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ABSTRACT 
Accumulation of macrophages in the tumor microenvironment is associated to poor 

prognoses in most human cancers. Tumor-associated macrophages (TAMs) represent a 

heterogeneous and plastic population of cells that contribute to tumor growth, metastatic 

dissemination, angiogenesis, and immune suppression. Both recruitment of monocytes from 

the blood and in situ proliferation contribute to the accumulation of TAMs. During the 

course of tumor progression, the phenotype of the infiltrating TAMs is changing by 

influences from other cells, extracellular signal molecules and availability of oxygen and 

nutrients. Therapeutic targeting of TAMs as a monotherapy has limited success, however, 

experimental studies show promising results when selectively depleting specific subsets of 

TAMs or changing the function of the TAM population. Yet, the mechanisms whereby 

macrophage phenotypes are regulated during tumor growth are still largely unknown.  

 

In this thesis, we investigated mechanisms underlying the dynamic changes in the TAM 

population observed during tumor growth. In our first study, overexpression of semaphorin 

3A induced the proliferation of anti-tumoral macrophages and at the same time reduced the 

proliferation of pro-tumoral TAMs resulting in accumulation and activation of CD8+ T-cells 

and NK-cells and restricted tumor growth. In study II, we identified translational regulation 

of gene expression as an important mechanism regulating the TAM phenotype during 

tumor growth. By selective inhibition of translational activation, pro-tumoral macrophages 

were skewed towards an anti-tumoral phenotype. In the third study, we demonstrated a 

functional difference between macrophages of different ontogeny in a mouse model of 

glioblastoma. M2-polarized microglia, but not bone-marrow derived macrophages induced 

the expression of platelet-derived growth factor receptor B (PDGFRB) in glioma cells, 

enhancing their migratory capacity. In study IV, we showed that Zoledronic acid in 

combination with interleukin-2 induced the expression of interferon-g by monocytes 

leading to an up-regulation of TNF-related apoptosis-inducing ligand (TRAIL) on NK-

cells, inducing their cytotoxicity against tumor cells. 

 

In summary, we describe several mechanisms whereby the TAM phenotype may be 

regulated i.e translational control of gene expression, regulation of proliferation and 

ontogeny.   
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1 GENERAL BACKGROUND 

1.1 CANCER 

Cancer is one of the leading causes of morbidity and mortality worldwide, and accounted 

for 8.8 million deaths in 2015 (3). The disease is characterized by abnormal cell growth, 

ability to invade surrounding tissues and spread to distant sites. The transformation of 

normal cells to cancer cells is a multistep process where the cells acquire capabilities to 

proliferate, survive and disseminate. In the review “Hallmarks of cancer: The next 

generation” Hanahan and Weinberg propose 10 hallmarks that drive tumorigenesis (Figure 

1). Importantly, those hallmarks do not only involve the tumor-cells themselves, but also 

tumor-associated stromal cells, including immune cells, as active participants in 

tumorigenesis (2).  

1.2 TUMOR MICROENVIRONMENT  

The development and progression of tumors is supported by a heterogeneous population of 

stromal cells and secreted factors. The tumor’s ability to avoid immune destruction, induce 

angiogenesis and promote inflammation are all hallmarks of tumor development.  

Tumor angiogenesis 
Growing tumors induce angiogenesis for an adequate blood supply to satisfy their demand 

of oxygen and nutrients, as well as removing carbon dioxide and metabolic waste. The 

“angiogenic switch”, where the local balance of pro-angiogenic and anti-angiogenic factors 

Figure 1. Hallmarks of cancer. Adopted and modified from (2). 
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tilts towards a pro-angiogenic outcome, typically occurs when tumors reach the size of 

1mm3 (4) and involves infiltration of myeloid cells (5, 6). At this point, new blood vessels 

develop from the pre-existing vasculature. Environmental stress, such as hypoxia, glucose 

deprivation or formation of reactive oxygen species (ROS) induces the production of pro-

angiogenic factors, in particular vascular endothelial growth factor (VEGF)-A. This factor 

is secreted from both the tumor cells themselves and from tumor-infiltrating inflammatory 

cells (7). In addition, activation of oncogenes or the loss of the function of tumor suppressor 

genes can also induce the production of pro-angiogenic factors (8). The overexpression of 

pro-angiogenic factors creates an abnormal vasculature that displays features of 

discontinuous endothelial cell lining, defective basement membrane and pericyte coverage. 

The disorganized vascular network has increased vessel leakage and poor perfusion 

resulting in poor oxygenation of the tumor (7). "Normalization" of the abnormal structure 

and function of tumor vasculature to make it more efficient for oxygen and drug delivery 

therefore represents an attractive anti-cancer strategy (9).  

Tumor immunity 
It is thought that the initial immune response to an early neoplasm mirrors the response to 

acute tissue injury where inflammatory cells respond to disruption of tissue homeostasis. 

Locally secreted soluble factors recruit additional inflammatory cells from the circulation. 

If the immune cells do not eradicate the early neoplasm, the local microenvironment will be 

altered, and a state of chronic inflammation that fosters cancer development is established 

in the tissue (10). However, following tumor initiation, the pro-inflammatory milieu is 

progressively reversed to silence the immunity against cancer cells. Tumors typically 

recruit a set of immune regulatory and suppressive cells including CD4+ regulatory T cells, 

myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). 

