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Abstract— In this paper, differential calculus was used to 

obtain the ordinary differential equations (ODE) of the 

probability density function (PDF), Quantile function (QF), 

survival function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of 

Kumaraswamy inverse Rayleigh distribution. The parameters 

and support that define the distribution inevitably determine 

the nature, existence, uniqueness and solution of the ODEs. 

The method can be extended to other probability distributions, 

functions and can serve an alternative to estimation and 

approximation. Computer codes and programs can be used for 

the implementation.      

      

 

Index Terms— Differentiation, quantile function, survival 

function, approximation, hazard function, Rayleigh. 

 

I. INTRODUCTION 

ALCULUS is a very key tool in the determination of 

mode of a given probability distribution and in 

estimation of parameters of probability distributions, 

amongst other uses. The method of maximum likelihood is 

an example.                                                     

Differential equations often arise from the understanding 

and modeling of real life problems or some observed 

physical phenomena. Approximations of probability 

functions are one of the major areas of application of 

calculus and ordinary differential equations in mathematical 

statistics. The approximations are helpful in the recovery of 

the probability functions of complex distributions [1-6]. 

Apart from mode estimation, parameter estimation and 

approximation, probability density function (PDF) of 

probability distributions can be expressed as ODE whose 

solution is the PDF. Some of which are available. They 

include: beta distribution [7], Lomax distribution [8], beta 

prime distribution [9], Laplace distribution [10] and raised 

cosine distribution [11]. 

The aim of this research is to develop homogenous 

ordinary differential equations for the probability density 

function (PDF), Quantile function (QF), survival function 
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(SF), inverse survival function (ISF), hazard function (HF) 

and reversed hazard function (RHF) of Kumaraswamy 

inverse Rayleigh distribution. This will also help to provide 

the answers as to whether there are discrepancies between 

the support of the distribution and the necessary conditions 

for the existence of the ODEs. Similar results for other 

distributions have been proposed, see [12-24] for details.                                                                                                                                  

Kumaraswamy inverse Rayleigh distribution is a 

submodel of the Kumaraswamy-inverse Weibull distribution 

proposed by [25]. The distribution was later proposed 

explicitly by Roges [26]. The Estimation of the parameters 

of the distribution under certain conditions was done by [27] 

and [28]. The boundary conditions of the supports of the 

distribution are similar to the Kumaraswamy distribution 

[29]. The distribution has been extended to Kumaraswamy 

exponentiated inverse Rayleigh distribution by [30].                                                                             

The ordinary differential calculus was used to obtain the 

results.     

II. PROBABILITY DENSITY FUNCTION 

   The probability density function (PDF) of the 

Kumaraswamy inverse Rayleigh distribution is given by;  
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When b =1, the PDF reduces to the PDF of the inverse 

Rayleigh distribution.                                                                 

Differentiate equation (2), to obtain;        
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The condition necessary for the existence of the equation is 

, , 0.x b c                                                              
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The second derivative is obtained            
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                                                                                         (4)            

The condition necessary for the existence of the equation is 

, , 0.x b c                                                                         

The following equations obtained from equation (3) are 

required to simplify equation (4);  
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Substitute equations (5), (6), (7) and (11) into equation (4);  
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The required differential equations are computed based on 

the given parameters.                            

III. QUANTILE FUNCTION 

    The Quantile function (QF) of the Kumaraswamy inverse 

Rayleigh distribution is given by;        
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Differentiate equation (13), to obtain;        
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The condition necessary for the existence of the equation is 

, 0,0 1.b c p                                                                

 

Equation (14) is simplified as follows;         
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Substitute equation (16) into equation (14) to obtain;   
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The ordinary differential equations can only be obtained for 

the particular values of the parameters. Some cases 

considered are shown in Table 1.     

