 

(R2 = 0.61, P < 0.001) (Figure 4.17 and Table 4.35). 

 

Age, sex, body weight, HCT and heart disease indices had no significant 

influence on MPV in the multiple linear regression analyses. 

 

 

 

         Table 4.35: Results of MPV multiple regression analysis. 

 

4.5.4 The association of platelet volume distribution width with 

heart disease and selected haematological indices 

 

The association of PDW with measures of CVHD severity, platelet count 

(Advia 120), HCT, age, sex and bodyweight was explored using multiple 

regression analysis. 

 

There was a significant, complex association of PDW with the platelet count 

(R2 = 0.05, P = 0.044) (Table 4.36). Figure 4.29 displays the PDW of each 

dog against platelet count. 

 

Age, sex, body weight, HCT and heart disease indices had no significant 

influence on PDW in the multiple linear regression analyses. 

 

 

 

Table 4.36: Results of PDW multiple regression analysis. 

 

 

 Partial R-square Model R-square P value 

Platelet count 0.61 0.61 < 0.001 

 Partial R-square Model R-square P value 

Platelet count 0.05 0.05 0.044 



104 
 

 

Figure 4.29: Graph displaying the relationship between PDW and 

platelet count for 89 CKCS.  

The red data points represent dogs with a MPV of > 20 fL i.e. the 

dogs with larger platelets. 

 

4.5.5 The association of mean platelet mass with heart disease 

and selected haematological indices 

 

The association of MPM with measures of CVHD severity, platelet count 

(Advia 120), HCT, age, sex and bodyweight was explored using multiple 

regression analysis. 

 

There was a negative association of MPM with the platelet count (R2 = 0.80, 

P < 0.001). In addition jet size was found to be a weak component of the 

model (R2 =0.01, P = 0.02) (Table 4.37). Figure 4.30 displays the MPM of 

each dog against platelet count. 

Age, sex, body weight, HCT and heart disease indices (excluding jet size) 

had no significant influence on MPM in the multiple linear regression 

analyses. 
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Table 4.37: Results of MPM multiple regression analysis. 

 

 

Figure 4.30: Graph displaying the relationship between MPM and 

platelet count for 89 CKCS. 

MPM is higher at lower platelet counts, and that MPM decreases 

as platelet count increases. The red data points represent dogs 

with a MPV of > 20 fL i.e. the dogs with larger platelets. 

 

To test the hypothesis that larger platelets have more granules than 

smaller platelets (since lower platelet counts are associated with larger 

platelet size), MPM was subsequently plotted against MPV (Figure 4.31).  

 

 Partial R-square Model R-square P value 

Platelet count 0.80 0.80 < 0.001 

Jet size 0.01 0.81 0.022 
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Figure 4.31: Graph displaying the relationship between MPM and 

MPV for 89 CKCS. 

Visual inspection of the graph revealed a positive relationship 

between MPM and MPV.  

 

4.5.6 The association of platelet mass distribution width with 

heart disease and selected haematological indices 

 

The association of PMDW with measures of CVHD severity, platelet count 

(Advia 120), HCT, age, sex and bodyweight was explored using multiple 

regression analysis. 

 

There was a significant complex association of PMDW with the platelet count 

(R2 = 0.53, P < 0.001). In addition murmur grade was found to be a weak 

component of the model (R2 = 0.03, P = 0.013) (Table 4.38). Figure 4.32 

displays the PMDW of each dog against platelet count. 

Age, sex, body weight, HCT and heart disease indices (excluding murmur 

grade) had no significant influence on PMDW in the multiple linear 

regression analyses. 
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Table 4.38: Results of PMDW multiple regression analysis. 

 

 

 

Figure 4.32: Graph displaying the relationship between PMDW 

and platelet count for 89 CKCS. 

The red data points represent dogs with a MPV of > 20 fL i.e. the 

dogs with larger platelets. 

  

 Partial R-square Model R-square P value 

Platelet count 0.53 0.53 < 0.001 

Murmur grade 0.03 0.57 0.013 
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5 Discussion 

 

The primary objective of this present study was to investigate associations 

between markers of heart disease severity and platelet function or activation. 