The recruited immune cells, together with the tumor cells themselves, secret anti-

inflammatory factors including transforming growth factor (TGF)-β, and interleukin (IL)-

10 that negatively regulate the activity of cytotoxic cells i.e. natural killer (NK) cells and 

CD8+ T cells, thereby supporting tumor growth.  
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1.3 mRNA ABUNDANCE AND RNA TRANSLATIONAL REGULATION 
Cell phenotypes largely arise via distinct patterns of gene expression. Measurements of the 

abundance of messenger RNA (mRNA) is often used to describe gene expression, however, 

the direct correlation to protein levels are often poor (11). The final expression of the 

protein is regulated at several post-transcriptional steps including splicing, export of 

mRNAs to the cytosol, regulation of the translation of mRNA, and post-translational 

regulations such as protein degradation. The relative contribution of transcriptional, 

translational and post-translational regulation remains unknown and will probably depend 

on the time from stimulation as well as the cell-type and its context. Dynamic regulation of 

mRNA translation is central for the immune system (12), cell proliferation (13), and 

diseases including fibrosis (14) and cancer (13). Under these contexts, mRNA translation is 

selectively modulated to alter the synthesis of subsets of proteins, despite of constant 

mRNA levels. 

 

Figure 2. Initiation and regulation of mRNA translation. (A) Translational initiation is a multistep pathway 
where the two subunits of the ribosome assemble near the 5’ end of the mRNA. Several eIFs are involved in 
the initiation process and much of the regulation is controlled via the activity of eIF4E. (B) eIF4E is regulated 
by two distinct pathways; activation of the mTOR pathway induces the release of eIF4E from 4E-BPs making 
it available for initiating translation. In the second pathway, the kinases MNK1 and MNK2 are activated in 
response to mitogens and phosphorylate eIF4E to increase its activity. 
 
 

B A 
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Translation can be separated into four steps: initiation, elongation, termination and 

ribosome recycling, where most of the regulation occurs at the initiation step (15). 

Translational initiation is a multistep pathway where the 80S ribosome is assembled at the 

start codon near the 5’end of the mRNA (Figure 2A). The small 40S ribosomal subunit 

loaded with the anticodon of methionyl initiator transfer RNA (Met-tRNAi) and eukaryotic 

initiation factors (eIFs) including eIF1, 1A, 2, 3 and 5 form the pre-initiation complex (PIC) 

(16). PIC is recruited to the m7G cap structures at the mRNA by the cap-binding factor 

eIF4E and its partners, eIF4G and eIF4A, in the eIF4F complex. The large (60S) ribosome 

subunit joins to form an 80S initiation complex and a protein can be synthesized (16).  

 

The rate limiting step in initiation of translation involves recruitment of PIC to the 5’cap 

structure of the mRNA (16). eIF4E directs the ribosomes to the cap structure and is 

therefore essential in translational regulation. eIF4E activity can be regulated by two 

distinct mechanisms i.e via mTOR signaling or direct phosphorylation by mitogen-activated 

protein kinase (MAPK) interacting protein kinase (MNK) 1 and 2 (Figure 2B). The first 

pathway involves mTOR phosphorylation of 4E binding proteins (4E-BPs) leading to their 

dissociation from eIF4E enabling assembly of the eIF4F complex. The mTOR pathway 

may be activated by several factors including growth factors and hormones but can also be 

inhibited by hypoxia (17). In the second mechanism, eIF4E activity is modulated via direct 

phosphorylation of Ser209. MNK1 and MNK2 are the sole known kinases to phosphorylate 

eIF4E in mice (18). MNK2 accounts for constitutive phosphorylation, and MNK1 is 

regulated by signaling cascades of the MAPKs p38 and ERK in response to mitogens (19). 

In addition to regulation of eIF4E, translation may also be regulated by the activity of other 

eIFs and other RNA-binding proteins (12).  

  

2 TUMOR-ASSOCIATED MACROPHAGES 
 

Macrophages are found in all tissues and populate the microenvironment of most cancers 

(20). For instance, in breast cancer, macrophages can represent more than 50% of the tumor 

mass (21). Cells from the monocyte-macrophage lineage are highly plastic, and even 

though macrophages from non-pathological tissues possess anti-tumoral activities, most 

TAMs lack these properties. Furthermore, an increased density of macrophages correlates 

with poor prognoses in most human cancers (22). TAMs contribute to a local immune-

suppression, facilitate angiogenesis, invasion, and metastasis by direct interactions and by 
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supply of bioactive molecules to the tumor microenvironment (23). Although the 

infiltration of macrophages is well established as a contributor to tumor development, the 

mechanisms for the dynamic change of the population during tumor growth is not well 

understood. 

2.1 MACROPHAGE ORIGIN AND MAINTENANCE DURING HOMEOSTASIS 

During development, first the yolk sac, and later hematopoiesis from the fetal liver gives 

rise to macrophages. After birth, the hematopoiesis from the liver is replaced by bone 

marrow (BM) hematopoiesis that together with local proliferation of tissue resident 

macrophages maintain homeostasis during adulthood. Although all tissues are populated by 

fetal macrophages at birth, each organ dictates the degree to which circulating monocytes 

replace resident macrophages under homeostasis (24). The degree of replacement spans 

from no replacement to that all macrophages are replaced a few months after birth. For 

example, in the brain, all macrophages, called microglia, are derived from yolk sack 

progenitors (25) and the maintenance during homeostasis is thought to occur through 

prolonged cellular longevity and local proliferation (26). In contrast, organs such as the 

intestine and the dermis have a fast replacement of the embryonic-derived macrophages by 

recruited BM-derived monocytes that are differentiated into macrophages within the tissue 

(27, 28).  

2.2 TAM PHENOTYPES 

M1- and M2 macrophages 
TAMs consist of a heterogeneous population of macrophages that can generally be 

classified into two extremes: anti-tumoral M1-macrophages and pro-tumoral M2-

macrophages. M1-macrophages, also called classically activated macrophages, are pro-

inflammatory and anti-tumoral. Macrophages exposed to interferon (IFN)-γ, for instance 

from TH1 T-cells (29), or lipopolysaccharides (LPS) typically become M1-like (30). On the 

other hand, macrophages exposed to the TH2 cytokines IL-4 (31) and IL-13 (32) become 

M2- or alternatively activated macrophages that are anti-inflammatory, pro-angiogenic and 

pro-tumoral. Other factors such as B cell-mediated activation of Fcg receptors (FcgR) 

expressed on TAMs (33) and hypoxia (34) also skews or fine-tunes the M2-macrophage 

phenotype.  

