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ABSTRACT 
Preterm birth alters the conditions during an important period of growth and organ 
maturation. Extremely preterm infants have a high risk of developing morbidity. Retinopathy 
of prematurity (ROP) and bronchopulmonary dysplasia (BPD) originate in a disturbed retinal 
and pulmonary development. Associations between nutrition and risk of ROP and BPD have 
been demonstrated in some previous studies. Practical guidelines published 2005 included 
recommendations of higher early macronutrient intakes after preterm birth, compared to 
previous guidelines. One well known risk factor for ROP is oxygen exposure. As a result of 
five coordinated randomized trials, European saturation target guidelines were revised 2013. 

The objective of this thesis is to study neonatal practices potentially associated with the risk 
of developing ROP and BPD. In addition, this thesis examines the adherence to implemented 
new recommendations of nutritional intakes and saturation targets. The overall aim is to 
increase the quality of care, in order to improve outcome in the high-risk population of 
extremely preterm infants. 

Paper I examined growth patterns in a large cohort of infants born in gestational age (GA) 
23 0/7 to 30 6/7 weeks. Longitudinal data were used to investigate differences in growth 
patterns. The results demonstrated reduced postnatal weight gain in infants who developed 
ROP and BPD compared to infants without these diseases. The growth patterns differed 
depending on gestational age and postnatal age. 

Paper II used detailed nutritional data from infants born between 2004 and 2011 at GA <27 
weeks to study whether early energy and protein intakes were associated with initial growth 
and risk for ROP and BPD. The results showed that higher intakes of energy and protein were 
associated with improved weight development the first week of life. Increased energy intake 
during postnatal days 7 to 27 was associated with a reduced risk of ROP among infants with 
fewer than ten days of mechanical ventilation. Increased energy and protein intake during 
postnatal days 7 to 27 was associated with a reduced risk of BPD among infants born during 
2008 to 2011. 

Paper III showed that nutritional intakes have increased continuously during 2004 to 2011 in 
Stockholm. This coincided with implementation of a bundle of interventions aiming at 
improved nutrition. During 2004 to 2009 the majority infants had lower protein intakes the 
first postnatal days than the then prevailing guidelines recommended. 

Paper IV studied peripheral oxygen saturation in infants born at GA 23 0/7 to 30 6/7 with two 
different saturation targets and alarm limits. Higher saturation target and tighter alarm limits 
were associated with an increased proportion of time within the target range and a reduced 
oxygen saturation variability. Mean oxygen saturation and the proportion of time with 
hyperoxia were increased with the higher target range. 

In conclusion, this thesis highlights the importance of neonatal practices. Increased early 
nutritional intakes are associated with reduced initial growth restriction and morbidity. Poor 
postnatal weight gain is a marker for disease. Improved nutritional regimen and enhanced 
focus on postnatal growth may improve outcomes for extremely preterm infants. It is 
important to monitor adherence to guidelines as there is room for further improvement in 
quality of care.  
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1 BACKGROUND 

1.1 PREMATURITY 

1.1.1 Incidence and Definitions 

Preterm birth is a global health issue with an estimated 15 million infants affected each year.1 
Preterm birth is defined by the World Health Organization (WHO) as birth before 37 
completed weeks of gestation. In 2012 report, WHO estimated the global rate of preterm birth 
to be 10% although there is a great variation between regions and countries. The lowest 
preterm birth rate was reported in the Northern European countries.1 In 2016, the preterm 
birth rate in Sweden was 5.6%, and 0.9% of the infants were born before 32 0/7 weeks of 
gestational age (GA) according to the Swedish Neonatal Quality register (SNQ).2, 3 A 
population-based study of infants born in Sweden between 2004 and 2007 (EXPRESS) 
reported that 2.3 of 1000 live-born infants were born before 27 0/7 weeks of GA.4  
 
 
 

 

Common classifications of 
infants in neonatal research are 
by GA or birth weight (BW) 
(Table 1).  
 
 
 
 
 

Table 1. 
Classification of infants by gestational age and by birth weight. 

VLGA: very low gestational age; ELGA: extremely low gestational age;  
VLBW: very low birth weight; ELBW: extremely low birth weight 

Preterm birth is either spontaneous or initiated due to maternal or fetal illness. Spontaneous 
preterm birth follows preterm labor or preterm pre-labor rupture of the membranes. The cause 
of spontaneous preterm birth is likely multi-factorial and in most cases the triggering 
mechanism is unknown, although both genetic and environmental risk factors may be at 
play.5, 6 Intrauterine infection, urinary tract infection, and uteroplacental vascular disease are 
known risk factors of spontaneous preterm birth. Obstetric and fetal indications that may 
cause preterm delivery are placental hemorrhage, preeclampsia, and intrauterine growth 
restriction (IUGR). Maternal diseases that increase the risk of preterm delivery include 
diabetes, hypertension, and obesity.5, 6 

1.1.2 Mortality 

Mortality after preterm birth increases with decreasing GA and varies between countries and 
the availability of health resources. In 2016, Sweden’s neonatal mortality was 17.8% for 
infants born before 28 0/7 weeks of GA and 2.8% for infants born between 28 0/7 weeks and 
32 6/7 weeks of GA.2 In EXPRESS, the one-year survival was 52% in gestational week 24, 
and 85% in gestational week 26.4 Table 2 reports the rates of survival to discharge per 

Classification 
by GA1 

Gestational 
duration 

Birth 
weight 

Classification 
by BW 

VLGA 28 to <32 
weeks 

<1500 
gram VLBW 

ELGA <28 
weeks 

<1000 
gram ELBW 
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gestational week in Sweden. Compared to Sweden, other regions in Europe and North 
America have demonstrated slightly higher mortality rates.4, 7-9 A recent study of infants born 
in Norway between 2013 and 2014 showed higher one-year survival in gestational weeks 25 
and 26, and lower survival in gestational weeks 23 and 24 compared to Sweden during the 
period 2004-2007.4, 10 Draper et al. demonstrated remaining differences in preterm mortality 
between 19 European regions after accounting for maternal and infant characteristics. The 
regional variations were greatest among the most immature infants.11 The differences 
between centers and countries imply there is room for further improvements in care. 

 

Table 2. Survival to discharge in Sweden 

 Gestational Week 

 22 23 24 25 26 27 28 29 

n/N 
(%) 

34/82 
(41) 

150/262 
(57) 

239/343 
(70) 

380/454 
(84) 

450/509 
(88) 

539/582 
(93) 

624/672 
(93) 

650/674 
(96) 

Data from 2007–2015 (GA 22–25 weeks)12 and 2007–2013 (GA 26–29 weeks)13 

 

1.2 DEVELOPMENT OF NEONATAL CARE 

1.2.1 Advances in neonatal care  

Over the last several decades, obstetric and neonatal care have improved. Administration of 
antenatal corticosteroids to mothers with threatening preterm birth reduce neonatal mortality, 
risk of several neonatal morbidities, and early respiratory disease.14 The use of surfactant, 
continuous positive airway pressure, and advanced ventilator settings with less barotraumatic 
ventilators further support pulmonary development.15-17 Skin-to-skin care has been associated 
with reduced rates of infection and hypothermia as well as increased breastfeeding rates and 
improved growth.18 Nutritional management in neonatal care has improved more recently.19 

Sweden’s neonatal mortality has decreased among preterm infants. (Figure 1). Platt et al. 
showed increased survival and a reduced proportion of cerebral paresis among VLBW infants 
between 1980 and 1996.20 Increased survival of ELGA infants was also demonstrated 
between the years 1991 to 1993 and 2001 to 2003.21 In that study, the proportion of infants 
with severe disability among the survivors increased. Comparing 1995 with 2006, the 
EPICure studies found improved survival for ELGA infants in England, but no reduction in 
morbidity.9 The main research focus is now on improvement of long-term morbidity for the 
youngest most vulnerable infants. 



 

 3 

 

Figure 1. Neonatal mortality among preterm infants born before 28 0/7 weeks of GA  
and between 28 0/7 and 32 6/7 weeks of GA in Sweden between 1973 and 2016.2 

1.2.2 Implementation of knowledge 

Neonatal research aims to improve neonatal survival and quality of life for affected infants. 
Research can provide basis for recommendations and enables the practice of Evidence-Based 
Medicine, the use of best available knowledge from science in integration with clinical 
judgment in the care of individual patients.22 Guidelines are developed to support the use 
evidence from research. Evidence-based guidelines should include statements regarding the 
quality of evidence and strength of recommendation using, for example, the GRADE 
system.23 Zeitlin et al. showed that evidence-based care decreases mortality and severe 
morbidity in preterm infants.24 Other studies have also demonstrated improved results after 
active implementation of evidence-based care.25-27 

Several studies have examined obstacles to the implementation of new knowledge into 
clinical practice. The complexity of care and organizational as well as cultural barriers limit 
the possibilities to successfully implement evidence-based reccomendations.28-30 Glasziou et 
al. described important limiting factors in an “evidence pipeline.”31 Knowledge regarding 
limitations can be used in a structured approach to introduce new practice. Johnson et al. 
performed a study to monitor and guide implementation of nutrition guidelines and 
demonstrated successful and sustained practice.32 The study used Normalization Process 
Theory33 to model four mechanisms related to health care professionals; these mechanisms 
resemble the initial limiting factors described by Glasziou et al. The first mechanism is to 
understand the need for change. The second mechanism addresses the understanding of what 
needs to be done. The third mechanism addresses the effort to change practices. The fourth 
mechanism is “reflexive monitoring,” feedback aimed at demonstrating the benefit of new 
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practices. In addition, Johnson et al. found that improved nutritional products increased the 
possibility of change.32 Glasziou et al. also identified the availability as an important factor 
for success.31 

 

1.3 NUTRITION 

Growth and development cannot take place without access to nutrients. In an optimal in utero 
setting, all macro- and micronutrients needed are provided through the umbilical cord. In the 
neonatal care setting, extremely and very preterm infants are initially nourished through the 
parenteral route, and enteral nutrition (EN) is introduced gradually. The potential for 
absorption and utilization of nutrients, depending on the administered route, is of importance 
when making nutritional recommendations.34 

The first study of parenteral nutrition for preterm infants was published in 1972.35 Due to 
concerns of substrate intolerance, historically care professionals withheld or limited 
nutritional intake for ELGA infants for the first few postnatal days. In a randomized 
controlled trial (RCT) published 1997, Wilson et al. compared an “aggressive nutritional 
regimen” with a “conservative nutritional regimen.”36 The “conservative regimen” was 
compatible with contemporary guidelines and included initiation of 1 g/kg/day amino acids 
on postnatal day 3 and 0.5 g/kg/d of lipids on day 5. The interventions in the “aggressive 
regimen” included the initiation of 0.5 g/kg/day amino acids 12 hours after birth and 0.5 
g/kg/d of lipids on day 2. Wilson et al. concluded that the “aggressive regimen” was safe.36 
Recommendations of initial intakes have increased during the last decades.37 Guidelines 
published 2005 recommended higher minimal supply and initiation of amino acids and lipids 
the first postnatal day.34, 38 Preterm infants have limited stores and high needs, and extremely 
preterm birth should be considered as a nutritional emergency. Present recommendations are 
to achieve full nutrition within four days of birth.39, 40 

Nutritional guidelines aim at stating an acceptable range of intake.40 Published 2014,39 the 
most recent Swedish guidelines are based on international guidelines.38, 41, 42 Different 
methods can be used to define nutritional needs. The factorial method is an example of a 
theoretical approach adding estimations of metabolism and growth.43 Studies of controlled 
intervention or observational studies of dose response associations add to the evidence. The 
outcomes in these studies include both metabolic measurements and growth parameters. Data 
regarding ELGA and ELBW infants have been limited, but several recent studies have 
focused on this vulnerable group of patients.42 Although the most recommended ranges of 
intakes are estimations based on a normally distributed population, preterm infants are not a 
homogenous population so individual needs must be considered in clinical practice. Certain 
groups of infants could need recommendations with specific considerations. For example, it 
has been hypothesized that IUGR could result in metabolic adaptations leading to differing 
nutritional needs.44 
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1.3.1 Energy 

Growth, basal metabolism, and energy expenditure are used to estimate energy requirements 
in preterm infants. In Sweden, the current guidelines suggest that an ELGA infant needs  
90-115 kcal/kg/d of energy from full PN or 115-135 kcal/kg/d from full EN.39 However, 
certain conditions have been associated with increased energy expenditure and might warrant 
higher energy intake, although evidence is limited and contradictory.45-48 Atwater’s factors 
are commonly used to calculate energy content in macronutrients: 4 kcal/g protein, 9 kcal/g 
fat, and 4 kcal/g carbohydrates. 