Although 5 variables significantly affected closure time, the regurgitant jet 

size exerted by far the largest effect, as previously described (Tarnow et al. 

2003). This may have reflected quantitative and qualitative changes in VWF 

rather than an alteration of intrinsic platelet function (Tarnow et al. 2004). 

 

Comparison across jet size categories showed that the closure time of CKCS 

with jet size greater than 50% was significantly higher than that of CKCS with 

jet size less than 15% and 15-50% (P < 0.0001). These results are similar to 

a previous study (Tarnow et al. 2003), however in the latter study the closure 

time of CKCS with jet size greater than 50% was significantly higher than 

that of CKCS with jet size less than 15% but not dogs with jet size 15-50%. 

In addition, in the aforementioned study the closure time of CKCS with jet 

size 15-50% was different to CKCS with closure time less than 15%. 

 

There was no association between closure time and age, sex, body weight, 

LA:Ao and HCT. The lack of an association between closure time and age, 

sex, body weight and LA:Ao is in line with the results of a previous study 

(Tarnow et al. 2003). The lack of an association between closure time and 

HCT, however, contradicts the results of Tarnow et al. (2003) and is difficult 

to explain. This result is not likely due to exclusion of dogs with HCT less 

than 0.35L/L in this present study because only one dog was excluded for 

this reason. 

 

By contrast, none of the indicators of heart disease severity significantly 

affected MPC concentration or PCDW. This suggested that platelet activation 

was not a feature of valvular heart disease in CKCS, which supports results 

of thromboelastography and evaluation of P-selectin expression and 

thromboxane concentrations (Tarnow et al. 2005). In humans with cardiac 

disease, valvular changes or associated alterations in blood flow are 
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believed to initiate platelet adherence and aggregation, which potentially 

leads to thromboembolic complications (Barnett et al. 1976, Kostuk et al. 

1977). Significantly increased platelet aggregation responses and plasma 

concentrations of PF4 and BTG have been described for humans with 

combined MVP and MVR, compared with results for healthy control subjects 

(Walsh et al. 1981, Tse et al. 1997). Similarly, an increase in MPV, which is 

suggestive of platelet activation, has been observed in a variety of human 

cardiac diseases, including MVP (Varol et al. 2009, Icli et al. 2013). Reasons 

for the apparent differences in platelet activation between heart disease in 

dogs and humans remain unclear. Presumably, platelet reactivities or 

pathogenic mechanisms that incite activation differ between the species. 

Mean platelet component concentration was the platelet activation marker of 

choice in the present study because it was theorised that decreased platelet 

density (i.e decreased MPC concentration) may be detectable after the loss 

of cell-surface P-selectin (Macey et al. 1999) and the results of a previous 

study (Moritz et al. 2005) suggested that MPC concentration may be a more 

sensitive indicator of platelet activation than P-selectin. Furthermore it was 

expected that MPC concentration, being a measure of platelet density would 

be less affected by the CKCS inherent variation in platelet size, unlike other 

proposed platelet activation markers, MPV, PDW, MPM and PMDW that 

increase with platelet size. 

 

Despite the limitations of MPV, PDW, MPM and PMDW as platelet activation 

markers in the CKCS, the association of these indices with CVHD variables 

were similarly explored using multiple regression analyses (see Sections 

4.5.3 through to 4.5.6).  Heart disease indices did not have a significant 

influence on MPV or PDW in the multiple regression analyses. There was 

however a weak negative influence of jet size in the MPM multiple regression 

analysis (possibly consistent with increased platelet degranulation with 

advancing CVHD); and a weak positive influence of murmur grade in the 

PMDW multiple regression analysis (possibly consistent with increased 

variation in platelet granular mass/increased platelet activation with 

advancing heart disease). Since jet size and murmur grade were only weak 

components of their respective models however it is important not to over–
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emphasis the role played by each. As described above, a limitation in the 

present study is that the presence of inherently large platelets in the CKCS 

may reduce the sensitivity of MPV, PDW, MPM and PMDW for the detection 

of platelet activation in the CKCS. 