 

Of note, the classification of macrophages into M1- and M2-phenotypes is a simplification 

of the in vivo situation. The microenvironment is often complex and numerous cytokines, 
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growth factors and physiological conditions interact with the macrophages to define their 

final differentiated state. The scientific community have attempted to agree on a unified 

definition and nomenclature around macrophage subtypes and most researchers agree to 

that one need to investigate the phenotype of macrophages in several ways such as cytokine 

gene expression, surface markers and function. For instance, Murray et al (30) describe a 

set of standards including three principles to describe macrophage activation; these are the 

source of the macrophage, definition of the activators, and a consensus collection of 

markers (30). Typical markers for murine M1-macrophages include the expression of pro-

inflammatory cytokines and chemokines including tumor necrosis factor (TNF)-a, IL-12a, 

IFN-g and chemokine (C-X-C motif) ligands (CXCL) 9 and 10 (30) and cell surface 

markers such as CD11c+mannose receptor C-type (MRC) 1low/- (35) or high levels of major 

histocompatibility complex (MHC) class II (36). M2-macrophages typically have high cell 

surface expression of the scavenger receptor MRC1 (35), and low levels of MHC class II 

(36), and express anti-inflammatory cytokines such as IL-10 (30).  

TAM phenotypes during tumor growth 
During the course of tumor growth, the tumor microenvironment is dynamically changing 

in regard to the composition of cells, extracellular signal molecules and availability of 

oxygen and nutrients, factors that are all contributing to the phenotype of TAMs (Figure 4). 

In fact, single cell sequencing analyses from our lab (unpublished data) showed that based 

on transcription only, the TAMs can be divided into nine different subgroups that are 

dynamically changed during tumor growth (Figure 3). Knowing that the transcriptional 

pattern is only a part of what defines the phenotype, we believe that these 9 subgroups are 

only a fraction of the existing subtypes.  

Figure 3. Single cell RNAseq reveals dynamic changes in macrophage subsets during tumor growth. 
(A) Genes with the most variable expression across single macrophages isolated from small (S), medium (M) 
or large (L) tumors were used to identify 9 macrophage subsets (indicated by colors). (B) The proportion of 
macrophages from each subset varied depending on the size of the tumor (colors correspond to subsets in 
(A)).  
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During tumor initiation, inflammatory macrophages contribute to chronic inflammation by 

the production of cytotoxic molecules such as reactive oxygen intermediates that create 

tissue and DNA damage contributing transformation of cells (37). Further, production of 

inflammatory cytokines like TNF-a and IL-1 provide the transformed cells with pro-

survival signals supporting tumorigenesis (38).  

 

During the course of tumor progression, TAMs are accumulating in tumors by recruitment 

and/or in situ proliferation (described below) (39). The accumulated TAMs are subjected to 

differential challenges depending on their location within the tumor, and their phenotype 

will differ accordingly. For instance, in endometrial cancer, the accumulation of TAMs in 

different histological areas (i.e areas with high density of cancer cells, necrotic areas and 

the stroma) correlates to differential outcome in the patients. Hence, accumulation of TAMs 

in cancer cell nests or in close contact with cancer cells correlates to a high relapse-free 

survival rate after surgery, whereas accumulation of TAMs in necrotic areas correlates to 

disease progression and finally infiltration of TAMs in the stroma correlates to lymph node 

metastasis (40).  In sum, these data indicate that the function of TAMs may be influenced 

by the particular microenvironment in which they reside. In corroboration, TAMs are often 

found in poorly vascularized areas of tumors and hypoxia is suggested to influence the 

phenotype of TAMs (Figure 4). Hypoxia induces an upregulation of transcription factors 

including hypoxia-inducible factors (HIFs) 1 and 2 (41, 42) that regulate the expression of a 

broad array of genes. In vitro, human monocyte-derived macrophages subjected to hypoxia 

display an up-regulation of a wide panel of pro-tumoral genes such as VEGF-A, TNF-a 

and Angiopoietin-2, which supports tumor growth (43). By using prolylhydroxylase 

domain (PHD) 2-haplodeficient mice that have better vascularized tumors, Laoui et al 

studied the effect of hypoxia on TAMs in mouse lung carcinoma. Interestingly, the relative 

abundance of MHC class IIlow (M2-like) and MHC class IIhigh (M1-like) macrophages do not 

change with reduced tumor hypoxia. Instead, the expression of hypoxia-sensitive genes and 

the angiogenic activity of MHC class IIlow TAMs were lowered suggesting that hypoxia 

does not drive the differentiation of TAMs but rather fine-tunes the M2-like TAM 

population (44). However, in glioma, hypoxia is found to promote the recruitment of 

macrophages as well as polarize them toward an M2-phenotype (45). Hence, hypoxia in 

different tumor types may dictate the TAM phenotype differently.  
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In addition to being subjected to hypoxia, macrophages also receive signals from various 

cells in tumor (Figure 4). For example, Colegio and co-authors identify lactic acid as a link 

of communication between tumor cells and TAMs. Lactic acid induces the expression of 

the M2-markers vegf and arginase1 in TAMs via the same mechanism as hypoxia, i.e. 

stabilization of HIF-1a (46). Another example is IL-4, one of the classical drivers of M2-

polarization, which is secreted by both tumor cells and TH2 polarized CD4+ cells (31, 47). 