1.3.2 Amino acids and protein 

Protein is the content in enteral nutrition products (including breast milk), whereas the 
subunits of protein, amino acids, are provided in parenteral solutions and some hydrolyzed 
formulas. To achieve growth of lean body components, the net protein accretion needs to be 
positive. That is, the rate of protein synthesis needs to exceed protein breakdown. Current 
recommendations, originating from studies of nitrogen balance, estimate that preterm infants 
need 1.5 g/kg/day for a neutral net protein accretion rate.38, 49 Adding the need for growth, the 
total parenteral need is estimated to 3 g/kg/day.50 Protein needs in infants suffering from 
active infection, inflammation and stress are not known. Swedish guidelines recommend an 
amino acid/protein intake of 3.5–4 g/kg/day in full PN or 4–4.5 g/kg/d in full EN.39  

Several studies have highlighted the importance of early provision of amino acids to avoid a 
negative protein accretion rate.51-54 Optimal starting dose and mode of increase of amino 
acids after birth have not been clearly shown. Current guidelines recommend 2.0-2.5 
g/kg/day started as soon as possible after birth and 3.5-4.5 g/kg/day by postnatal day 4, 
depending on route of intake.39, 49 

 

Oskar, born at 26 weeks and one day of gestation. ©Daniel Rådström 
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1.3.3 Protein to energy ratio 

Energy can be divided into protein and non-protein energy. Protein is used as energy if other 
sources are lacking.55 Protein is the determinant of lean body mass gain.56, 57 Total energy and 
protein intakes as well as the protein to energy ratio are important for optimal utilization of 
protein and growth of lean body mass with limited fat mass deposition.57-59 Results from 
these studies are the basis of current recommendations and state that an energy intake of 115-
120 kcal supports a protein intake of 3.5–4.0 g/kg/day.60 

1.3.4 Carbohydrates and lipids 

Carbohydrates and specifically glucose are the principle source of energy for most metabolic 
processes, particularly for the brain. Lactose from human milk is converted into glucose by 
lactase in the intestines. In very preterm infants, the lactase activity may be only 30% 
compared to term neonates, but early feeds of human milk can induce lactase activity.61 
Swedish recommendations are 13-17 g/kg/day of carbohydrates in full PN and 9-15 g/kg/day 
in full EN.39 

Lipids are effective as a source of energy. Intrauterine provision of nutrients is high in 
carbohydrates and amino acids but low in lipids.62 The activation of mitochondrial oxidation 
is delayed in preterm infants.63 Digestion and absorption of fat from the intestines are reduced 
in preterm infants and affected by the properties of the enteral solution.64, 65 Long-chain 
polyunsaturated fatty acids (LC-PUFAs) are crucial for neurodevelopment. Beneficial effects 
of enteral supplementation with LC-PUFAs have been demonstrated in clinical studies.66 
Studies of parenteral lipid content have not shown consistent and convincing results.67, 68 
Current Swedish guidelines recommend lipids of 3-4 g/kg/day in full PN, starting at 1.0–
1.5g/kg/day on the day of birth and 4-8 g/kg/day in full EN. Recommendations also include 
suggested intakes of LC-PUFAs arachidonic acid and docosahexaenoic acid.39 

1.3.5 Other important factors for growth 

The availability of nutrients is not the sole concern for growth and development. Growth 
factors and anabolic hormones are also crucial for fetal and postnatal growth.69 It has been 
suggested that the hormone axis and nutrition interact in important ways. For example, 
growth factors affect nutrient utilization, and in older malnourished children nutrient intake 
affects levels of growth factors.70, 71 In addition, low protein intake in preterm infants has 
been associated with low levels of insulin-like growth factor one (IGF-I) and its binding 
protein after 30 weeks postmenstrual age.72, 73 The placenta has an important role in 
production and regulation of IGF-I.74 After preterm birth, the circulating levels of IGF-I 
decreases in the neonate75, 76 and endogenous production, mainly by the liver, does not 
provide sufficient IGF-I to reach corresponding fetal levels for several weeks.77 

Multicellular organisms convert nutrients and oxygen to energy in the mitochondria via 
oxidative phosphorylation, a highly efficient aerobic metabolic pathway. Preterm infants need 
adequate tissue oxygenation for growth and development. 
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1.3.6 Enteral nutrition 

The transition to enteral feeds is hampered by the immaturity of the preterm gut. At least 
minimal enteral nutrition is recommended from the first day of life.39 Enteral feedings with 
human milk are associated with several beneficial effects in preterm infants such as the 
development of the gastrointestinal tract, improved neurodevelopmental outcome, and 
reduced incidence of necrotizing enterocolitis (NEC).78-80 If available, mothers own milk 
(MOM) is the preferred choice.81 In Sweden, the use of donor milk (DM) is widespread, and 
used for preterm infants born before 32 weeks of GA rather than preterm formula when 
MOM is lacking.82, 83 Compared to formula, DM has been associated with reduced risk of 
NEC.84 Mothers of preterm infants express breast milk with higher energy and macronutrient 
content compared to mothers to term infants. Both gestational age and postnatal age affect the 
nutritional content of MOM.83 Pasteurization affects the bioactivity of components in human 
milk.85  

Enteral feeds are advanced gradually. A 2017 meta-analysis concluded that increments of 30-
40 ml/kg/day were associated with shorter time to full EN without increased incidence of 
NEC compared to slow enteral advancement.86 In infants weighing less than 1000 g, feeding 
advancement of 15-25 ml/kg/day and full EN within 14 days is recommended.87 

Fortifiers are used to supplement both MOM and DM to achieve recommended intakes of 
energy, protein, micronutrients and vitamins. A gradual initiation of fortification starting at 
enteral intakes of 50 ml/kg/day to full fortification at 100 ml/kg/day was been demonstrated 
to improve growth in infants with BW <1250g, and this protocol is currently 
recommended.87, 88 Target fortification based on individual analyses of macronutrient content 
in MOM and DM has been demonstrated to improve growth.89 

 

1.4 GROWTH 

1.4.1 Intrauterine growth 

Fetal growth depends on the fetal genome and the intrauterine environment. IGF-I, the most 
important hormonal driver of fetal growth,69, 90 inhibits apoptosis and stimulates migration, 
cell division, and differentiation.91, 92 The rapid growth of the normal fetus in the third 
trimester triples the weight and doubles the length of the fetus and is accompanied by a rise in 
the IGF-I level.93 

1.4.2 Growth charts  

Monitoring fetal and infant growth requires repeated measurements and a comparison to a 
suitable reference population as revealed in growth charts. A commonly used method to 
estimate fetal weight from intrauterine measurements is the Hadlock formula, which is based 
on measurements of the fetal head, abdomen, and femur.94 Estimated fetal weight-derived 
charts use repeated ultrasound measurements of infants delivered at term, generating growth 
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charts considered to be representative of normal fetal growth.95 Birth weight-derived fetal 
growth charts are based on birth weights of delivered infants in all gestational ages. However, 
because inclusion criteria vary between studies, they generate different curves and standard 
deviations.96-98 Since preterm birth represents an un-physiological state, the charts are not 
representative of undisturbed intrauterine growth. Available fetal-based charts are based on 
limited samples and sonographic techniques, so birth weight-derived charts are in use in most 
neonatal care settings. 

 

Figure 2. Illustration of the 50th percentile in three growth charts 

A Marsal et al.95 (estimated fetal weight-drived chart); B Fenton et al.96 (birth weight-derived chart); 
C Olsen et al.98 (birth weight-derived chart); 
Orange: girls; Purple: boys 

Gardosi et al. have suggested a method to adjust the intrauterine references provided by 
Hadlock et al. to individual factors.99 This method may also be adjusted to parameters in a 
population. National data of mean BWs and standard deviations at term have been used to 
generate intrauterine-based country specific growth standards.100 Zeitlin et al. used this model 
to construct 11 country-specific intrauterine derived growth standards.101  

The INTERGROWTH-21st project is an attempt to generate globally valid growth charts 
from selected healthy populations. Charts developed from BW did not include ELGA or 
VLGA infants,102 and charts from longitudinal growth of preterm infants only included a 
limited number of VLGA infants.103 Estimated fetal weight-derived charts from ultrasound 
measurements have also been developed in the INTERGROWTH-21st project.104 
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1.4.3 Growth rate 

Extrauterine growth can be expressed as deviation in standard deviation score (SDS) 
according to the used growth chart or as a growth rate. Growth rate is expressed as g/kg/day, 
and some studies report weight gain in g/day. After examining different methods for 
calculating growth rate in ELBW and VLBW infants, Patel et al. concluded that the 
exponential model is very accurate.105, 106 

It has been proposed that the optimal growth of preterm infants should mimic fetal growth 
and body composition.41 Fetal weight gain increases from 17 g/day in gestational weeks 24-
28, to 24 g/day in gestational weeks 28-32 and 30 g/day during gestational weeks 32-34, 
followed by a decline in growth rate the last gestational weeks.107, 108 Recalculated values 
from the publications give fetal growth rates of approximately 16–17 g/kg/day in gestational 
week 24, 18-19 g/kg/day in gestational weeks 26-28, 16 g/kg/day in gestational weeks 30-32, 
and 13 g/kg/day in gestational weeks 34-36.107, 108 

Several studies have demonstrated that postnatal growth restriction is common in preterm 
infants.109-112 The assessment of growth restriction depends on the choice of growth reference 
and percentile. Optimal postnatal growth for preterm infants has not been determined. After 
birth, weight loss and interrupted growth rate results in reduction in weight standard deviation 
score (WSDS). Some degree of weight loss due to redistribution of fluid is likely to be 
necessary, but optimal initial weight development has not been established. In a study by 
Senterre and Rigo, WSDS was reduced by 0.8 SDS the first three postnatal days in ELGA 
infants and 0.6 SDS in VLGA infants as determined by an ultrasound-derived growth 
chart.113 In that study, growth was parallel to the growth chart during the 2nd and 3rd postnatal 
weeks followed by catch up growth and some regain in WSDS. The optimal degree of catch 
up has also been debated. Rochow et al. suggested that growth parallel to the revised growth 
chart by Fenton et al.96 after an initial reduction in WSDS results in optimal growth and body 
composition.114  

1.4.4 Intrauterine growth restriction 

IUGR describes a fetus not reaching its genetic growth potential. No international consensus 
exists regarding the definition of IUGR. Suggested definitions include deviated growth either 
as measured with repeated ultrasound or compared to expected growth or in combination 
with affected blood flows in the umbilical cord.115 In many studies and in clinical praxis, birth 
weight standard deviation score (BWSDS) as plotted on a preterm growth chart is used to 
define being born small for gestational age (SGA). BW below the 10th percentile 96, 98 or 
below two standard deviation scores (SDS) 95, 97 are considered SGA. The proportion of 
infants born SGA increases with increasing GA.4, 101 
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1.5 ORGAN DEVELOPMENT AND MORBIDITY 

Important steps of organ development occur during the third trimester. Preterm birth alters 
the conditions for normal growth and maturation. VLGA and ELGA infants suffer from a 
diverse range of neonatal problems due to the immaturity at birth. Short- and long-term 
morbidity increase with decreasing GA.8, 10, 116, 117 Lower BW compared to expected for GA 
is also a risk factor for morbidity.118 

Figure 3. Changed conditions during an important period of growth and development  

1.5.1 Retinal development and Retinopathy of prematurity 

Vascularization of the retina starts from the center of the retina about 16 weeks into 
pregnancy and continues to term age.119 Retinal neurons develop in parallel with the vessels 
and it has been proposed that neural growth drives vessel growth.120 

Retinopathy of prematurity (ROP) is caused by disturbed neurovascular development of the 
retina. The disease is graded by severity (stages 1-5) detected during an eye examination.122 
Stage ≥3 is considered severe ROP. ROP develops in two postnatal phases123 (Figure 4). 
Factors associated with preterm birth, such as placental infection and inflammation, may also 
affect retinal neurovascular development and predispose the fetal retina to ROP.124, 125 
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Figure 4. Development of ROP 

Adopted from Hellström et al.121 

Exposure to a hyperoxic environment and low levels of growth factors contribute to abrupt 
termination of vessel growth in the first postnatal phase of ROP development. Poor 
vascularization leads to local hypoxia, up-regulation of growth factors, and 
neovascularization in the second phase. The unregulated vessel growth can cause fibrosis, 
retinal traction, and retinal detachment.126 Gestational age at birth is an important risk factor 
for ROP.116, 127 The frequency and severity of ROP by GA in a Swedish preterm cohort is 
illustrated in Figure 5. Prenatal growth restriction is another well-known risk factor for ROP 
development;127, 128 however, a more important risk factor in more mature infants.129 

 

Figure 5. Frequency of different stages of ROP by GA in Sweden 2008-2011 

Compiled data from (Holmström et al.)130, 131 
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ROP is not only a vascular disease but also a neural disease and it has been hypothesized that 
the disturbed processes leading to ROP are related to disturbed processes that impair brain 
development and affects long-term neurodevelopmental outcome. Children who have had 
severe ROP have been found to be more likely to have lower scores on neurodevelopment 
assessment at 2 and 5 years of age and lower IQ at adolescence.132-134 

1.5.2 Pulmonary development and Bronchopulmonary dysplasia 

The bronchiolar tree is established at GA 17 to 18 weeks. Lung capillaries emerge at about 
20 weeks GA and continue to evolve and form a lung-air barrier that is mature at about 
36 weeks GA. The production of surfactant starts at 25 weeks GA, but the system is 
immature until about 36 weeks GA.135 

In 1967, Northway et al. described bronchopulmonary dysplasia (BPD) associated with 
barotrauma from mechanical ventilation (MV), and exposure to high concentrations of 
oxygen, “classic BPD”.136 “Classic BPD” affected more mature preterm infants after initial 
severe respiratory distress in an era before antenatal corticosteroid and surfactant therapy. In 
modern neonatal care, “new BPD” affects primarily ELGA infants and is related to disrupted 
pulmonary development.137 It has been suggested that impaired angiogenesis is an important 
part of BPD development. Low levels of both vascular endothelial growth factor and IGF-I 
have been associated with BPD.138-140 The need for supplemental oxygen at 36 weeks PMA, 
is one of the most accepted clinical definitions used to classify BPD in infants born at GA 
<32 weeks.141 A physiological definition of BPD based on a test to confirm the need for 
supplemental oxygen has been proposed.142 Known risk factors of BPD include 
complications of pregnancy, immaturity, gender, low BW, and low BWSDS.143-146 