 

The results of the present study support that of previous studies which 

reported that CVHD is common in the CKCS. There was at least minimal 

MVR (on colour-flow Doppler echocardiography) in the vast majority (86 of 

89 i.e. 97%) of CKCS, and a left apical systolic murmur in 47% of CKCS 

aged 6 years or less. These results are similar to previous studies which 

report ultrasonographic evidence of MVP in 97% of CKCS greater than three 

years of age (Pedersen et al. 1999a) and a murmur in half of all CKCS by 

age 6 - 7 years (Pedersen et al. 1999a, Chetboul et al. 2004). 

 

Because of the high proportion of dogs with MVR, lack of a significant 

association between indicators of heart disease severity and indices of 

platelet activation could also have been explained by the activation of 

platelets in almost all dogs. This was considered unlikely because the MPC 

concentration was higher in CKCS, compared with concentrations in healthy 

control dogs, which suggested a lack of platelet activation. It was also 

possible that activated platelets were removed from circulation, leaving a 

residual population of platelets with a relatively higher MPC concentration. 

However, platelet activation in humans is proportional to the severity of MVR 

(Tse et al. 1997, Icli et al. 2013), and in the present study, a relationship 

between indicators of heart disease severity and MPC concentration would 

have been expected, regardless of the direction of change. 

 

The anticoagulant EDTA was chosen for analysis with the Advia 120, 

because it is the preferred anticoagulant for determining differential blood 

counts with haematology analyses, principally for its cell preservation 

properties (Macey et al. 2002). In people however, the latter study concluded 

that an anticoagulant consisting of a combination of citrate, theophylline, 

adenosine and dipyridamole (CTAD) and EDTA was best for platelet 

activation assessment. More specifically they concluded that blood collected 
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into combined CTAD and EDTA, stored at 4 degrees Celcius, and analysed 

between 60 and 180 minutes later, facilitated maximum platelet sphering 

without concurrent artefactual platelet activation (Macey et al. 2002). In dogs 

the use of combined CTAD and EDTA has not been assessed and the 

optimal anticoagulant for assessment of MPC concentration has not been 

determined. 

 

The prevalence of thrombocytopenia, in the present study (i.e. 21%, as 

assessed by blood smear estimate or Advia 120), was similar to that 

reported in previous studies (i.e. 22-56%, as assessed by manual and blood 

smear estimate platelet counts) (Eksell et al., 1994, Olsen et al., 2001, 

Pedersen et al., 2002, Cowan et al., 2004, Olsen et al., 2004, Singh and 

Lamb, 2005). 

 

The lower prevalence of macrothrombocytosis in CKCS in the present study 

(7%, as assessed by blood smear) compared to that previously reported (30 

and 33%, as assessed by blood smear and electron microscopy 

respectively) (Cowan et al., 2004, Singh and Lamb, 2005), may reflect a true 

lower prevalence of macrothrombocytosis in the cohort of CKCS assessed, 

or subjectivity of the blood smear classification criterion. On the other hand, 

the higher prevalence of macrothrombocytosis as assessed by the Advia 120 

in the present study (22%), is likely due to the Advia 120’s less stringent 

method of macrothrombocyte assessment.  

 

The most stringent method of macrothrombocyte assessment involves only 

counting platelets as large as or larger than an erythrocyte on a blood smear. 

Since canine erythrocyte diameter is approximately 7µm (Rizzi et al. 2010), 

only platelets approximately 7µm or greater in diameter are counted as 

macrothrombocytes. In contrast, the previous definition of a 

macrothrombocyte using electron microscopy was less strict, with any 

platelets with a diameter of 3µm or greater counted as macrothrombocytes 

(Cowan et al. 2004).  The Advia 120 is also less strict than blood smear 

estimation in classifying macrothrombocytes, counting all platelets with a 

volume 21 to 60 fL as large platelets (macrothrombocytes); noting that the 
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lower limits of the Advia 120 reference interval for large platelet volume (21 

fL) is approximately one third the lower reference interval for erythrocyte 

volume (62.7fL) (Moritz et al. 2004). The true prevalence of 

macrothrombocytopenia could have been achieved by assessment of the 

mutation (homozygous, heterozygous or clear) in the present population of 

CKCS. 

 

Two of 39 control dogs had a platelet count of less than 200 x 109/L. Both 

dogs were Greyhounds, a breed known to have a lower reference interval for 

platelets, similar to other sight hounds. In both dogs, as expected, the MPV 

was within reference intervals.  