In pancreatic tumors, IL-4 is mainly secreted by tumor cells and induce the activity of 

cathepsin protease in TAMs, promoting pancreatic tumor growth, angiogenesis, and 

invasion in vivo (47). In concordance, in a spontaneous mouse model of mammary 

adenocarcinoma, where expression of the oncoprotein, polyoma middle T (PyMT) antigen 

from mouse polyoma virus, is under the control of the mouse mammary tumor virus 

(MMTV) promoter, IL-4 secreted by CD4+ T effector lymphocytes skews TAMs towards 

an M2-phenotype and thereby promotes carcinoma invasion (31). Additionally, B cells can 

influence the activity of TAMs. In fact, macrophages deficient in FcgR display an up-

regulation of classical M1-genes whereas M2-genes are downregulated, and co-

Figure 4. TAM accumulation and polarization. TAMs accumulate at the tumor site via recruitment 
and/or proliferation. Their phenotype is dependent on signals they receive from the local 
microenvironment they reside in. Figure is adapted and modified from (1)   
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transplantation of squamous cell carcinoma PDSC5 cells with BM-derived FcRγ−/− 

macrophages does not only fail to promote tumor development, but also impedes tumor 

growth (33). 

TAM recruitment during tumor progression 
During tumor development, stromal and tumor cells produce monocyte chemoattractants 

such as chemokine (C-C motif) ligand (CCL) 2 and colony stimulating factor (CSF)-1, that 

recruit monocytes derived from the BM from the bloodstream to the peripheral tissue where 

they differentiate into macrophages (20). 

 

Murine monocytes are typically divided into two subsets based on their expression of 

Ly6C. Ly6Clow monocytes (also called “resident” or “non-classical”) have a low expression 

of the chemokine (C-C motif) receptor (CCR) 2, and a high expression of CX3C chemokine 

receptor 1 (CX3CR1) (48). These cells have reparative properties and patrol the 

vasculature. In fact, Ly6Clow monocytes are shown to maintain the integrity of the 

vasculature by cleaning damaged endothelial cells (49). In contrast, “Classical” or 

“Inflammatory” Ly6Chigh monocytes that are CCR2highCX3CR1low migrate to extravascular 

tissues and are recruited to sites of inflammation (48). Once in the tissue, Ly6Chigh 

monocytes can differentiate to Ly6Clow cells and take on many of their characteristics. For 

instance, in myocardial infection, Ly6Chigh monocytes infiltrate the infarcted myocardium to 

participate in inflammation. However, later during the reparative phase of the myocardial 

infection, Ly6Chigh monocytes are the pre-cursors for F4/80highLy6Clow macrophages that 

contribute to collagen deposition and scar formation (50). In cancer, in a model of 

mammary adenocarcinoma, Ly6Chigh and Ly6Clow monocytes in the blood were selectively 

labeled with fluorescent latex beads and the authors could conclude that Ly6Chigh 

monocytes are recruited to the tumor where they differentiate to Ly6Clow TAMs, including 

both M1-like MHC class IIhigh and M2-like MHC class IIlow TAMs (51). 

In situ proliferation of TAMs 
Until recently, it was believed that the majority of macrophages involved in inflammation, 

infection or during tumor progression arise from recruited BM-derived monocytes. 

However, current evidence implies that in situ proliferation of macrophages is of great 

importance during inflammatory conditions. For example, in obesity, an important 

mechanism whereby macrophages accumulate within the visceral adipose tissue is CCL2 

driven in situ proliferation (52). Collected evidence suggests that both freshly recruited 

BM-derived macrophage (BMDM) (53) and tissue-resident macrophages of embryonic 
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origin (39) are capable of undergoing local proliferation under certain inflammatory 

conditions. For example, in atherosclerosis, BMDM proliferation rather than recruitment is 

a key event for the renewal of macrophages (53).  
 

Examples of selective proliferation of specific macrophage phenotypes that dictate the 

overall composition of the macrophage population are emerging in the literature. For 

instance, in a model of rodent filarial nematode Litomosoides sigmodontis, the expansion of 

anti-inflammatory macrophages is mediated by an overall TH2-inflammatory response and 

dependent on IL-4 increasing the local proliferation of M2-macrophages (54). In the field 

of cancer, a recent publication by Zhu et al investigate the origin of the expanded TAM 

population in pancreatic ductal adenocarcinoma (PDAC) models. By creating 

CD45.1/CD45.2 chimeric mice by surgical parabiosis or BM transplants, the authors find 

that both blood monocytes and tissue-resident macrophages contribute to the expanded 

macrophage population during tumor progression. In fact, tissue-resident macrophages of 

embryonic origin are expanding by in situ proliferation during tumor progression and serve 

as a source of TAMs. Interestingly, TAMs derived from different origins demonstrate 

distinct phenotypes and divergent functionality. Donor-derived monocytes seem to mainly 

contribute to the expansion of MHC class IIhigh M1-like TAMs whereas the host derived 

macrophages preferentially, but not exclusively, are MHC class IIlow macrophages that are 

more potent drivers of PDAC progression than their monocyte-derived counterparts (39). 

Another study that investigates the selective proliferation of specific macrophage subtypes 

comes from Franklin et al (55). Interestingly, in concordance to the study from Zhu et al, 

Franklin and co-authors identify in situ proliferation as a mechanism of TAM accumulation 

during tumor growth. However, in contrast to what was found in PDAC models, the 

proliferating macrophages in the MMTV-PyMT model are derived from recruited CCR2 

expressing monocytes (55).  

2.3 TAM FUNCTIONS 

Angiogenesis 
In response to hypoxia exposure and other microenvironmental signals, TAMs release a 

number of potent pro-angiogenic cytokines and growth factors (22) such as VEGF, TNF-α, 

IL-8 and basic fibroblast growth factor (bFGF). Additionally, macrophages can produce 

angiogenesis-modulating enzymes and inhibitors, which regulate the digestion of the 

extracellular matrix, including matrix metalloproteinases (MMPs), plasmin, urokinasetype 

plasminogen activator (uPA) and the uPA receptor (56). TAMs therefore play an important 
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part in regulating angiogenesis (57) and are often found to surround the blood vessels (22). 

The many pro-angiogenic functions of TAMs may help explain reported correlations 

between increased numbers of TAMs and high vessel density and poor prognoses of many 

tumor types (57). 