Infants with BPD are at risk for pulmonary vascular disease and pulmonary hypertension.147 
Long-term pulmonary, cardiovascular, and neurodevelopmental problems are more common 
in infants with BPD.148-151 

1.5.3 Other morbidities 

Spontaneous closure of the ductus arterious is often delayed in preterm infants. Patent ductus 
arteriosus (PDA) causing hemodynamic significant effects are treated with pharmaceuticals 
or surgical ligation. PDA is related to other morbidities, but it is unclear whether the 
association is with the hemodynamic effects of the left-to-right shunt, the treatment, or the 
immaturity.152 Surgical ligation is also related to reduced energy and macronutrient intakes.153 
NEC is a potentially lethal complication in preterm infants. It is an inflammatory bowel 
necrosis and the most severe stage includes perforation of the gut. Modified Bell’s stage 
criteria are commonly used to classify the severity of disease.154 The pathology is not 
completely understood but the vulnerable under-developed gut is probably one of the 
underlying causes. Recommendations of treatment include suspension of enteral feeds, and in 
severe cases surgery that reduce the length of the intestines might be needed.154 These 
treatments may lead to nutritional problems and reduction of total energy and macronutrient 
intakes. Use of human milk feeds can decrease the incidence of NEC.155 MOM seems to have 
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a dose-dependent protective effect, but the protective effect of DM is less clear.156 Preterm 
infants are vulnerable to infections, and sepsis is a common and dangerous condition. 
Septicemia was related to growth failure but not to GA or BW in the EXPRESS cohort.116 

Neurodevelopmental impairment is common in ELGA infants and associated with GA.157-159 
In the Swedish EXPRESS cohort, 64% of the infants had some disability at six years of age, 
of which 34% had moderate or severe disability.157 Several studies have shown that better 
postnatal growth is associated with improved neurodevelopmental outcome.160-163 
Association between increased nutritional intakes and neurodevelopmental outcome has been 
demonstrated in some studies,164, 165 but not in others.166, 167  

 

1.6 NUTRITION & GROWTH, ASSOCIATIONS WITH ROP & BPD 

1.6.1 Growth and ROP  

WINROP is a postnatal weight gain algorithm that uses GA at birth, BW, and weekly weight 
gain to predict risk of severe ROP. The development of this screening system has proven that 
postnatal growth is associated with disease development.168-174 Absolute weight gain the first 
six postnatal weeks have been associated with severe and threshold ROP.128, 175 Allegaert 
et al. did not demonstrate an association between ROP and relative weight gain,128 but Fortes-
Filho et al. showed that weight gain proportion after six postnatal weeks was a predictor for 
severe ROP.176 Similarly, VanderVeen et al. demonstrated that low growth velocity between 
postnatal days 7 and 28 was associated with increased risk of ROP.177 IGF-I is known to 
influence preterm growth and is important for vessel development. Severity of ROP has been 
correlated to serum concentrations of IGF-I and the duration of low concentrations of 
IGF-I.121, 169 

1.6.2 Growth and BPD 

Studies of postnatal growth and BPD have demonstrated differing results, and most studies 
do not investigate growth patterns the first postnatal weeks. Natarajan et al. identified that 
postnatal growth failure was common in preterm infants born before 27 weeks of GA with 
severe BPD referred to specialized neonatal intensive care units. The proportion of infants 
with weight below the 10th percentile was 20% at birth and 33% at 36 weeks PMA.178 In a 
recently published study of growth among 25,899 VLBW infants born between 2005 and 
2012, Griffin et al. showed that severe ROP and NEC, although not BPD, were associated 
with postnatal growth restriction at discharge.179 In a 1999 study, Ehrenkranz investigated 
postnatal growth in infants stratified by BW. Infants with BPD demonstrated reduced weight 
gain compared to infants without BPD if the BW was above 700 g. Infants with BWs of 
500-700 g with and without BPD did not demonstrate differences in growth patterns.111 Nyp 
et al. did not show any association between growth rate in g/kg from birth to 36 weeks PMA 
and BPD in infants born before 28 weeks of GA.180 Early weight loss has not been associated 
with increased risk of BPD.181 Oh et al. demonstrated an association between high fluid 



 

14 

intakes, reduced weight loss during the first ten days of life, and increased risk of later 
respiratory morbidity. In that study, the mean fluid intake on postnatal days 4 to 6 was high 
(170 ml/kg/d) compared to recommendations.182  

1.6.3 Nutrition and Growth 

In a 2001 study, Embleton et al. demonstrated that feeding VLGA and ELGA infants 
according to current guidelines led to cumulative deficits compared to recommended intakes 
and resulted in postnatal growth restriction.183 Senterre and Rigo conducted a similar 
comparison in VLGA and ELGA infants born between 2006 and 2007, demonstrating less 
deficits with more recent guidelines and recommendations. ELGA infants had an energy 
deficit during postnatal weeks 1 to 4 and VLGA infants had an energy deficit during the first 
and second weeks. All infants had a protein deficit the first week of life. Full nutrition was 
achieved within 8 days from birth for energy and 6 days for protein. Infants still developed 
postnatal growth restriction but less severe compared to what Embleton et al found. Senterre 
and Rigo found that WSDS decreased the three first postnatal days, to 0.8 SDS in ELGA 
infants and 0.6 SDS in VLGA infants. Catch up growth started between the 3rd to 4th postnatal 
week.113  

RCTs of nutrition and growth in VLGA and ELGA infants have varied in intervention and 
primary outcome. Three RCTs examining different degrees and timing of increased protein 
intake without increase in non-protein energy did not demonstrate any significant effect on 
growth at 36 weeks PMA. 184-186 One of these studies also reported early weight development 
and showed no significant difference in growth to postnatal day 7 or 28.186 Other trials have 
compared a combined intervention of increased energy and protein intake. Vlaardingerbroek 
et al. investigated a short intervention of increased amino acid intake day one and lipid intake 
day one and two. This study demonstrated improved nitrogen balance but not growth rate 
from birth to 28 days and discharge.187 Tan et al. did not demonstrate any significant 
improvement in weekly growth rates with mean energy intake 99 vs. 94 kcal/kg/day and 
mean protein intake 2.6 vs. 2.3 g/kg/day during postnatal days 1 to 28.188 Morgan et al. 
reported improved head growth at 28 postnatal days, which was sustained at 36 weeks PMA 
in an intervention group that received hyperaliminated PN from randomization at about three 
days after birth. Differences in protein and energy intakes were most pronounced in the 2nd 
week of life. Mean total energy intake was 102 vs. 95 kcal/kg/day and mean protein intake 
was 3.2 vs. 2.9 g/kg/day during postnatal days 1 to 28. The effect on head growth was more 
pronounced in the younger stratum of infants born at 24-26 weeks of GA.189 In a trial 
including both parenteral and enteral interventions, Moltu et al. demonstrated improved 
growth rates the first four postnatal weeks with higher energy and protein intakes.190 The trial 
was stopped early due to septicemia and electrolyte disturbances in the intervention group.  

Moltu et al.’s RCT also reported growth the first postnatal week. Growth rates in the 
intervention group were higher already by the first postnatal week and WSDS started 
deviating from about day 4 to 5, with significant difference from postnatal day 8. Mean 
energy intake was 92 vs. 79 kcal/kg/day and mean protein intake was 3.7 vs. 2.5 g/kg/day the 
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first postnatal week. In this study, WSDS decreased 0.6 SDS from birth in infants who 
received higher amounts of protein and energy compared to -0.8 SDS in the control group.190 
In the study by Morgan et al., energy intakes the first postnatal week was 74 vs. 68 
kcal/kg/day and protein intakes 2.8 vs. 2.4 g/kg/day. Weight day 7 was reported, but the 
difference between the groups was only explored at 28 days and not statistically significant, 
mean difference 0.14 WSDS (95% CI -0.11-0.38; p = 0.28).18 

Several observational studies have demonstrated association between energy and protein 
intake and growth. In a study of infants born between 1999 and 2001, weight, length, and HC 
differed at 36 weeks PMA between 
infants who received over 3 g/kg/day 
of amino acids before or later than five 
days postnatal age. Differences in 
amino acid intake between the groups 
persisted for ten days, and infants with 
higher amino acid intake also had 
increased total energy intake. Mean 
energy intake on postnatal days one to 
five was only 45 kcal/kg/day.191 In a 
cohort of 1187 infants born before 28 
weeks GA between 2002 and 2004 
(the ELGAN Study), Martin et al. 
demonstrated that infants who received 
the least amount of protein, fat, and 
carbohydrates during the first postnatal 
week had the lowest growth rates 
between days 7 and 28.192 In the study 
by Senterre et al., WSDS from day 
three to six weeks was influenced 
primarily by protein intake the first 
weeks of life in a multiple regression 
analysis.113 

 Oskar, one year old. ©Daniel Rådström 
 

Hansen-Pupp et al. detected no correlation between nutrition and growth in a first phase of 
growth restriction, which lasted until PMA 30 weeks. A relationship between protein and 
energy intake during later weeks and catch-up growth was shown, and a correlation between 
levels of IGF-I and growth was detected in both phases.73 Association between nutritional 
intakes and growth the first postnatal week was not investigated in these studies. In most 
studies, recommended intakes were not fully met, and recommendations were lower 
compared to present recommendations. 
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Stoltz Sjöström et al. showed that energy and protein intakes were associated with weight 
change day 0-7, day 8-28, and day 29-70 in analyses adjusted for GA at birth, baseline 
measurements, and severity of illness in the EXPRESS cohort.110 Mean intake on postnatal 
days 0-7 was for energy 66 kcal/kg/day and protein 2.1 g/kg/day. ∆WSDS from birth to 
postnatal day 7 was -1.4 SDS according to Swedish preterm growth reference.97 

A 10 kcal/kg/day increase in energy intake the first postnatal week corresponded with 0.28 
higher WSDS at postnatal day seven, and 1 SD increase in energy percent protein was 
associated with 0.11 higher WSDS.110 

 

1.6.4 Nutrition and ROP 

In the ELGAN study, VanderVeen et al. demonstrated that energy intake at the lowest 
quartile the first 28 postnatal days was associated with increased risk of severe ROP, 
adjusted odds ratio (OR) 2.1 (95% CI 1.4–3.2).177 The association between nutrition and 
ROP development has also been investigated in the EXPRESS cohort, and in this study a 
10 kcal/kg/d increase in energy intake the first 28 postnatal days was associated with 
decreased risk of severe ROP, OR 0.76 (95% CI 0.65–0.90), adjusted for GA, BWSDS, 
transfusions, and days of MV.193 In a RCT of higher initial infusion rate of parenteral lipids, 
the rate of ROP was lower in the intervention group that had a higher energy intake the first 
postnatal week.194 A recent case-control study of 106 infants treated for ROP did not show 
any differences in growth rate, energy intake, or protein intake the first postnatal week 
between cases and controls.195 

 

1.6.5 Nutrition and BPD 

Several animal studies have presented evidence of associations suggesting that malnutrition 
may interact with other causative factors of BPD. Higher susceptibility to oxygen induced 
lung damage have been demonstrated in both undernourished mice and lambs.196, 197 Reduced 
energy and protein intakes were associated with decreased lung protein synthesis in rats.198 

There are few well-performed epidemiological studies of the association between early 
nutritional intakes and BPD. Uberos et al. found that higher energy intake the first two 
postnatal weeks was associated with reduced risk of BPD, but this study did not take early 
respiratory morbidity into account.199 Ehrenkranz et al. investigated association between 
initial severity of illness, nutrition, and development of morbidities. Higher energy intake 
during postnatal days 1-7 was associated with reduced risk of BPD, adjusted for MV, and a 
range of other variables. The regression model also included an interaction term between 
days of MV and energy intake that was not significant in the association with BPD.200 In 
another observational study, infants who developed BPD had lower energy intakes the first 
four postnatal weeks, adjusted for days of MV.201 Infants in both of these studies were born 
during a period of significantly lower intakes of energy compared to present 
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recommendations. The RCT by Wilson et al. from 1997 did not demonstrate any reduction in 
pulmonary morbidity with higher and earlier initiation of parenteral nutrition.36 In a recent 
RCT designed to study change in head circumference, hyperaliminated PN did not result in 
any difference in rate of BPD.189 

 

 

 

1.7 OXYGEN AND SATURATION TARGETS 

1.7.1 Oxygen 

Fetal development takes place in a hypoxic environment. Fetal hemoglobin (HbF) has a 
higher affinity for oxygen,202 and in utero blood is shunted to the most oxygen demanding 
tissues.203 At birth, there is a transition from fetal circulation and an increase in partial 
pressure of oxygen. Compared to the fetus, the neonate has a higher cardiac output, metabolic 
rate, and oxygen consumption.204, 205 Oxidative stress is an imbalance between anti-oxidants 
and oxidants. Preterm infants have an immature antioxidant system and few defenses to 
counter oxidative stress. Reactive oxidants are increased by inflammation, infection, hypoxia, 
and hyperoxia.206 Oxygen toxicity and oxygenation of the tissues depends on oxygen 
saturation, blood flow, hemoglobin levels, and fetal hemoglobin concentration. The 
proportion of HbF in ELGA infants is 70-90%.207, 208 Transfusion of erythrocytes have been 
demonstrated to lower the proportion of HbF from 90% to 40% in ELGA infants.209 In the 
hypoxic infant, a higher proportion of HbF results in better oxygenation of the tissues.210 