 

Platelet aggregates were visually identified in 44 of 89 (49%) CKCS. In 1 

previous study (Koplitz et al. 2001), 26 blood samples were collected by 

experienced phlebotomists from a jugular vein of cooperative dogs and 

expediently transferred to anticoagulant. Despite use of this technique, at 

least mild platelet aggregation was observed in 14 (54%) samples. In theory, 

platelet aggregation during or after blood collection has the potential to 

activate platelets and alter MPC concentration. A resultant lower MPC 

concentration would be expected with a decreasing platelet count, rather 

than the inverse relationship that was observed in the present study. 

Alternatively, a lower platelet count and higher MPC concentration could be 

expected if activated platelets preferentially clumped, which would result in a 

residual platelet population with a higher MPC concentration. However, MPC 

concentrations were not significantly different between dogs with and without 

platelet aggregation (see Section 4.4.5). 

 

This present study showed a poor strength of agreement between the visual 

detection of platelet clumping and automated platelet clump flag. The APCC 

flagged platelet clumps in 26/45 samples without visually detected clumps 

and failed to flag platelet clumps in 18/44 samples with visually detected 

clumps in smears. An increased clump size did not result in an improved 

ability of the APCC to detect clumps. Overall, the present study results 

suggested that the APCC is a poor indicator of clumping in dogs and a blood 
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smear assessment should be performed to verify the presence or absence of 

platelet clumping. Only one other canine study (Stokol and Erb 2007) has 

assessed the validity of APCC for the detection of platelet clumps (using a 

population of dogs with neoplasia), and reported a poorer sensitivity, but 

better specificity than that obtained in the present study (see Section 4.4.5). 

The sensitivity and specificity of the two studies cannot be directly compared 

because the platelet clumping categories were not standardised. 

 

Several differences were identified between platelet indices in the CKCS and 

control groups. Unsurprisingly, platelet count was significantly lower, and 

MPV significantly higher in the CKCS group, which reflects the presence of 

macrothrombocytopenia in several CKCS. This was supported by higher 

MPV values in CKCS with lower platelet counts (Figure 4.17). 

 

Macrothrombocytopenia in CKCS is associated with a nonsynonymous 

single nucleotide polymorphism in the gene encoding β1-tubulin, which is 

believed to lead to altered proplatelet production by megakaryocytes (Davis 

et al. 2008). Although the β-1 isolate of β-tubulin is considered to be 

megakaryocyte specific, it may be upregulated in other tissues under 

pathological conditions. Although densification of microtubular networks 

within cardiomyocytes contributes to contractile dysfunction in subjects with 

experimentally induced heart disease, it is unclear whether this altered β-

tubulin structure plays a role in the pathogenesis of naturally occurring CVHD 

in CKCS (Tsutsui et al. 1993, Koide et al. 2000). 

 

The PCT was significantly lower for the CKCS group. However, the PCT for 

the optical-based haematology analyser was determined indirectly by use of 

the equation PCT = platelet count X MPV/10,000. The optical-based 

haematology analyser used light-scatter signals acquired at 2 angles that 

were converted into volume and refractive indices via calculation with the Mie 

light-scatter theory (Briggs et al. 2007). A graphic representation of the 2 

light-scatter measurements was created, and platelets were identified in the 

region corresponding to a volume of 1 to 60 fL and refractive index of 1.35 to 

1.40. The platelet-scatter cytogram displayed cells with volumes of 0 to 30 fL. 
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The large platelet area of the red blood cell-scatter cytogram displayed large 

platelets with volumes between 31 and 60 fL. The reported platelet count 

was the sum of platelets and large platelets identified in the platelet- and red 

blood cell-scatter cytograms, respectively. It has been suggested that the 

platelet algorithm for the optical-based haematology analyser may deliber-

ately exclude large platelets from analysis if the hypochromic-macrocytic flag 

results in misclassification of large platelets as small red blood cells, with a 

resultant lower platelet count and derived PCT (Tvedten et al. 2012). Such 

misclassification of platelets as a result of macrothrombocytopenia could 

explain the lower PCT derived for the CKCS. Despite a large number of 

CKCS with thrombocytopenia, the majority of CKCS had PCT within 

reference interval, consistent with adequate platelet volume/mass (due to 

larger platelet size/higher MPV) despite the lower platelet counts. This 

finding suggests that PCT may aid in the differentiation between inherited 

macrothrombocytopenia and significant disease-related thrombocytopenia in 

the CKCS breed. 