 

Experimental evidence for the role of TAMs in tumor angiogenesis is reported by Lin and 

colleagues using the MMTV-PyMT spontaneous mouse model of mammary 

adenocarcinoma (6). In CSF-1-null mutant mice, where the infiltration of macrophages to 

the tumor is inhibited, the development of the vasculature network is impaired. Tumors also 

display depleted VEGF in the stromal cells suggesting that this is a significant reason of 

impaired angiogenesis. Restoration of macrophage numbers in the tumors of CSF-1-null 

mutant mice by transgenic expression of CSF-1, specifically in the mammary epithelium, 

results in increased vessel density (6). Interestingly, De Palma identified a subset of 

monocytes that express the Tie2 receptor, Tie2-expressing monocytes (TEMs), that are 

highly pro-angiogenic and are located in proximity of tumor vessels. In fact, in the absence 

of TEMs, angiogenesis is severely hampered (58).  

Invasion and metastasis 
In addition to induced vessel density, high numbers of TAMs also correlate with increased 

metastatic dissemination to distant sites in many tumor types (22). In animal studies, tumor 

progression is inhibited and the number of metastasis is decreased when inhibiting the 

infiltration of macrophages into tumors by neutralizing antibodies or genetic alterations (22, 

59). In PyMT-induced mammary tumors, macrophages are found in areas of basement 

membrane breakdown and invasion during the development of early-stage lesions (60). 

This finding led to the model that macrophages promote migration of tumor cells out from 

the primary tumor through holes in the basement membranes, creating an invasive 

microenvironment that gives tumor cells access to the vasculature, and thereby, increases 

their metastatic capacity (21). Indeed, experimental studies demonstrate that TAMs 

contribute to induced vascular abnormalization, creating leaky vessels that contributes to 

enhanced tumor cell intravasation. For instance, VEGF-A signaling from perivascular 

TEMs causes local loss of vascular junctions, transient vascular permeability, and tumor 

cell intravasation (61) Thus, macrophage depletion or M2-macrophage polarization towards 

an M1 angiostatic phenotype normalizes the vessel wall and increases pericyte coverage 

leading to prevention of tumor cell intravasation and metastatic dissemination (59). 
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Several studies indicate that the intravasation of tumor cells into the circulation requires a 

close interaction with TAMs. Goswami et al (62) report that the production of CSF-1 by 

tumor cells stimulate macrophages to migrate and to produce epidermal growth factor 

(EGF), which in turn activates migration of the tumor cells. Blockade of EGF or CSF-1 

signaling results in inhibited migration of both macrophages and tumor cells (62). Further, 

the communication between these cells is also demonstrated by in vivo multiphoton 

microscopy, where Wyckoff et al (63) observe an increased number of metastasis when 

mammary tumor cells are located close to TAMs.  

 

In glioma, microglia induce the migration and invasive properties of glioma cells. In vitro, 

glioma cell exposure to microglia increase their migratory capacity threefold (64). Several 

microglia-derived factors, including TGF-β (65), IL-6 (66), and EGF (67) are identified as 

promoters of glioma cell invasion. 

 

Evidence suggests that macrophages also play an important role during the seeding of 

extravasated tumor cells at distant sites. Clinical observations correlate the number of 

macrophages associated with metastasis in the lymph nodes with poor survival (68). In 

addition, depletion of macrophages in the peritoneum reduce the ability of carcinoma cells 

injected to the circulation to seed and grow in the lung (69).  

Immune suppression 
In acute inflammation, pro-inflammatory macrophages stimulate the cytotoxic activity of T-

cells and NK-cells. In the tumor microenvironment, TAMs normally lack these activities 

(57). TAMs express cell surface receptors, and secrete cytokines, chemokines and enzymes 

important for the suppression of effector cells and recruitment and activation of T 

regulatory cells in the tumor microenvironment. For instance, the immune suppressive 

programmed death-ligand 1 (PD-L1) is reported to be expressed by TAMs in high grade 

serous ovarian carcinoma (70). In addition, TAMs also express programmed cell death-1 

(PD-1), and the expression is negatively correlated with phagocytic potency against tumor 

cells (71). Immunosuppressive factors secreted by TAMs include CCL22, IL-10, and TGF-

β. CCL22 is reported to promote recruitment of T regulatory cells into cancer tissue (72). 

These cells suppress immune surveillance through multiple mechanisms including 

suppression of anti-tumoral cytotoxic CD8+ T cell and/or NK-cell activity.  
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Data from our lab show that skewing the balance from an anti- to a pro-inflammatory 

phenotype of TAMs induce the accumulation and activation of CD8+ T-cells and NK-cells 

that in turn restricts tumor growth (36).   

 

3 TRANSLATIONAL REGULATION IN THE IMMUNE 
SYSTEM WITH A FOCUS ON MACROPHAGES 

 

It is essential for cells from the immune system to respond specific and rapid to changes in 

their environment, and the mechanisms controlling their activity need to be tightly 

regulated. Regulation of translation of already existing mRNAs allows a rapid change in 

protein abundance. An important mechanism for translational control in the immune system 

is regulation of the activity of eIF4E (Figure 2B). For example, the mTOR pathway 

regulates translation of mRNAs encoding the transcription factors interferon regulatory 

factor (IRF) 7 (73), GATA-3 (74), and the cytokine IL-4 (75), that all play central roles in 

immunology. The second mechanism whereby eIF4E activity can be modulated is via 

phosphorylation by MNK1 and MNK2. This pathway regulates the translation of mRNA 

transcripts encoding IRF8 (76), the NF-kB inhibitor NFKBIA (IkBa) (77) and the 

chemokine CCL5 (78), all controlling the activity of transcription factors regulating 

immunological functions. 