SUMMARY – NUTRITION & GROWTH, ASSOCIATIONS WITH ROP & BPD 

Poor postnatal weight gain has been associated with increased risk of ROP,128, 174-177 and 
conflicting results have been demonstrated regarding postnatal weight development and risk 
of BPD.111, 179, 180 

Most previous studies of nutrition and postnatal growth have not reported weight 
development the first postnatal week.184, 185, 187, 191 A RCT with >10 kcal/kg/day difference in 
mean energy intake the first postnatal week combined with an increased PE ratio reported 
higher WSDS from postnatal day 8 for infants with higher nutritional intakes.190 A few other 
RCTs, with smaller differences in nutritional intakes, have reported growth to postnatal day 7 
without significant difference in early growth.186, 188, 189 

Higher energy intake has been associated with reduced risk of ROP.177, 193, 194 A few 
observational studies but no RCT have demonstrated a positive association between early 
nutritional intake and BPD.200, 201 
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1.7.2 Monitoring of oxygenation 

Different methods are available to monitor the level of oxygen in preterm infants. Arterial 
partial pressure of oxygen (PaO2) can be measured in blood drawn from an arterial line. 
Transcutaneous oxygen measurement is a non-invasive method measuring direct partial 
pressure of oxygen at the skin surface. Neither of these methods are used to continuously 
monitor oxygen levels and detect rapid changes in the neonatal unit. Pulse oximetry measures 
light absorption in red and infrared wavelengths. Oxygenated and de-oxygenated blood 
absorbs light in the different wavelengths and a peripheral oxygen saturation (SpO2) value is 
derived from the ratios of absorption.211 Pulse oximetry is routinely used to monitor infants in 
neonatal units. The method has a rapid response time, but also has some issues of uncertainty. 
The probe placement may be of importance while interpreting SpO2 values. Pre- and 
postductal oxygenation might differ due to PDA and pulmonary hypertension, but also in 
healthy preterm infants.212 Rosychuk et al. demonstrated greater uncertainty in lower values 
of SpO2 in a study comparing oxygen saturation levels in arterial blood (SaO2) to SpO2 levels 
in preterm infants. SpO2 in the range of 85-89% corresponded to 2.4% lower SaO2 (95% CI 
11.6-6.8).213 Quine et al. demonstrated that SpO2 in a range of 91-95% would corresponded 
to PaO2 of 35-67 mmHg.214 Higher values of SpO2 correspond to a wider range of PaO2 
values,214-216 and the proportion of HbF affects the association between SpO2 and PaO2. The 
same SpO2 corresponds to higher PaO2 if the proportion of HbF is lower.209  

 

1.7.3 Saturation target 

In preterm infants who receive supplemental oxygen therapy, it is important to provide 
sufficient oxygen for growth and organ development and avoid hypoxemia while at the same 
time avoid hyperoxemia and oxygen toxicity. Several observational studies have 
demonstrated lower incidence of severe ROP when targeting lower SpO2 the first postnatal 
weeks.217-221 Two of the studies reported mortality before and after intervention without 
significant change in mortality rates.218, 220 

To address the research question of saturation targets in preterm infants, five coordinated 
RCTs were initiated between 2005 and 2007.222 In total, almost 5000 infants born with a GA 
<28 weeks were included in the NeOProM trials SUPPORT,223 COT,224, and BOOST-II (UK, 
NZ, AU).225, 226 The studies aimed to compare target ranges of 85-89% and 91-95%. Infants 
were included within 24 hours in all trials and the intervention lasted up to 36 weeks PMA. 
All studies used a masking algorithm in the SpO2 monitors. 

The original masking algorithm resulted in increased stability and instability at end-points of 
target range and gave false high values of SpO2 from 87% and up.227 Three studies revised 
the algorithm (COT, BOOST-II AU, and UK). Revision was supposed to improve saturation 
targeting. In all of the trials, median SpO2 was higher than targeted and there was significant 
overlap between the groups (Figure 6). An interim analysis was the result of concerns about 
safety after the publication of the SUPPORT trial as well as considerations to increase sample 
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size due to the revision of the algorithm. Two studies were stopped early (BOOST-II AU and 
UK) due to the interim analysis, which demonstrated increased mortality in the lower 
saturation target group.228 There is a risk to overestimate the treatment effect if a trial is 
stopped early due to benefit of treatment.229 

 

 

Figure 6. Distribution of median SpO2 in the NeOProM trials  
Figure adapted from Figure 4 in Lakshminrusimha et al.230  

These issues have been the focus of some debate over the results. Several reviews and meta-
analyses have been published.231-236 Manja et al. graded the evidence as moderate to low in a 
review and meta-analysis from 2015.232 In the most recent review, taking also previously 
unpublished information into account, Askie et al. rated the quality of evidence regarding 
mortality as high and quality of evidence regarding ROP as moderate.234 Overall results from 
the five trials have demonstrated increased risk of ROP at higher saturation target and 
increased mortality at lower saturation target. Askie et al. found the RR to be 1.16 (95% CI 
1.03–1.31) for death before discharge, the RR to be 0.72 (95% CI 0.61–0.85) for severe ROP, 
and the RR to be 1.24 (95% CI 1.05–1.47) for NEC.234 

Other differences between the trials are enrollment and alarm settings. SUPPORT was the 
only trial that excluded infants born before 24 weeks GA. In SUPPORT, enrollment occurred 
before birth, which increased likelihood to include more vulnerable infants. In COT, more 
exclusion criteria were specified and included PPHN. Alarm settings differed in the five trials 
and were only mandated in COT.236 

European guidelines were revised in 2013, adapting to the first results from the NeOProM 
trials.237 The most recent guidelines, published in 2017, recommend saturation target range of 
90-94% and suggest alarm limits of 89-95%.238 
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1.7.4 Adherence to target 

In a review of compliance to oxygen saturation targeting by Van Zanten et al., time within 
target ranged between 31% and 75%.239 Alarm limits closer to the prescribed targets 
increased the proportion of time spent within target range in a study by Hagadorn et al.240 
Nurse-to-patient ratio has been shown to influence adherence to target. More infants to care 
for resulted in more time above and less time within target range.241, 242 In addition, educating 
nurses regarding guidelines and adverse effects of hypo- and hyperoxemia have been 
identified as a factor that may increase adherence to target.243, 244 In a multicenter quality 
improvement effort, a structured implementation of policies was shown to have a positive 
effect on compliance.245 Time within target can also be increased if there is an implemented 
guideline of response to SpO2 outside of target range,246 and several studies have shown that 
automated regulation of inspired oxygen increases the proportion of time spent within the 
target.247-249 

Apnea is common in ELGA and VLGA infants and the incidence is higher in more immature 
infants.250 Apnea in combination with bradycardia and desaturation might warrant an 
intervention of increased oxygen flow. Van Zanten et al. demonstrated that in 80% of the 
cases SpO2 increased to ≥95% when extra oxygen was given following an hypoxic episode, 
and that the hyperoxia was of longer duration than the preceding hypoxia.251 Fluctuations in 
oxygen tension might influence the development of disease. Di Fiore et al. have demonstrated 
an association between a higher number of hypoxic events and increased risk of ROP, 
requiring treatment in infants born in GA 24 to 28 weeks.252, 253 Other studies have also 
shown increased variability of PaO2 and TcO2  the first postnatal weeks in infants developing 
ROP,254-256 and in animal models of ROP development, higher variability in FiO2 and PaO2 
have been associated with disease.257, 258  

 

1.8 CONCEPTS OF EPIDEMIOLOGY 

1.8.1 Causality 

One major objective in medical research is to better understand the path leading to disease, 
and to use that understanding to try to prevent disease development. Causality is the relation 
of cause and effect, and in epidemiology exposure is the variable examined as a potential 
cause of an effect and the outcome is the result.259 Reality is seldom as simple as only one 
exposure causing an effect. The causal mechanism can be illustrated as various sets of 
exposures acting in concert to cause an outcome.260 Several different combinations of 
exposures can be sufficient to cause the outcome, and some might interact and depend on 
each other. A necessary cause is an exposure that must be present for the outcome to occur.260 

1.8.2 Study design 

The aim while planning a study is to set up the best possible design to answer a specific 
research question. A RCT is considered the best design to identify causal relationships and to 
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answer if an intervention is efficient in preventing or treating a disease. This design is not 
always feasible. To demonstrate effect in rare outcomes, a large number of subjects need to 
be included, and some outcomes develop over long periods of time and the cost to set up 
large trials might not be reasonable. Complex interrelated exposures might also be difficult to 
examine in RCTs, and results from a selected population included in a trial might not be 
generalizable to other populations. 

Many studies in the field of neonatal research are cohort studies. In cohort studies, a defined 
group of people with different levels of exposure, is followed over time and influence of 
exposure on outcome is studied.259 As in all observational studies, it is not possible to 
completely eliminate confounding factors. Careful selection of variables and statistical 
models increases the probability to find true or causal associations between exposure and 
outcome.261 If well performed, cohort studies may contribute to improved quality of care and 
the results may increase the knowledge of disease development, information that can be used 
to improve the design of future studies. 

1.8.3 Bias and confounding 

Bias are systematic errors affecting the validity of a study. Covariates that are associated to 
both the exposure and the outcome and that are not intermediate factors are called 
confounders.259 If these factors are known, it is possible to use statistical methods to evade 
the effect of the confounding variable from the studied association between exposure and 
outcome. Residual confounding factors – i.e., factors that are unknown or impossible to 
measure – may be handled in a well-designed RCT, but not in a cohort study. The 
randomization will distribute residual confounding factors evenly between the groups. 

The exposure, by definition, always occurs before the outcome. In nutritional research, the 
exposure of interest (i.e., nutrient intake) is a varying series of events over time. Confounding 
factors may occur before or during that time. A problematic type of confounding is 
confounding by indication, when there is an inherent difference in those exposed and not 
exposed in an observational study.259 

1.8.4 Interaction 

If the association between exposure and outcome differs in relation to another factor, this 
factor modifies the effect, i.e., an interaction is present. The biological basis of interaction is 
that several causal components participate in a causal mechanism, and the effect of some 
causes may vary depending on the conditions.261 Effect measure modification – i.e., how the 
effect changes over values of another factor – can be examined using an interaction term in 
the statistical model and evaluated by stratification. In statistics, interaction usually refers to 
the effect leaving the additive scale. The interpretation depends on the scale in the statistical 
model.262 
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1.8.5 Directed acyclic graphs 

Directed acyclic graphs (DAGs) is a method to visualize variables that can be associated with 
exposures and outcomes. The network of possible associations as well as the time-line is not 
always easy to distinguish, but important while trying to identify possible confounders. The 
aim is a better understanding and a more correct selection of covariates to include in the 
statistical model. The DAG helps identify predictors that are important to include in the 
model and can also identify over-adjustment.263, 264 

Each event in a DAG is illustrated as a circle and associations are illustrated as arrows. DAG 
is a simplified model that presumes associations with one-way directions; however, reality is 
often more complex and the associations are rarely known facts. Simple DAGs do not take 
interactions into account.265 

 

 

Figure 7. Example of DAG. 

Exposure variables: energy and protein 
intake. 
Outcome variable: growth. 
Other covariates considered in the 
model: gestational age (GA), birth 
weight standard deviation score 
(BWSDS), transfusions, and 
mechanical ventilation (MV). 
Arrows represent assumed 
associations. 
In this framework, adjustment for GA, 
BWSDS, and MV or transfusions and 
MV would be sufficient. 

 

 

1.8.6 Statistical concepts 

Statistical methods are used to examine associations between exposures and outcomes or 
differences between groups. All analyses are subject to random error. The confidence interval 
gives the range within which the point estimate is, with a certain level of confidence. The p-
value specifies the probability that the estimate from the statistical model would be the same 
or more extreme, given that the null-hypothesis was to be correct. A type I error is to reject 
the null-hypothesis when the null-hypothesis is true, and a type II error is to not reject the 
null-hypothesis when it is false. The risk of type I error is the significance level. A common 
significance level is 5%, at which the null-hypothesis is rejected if the p-value is below 0.05. 
Statistical models can give estimates of precision, but do not provide information regarding 
systematic error. 
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Regression models are used to estimate how the exposure is associated with the outcome, and 
regression models can be used to obtain estimates of associations or estimates of risk. 
Calculated regression coefficients can also be used to predict outcomes from given values of 
exposure. Predictions from regression models are mainly valid among values within the range 
of the studied data. Linear regression models can be used with continuous outcomes. A 
simple model assumes an equal association over the entire range, a straight line. One method 
to enable the model to adapt to non-linear associations is to introduce splines,266 which gives 
the model pivot points in which an association is allowed to change direction. 

Dependent data refer to dependence between observations within a variable. For example, in 
longitudinal data with multiple observations over time, the repeated measurements from one 
individual have an intra-individual dependence. Dependent data can be accounted for using 
several statistical models such as the Mixed-Effects model, a flexible regression model with 
several advantages. The model can handle multilevel dependence in the data, is flexible 
regarding missing observations, and enables estimation of differences in cluster-level 
variables.267 
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2 AIMS 
The general aim of this thesis is to increase the knowledge regarding neonatal practices with 
the potential to improve outcome for extremely preterm infants. The thesis focuses on early 
nutrition and saturation targets and investigates implemented changes and associations with 
growth, ROP, and BPD. 

 

Specific aims: 

Paper I 

• To describe postnatal growth in preterm infants and to examine variations related to 
gestational age, postnatal age, and birth weight standard deviation score.  