 

A greater MPC concentration within CKCS was consistent with interbreed 

variation. To the author’s knowledge, this has not been previously described 

in dogs. However, lower platelet aggregation responses have been reported 

in CKCS relative to healthy Beagles, and higher responses have been 

reported relative to a group of Cairn Terriers, Labrador Retrievers, and 

Boxers, which suggests that breed factors should be considered when 

interpreting results of platelet function tests (Cowan et al. 2004, Nielsen et al. 

2007). In contrast to the human literature (Giacomini et al., 2001), the 

present study did not find a decrease in MPC concentration with age. 

 

The MPV of the CKCS in the present study was higher than that of the 

control dogs, as expected, due to the inherited large platelet size in this 

breed. The higher PDW in the CKCS compared to the control dogs was 

consistent with increased variation in platelet size in the CKCS. The higher 

MPM in the CKCS, compared with the control dogs is likely due to higher 

granule content per CKCS platelet. The latter result suggests that larger 

platelets contain more granules than smaller platelets. The PMDW of the 
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CKCS was significantly higher than that of the control population, consistent 

with increased variation in granule content in the CKCS population, likely 

reflecting the presence of both small and large circulating platelets in the 

CKCS breed. The majority of CKCS and control dogs had HCT values within 

reference intervals. Interestingly, the CKCS HCT values were tightly 

clustered around the low to mid limits of the reference interval, whereas the 

HCT of the control dogs were more evenly distributed across the reference 

interval. This result most likely represents (low intra-breed) variance in the 

CKCS group.  

 

Interestingly, platelet count had a small but significant effect on MPC 

concentration and PCDW in the multiple regression models. The MPC 

concentration was lower and PCDW higher with increasing platelet counts. 

Both of these findings suggest greater platelet activation at higher counts. 

Investigators of a previous study (Olsen et al. 2001), found higher maximal 

platelet aggregation responses for CKCS with platelet counts greater than 

100 x 109/L, compared with responses for healthy control dogs and CKCS 

with less than 100 x 109/L. The reasons for these associations are not 

known. One possible theory is that in the present study, there was a 

subclinical stimulus, unassociated with heart disease, for concurrent platelet 

activation and platelet formation in the population of CKCS assessed. It was 

not due to the fact that there was more clumping at higher platelet counts 

because 5/7 data points with the highest counts and lowest MPC 

concentrations represented samples without platelet clumping (see Section 

4.5.2). Furthermore this association was not due to larger platelets being 

denser because there was no association between MPC concentration and 

MPV.  Additional studies are necessary to compare the effects of platelet 

count and macrothrombocytopenia on markers of platelet activation. 

 

In addition to MPC concentration and PCDW, platelet count had a small but 

significant influence on other dependent variables including closure time, 

MPV, PDW, MPM and PMDW in the multiple regression models. For some 

dependent variables such as PDW and PMDW, the relationship with platelet 

count was complex and could not be described as simply positive or 
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negative. The influence of platelet count in the closure time model was weak 

(partial R2 = 0.02, P = 0.026), consistent with adequate platelet function 

despite some very low platelet counts. Similarly in a previous study platelet 

count had no significant influence on closure time in CKCS (Tarnow et al. 

2003), consistent with the breed’s larger platelet size and enhanced function 

per platelet. The negative association of MPV with platelet count was 

physiologically expected. It reflects the fact that, assuming consistent 

receptor density, it is the number of TPO receptors, not platelet number that 

determines platelet production and permits maintenance of PCT within 

reference intervals (refer to Section 1.3.1.4). The relationship of PDW and 

platelet count was complex (Figure 4.29). There was least variation in 

platelet size in CKCS with platelet counts less than 100 x 109/L and greater 

than 250 x 109/L, and the most variation in platelet size in dogs with platelet 

counts 100 to 250 x 109/L. This result demonstrates that CKCS with the 

lowest platelet counts (i.e. less than 100 x 109/L) and highest counts (i.e. 

greater than 250 x 109/L) have little variation in platelet size (due to a high 

percentage of large platelets and normal platelets in circulation respectively). 