 

Mouse embryonic fibroblasts (MEFs) lacking either the translational repressors 4E-BP1/2 

that binds eIF4E or the ability to phosphorylate eIF4E show enhanced resistance to viral 

infections due to translational control of key immune regulators involved in the production 

of type-1 IFNs (IFN-a and IFN-b). Activation of the NF-kB pathway, with downstream 

targets including TNF and IFN-b1, is a central pathway in innate immunity. As a regulatory 

mechanism, NF-kB activation does not only result in activation of a pro-inflammatory 

program, but also in a negative feedback loop to resolve inflammation, including increased 

expression of the inhibitor IkBa. By using MEFs lacking functional eIF4e phosphorylation 

Herdy et al show that the observed increased resistance to viral infections is due to 

translational control of IkBa via the MNK-eIF4e pathway (77). MEFs lacking functional 

eIF4e phosphorylation display a lower abundance of IkBa and thereby enhanced activity of 

the transcription factor NF-kB, which promote the production of IFN-b (77). In MEFs 

lacking 4E-BPs, translational control of the master regulator of IFN type 1, IRF7, accounts 

for the increased viral resistance. MEFs missing 4E-BPs, display a 12-fold upregulation of 
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IRF7 compared to wild type MEFs, leading to enhanced type-I IFN production and 

subsequent enhanced resistance to viral infections (73).  

 

A few studies investigate specific translational control in macrophages during inflammation 

and increased translation of selected cytokine-, chemokine- and transcription factor-

mRNAs is observed after toll-like receptor (TLR) stimulation. To study translation in an 

early phase of macrophage response, Schott et al use mouse macrophages stimulated with 

LPS, that activates the TLR4 receptor and induces numerous inflammatory pathways in 

macrophages including activation of the NF-kB pathway. In concordance with data from 

viral infected MEFs, LPS stimulation induce translational activation of many feedback 

inhibitors of the inflammatory response including NF-kB inhibitors (79). The notch–RBP-J 

pathway is shown to up-regulate the translation of IRF8 that induce downstream M1-

associated genes through augmenting TLR4 activated MAPK-MNK1-eIF4E signaling and 

thereby regulate the polarization of M1-macrophages (76). Additionally, LPS dependent 

TLR4 activation abrogates translational repression by heterogeneous nuclear 

ribonucleoprotein (hnRNP) on transforming growth factor beta-activated kinase (TAK) 1, 

and thereby allows TAK1 to boost macrophage inflammatory response (80). Another 

example of a cytokine that can be regulated via translational control in macrophages is 

TNF. A RNA binding protein named TIA-1 binds the 3’UTR of the TNF mRNA transcript 

and thereby inhibits its translation (81).  

 

In human macrophages, Su et al demonstrate that IFN-g selectively modulate the 

macrophage translatome to promote inflammation. Genome-wide analysis of translational 

regulation by IFN-g after TLR2 stimulation demonstrated significant changes in 

translational efficiency in almost 1,000 genes, of which 396 were affected greater than 

twofold. The changes are bidirectional; IFN-γ increases and decreases the translational 

efficiency of a similar numbers of genes. Ingenuity pathway analysis (IPA) of canonical 

pathways display significant translational regulation of well-known IFN-γ–mediated 

pathways important in immune responses such as antigen presentation (82). 

 

For cells in the tumor microenvironment, the impact of translational control has not been 

well studied. However, a recently published paper demonstrates the importance of 

translational regulation in immune cells in the tumor microenvironment in a mouse 

mammary carcinoma model (83). By inoculating wild type tumor cells into a mouse where 

the phosphorylation site S209 of eIF4E is mutated, they demonstrate that the development 
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of lung metastasis is dependent on phosphorylation of eIF4E in cells from the tumor 

microenvironment. In fact, phosphorylation of eIF4E regulates the accumulation and 

survival of intratumoral pro-metastatic neutrophils that promotes pulmonary metastases 

(83).  

 

4 THERAPEUTIC IMPLICATIONS 
 

The establishment of the contribution of macrophages to tumor progression, and the fact 

that macrophages do not harbor malignant mutations and thus are much less likely to 

develop drug resistance, makes them a good target for therapeutic agents (84). Inhibition of 

monocyte recruitment into the tumor, eradication of macrophages already in the tumor, 

neutralization of key molecules that TAMs release (22) and preventing and/or re-orienting 

M2-like TAMs in favor of a more anti-tumoral phenotype (59) are some strategies for 

therapeutic targeting of TAMs.  

 

The CSF-1/CSF-1R pathway plays a crucial role in recruiting macrophages to the tumor 

site that are involved in the angiogenic switch and metastatic dissemination (60, 84).  

Several strategies to block this pathway the with neutralizing antibodies or small molecules 

have been developed. For instance, in humans, depletion of TAMs by administration of the 

monoclonal antibody RG7155, which targets the CSF-1R, improve clinical outcome in 

patients with diffuse giant sarcoma (85). In a mouse model of proneural glioblastoma 

multiforme (GBM), CSF-1R inhibition blocks tumor growth, regresses established GBMs 

and dramatically increases survival (86). Interestingly, glioma-secreted factors (including 

IFN-g and GM-CSF) facilitated survival of a subset of TAMs with decreased expression of 

M2-genes, a signature associated with enhanced survival in patients with proneural GBM 

(86). In concordance, in lung and breast carcinoma, Van Overmeire and colleagues show 

that following CSF-1R blockade, Ly6Chigh monocytes preferably differentiated to a MCH 

class IIhigh M1-like phenotype, thereby promoting a shift towards a predominant M1-like 

TAM accumulation in tumors (87).  

 
However, the currently available literature on TAM depletion/modulation via CSF-1/CSF-

1R pathway blockade suggests that monotherapy will not be sufficient for cancer therapy. 

Today, the therapeutic benefits have as its best only resulted in a delay of tumor growth. 