• To examine whether infants with retinopathy of prematurity and bronchopulmonary 
dysplasia developed postnatal growth restriction compared to infants without disease. 

Paper II 

• To assess whether higher energy and protein intake the first week of life reduces the 
initial weight loss in extremely preterm infants. 

• To investigate whether higher intakes of energy and protein the first week and month 
are associated with reduced risk of ROP and BPD in extremely preterm infants. 

Paper III 

• To describe nutritional interventions in Stockholm between 2004 and 2011 and to 
demonstrate if intakes of energy and macronutrients have increased in extremely 
preterm infants. 

Paper IV 

• To demonstrate whether higher saturation target was associated with higher SpO2 and 
more time with hyperoxia in preterm infants. 

• To examine whether target range and alarm limits were associated with variability 
and hypo- and hyperoxic episodes. 

• To investigate whether altered saturation targets were associated with increased rates 
of ROP. 

 

 



 

 25 

3 RESEARCH APPROACH 
All four papers in this thesis are cohort studies. Paper II and III are based on a regional cohort 
of infants born in Stockholm between 2004 and 2011. Paper IV included infants cared for at 
two of the neonatal intensive care units in Stockholm between 2013 and 2015. Paper I 
included data from infants born in both North America and Sweden between 2004 and 2012. 
Paper I and IV included ELGA and VLGA infants with GA ≥23 weeks and <31 weeks. Paper 
II and III included ELGA infants with GA <27 weeks. 

3.1 DATA COLLECTION 

Infants in all studies had eye exams according to routine protocol, and ROP was classified 
according to the international system.122 The basis for treatment were the recommendations 
from Early Treatment of Retinopathy of Prematurity Cooperative group.268 BPD was defined 
as need for supplemental oxygen at a PMA of 36 weeks.141 

3.1.1 Paper I 

Paper I combined data from five cohorts of preterm infants born in North America and 
Sweden171-174, 269. The analyses included data from infants born at GA 23 0/7 to 30 6/7 weeks, 
alive to 40 weeks PMA, without severe malformations, hydrocephalous, or missing data 
regarding BW, ROP, or BPD. Data outliers were examined with the use of population and 
individual residuals and excluded if deemed unrealistic. Infants with more than two registered 
weight measurements considered to be unrealistic were excluded from analyses of postnatal 
growth (Figure 8). 

 

Figure 8. Flowchart of infants included in Paper I 
HC: hydrocephalous; FEVR: familial exudative vitreoretinopathy 
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Paper I defined ROP as any stage of ROP as compared with no ROP. This thesis also 
presents additional results comparing growth of ELGA infants with severe ROP (stage ≥3) 
and no/mild/moderate ROP (stage <3). BWSDS was calculated from a Swedish growth 
reference based on intrauterine ultrasound measurements.95 SGA was defined as BW below 
2 SDS. Postnatal growth was evaluated as differences in weight and growth rates. Growth 
rates were calculated assuming exponential growth between measurements.105 Mean number 
of weight measurements per infant was 14.3 (median, 11; 25th-75th pctl, 9-16), and mean 
duration of weight measurement registration was until PMA 37+6 weeks (25th-75th pctl, 
36+0 to 39+5 weeks). NEC was defined as stage II or higher according to modified Bell’s 
stage criteria.154 

 

3.1.2 Paper II & III 

Paper II and III included all infants born in the Stockholm region before 27 0/7 weeks of GA, 
who survived >24 hours. One tertiary unit in Stockholm handled all deliveries of ELGA 
infants and three additional units participated in the care for preterm infants. Infants who 
were born between April 1, 2004 and March 31, 2007, who were also included in 
EXPRESS,4 and infants born between January 1, 2008 and December 31, 2011 were studied. 
Since PN compositions were inaccessible for infants born from April 2007 to December 
2007, infants born during that period were not included in the cohort. Exclusion criteria in all 
studies were chromosomal anomalies, severe malformations, missing nutritional data, and 
death during postnatal days 0-3. Other exclusions depending on the studied outcome are 
outlined in the flowchart (Figure 9). 

Perinatal and neonatal data were gathered from the quality register SNQ, Stage of ROP, BPD, 
NEC, and sepsis were confirmed by chart review. All parenteral and enteral intakes registered 
in hospital records as well as all anthropometric measurements were registered in nutrition 
calculation software (www.nutrium.se, Nutrium AB, Umeå, Sweden). Intakes were registered 
daily until day 27 and thereafter once a week until discharge, death, transfer to a hospital 
outside the Stockholm region, or unaccountable amounts of enteral feeds due to breast 
feeding. Amino acids were counted as protein in all analyses. Energy contents in 
macronutrients were calculated as 4 kcal/g protein, 9 kcal/g fat, and 4 kcal/g carbohydrates. 
Nutrient content of transfusions was included in analyses in Paper II. The content of energy 
was estimated as 18 kcal per 100 ml erythrocytes and 28 kcal per 100 ml plasma or 
thrombocytes and the content of protein was estimated as 4.1 g per 100 ml erythrocytes and 
6.9 g per 100 ml plasma or thrombocytes.270, 271 Paper III reported nutrient intake without 
considering transfusions. 
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Figure 9. Flowchart of infants included in Paper II and III 

Mid-infrared spectrophotometry was used to analyze human milk content (MilkoScan 4000, 
FOSS Hillerød, Denmark) at Eurofins Steins Laboratory AB, Jönköping, Sweden.83 If MOM 
had not been analyzed, the average content of breast milk samples from mothers of ELGA 
infants, expressed before or after 28 postnatal days, were used in nutritional calculations.83 
Definition of full enteral feeds was cessation of parenteral nutrition or enteral volume 
150 ml/kg/day. WSDS was calculated from the revised Fenton growth chart.96 Postnatal 
periods of specific interest were days 0–3, days 4–6, and days 7–27. 

3.1.2.1 Nutritional care  

Local and international guideline updates as well as other interventions aiming to affect 
nutritional care between 2004 and 2011 were identified. Most changes were implemented as a 
continuum and at different time-points in the different sites. In Figure 10, interventions are 
stated from the first time-point implemented at any of the four neonatal care units. Local 
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guidelines were revised following international guidelines. One major change was the 
recommendations of higher amounts of amino acids and lipids from the first day of life. In 
The 2006 local guidelines recommended the initiation of 2.0 g/kg/day amino acids and  
0.5-1.0 g/kg/day lipids from day 0. Increase to 4.0 g/kg/day of amino acids was 
recommended within 2-3 days and increase to 3.5 g/kg/day of lipids within 4-5 days. 
Parenteral solutions were individually subscribed by the neonatologist on call and ordered 
from the pharmacy on weekdays. Starting in 2009, a standardized parenteral nutrition 
solution was available to facilitate early start of parenteral provision of amino acids. 

 

Figure 10. Interventions affecting neonatal nutrition between 2004 and 2011 
a Nutrition calculation software, Nutrium™ (www.nutrium.se, Nutrium AB, Umeå, Sweden) 
b PDMS: Patient data monitoring system, Clinisoft (Centricity Critical Care Clinisoft, GE Healthcare) 

Trophic feeds were recommended from the first day of life during the entire study period. 
First choice of enteral nutrition was MOM; if unavailable, infants were fed DM. A first 
analysis of MOM was recommended at postnatal day 7 to 14, and thereafter every other 
week. The recommendations regarding fortification was altered in 2010 from initiation of 
fortification at full enteral feeds to initiation when enteral feeds contributed 75% of total 
intake. Fortification was calculated and prescribed by a neonatologist or a dietitian. From late 
2007, a full time neonatal dietitian was employed at three of the four units, and improved 
education of nutrition assistants working in the ward kitchens was also initiated. 
Computerized support was enhanced during the later years. A web-based program 
(Nutrium™) was introduced starting in 2007 to facilitate nutritional calculations. Starting in 
2010, two of the four units began using Centricity Critical Care Clinisoft (GE Healthcare), an 
electronic patient data monitoring system (PDMS). Parenteral and enteral intakes were 
registered in the PDMS, which simplified monitoring of nutritional intake. 
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3.1.3 Paper IV 

Infants in this study were born between January 1, 2013 and December 31, 2015. Inclusion 
criteria were GA between 23 0/7 and 30 6/7 weeks and registration in the PDMS at 
Karolinska University Hospital sites Solna or Huddinge within 12 hours from birth. Infants 
with severe malformations of the heart or lungs, infants without supplemental oxygen, and 
infants with none of the studied target ranges or more than one alteration in target range were 
excluded (Figure 11). The analyses included time up to a postnatal age of three weeks or to 
completed supplemental oxygen treatment, transfer to another hospital, or 24 hours prior to 
death.  

 

Figure 11. Flowchart of infants included in Paper IV 

Data regarding GA, BW, malformations, time of death, and validated maximum stage of 
ROP were gathered from the Swedish quality registers SNQ and SWEDROP. In one infant, 
neonatal data were gathered from the chart. Pulse oximetry was used for continuous 
monitoring of SpO2, and values were registered in the PDMS every other minute. Prescribed 
saturation target range, alarm limits, and SpO2 at all registered time points were extracted 
from the PDMS. The principal target range prescribed in 2013 was 88-92% with associated 
alarm limits of 85-95%. Local guidelines were updated in November 2013 with a 
recommended target range of 90-94% with alarm limits of 89-95%. After updating 
guidelines, the target range of 90-95% with associated alarm limits of 89-96% was prescribed 
during 95% of the time. If supplemental oxygen were administered using nasal cannula with 
a flow lower than the weight of the infant, effective FiO2 was calculated using the formula 
FiO2=21+ (Flow(L/min)* (FiO2given -21)/Weight(kg)) adopted from Benaron-Benitz274. 
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3.2 STATISTICAL METHODS 

All results are stated with 95% CI and p-values. P-values <0.05 were considered statistically 
significant. 

3.2.1 Paper I 

A linear regression model with robust standard errors was used to estimate differences in 
BWSDS. Mean weekly growth rates were calculated and used to identify weeks of highest 
growth rates and average growth rate during the neonatal period. Mean between-group 
differences in weight and growth rate over time were estimated using a mixed effects model, 
including all weight measurements and restricted cubic splines (knots at 2, 4, 6, and 10 
weeks).266, 267 

Covariates included in all analyses were exact GA in days, BW, sex, and center. BWSDS and 
NEC were considered as potential confounders in analyses of weight development and 
growth rate. Country and date of birth were also considered as potential confounders but did 
not alter the estimates and were not included in the final analyses. Interaction of BWSDS or 
country in the association between exposure and outcome was tested. Because none of the 
interaction terms were significant, they were not included in the final model. 

The results were divided into three groups by GA at birth: 23 to 24 weeks; 25 to 26 weeks; 
and 27 to 30 weeks. The groups were selected based on results from analyses stratified by 
every gestational week.  

3.2.2 Paper II 

Paper II used Linear and Poisson regressions with robust standard errors to study the 
outcomes of interest.275 If energy intake was significantly associated with outcome, 
association with protein intake was evaluated as energy to protein ratio and with an 
interaction term. Weight on postnatal day 7 was calculated assuming an exponential growth 
pattern between measurements within two weeks, if there was no measurement on postnatal 
day 7.105 

The association with risk of ROP was examined as both risk of any ROP and severe ROP. 
Calculated differences in relative risk were expressed as risk ratios (RR). DAGs were used as 
a tool to select covariates to include in the regression models. Antenatal corticosteroids, exact 
GA in days, BWSDS, sex, fluid intake, transfusions of erythrocytes and plasma, and days of 
MV were covariates considered as potential confounders. Linearity in the models were tested 
using natural cubic splines.266 Potential interaction of MV and of fluid intake in the 
association between exposure and outcome was tested and supplemented with stratified 
analyses if the interaction term was significant. Analyses including adjustment for period of 
birth were also reported. Time period (2004–2007 and 2008–2011) was included as a factor 
variable, and an interaction term between energy intake and time period was included to test 
differences in association between time periods. 
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3.2.3 Paper III 

Data were analyzed in two-year periods. The median and the 10th and 90th percentiles were 
presented to best illustrate the data. Quantile regression with bootstrapped confidence 
intervals was used to examine differences in nutritional intakes.276 Differences in growth 
were examined in a mixed effects model including restricted cubic splines.266, 267 

3.2.4 Paper IV 

Individual daily mean values of SpO2 were calculated. Differences in SpO2 and proportions 
of time with defined SpO2 levels were analyzed using linear and quantile regression with 
cluster-robust standard errors. Analytic weights were used in the linear regression models 
giving more weights to infants with more time in a certain target range.277 Average hourly 
absolute change, calculated as T–1Σt|SpO2t-SpO2t-1, where the subscript t represents hours 
since birth and Σt indicates the sum over the T time-points, was used to measure variability. 
In the analyses of ROP, infants who survived to term age were allocated to the target range 
prescribed during the first postnatal week. The first postnatal week was selected to reduce 
potential influence from a later adaptation of saturation target to clinical conditions. Logistic 
regression was used to analyze differences in ROP and death, and these analyses were 
adjusted for GA and BW. 

 

3.3 METHODOLOGICAL CONSIDERATIONS 

Data were obtained retrospectively in all studies but registered in charts and PDMS 
prospectively. Data registered manually in charts is reliant on correct transcriptions. In 
paper IV, probe placement was not reliably registered in the PDMS. In paper II and III, 
nutritional data were visually reviewed for outliers, and extreme values cross-checked with 
all available information in the charts. 

