
 

Abstract— Quintuple pendulums are an extension of the 

chaotic double, triple and Quatertuple pendulums problems. In 

this paper, a planar compound quintuple pendulum was 

modelled with viscous damping forces. Using Lagrangian 

energy methods, we derive coupled ordinary differential 

equations of motion for the system and submit them to 

analytical manipulation to model the dynamics of the system. 

We obtain the simulated results.  The inclusion of damping in 

the system has significant effect on the dynamics, highlighting 

the system's chaotic nature. 

 
Index Terms— Dynamic Modelling, Quintuple Pendulum, 

Lagrangian. 

I. INTRODUCTION 

HE double pendulum is a classic system used in 

Dynamics courses everywhere. Through the span of 

the class, we have unravelled conditions of movement 

and recreated models of both straightforward (massless bars) 

and compound (bars with mass) planar twofold pendulums 

utilizing Newton's Second Law and Euler's Equations. In 

this venture, we would like to expand the twofold pendulum 

framework we have considered so well into a quintuple 

compound pendulum with damping at the joints. The trial 

framework we are attempting to demonstrate is appeared in 

figure1.[1] The bars of the pendulum have noteworthy mass, 

requiring the consideration of rotational flow in the 

framework. Besides, the framework has been seen to sodden 

fundamentally after some time. To understand these 

conditions of movement, we will investigate the utilization 

of Lagrangian Mechanics for non-traditionalist frameworks 

and will settle for conditions of movement. We will make a 

numerical reproduction for the framework so as to 

investigate our conditions of movement and will approve 

them by correlation with exploratory information from a 

genuine planar quintuple pendulum system.[1,2] 
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II.  THE MODEL 

 

The bars of the pendulum have significant mass so it is 

modelled as a compound pendulum with the presence of 

damping [3,4]. Each bar l1 is defined by a set of four pa-

rameters: Ii, the moment of inertia of the bar, mi, the mass 

of the bar, li, the length of the bar, and ki, the damping coef-

ficient of the bar rotating about its upper joint. The position 

and velocity of the bars are defined by the ten system state 

variables: 1 2 3 4 5 1 2 3 4 5, , , , , , , , ,         
 

An equation of motion of the frictionless ideal case was first 

derived. This allows for model validation by ensuring en-

ergy is conserved in the dynamics.  Frictional Damping is 

later added, to observe changes in the dynamics[5,6]. Taking 

down as +y and right as +x, the positions of the centres of 

mass of the bars was written as functions of i   and the 

geometric parameters of the system as follows: 
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These positions are then differentiated with respect to time 

to find the x and y components of the velocities as functions 

of angles and angular velocities[5,6,7]. They will not be 

shown here for brevity. 

 

The magnitude of the velocity of each bar is given as: 

 

2 2                                                              (11)i i iv x y 
 

The translational, rotational kinetic energy and the 

gravitational potential energy (TKE, RKE and GPE) of each 

bar, are given as: 
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The Lagrangian of the system can be written as: 
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taking i as the generalised coordinate iq
becomes 
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With the addition of damping to the system, modelled with a 

viscous drag, caused by the angular velocity of the joints 

changed the lagrangian equation in equation (17). This 

viscous form of drag can be modelled in Lagrangian 

mechanics with the Reyleigh Distribution Function: 
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The lagrangian equation becomes: 
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This modified form of Lagrange’s equation produces a 

system of five equations which contain the angular 

acceleration terms, just as in the un-damped case. This is 

omitted for brevity. The solution of this system of five 

equations and five unknowns yields the expression for the 

angular velocities. The angular velocities were then 

numerically integrated  to produce the path of the pendulum. 

Solving for the angular velocity terms produces the 

equations of motion   

 

III. ANALYSIS 

For a point mas, force is equal to mass times acceleration, 

according to Newton’s second law of motion, 
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Integrating both sides of equation (20) gives 
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But  

                    (22)
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Therefore equation (21) can be written as 

. .                                             (23)F dx mx dx   
Equation (23) represents work done. 

 

Now in the Lagrangian L = T – V, T does not depend on 

position and V does not depend on velocity, so 
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Inputting equation (15) into (19) gives 
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Substituting equation (29) into (28) gives 
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For the sake of brevity, only the analysis for i = 1 is 

Presented in this paper. 

 

Now for i=1, equation (30) becomes: 
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From equations (11) and (16)  
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At this stage, we carefully choose the values of t and p such 

that: 
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Substituting equation (41) into equation (40) gives 
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Equation (42) is Hermitite equation [7] 
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Differentiating term by term gives 
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Replacing n by m+2 in Equation (46), gives 
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Solving equation (48) analytically gives [7]: 
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IV.   NUMERICAL RESULTS AND DISCUSSION 
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Fig.1. Angular displacement of first segment at different 

masses (m1) 

 

 

 

 
 

Fig.2. Angular displacement of first segment at different 

lengths (l1) 

 

 

 

 
 

Fig.3. Angular displacement of first segment at different 

Inertia (I1) 

 
Fig.4. Angular displacement of first segment at different 

damping values (k1) 

 

 

Equation of motion and simulation of quintuple pendulum 

model was carried out analytically. The triple pendulum was 

extended to the quintuple pendulum. Damping was put into 

consideration. The bars length, masses and the moment of 

inertia have significant effect on the dynamics of the system. 

The damping effect can be seen in the figures 1,2,3 and 4. 

The damping effect reduced the effect of the other 

parameters on the displacement of the pendulum system. 

The mass, the length of the bars, the moment of inertia and 

damping all affect the dynamics of the quintuple pendulum 

system. 

IV. CONCLUSION 

Using Lagrangian – analytical methods, mathematical model 

featuring a set of coupled ordinary differential equations of 

motion for the dynamic compound quintuple pendulum 

system was created. These equations of motion were 

simulated analytically. The behaviour of the model shows 

that the inclusion of damping force significantly affects the 

dynamics of the system after the first few seconds. 
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