Therefore, various combination partners for macrophage depleting agents are currently 



 

16 

under investigation. In pre-clinical models, well-established treatments such as 

chemotherapeutic agents (88) and irradiation (89) but also targeted therapies (90), anti-

angiogenic therapies (91), adoptive T cell transfer (92) and immune checkpoint inhibitors 

(93) have been evaluated as possible combination partners. For example, administration of 

PLX3397 (a small molecule that targets the CSF-1R) to the spontaneous mouse mammary 

carcinoma model MMTV-PyMT, does not have an effect as a monotherapy. Nonetheless, in 

combination with the chemotherapeutic agent paclitaxel, PLX3397 treatment results in an 

efficient anti-tumoral response associated with an increased accumulation of cytotoxic T 

lymphocytes (CTLs) (88). 

 

Several experimental studies demonstrate the possibility to skew the phenotype or 

selectively change the composition of TAMs of different subtypes. For instance, antibody 

targeting of the pattern recognition scavenger receptor MARCO, re-programs a subset of 

immunosuppressive TAMs via FcgRIIb to become of a more pro-inflammatory phenotype 

(94). Moreover, Rolny et al show that re-education of TAMs towards an anti-tumoral 

phenotype efficiently hampered mammary tumor growth by sustaining the activity of CTLs 

and NK-cells (59). Similarly, changing the ratio of M1- and M2-macrophages in the tumor 

by inducing differential proliferation with semaphorin (SEMA) 3A is shown to give similar 

outcome (36).  

 

In conclusion, current immunotherapies towards the macrophage/monocyte linages show 

limited success and modulating the function of the existing pool of TAMs is suggested to 

be a more successful strategy than depleting the whole population. However, in order to do 

this, a more detailed insight into how TAMs are regulated is needed to identify new 

opportunities for therapeutic intervention. 
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5 AIMS OF THE THESIS 
 

The overall aim of this thesis is to increase the knowledge about how the composition and 

function of macrophages within the tumor is dynamically changing during tumor growth. 

Understanding the mechanisms that dictate the dynamic change will help us develop tools 

and find targets to re-educate or change the composition of TAMs to favor the anti-tumoral 

phenotype and create a pro-inflammatory microenvironment to inhibit tumor growth.  

 

Specific aims of the studies included in this thesis: 

 

Study I: To explore the effect of SEMA3A on accumulation and activity of tumor-

associated immune cells in mouse and human breast cancer. 

 

Study II: To investigate of role of mRNA translation in regulating the TAM phenotype 

during tumor growth. 

 

Study III: To understand the role of tumor-associated macrophages and microglia 

(TAMMs) in platelet-derived growth factor (PDGF) B driven glioma.  

 

Study IV: To increase the knowledge about how Zoledronic acid (ZA) affects the activity 

of NK-cells, and how monocytes are involved in the observed effects.  
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6 RESULTS AND DISCUSSION 

6.1 SUMMARY OF THE MAIN FINDINGS 
In this thesis, we have used several different strategies to study the heterogeneity and 

functions of macrophages within tumors and mechanisms that regulate the composition of 

the TAM population during tumor growth.  

 

Related to the overall aim of the thesis, the first study, Study I, showed that SEMA3A 

overexpression in tumors induced the proliferation of M1-macrophages, and at the same 

time reduced the proliferation of pro-tumoral M2 macrophages. The subsequent changed 

composition of TAMs increased the recruitment and activation of cytotoxic immune cells 

that restricted tumor growth. Hence, we could show that differential regulation of 

proliferation of different TAM subsets regulated tumor growth. 

 

In Study II, we identified translational regulation of gene expression as an important 

mechanism that regulate the phenotype of TAMs during tumor growth. By performing 

gene-ontology (GO) to study the enrichment of cellular functions among genes regulated 

via translation in macrophages, we also gained further evidence that regulation of in situ 

proliferation of macrophages is of importance for TAMs during tumor growth. We could 

further identify a possible target for therapeutic interventions as M2-macrophages were 

identified to have more phosphorylation of eIF4E compared to M1-macrophages. Blocking 

MNK1/2 (by using cercosporamide) that specifically phosphorylates eIF4E resulted in re-

programing of M2-BMDMs towards an M1-phenotype with acquired ability to activate 

CD8+ T-cells. Further, inhibition of MNK1/2 resulted in hampered proliferation of M2-

macrophages but not M1-macrophages. 

 

The possibility of studying the ontogeny of macrophages has developed during the last 

decades and in addition to bone marrow chimeras, there are today several genetic mouse 

models that can be used to trace the origin of specific macrophages. However, the 

understanding of how influences from origin and environment are integrated to define 

functional capacities is far from understood. In central nervous system (CNS) tumors, two 

distinct populations of macrophages are observed. During normal physiological conditions, 

only microglia, the tissue resident macrophages of the CNS are observed inside the blood 

brain barrier. However, during many neuropathological conditions, the blood brain barrier 

is impaired, resulting in an infiltration of monocytes from the periphery. Increased 
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evidence indicates that microglia and monocyte-derived myeloid cells play distinct roles 

during neuro-inflammatory conditions (95). However, the knowledge about how the two 

types of macrophages differ in their function in brain tumors is still not well known. In 

Study III, we identified a distinct functional difference between microglia and BMDMs. 

M2-polarized microglia but not M2-BMDMs induced PDGF receptor (PDGFR) B 

expression in glioma cells and thereby stimulated their migratory capacity.  

 

In our fourth study, we moved from studying the differentiated macrophages within the 

tumor to instead study the precursor in peripheral blood, the monocyte, and highlighted the 

importance of monocytes in regulating other cells in the innate tumor immunity. In Study 

IV, we showed that ZA + IL-2 induced the expression of IFN-g in monocytes derived from 

human peripheral blood mononuclear cells (PBMCs). In co-cultures with NK-cells, the 

increased IFN-g production upregulated TNF-related apoptosis-inducing ligand (TRAIL) on 

the NK-cells and induced their cytotoxicity against tumor cells.  

 

6.2 STUDY I 

Guidance Molecule SEMA3A Restricts Tumor Growth by Differentially Regulating 

the Proliferation of Tumor-Associated Macrophages 

SEMA3A is a secreted protein that was first described as an axon guidance factor but has 

more recently been shown to be involved in several physiological and pathological 

processes such as migration of myeloid cells, angiogenesis and tumor growth (96-99). 