It is reasonable to assume that nutrition practices were continuously altered over time in 
Paper I. Differences in morbidity and growth between centers might reflect both differences 
in regional practice and in birth year. Adding date of birth as a covariate in the model did not 
alter the results. In paper II, associations between specific intakes of energy and protein were 
initially investigated with adjustment for known confounders, but without birth year. Date of 
birth covaried with intakes of protein and energy. No major changes in saturation targets or 
mode of ventilation were implemented between 2004 and 2011. The regression model 
enabled detailed and stratified analyses, but unknown factors related to neonatal care that 
might have changed between 2004 and 2011 were not adjusted for. To reduce potential 
residual confounding, time period was included as a factor variable in supplemental analyses. 

A strength in paper I was the large number of infants, including a large number of ELGA 
infants, which enabled analyses stratified by gestational age group. In paper I, differences 
between growth and morbidity were examined in three strata of GA. Time was handled as a 
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continuum, and the graphic presentations illustrate the differences successively developing 
over time. A large cohort of preterm infants was studied in paper IV, but in relation to the 
NeOProM trials, the number of ELGA infants in our study was relatively small. The absence 
of significant difference might be due to a type II error. 

In papers I and II, growth was evaluated as weight development, and no analyses regarding 
length, head circumference, or body composition were performed. Infants in the studies were 
not weighed daily. More severely ill infants may not be weighed as regularly as healthier 
infants, introducing uncertainty in the interpolated weights. The exponential model of growth, 
used to calculate growth rates in paper I and interpolate weights in paper II, have been 
demonstrated to fit neonatal growth data.105 Papers I, II, and III used different methods of 
data modeling to study growth. The use of mixed effects models of growth is a strength in the 
studies, since missing measurements are less likely to affect the results. Papers I and III 
modelled the non-linear nature of growth using restricted cubic splines at selected weeks. 
Restricted splines were deemed to fit the data better than evenly distributed knots, based on 
knowledge of neonatal growth patterns with more variations during the first postnatal weeks, 
and a limited number of splines ensured a robust statistical model. 

Two different pulse oximeter algorithms were in use during the study period in paper IV. In 
addition, the quantification of hypoxic and hyperoxic episodes is imprecise since data points 
were only registered every other minute. Furthermore, analyses of differences in shorter 
hypoxic episodes were not feasible. 

The choice of growth reference may influence the results. In the study of BWSDS in paper I, 
a fetal growth reference was selected to reflect undisturbed fetal growth. The use of weight 
development and growth rates to study postnatal growth means there is no need to select a 
growth reference, but differences in growth rates are not as intuitive as divergence in WSDS. 
In papers II and III, the revised Fenton growth chart suggested by Cormack et al. was used.278 
In paper II, initial growth restriction was evaluated as growth to postnatal day 7. The 
selection of a specific day made it easier to select variables for the model, although this 
strategy might not reflect the true nadir of initial weight development. 

Diagnosis of ROP is based on visual observation of disturbed vascular development of the 
retina. Pulmonary development is more difficult to study in similar detail. The diagnosis of 
BPD is based on physiological observation. An oxygen test to define the need for 
supplemental oxygen at 36 weeks PMA was not used in any of the studies in this thesis. 

In Sweden, blood and plasma transfusions are given liberally and in higher volumes than 
estimated blood losses. Blood products – particularly albumin, plasma, and thrombocytes – 
have a high protein content. Because paper II aimed to examine the association between total 
energy and protein intake and outcome, blood products were included in nutritional 
calculations. We do not know to what extent protein from blood products is used in the 
protein metabolism of ELGA infants, and a limitation in paper II is the lack of information 
regarding blood losses. In paper III, blood products were not included in nutritional 
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calculations because the aim was to demonstrate change in prescribed and received 
nutritional intakes. A limitation in paper III is the lack of information regarding the exact 
timing of implementation of changes in nutritional practice. 

Confounding by indication might be a problem in observational studies of nutritional intakes 
and associations with outcome. For example, healthier preterm infants may tolerate higher 
amounts of enteral nutrition. In paper II, we attempted to handle potential confounding by 
indication by including covariates related to severity of illness and by examining interactions. 

A strength in papers II and III is that all ELGA infants that were born and cared for in the 
Stockholm region were included. The generalizability of the results might still be limited 
since infants were born between 6 and 14 years ago. Paper IV included a selected population 
from the two centers responsible for surgical and tertiary neonatal care in Stockholm and this 
might limit the generalizability of the results. 
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4 RESULTS AND DISCUSSION 

4.1 RESULTS 

4.1.1 Paper I, growth 

In paper I, 52% of the infants were ELGA (Table 3). ELGA infants had 0.6 SDS  
(95% CI 0.5–0.7; p<0.001) higher mean BWSDS compared to the more mature infants. Mean 
growth rate from birth to 36 weeks PMA was 14 g/kg/d for ELGA infants and 13 g/kg/d for 
VLGA infants. ELGA infants had highest growth rates at PMA 30 to 31 weeks, and VLGA 
infants had highest growth rates the fifth postnatal week. SGA infants had higher mean 
growth rate the first three postnatal weeks compared to infants born AGA, a difference of 
3.4 g/kg/day (95% CI 3.0–3.8; p<0.001). 

 

Table 3. Characteristics of infants in paper I 

 ELGA VLGA 

 
GA 23–24 

weeks 
GA 25–26 

weeks 
GA 27–30 

weeks 
Infants, n (%) 431 (17) 881 (35) 1209 (48) 

BW, gram, mean (sd) 652 (97) 826 (158) 1185 (289) 

BWSDS, SDS, mean (sd) -0.6 (1.1) -1.1 (1.3) -1.5 (1.4) 

No ROP, n (%) 26 (6) a 235 (27) b 824 (68) 

ROP stage 1–2, n (%) 171 (40) a 451 (51) b 343 (28) 

ROP stage ≥3, n (%) 234 (54) a 195 (22) b 42 (3) 

BPD, n (%) 351 (82) c 597 (68) d 320 (26) 

a Total 430 infants, information regarding ROP missing from one infant; b Total 880 infants, information regarding  

ROP missing from one infant; c Total 429 infants, information regarding BPD missing from two infants;  
d Total 874 infants, information regarding BPD missing from seven infants. 

 

4.1.2 Paper I and II, growth and morbidity 

4.1.2.1 ELGA infants 

In infants born in gestational weeks 23 and 24, there was no difference in BWSDS between 
infants with or without ROP or BPD, but a difference in weight developed over time. Infants 
with ROP had lower growth rates during postnatal weeks 7 to 9 compared to infants who did 
not develop any stage of ROP (Table 4). Figure 12 depicts the growth trajectories for ELGA 
infants with ROP stage ≥3 and ROP stage <3. Mean weight was -49 gram 
(95% CI -83 to -16; p=0.004) lower at the 6th postnatal week, and -100 grams 
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(95% CI -145 to -54; p<0.001) lower at the 9th postnatal week for infants in gestational week 
23 and 24 with ROP stage ≥3. The weight difference between infants with and without BPD 
born in gestational weeks 23 and 24 were not as evident. Infants with BPD had -60 grams 
(95% CI -110 to -9; p=0.02) lower weight at the 7th postnatal week and -80 grams  
(95% CI -141 to -20; p=0.01) lower weight at the 9th postnatal week in analyses adjusted for 
exact GA, sex, center, and NEC. There was no statistically significant difference in growth 
rates between infants who developed or did not develop BPD. 

 

 

Figure 12. Growth trajectories by gestational week at birth demonstrate lower weight gain in infants 
with severe ROP (stage ≥3) compared to no/mild ROP (stage <3). 
Reference values from the revised Fenton growth chart for girls (orange) and boys (purple).96  

 

Infants born in gestational weeks 25 and 26 who developed ROP had -0.4 SDS  
(95% CI -0.6 to -0.2; p<0.001) lower BWSDS compared to infants who did not develop 
ROP. The growth rates for infants with ROP were lower during postnatal weeks 4 to 6 
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(Table  4). Infants born in gestational weeks 25 and 26 with BPD had -0.4 SDS 
(95% CI -0.5 to -0.2; p<0.001) lower BWSDS compared to infants without BPD. At birth, 
weight was -35 grams (95% CI -55 to -14; p<0.001) lower, and the 6th postnatal week the 
difference was -70 grams (95% CI -101 to -39; p<0.001), but there was no statistically 
significant difference in growth rates between infants who developed and did not develop 
BPD. 

For ELGA infants, the weeks with statistically significant differences in growth rates between 
infants with and without ROP coincided with the postnatal weeks of highest growth rates at 
around PMA 30 to 31 weeks. 

 

Table 4. Growth rates for infant with different stages of ROP born in gestational weeks 23 to 24  
and 25 to 26 during the postnatal weeks of highest growth rates. 

  
No 

ROP 
ROP 

stage 1–2 
ROP 

stage ≥3 
No ROP vs 

ROP stage ≥3 

 Postnatal 
week Growth Rate (g/kg/day) 

Difference  
(95% CI) 

p-
value 

GA 23-24 
weeks 

6th 19.1 18.1 17.3 -1.8 (-4.2 to 0.7) 0.161 

7th 20.1 18.1 17.2 -2.8 (-5.2 to -0.4) 0.021 

8th 20.0 17.6 16.7 -3.2 (-5.9 to -0.5) 0.020 

GA 25-26 
weeks 

4th 17.9 16.0 15.0 -2.9 (-4.3 to -1.4) <0.001 

5th 21.6 19.2 18.0 -3.7 (-5.3 to -2.2) <0.001 

6th 21.3 19.4 18.6 -2.7 (-4.0 to -1.5) <0.001 

Difference in growth rate between infants with no ROP and severe ROP stated with 95% confidence intervals. 
Results from analyses adjusted for exact GA in days, sex, center, NEC, and BWSDS. 

 

In paper II, change in WSDS from birth to postnatal day 28 was calculated for the included 
ELGA infants. An increase in WSDS of 0.1 from birth to 28 days was associated with 7% 
(95% CI 2–11; p=0.004) lower risk of severe ROP. ΔWSDS to postnatal day 28 was not 
associated with risk of BPD. 
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4.1.2.2 VLGA infants 

Infants born in GA 27 0/7 to 30 6/7 with any stage of ROP had -0.6 SDS  
(95% CI -0.8 to -0.4; p<0.001) lower BWSDS compared to infants with no ROP. Infants with 
BPD had -0.7 SDS (95% CI -0.9 to -0.5; p<0.001) lower BWSDS compared to infants 
without BPD. Figure 13 illustrates unadjusted weight development between infants who 
developed any stage of ROP or BPD and infants who did not develop either of these 
morbidities. 

 

 

Figure 13. Growth trajectories for infants with any stage of ROP or BPD and no ROP or BPD by 
gestational week at birth. 
Reference values from the revised Fenton growth chart for girls (orange) and boys (purple).96  
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4.1.3 Paper II & III, nutrition and growth 

Higher intakes of energy and protein the first postnatal week were associated with reduced 
postnatal weight loss. Higher energy intake on postnatal days 0 to 3 was not statistically 
significantly associated with ΔWSDS (+0.05 WSDS (95% CI 0.00 – 0.10; p=0.076) in 
analysis adjusted for GA, BWSDS, time period, days of MV, transfusions, and fluid intake on 
days 0 to 3. At a mean energy intake of 60 kcal/kg/day, every 1 g/kg/day higher protein 
intake was associated with +0.05 WSDS (95% CI 0.00 – 0.09; p=0.041). On postnatal days 
4 to 6, every 10 kcal/kg/day higher energy intake was associated with +0.05 WSDS 
(95% CI 0.02 - 0.09; p=0.004) in analysis adjusted for GA, BWSDS, time period, days of 
MV, and transfusions on days 0 to 6. At a mean energy intake of 100 kcal/kg/day, every 
1 g/kg/day higher protein intake was associated with +0.14 WSDS (95% CI 0.07 – 0.21; 
p<0.001). The fluid intake the first week was not significant and did not alter the estimates in 
the model of energy and protein intakes on days 4 to 6. 

Assuming nutritional intakes according to Swedish recommendations39 the first postnatal 
week, the predicted reduction in WSDS from birth to postnatal day 7 was -0.5 WSDS 
(95% CI -0.6 to -0.4) in a model with mean values of GA, BWSDS, MV, and transfusions on 
days 0 to 6. 

In paper III, infants born between 2004 and 2005 had lower WSDS at postnatal day 7 
compared to subsequent years, a difference  of -0.3 SDS (95% CI -0.5 to -0.1; p<0.001). This 
difference was sustained at postnatal day 56, a difference of -0.4 SDS (95% CI -0.7 to -0.2; 
p<0.001). At postnatal day 56, length, -0.5 SDS (95% CI -0.8 to -0.2; p<0.001), and head 
circumference, -0.5 (95% CI -0.8 to -0.2; p<0.001), differed between infants born between 
2004 and 2005 and subsequent years. 

4.1.4 Paper II, nutrition and morbidity 

The multivariable regression model revealed no statistically significant association between 
energy intake on postnatal days 0 to 3 or days 4 to 6 with ROP or BPD. For the association 
between 10 kcal/kg/d higher energy intake and severe ROP, the adjusted RR was 0.90 
(95% CI 0.81–1.00; p=0.056), and for the association between energy intake on days 4 to 6 
and BPD, the RR was 0.96 (95% CI 0.88–1.04; p=0.293), adjusted for GA, BWSDS, 
antenatal corticosteroids, transfusions, and MV on days 0 to 6. 