 

Table 1: Classes of differential equations obtained for the 

quantile function of Kumaraswamy inverse Rayleigh 

distribution for different parameters      

b c ordinary differential equation 

1 1 32 ( ) ( ) 0pQ p Q p    

1 2 38 ( ) ( ) 0pQ p Q p    

1 3 318 ( ) ( ) 0pQ p Q p    

2 1 34( 1 )(1 1 ) ( ) ( ) 0p p Q p Q p      

2 2 316( 1 )(1 1 ) ( ) ( ) 0p p Q p Q p      

2 3 336( 1 )(1 1 ) ( ) ( ) 0p p Q p Q p      

 

IV. SURVIVAL FUNCTION 

The survival function (SF) of the Kumaraswamy inverse 

Rayleigh distribution is given by;        
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Differentiate equation (19), to obtain;        
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The condition necessary for the existence of the equation is 
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Substitute equation (19) into equation (20);           
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Equation (19) is simplified as follows;         
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The first order ordinary differential equation of the survival 

function of the Kumaraswamy inverse Rayleigh distribution 

is given can be obtained for the particular values of the 

parameters b and c.    

 

V. INVERSE SURVIVAL FUNCTION 

 The inverse survival function (ISF) of the Kumaraswamy 

inverse Rayleigh distribution is given by;        
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Differentiate equation (28), to obtain;        
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The condition necessary for the existence of the equation is 

, 0,0 1.b c p                                                    

Equation (28) is simplified as follows;         
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Substitute equation (31) into equation (29) to obtain;   
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The ordinary differential equations can only be obtained for 

the particular values of the parameters. Some cases 

considered are shown in Table 2.           
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Table 2: Classes of differential equations obtained for the 

inverse survival function of Kumaraswamy inverse 

Rayleigh distribution for different parameters     

b c ordinary differential equation 

1 1 32(1 ) ( ) ( ) 0p Q p Q p    

1 2 38(1 ) ( ) ( ) 0p Q p Q p    

2 1 34( ) ( ) ( ) 0p p Q p Q p    

2 2 316( ) ( ) ( ) 0p p Q p Q p    

 

VI. HAZARD FUNCTION 

The hazard function (HF) of the Kumaraswamy inverse 

Rayleigh distribution is given by;          

 

2

2

2

3

2 e
( )

(1 e )

c

t

c

t

bc
h t

t

 
 
 

 
 
 





                                         (34)         

Differentiate equation (34), to obtain;        
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The condition necessary for the existence of the equation is 
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The first order ordinary differential equation of the hazard 

function of the Kumaraswamy inverse Rayleigh distribution 

is given as;         
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VII. REVERSED HAZARD FUNCTION 

The reversed hazard function (RHF) of the 

Kumaraswamy inverse Rayleigh distribution is given by; 
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(40) Differentiate equation (40), to obtain;       
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The condition necessary for the existence of the equation 

is , , 0.t b c                                                    
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The second derivative is obtained            
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The condition necessary for the existence of the equation 

is , , 0.t b c 
 
                                                                                    

The following equations obtained from equation (43) are 

required to simplify equation (44);  
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Substitute equations (45), (48), (49) and (51) into 

equation (44);   
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The condition necessary for the existence of the equation 

is , 0, 1.t c b                                                             

The required differential equations are computed based 

on the given parameters.                  

          

VIII. CONCLUDING REMARKS 

  Ordinary differential equations (ODEs) has been obtained 

for the probability density function (PDF), Quantile function 

(QF), survival function (SF), inverse survival function 

(ISF), hazard function (HF) and reversed hazard function 

(RHF) of Kumaraswamy inverse Rayleigh distribution. This 

differential calculus and efficient algebraic simplifications 

were used to derive the various classes of the ODEs. The 

parameter and the supports that characterize the 

Kumaraswamy inverse Rayleigh distribution determine the 

nature, existence, orientation and uniqueness of the ODEs. 

The results are in agreement with those available in 

scientific literature. Furthermore several methods can be 

used to obtain desirable solutions to the ODEs [31-41]. This 

method of characterizing distributions cannot be applied to 

distributions whose PDF or CDF are either not 

differentiable or the domain of the support of the 

distribution contains singular points.    
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