Conversely dogs with platelet counts 100 to 250 x 109/L are most likely to 

have a combination of large and normal sized platelets. MPM was higher at 

lower platelet counts, and MPM decreased as platelet count increased 

(Figure 4.30). This result was likely due to larger platelets having more 

granules than smaller platelets (since lower platelet counts are associated 

with larger platelet size). To test this hypothesis, MPM was subsequently 

plotted against MPV (Figure 4.31). A linear, positive relationship between 

MPM and MPV was obtained and confirmed increased granule mass with 

increased platelet size. A complex relationship between PMDW and platelet 

count (Figure 4.32) was established. There was lowest PMDW (least 

variation in mass of platelet component) in CKCS with platelet counts greater 

than 250 x 109/L and platelet size less than 100 x 109/L, likely due to the fact 

that these two groups of CKCS have the least variation in platelet size i.e. 

either majority small or large platelets respectively. The most variation in 

mass of platelet component was found in CKCS with platelet counts 100 to 

250 x 109/L, the population of CKCS most likely to have a combination of 

large and normal sized platelets.  
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Dogs in the present study were apparently healthy; however, subclinical 

diseases could not be excluded and may have affected platelet activation in-

dices in some cases. For example, increased platelet activation has been 

described in dogs with malignant neoplasia (McNiel et al. 1997), and internal 

neoplasia could not be excluded in the dogs of the present study without ad-

ditional diagnostic imaging. Although such unrecognised diseases could 

have affected platelet activation indices in some dogs, it was thought unlikely 

to affect results of the present study because of the expected low prevalence 

of such diseases in dogs with no clinical signs of illness. 

 

Limitations of the present study included inclusion of a small number of 

CKCS without MVR and the fact there were no dogs with congestive heart 

failure. Unaffected healthy CKCS would have been the ideal control group for 

assessment of the effects of MVR on markers of platelet activation. However, 

given the high prevalence of MVR in this breed, obtaining a large number of 

unaffected CKCS would have been difficult. The inclusion of dogs with 

congestive heart failure might have confounded the interpretation of results 

because several commonly used drugs, including diuretics and angiotensin-

converting enzyme inhibitors, can reportedly affect platelet function in 

humans, (Kribben et al. 1988, Schäfer et al. 2003) and the same may be true 

in dogs. 

 

In the present study, platelet activation, as assessed on the basis of MPC 

concentration and PCDW, was not a feature of subclinical CVHD in CKCS. 

Increased closure times in CKCS with a regurgitant jet size greater than 50% 

likely reflects quantitative and qualitative changes in VWF, as previously 

described (Tarnow et al. 2004). Significant differences in several platelet 

variables, including platelet count, MPV, analyser-derived PCT, MPC 

concentration, and PCDW, were detected between CKCS and dogs of other 

breeds. Such interbreed variation must be considered when interpreting 

results.  

 

Further studies are required to investigate potential platelet activation in 

other breeds with CVHD as well as in other types of heart disease. It would 
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also be interesting to evaluate platelet activation in dogs with congestive 

heart failure (i.e. those most severely affected with turbulent high-velocity 

blood flow and fluid shear stress). Additional studies are indicated to identify 

the anticoagulant of choice for assessment of platelet indices such as MPC 

concentration, with the end goal to facilitate optimal clinical application. The 

identified interbreed variability in MPC concentration suggests that the 

requirement for breed-specific reference intervals should be investigated. 

Finally, the identified associations between markers of platelet activation 

(MPC concentration and PCDW) and platelet count warrant further research, 

particularly in animals with breed-associated thrombocytopenia.  
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7 Appendices 

7.1 Appendix 1: CKCS Signalment and auscultation findings 
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7.2 Appendix 2: CKCS Platelet count and large platelets 
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7.3 Appendix 3: CKCS Additional platelet indices and haematocrit 

 



132 
 

7.4 Appendix 4: CKCS Echocardiographic indices 
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7.5 Appendix 5: Control dog Signalment, platelet indices and haematocrit 

 