A 10 kcal/ kg/ day higher energy intake on postnatal days 7 to 27 was associated with 9% 
(95% CI 1–16; p=0.029) lower risk of BPD in analyses adjusted for GA, BWSDS, antenatal 
corticosteroids, days of MV, and transfusions. A 10 kcal/kg/ day higher energy intake on 
postnatal days 7 to 27 was associated with 6% (95% CI  2–9; p=0.005) lower risk of ROP of 
any stage, but not with a risk of severe ROP (RR 0.95 95% CI 0.87–1.05; p=0.341) in 
analyses adjusted for GA, BWSDS, MV, and transfusions. 

The interaction term of energy intake and days of MV was significant in the association with 
ROP. In infants with ≤10 days of MV, higher energy intake on days 7 to 27 was associated 
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with reduced risk of ROP (RR 0.87 95% CI 0.80–0.95; p=0.003) in analyses adjusted for GA, 
BWSDS, MV, and transfusions. The reduction in estimated absolute risk of ROP was 10% 
with an increase from 110 to 120 kcal/kg/days and 8% with an increase from 120 to 130 
kcal/kg/days. In analysis that included adjustment for time period, RR was 0.89 
(95% CI 0.81–0.98; p=0.024) in infants with ≤10 days of MV. In infants with >10 days of 
MV, the association between energy intake and ROP was not significant (RR 1.01  
95% CI 0.97–1.04; p=0.768) in the adjusted analyses. PE ratio on days 7 to 27 was not 
associated with risk of ROP in the adjusted analyses. 

Without time-period in the regression model, the interaction-term of energy intake and days 
of MV was significant in the association with BPD. In infants with ≤10 days of MV, higher 
energy intake on days 7 to 27 was associated with reduced risk of BPD (RR 0.79  
95% CI 0.65–0.95; p=0.011), in analyses adjusted for GA, BWSDS, MV and transfusions. 
The reduction in estimated absolute risk of BPD was 7% with an increase in energy intake on 
postnatal days 7 to 27 from 110 to 120 kcal/kg/day and 8% with an increase from 120 to 130 
kcal/kg/day. In infants with >10 days of MV, the association between energy intake and BPD 
was not significant, but a combined higher intake of energy and protein was associated with 
reduced risk of BPD (Figure 14).  

 

Figure 14. Illustration of protein/energy interaction and risk of bronchopulmonary dysplasia (BPD) in 
infants requiring >10 days of mechanical ventilation (MV). 

Association between predicted risk of BPD and protein intake days 7 to 27 assuming different energy intake. Results from 
Poisson regression. Illustration assuming mean values of included variables of gestational age, birth weight standard deviation 
score, intake of antenatal corticosteroids, transfusions, and days of MV on days 0-27. Nutritional content in transfusions were 
included in the nutritional values used in the regression model. 
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If time period was included in the model, the interaction term of energy intake and days of 
MV was not significant (p=0.09), but interaction term between time period and energy intake 
was significant (p=0.03). There was no association between energy intake and BPD between 
2004 and 2007 (RR 1.04 95% CI 0.93–1.17; p=0.496), whereas a higher energy intake was 
associated with a reduced risk of BPD between 2008 and 2011 (RR 0.86 95% CI 0.74–0.99; 
p=0.035) in the adjusted analyses. A combined higher intake of both energy and protein on 
postnatal days 7 to 27 was associated with reduced risk of BPD during the later time period: 
RR 0.84 (95% CI 0.73–0.98; p=0.021) for every 10 kcal/kg/d increase of energy at a protein 
intake of 3.5 g/kg/day and RR 0.62 (95% CI 0.41–0.92; p=0.019) for every 0.5 g/kg/d 
increase of protein at an energy intake of 120 kcal/kg/day. 

 

4.1.5 Paper III, improved nutrition 

In parallel with interventions to improve neonatal nutrition between 2004 and 2011, intakes 
of energy and macronutrients increased significantly (Figure 15). Energy and protein intakes 
were higher in 2010 and 2011 during days 0-3 and 4-6 compared to all previous years. 

A majority of infants did not receive protein the first postnatal week according to the 
recommendations valid the respective two-year period, except for infants born in 2010 and 
2011. Intakes of lipids were according to recommendations for the majority of infants during 
the entire period. 

Advancement of feeds were faster between 2008 and 2009 compared to all other years. 
Median time to full enteral feeds was 15 days between 2008 and 2009, compared to 23 days 
2004-2005 and 2010-2011, and 21 days 2006-2007. Enteral protein content was higher 2010-
2011 compared to previous years, but not enteral energy intake. During the transition phase 
of 50-75% enteral intake, total energy intake was higher in 2010-2011 due to higher 
parenteral energy content. 
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Figure 15. Mean intakes of energy, protein, and lipids during postnatal days 0-3, 4-6, and 7-27  
in two-year periods. 

The non-parametric test for trend demonstrated a statistically significant increase (p<0.001) of energy and protein during all 
studied postnatal periods and of lipids during postnatal days 0-3 and 4-6. 

Dashed lines represent calculated mean intakes during the respective periods according to current Swedish guidelines.39 Based 
on minimal recommended intake day 0, increased to minimal recommended intake day 4, and minimal recommended intake at 
full enteral nutrition during postnatal days 7 to 27. 
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4.1.6 Paper IV, altered saturation target guidelines and SpO2 

There was no statistically significant difference in GA, BW, BWSDS, sex, or antenatal 
corticosteroids between infants with the two studied target ranges. In the entire study 
population Median GA was 27 0/7 weeks (25th-75th pctl, 25 3/7 to 28 5/7), and median BW 
was 872 gram (25th-75th pctl, 701-1147). Fifty percent of the infants were ELGA. Median 
length of stay was 28 days (25th-75th pctl 11-58 days). 

Compared to target range of 88-92% with alarm limits of 85-95%, a target range of 90-95% 
with alarm limits of 89-96% resulted in 1.3% higher (95% CI 1.0–1.6; p<0.001) mean SpO2 
the first three postnatal weeks. The distribution in SpO2 over time is demonstrated in 
Figure 16. Proportion of time within target increased from 30% to 51%, a difference of 21%  
(95% CI 19–23; p<0.001); proportion of time within alarm limits decreased from 71% to 
66%, a difference of -5% (95% CI -3 to -7; p<0.001). The proportion of time with 
SpO2 >95% increased 9% (95% CI 7–11; p<0.001), from 20% to 28%, and the proportion of 
time with SpO2 <85% decreased 3% (95% CI 2–4; p<0.001) with the higher target compared 
to the lower. 

 

Figure 16. Oxygen saturation during the first three postnatal weeks with the studied target ranges and 
alarm limits. 

Solid lines show median SpO2 and dashed lines show 25th and 75th percentiles of SpO2. Dotted lines mark alarm limits and solid 
lines mark target ranges. Numbers at the bottom refer to included infants.  

Difference in the 25th percentile 1.1% (95% CI 0.8–1.4; p<0.001);  
Difference in the 75th percentile 0.7% (95% CI 0.1–1.4; p=0.024) 
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The variability was higher with target range 88–92% and alarm limits 85–95%, as 
demonstrated in figure 17. The difference in “average hourly absolute change” the first three 
postnatal weeks was 8 units per hour (95% CI 3–13; p=0.001). Higher target range and 
tighter alarm limits were also associated with a 25% reduction (95% CI 13–35; p<0.001) in 
hypoxic episodes, SpO2 <80% up to 5 minutes, from 8.4 to 6.3 episodes per day. 

 

 

Figure 17. Variability of oxygen saturation the first three postnatal weeks with the studied target 
ranges 

Black squares: target range 88–92% and alarm limits 85–95%; Grey circles: target range 90-95% and alarm limits 89-96% 

Mean and standard deviations of “average hourly absolute change”. 

 

There was no statistically significant difference in fraction of supplemental oxygen between 
the different target ranges. Mean FiO2 was 39% with the lower target, and 36% with the 
higher target, a difference of -3% (95% CI -6–1; p=0.13). 
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4.1.7 Paper IV, saturation targets, ROP, and mortality 

There was no statistically significant difference in mortality or proportion of infants with any 
ROP, severe ROP, or ROP requiring treatment between the two target groups. Proportions 
and ORs in ELGA infants are presented in Table 5. 

 

Table 5. Mortality and ROP in extremely low gestational age infants in paper IV. 

197 infants with gestational age (GA) between 23 0/7 and 26 6/7 weeks, mean GA 25 2/7 weeks, mean BW 743 gram 
a Adjusted for exact GA (days) and BW (gram). 
b Out of 172 infants who survived to term age, n=40 with target 88–92% and n=132 with target 90–95% 
c Infants treated for ROP all had ROP stage ≥3 

  

 Proportion (%) Unadjusted OR Adjusteda OR 

 

Target 

88–92% 

n=48 

Target 

90–95% 

n=149 

OR 95% CI p-value OR 95% CI p-value 

Any stage of 
ROP b 31(78) 112 (85) 1.63 0.67–3.93 0.280 1.33 0.53–3.34 0.543 

Severe ROP b 

stage ≥3 13 (33) 58 (44) 1.63 0.77–3.43 0.200 1.11 0.48–2.53 0.811 

ROP 
treatment b, c 

7 (18) 32 (24) 1.51 0.61–3.74 0.375 0.88 0.31–2.48 0.807 

Death before 
term age 

8 (17) 17 (11) 0.64 0.26–1.60 0.344 0.54 0.21–1.44 0.221 
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4.2 DISCUSSION 

Papers I and II demonstrate less weight gain among ELGA infants with morbidities such as 
ROP and BPD, and association between lower intake of energy the first month of life and 
increased risk of disease. Energy and protein intake the first postnatal week reduced initial 
growth restriction. Paper III and IV show that the implementation of new knowledge has 
resulted in significant changes in neonatal care. 

Intake of energy and protein rather than fluid intake was important for weight development 
the first postnatal week (paper II). This result emphasizes the potential to reduce initial 
growth restriction through attentive nutritional care. Moltu et al. showed an association 
between an increased energy and protein intake and improved growth the first postnatal week 
with intakes comparable to the 60th and 90th percentiles of energy intake and the 30th and 70th 
percentiles of protein intake the first week in paper II.190 Morgan et al.’s RCT, that 
demonstrated differences in head circumference but not weight, compared intakes of energy 
and protein the first postnatal week approximately at the 25th and 50th percentiles in our 
cohort with protein content in transfusions included in nutritional calculations. Without 
transfusions, protein intake the first week in the RCT corresponded to the 50th and 75th 
percentiles in our cohort.189 

In 2005, an intake of 2.0 g protein/kg/day the first day of life was recommended.34 An initial 
intake of 2 g/kg/day ought to result in a mean intake on postnatal days 0-3 above 2 g/kg/day. 
Less than 10% of the infants born 2006-2007, almost half of the infants born 2008-2009, and 
90% of the infants born 2010-2011 had a protein intake ≥2 g/kg/day on postnatal days 0-3. 
Implementation of updated nutritional guidelines took several years. Availability of 
appropriate parenteral solutions might have limited the possibility to achieve a higher initial 
protein intake. 

New saturation targets were implemented immediately following publication of updated 
local guidelines. Time with SpO2 within target range improved with the higher saturation 
target and tighter alarm limits after guidelines were updated, as demonstrated in paper IV. 
Being within the prescribed target range 51% of the time is in line with previous 
studies,240, 279, 280 but there is room for further improvement. There was no guideline regarding 
response to SpO2 outside the target range in the included neonatal units.  

Postnatal growth rates demonstrated in paper I are similar to previously reported growth rates 
in ELGA infants born during the same period,281 and the growth pattern by GA resembles the 
trajectories illustrated by Ehrenkranz et al.111 and Rochow et al.114 Rochow et al. did not 
investigate growth patterns in infants with and without morbidity, but instead intended to 
investigate undisturbed postnatal growth in a select group of preterm infants without maternal 
and neonatal pathology. Reduction of extracellular fluid is the proposed cause of a 
physiological initial weight loss after birth. Rochow et al. proposed a reduction of 0.8 SDS in 
weight to postnatal day 7 followed by growth parallel to the Fenton growth chart. The 
recommendations of parenteral intakes from day 1 were lower in that study compared to the 
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most recent guidelines. In paper II, a reduction of 0.5 SDS in weight to postnatal day 7 is 
suggested with nutritional intakes per current guidelines. When determining appropriate 
growth trajectories in ELGA infants, the full potential of growth with improved nutritional 
provision the first postnatal week needs to be considered. 

The developmental origins of health and disease (DOHaD) hypothesis suggests that early 
exposures have effects throughout life. The theory originated in studies by Barker showing 
that low BW was related to cardiovascular disease in adult life.282, 283 Further studies have 
demonstrated that a high increase in body mass index during childhood also is an important 
predictor of later disease in low birth weight infants.284 Preterm infants are born during what 
is thought to be a critical period of susceptibility, the period before and soon after birth.  
Disproportionate growth with weight gain that exceeds growth in length during the neonatal 
period has been associated with increased proportion of body fat, waist circumference, and 
signs of impaired glucose homeostasis in preterm infants.285 It is unclear what significance 
the DOHaD hypothesis has for preterm infants and how this affects recommendations of 
growth and nutritional intakes. 

Postnatal growth restriction has been previously associated with ROP. Paper I demonstrates 
associations related to specific postnatal weeks. ELGA infants who developed ROP had 
significantly reduced growth rates during PMA 30 to 31 weeks, coinciding with the period of 
maximum growth rate and transition from growth restriction to catch-up growth. The 
initiation of catch-up growth in this period has also been associated with lower concentrations 
of IGF-I.73 In the studies that demonstrated an association between low energy intake and 
increased risk of severe ROP, mean energy intake the first 28 postnatal days was 
>10 kcal/kg/day lower compared to what we found (paper II).177, 193 Paper II showed that low 
energy intake on postnatal days 7 to 27 was associated with an increased risk of any stage of 
ROP in infants with fewer days of MV. There was no statistically significant association 
between higher energy intake on postnatal days 4 to 6 and BPD or ROP, although the results 
were towards an association between higher energy intake on postnatal days 4 to 6 and lower 
risk of severe ROP. 

The diagnosis of ROP is based on visualized differences in retinal vascularization, which 
makes comparisons between different stages of the disease possible. The diagnosis of BPD is 
less distinct and might not be a valid predictor of later pulmonary problems. Griffin et al. 
reported that severe ROP, NEC, and severe IVH (although not BPD) were associated with 
postnatal growth restriction.179 In a study of infants born in GA 25 to 30 weeks, Nyp et al. did 
not find any association between postnatal growth rates and BPD.180 In paper I, we examined 
growth as both growth rates and weight development stratified by GA. Our results were in 
line with previous studies, although we did report increasing differences in weight with 
increasing postnatal age. 

Experimental studies provide a rational for the association between increased nutrition and 
lower risk of BPD.196-198 Energy intake the first postnatal week was low compared to recent 
recommendations in both of the studies that previously demonstrated association between 
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low energy intake and increased risk of BPD.200, 201 Optimal use of protein depends on 
adequate provision of non-protein energy.58 As demonstrated in paper II, there was an 
association between higher energy and protein intake and reduced risk of BPD. This was 
significant during the later period with higher energy and protein intakes. A higher proportion 
of the infants who developed BPD had longer duration of MV during the later time period. 
The results indicate a positive effect of higher nutritional intake despite critical illness. 

No previous studies have demonstrated detailed descriptions of growth patterns stratified by 
GA, considering the associations between growth at each postnatal week and the risk of 
morbidities in preterm infants. In papers I and II, the complex associations between nutrition, 
growth, and organ development were investigated using statistical models made possible 
because of availability of data from a large number of ELGA infants. In paper I, we examined 
growth patterns and development of disease. In addition to nutritional intakes, restricted fluid 
intake, inflammatory processes, and increased energy expenditure are processes suggested to 
be associated with poor weight development in infants with BPD. Postnatal corticosteroids 
have also been suggested as a possible explanation for poor postnatal growth and use of 
steroids has been demonstrated to influence weight gain during treatment but not over a 
longer period.286 Several factors are likely to affect both growth and disease development and 
we were unable to differentiate how the associations were mediated. Irrespective of cause, the 
deviating growth patterns might serve as a marker for disease.  

Paper IV examined the effect of updated saturation target guidelines on achieved SpO2. Since 
two interventions were introduced at the same time, it is not possible to separate the effects of 
higher target range and tighter alarm limits on the results. The proportion of ROP has 
increased in some of the regions in Sweden after the introduction of new saturation targets.287 
Paper IV found no clear correlation between target group and proportions of ROP or 
mortality. Intermittent hypoxia, increased variability in oxygenation, as well as higher SpO2 

have been previously associated with an increased risk of ROP.231, 233, 252, 254, 255, 257, 288, 289 In 
relation to the NeOProM trials, the alteration in peripheral SpO2 as well as sample size in 
paper IV was limited, although Manley et al. demonstrated increased rate and severity of 
ROP after guideline update in a cohort of fewer ELGA infants.290 The intervention was 
similar to ours. Saturation target 88-92% with alarm limits of 86-94% was altered to 
saturation target 91-95% with alarm limits of 89–95%, and the adjusted OR for any stage of 
ROP with the new target was 3.7 (95% CI 1.3–10.4; p=0.012) among infants born before 28 
weeks of GA.290 

Papers III and IV illustrate the clinical results of the continuous work to improve neonatal 
care. A versatile effort is needed to ensure proper implementation and lasting adherence to 
guidelines. Since results from studies and trials do not always reflect the clinical reality, a 
critical mind and recurring discussions are also important elements of quality improvement. 
Clinical situations and local conditions might warrant deviations from guidelines. Efforts to 
facilitate adherence to guidelines and monitoring of results are important in the continuous 
development of neonatal care. 
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4.3 CLINICAL IMPLICATIONS & FUTURE PERSPECTIVES 

The results presented in this thesis demonstrate the significance of how neonatal care is 
provided. Optimized early nutrition improves the conditions for growth and development, 
reducing the risk of disease and increasing the chance of healthy growth and positive long-
term outcomes. By monitoring our performance, we increased the possibility to optimize how 
care is delivered to reduce the risk of severe complications in a high-risk population. The 
results also demonstrate that further improvement of neonatal care is achievable. 

The conditions in the neonatal care unit need to enable adherence to stipulated guidelines and 
facilitate implementation of new guidelines. Quality improvement is associated with 
management.291 An organization that provides a structure where quality improvement efforts 
make use of the capabilities in the organization, alongside the clinical work, facilitates 
implementation of new practice.292 Suitable tools to enable adherence to guidelines must also 
be available. Computerized systems provide an easy method to monitor performance and 
results.293 These need to be well integrated and easy to use.294 Limited manual administration 
results in more time with patients, and automated feedback can provide an easy to grasp 
visualization of the results, which increases awareness. Intelligent systems integrated in the 
health care systems might also offer warnings and support decision making. There is potential 
for improvement in development and implementation of technical interventions in the health 
sector.294  

Factors important for adherence to nutritional guidelines also include availability of suitable 
nutritional solutions and supplements. Standardized PN for preterm infants are now available. 
Administration from multiple compartments increases flexibility. This reduces potential 
problems due to fluid restriction, changed electrolyte requirements, and paused infusions due 
to administration of drugs.295 Areas with potential for further improvement include methods 
to better maintain the nutritional content in MOM and DM and development of supplements 
better adapted to the immature gut.296 Quality of lipids also influence preterm development 
and is an evolving area of research.297 

A phase 2 trial has been conducted and a phase 3 trial is planned to evaluate potential benefit 
of supplementation with the growth factor IGF-I to physiological intrauterine levels 
(ClinicalTrials.gov; NCT01096784). The aim is to reduce morbidity and improve growth in 
ELGA infants. Initial results did not demonstrate reduction in ROP or improved growth, but 
did demonstrate reduction in BPD and IVH.298 

More research is needed regarding specific periods of growth and interactions between 
growth factors, nutrition, and morbidities. Future studies should consider the interplay 
between risk factors such as nutrition and mechanical ventilation. In addition, it is important 
to study the specific needs of special populations. Infants at the lowest gestational ages as 
well as growth restricted infants might benefit from specific nutritional recommendations and 
saturation targets.299, 300 
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Several recent publications have focused on the development of neonatal growth 
charts.103, 114, 301 Many factors influence postnatal growth and need to be optimized in order to 
evaluate the potential for growth in preterm infants of different gestational ages. As suggested 
by the DOHaD hypothesis, pre- and postnatal growth influence the risk of metabolic and 
cardiovascular disease in adulthood. Body composition might prove to be a better 
determinant of long-term consequences.302 Consistency in methods and reporting is needed to 
facilitate comparisons and evaluation of aggregated evidence.278 

An interesting area of future research is the interplay between supplemental oxygen, oxygen 
transport, and development of ROP.230 Also in the development of BPD, previous 
experimental studies as well as new evidence and results in this thesis suggest that further 
evaluation of potential interactions between metabolism and oxygen toxicity in the 
development of disease is warranted.300 
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5 CONCLUSIONS 
This thesis demonstrates that higher nutritional intakes in the early postnatal period have the 
potential to improve growth and reduce morbidity in extremely preterm infants. The results 
show specific weeks of reduced growth rates in infants who developed ROP and demonstrate 
an association between higher nutrient intake and reduced risk of ROP and BPD. 
Furthermore, this thesis shows that infants only had SpO2 within target range half of the time, 
even if adherence improved with updated saturation targets 

Main findings: 

• ELGA infants without ROP had higher growth rates around PMA 30 weeks and 
increased weight gain compared to infants with ROP. 

• ELGA infants without BPD had increased weight gain compared to infants with BPD.  
• A higher energy intake was associated with reduced risk of ROP in infants with less 

days of MV during the first four postnatal weeks. 
• A higher energy intake and a combined higher energy and protein intake during the 

first four postnatal weeks were associated with reduced risk of BPD. 
• Higher energy and protein intake during the first postnatal week was associated with 

reduced initial growth restriction. 
• Energy and protein intake during the first four postnatal weeks increased in ELGA 

infants in Stockholm between 2004 and 2011. 
• Higher saturation target and tighter alarm limits were associated with higher mean 

SpO2, more time with hyperoxia, reduced variability, and less hypoxic episodes. 
• The proportion of time with SpO2 within target range increased from 30% to 51% 

with the new target and alarm limits. 
 

In conclusion, neonatal care practices can improve outcome for preterm infants. Although 
several changes have been successfully implemented, further improvements are desirable and 
achievable. 
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6 SVENSK SAMMANFATTNING 
En graviditet varar normalt i cirka 40 veckor. Ungefär 1% av alla barn i Sverige föds före 32 
fullgångna graviditetsveckor. För tidig födelse förändrar förutsättningarna för tillväxt och 
organutveckling, och risken för sjuklighet är mycket hög hos extremt för tidigt födda barn 
(födda före 28 fullgångna graviditetsveckor). Två sjukdomar som drabbar dessa barn är 
prematuritetsretinopati (ROP) och  bronkopulmonell dysplasi (BPD). ROP beror på störd 
utveckling av ögats näthinna och den allvarligaste formen kan leda till blindhet. BPD är en 
lungsjukdom som är förknippad med större risk för lungsjuklighet även senare i livet. Vissa 
studier har visat samband mellan näringsintag och risk för ROP respektive BPD, och 
riktlinjer för näringsintag har successivt uppdaterats de senaste årtiondena. I riktlinjer från 
2005 rekommenderades högre näringsintag med start tidigare efter födelsen jämfört med 
tidigare rekommendationer. Extremt för tidigt födda barn behöver ofta extra tillförd syrgas, 
men syrgasexponering ökar risken för ROP. För alla barn med extra tillförd syrgas 
specificeras ett målområde med övre och nedre gränser, inom vilka syremättnaden bör hållas. 
Vilket målområde som är optimalt är fortfarande oklart, men resultaten från fem 
randomiserade prövningar ligger till grund för det målområde som rekommenderas sedan 
2013. 

Syftet med denna avhandling är att studera faktorer inom neonatalvården som skulle kunna 
påverka risken att utveckla ROP och BPD, samt att undersöka given vård i förhållande till 
nya rekommendationer. Det övergripande målet med projektet är att förbättra neonatalvården 
för att minska risken för sjukdomsutveckling och förbättra långtidshälsan hos för tidigt födda 
barn. 

I studie I studerades skillnader i tillväxtmönster i en stor grupp barn födda före 31 fullgångna 
graviditetsveckor. Resultaten visade att extremt för tidigt födda barn med ROP och BPD hade 
mindre viktökning jämfört med barn utan sjukdom, och att tillväxtmönstret skiljde sig åt 
beroende på graviditetslängd och postnatal ålder. 

I studie II undersöktes om energi- och proteinintag den första veckan och månaden påverkade 
tillväxten och risken för ROP eller BPD. Detaljerade data om näringsintag, från barn födda i 
Stockholm 2004 till 2011 före 27 fullgångna graviditetsveckor, analyserades. Resultaten 
visade att högre intag av energi och protein var associerat med förbättrad viktutveckling 
under den första levnadsveckan. Ökat energiintag under levnadsdag 7 till 27 var förknippat 
med en minskad risk för ROP hos barn med färre än tio respiratordagar, men inte hos barn 
med fler respiratordagar. Ökat energi- och proteinintag under levnadsdag 7 till 27 var 
förknippat med en minskad risk för BPD hos barn födda åren 2008 till 2011, men inte 2004 
till 2007. 

Studie III visade att given näring till extremt för tidigt födda barn har ökat kontinuerligt under 
2004 till 2011. Under dessa år genomfördes flera insatser som syftade till förbättrat 
näringsintag. Riktlinjer för näringsintag uppdaterades vid ett par tillfällen dessa år. 2004 till 
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2009 hade de flesta barn ett lägre proteinintag de första levnadsdagarna än enligt de rådande 
rekommendationerna. 

I studie IV studerades barn med två olika målområden för syremättnad samt olika 
larmgränser. Värden på uppnådd syremättnad från barn födda före 31 fullgångna 
graviditetsveckor 2013 till 2015 analyserades. Med det nya målområdet 90–95%, och 
larmgräns 89–96%, var andelen tid spenderad med syremättnad inom de rekommenderade 
gränserna högre jämfört med det tidigare målområdet 88–92% och larmgräns 85–95%. 
Svängningarna i syremättnad minskade och tiden med syremättnad över 95% ökade med det 
högre målområdet. 

Sammanfattningsvis visar denna avhandling att dålig postnatal tillväxt är en markör för 
sjukdom, och att ökade tidiga näringsintag är associerat med minskad initial tillväxthämning 
och sjuklighet. Förbättrad näringsregim och ökat fokus på tillväxt kan förbättra utfallen för 
extremt för tidigt födda barn. Det är viktigt att övervaka följsamhet till riktlinjer och det finns 
utrymme för ytterligare förbättringar av neonatalvården. 
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