SEMA3A binds to its co-receptor neuropilin 1 (NP1) that associates with the Plexin A 

family (Plexin A1-4) of receptors to transfer intracellular signals (100). In human cancer, 

SEMA3A is downregulated in several types of cancers (101-104), among them breast 

cancer (105). In concordance, we found that SEMA3A protein was decreased from grade I 

to grade III breast cancer.  

 

In mice models, the role of SEMA3A and its co-receptor NP1 in tumor progression and 

immunity is somewhat controversial. Studies demonstrate that SEMA3A inhibits tumor 

growth (97, 98) and recruits a population of circulating NP1+ monocytes that induce tumor 

vessel normalization (97), whereas others report that loss of NP1 in macrophages hinders 

their entry into hypoxic areas and thereby restores anti-tumor immunity and reduces 

angiogenesis (99). In our study, we overexpressed SEMA3A by lentiviral mediated gene-

transfer in the orthotropic mouse mammary carcinoma model 4T1. The 4T1 model is a 
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model resembling late stage breast cancer and efficiently metastasizes to lung, liver, brain 

and bone of syngeneic mice. During tumor growth, 4T1 tumors progressively accumulate 

CD45+ haematopoietic cells consisting predominantly of CD11b+ myeloid cells (106). 

Following orthotropic cell injection, SEMA3A overexpressing tumors grew significantly 

slower and displayed an increased infiltration of macrophages and cytotoxic lymphocytes 

compared to control tumors.  

 

We used several different strategies to evaluate the phenotype of the accumulated TAM 

population. On flow cytometry, we classified CD11b+Ly6G- cells into M1- and M2-like 

macrophages based on their expression of Ly6C and MHC class II, where Ly6ClowMHC 

class IIlow cells were classified as M2-like, and Ly6ClowMHC class IIhigh cells were classified 

as M1-like. In addition, we used a set of known M1- and M2-associated cell surface 

markers and studied how these differed in the CD11b+F480+ population in SEMA3A 

overexpressing and control tumors. Both flow cytometry gating strategies displayed an 

increased accumulation of M1-like macrophages in SEMA3A overexpressing tumors. This 

finding was also verified by qPCR for a broad range of M1- and M2-associated cytokines 

and chemokines on CD11b+F480+ macrophages sorted from the tumors.  

 

Previous studies have shown that SEMA3A/NP1 signaling effects the migration of myeloid 

cells and we hypothesized that increased recruitment accounted for the accumulation of 

M1-macrophages in SEMA3A overexpressing tumors. However, we could not identify 

increased migration of BMDMs in response to SEMA3A. Further, mice with SEMA3A 

overexpressing tumors did not have a significant increase in the frequency of monocytes in 

the blood nor in the tumor. In addition, SEMA3A also failed to induce a direct change of 

the phenotype of BMDMs. Recent data indicate that local proliferation of macrophages 

with a specific phenotype can dictate the overall composition of the macrophage pool (39, 

54). Interestingly, both ex vivo and in vivo, we identified a mechanism whereby SEMA3A 

selectively increased the proliferation of M1-BMDMs and TAMs and reduced the 

proliferation of M2-BMDMs and TAMs. The mechanism was shown to be dependent on 

NP1 and mediated via signaling pathways regulating Akt and MAPK phosphorylation. 

Hence, our studies indicated that SEMA3A regulates TAM proliferation differentially 

rather than migration as reported previously by others (99). In a study by Casazza and 

colleagues (99), SEMA3A/NP1 signaling is described to guide macrophages to hypoxic 

areas in the tumor where they contribute to angiogenesis and tumor growth. Importantly, 

data from study II in this thesis, showed that macrophage proliferation was decreased as 
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tumors were growing and when they reached a size of 2g (~2000mm3) there was no longer 

a difference between M1- and M2-TAM proliferation. Hence, one important discrepancy 

that at least in part could explain the differential findings of Casazzas and our studies, is 

that they performed most of their studies in tumors larger than the tumors we have studied. 

Furthermore, in many of the experiments they use macrophages depleted in NP1, rather 

than overexpression of SEMA3A as we do, and it is therefore possible that the observed 

effect is not solely dependent on SEMA3A signaling but also signaling from other factors 

that share NP1 as a co-receptor, such as VEGF-A. In addition, we showed that in BMDMs, 

NP1 repression mimics the effect of SEMA3A pre-treatment on phosphorylation of Akt and 

MAPK following CSF-1 stimulation. M2-BMDMs displayed decreased CSF-1 mediated 

phosphorylation of Akt and MAPK when pre-treated with SEMA3A or repressed in NP1 

compared to control M2-BMDMs. In M1-BMDMs on the other hand, CSF-1 mediated 

phosphorylation of Akt and MAPK was induced upon SEMA3A pre-treatment or NP1 

inhibition. We therefore speculate that NP1 knock-down in macrophages can induce 

differential outcome depending on the TAM phenotype, however, further studies need to 

elucidate this. Further, the observation that SEMA3A had opposing effects on the 

proliferation of M1- and M2-TAMs and BMDMs may depend on the differential 

expression of the Plexin A family that mediate downstream signaling of the SEMA3A-NP1 

complex.  

 

TAMs were not the only tumor-associated immune cells that were affected by SEMA3A. In 

human breast cancer, SEMA3A levels correlated to macrophage, CD8+ T-cell and NK-cell 

markers. In concordance, SEMA3A overexpressing tumors displayed increased infiltration 

and activation in CD8+ T-cells and NK-cells. However, SEMA3A did not have any direct 

effect on these cell types that hardly express the NP1 co-receptor, instead the increased 

accumulation and activation was a result of the changes in the TAM population. By 

performing several depletion studies we could conclude that the reduced tumor growth 

mediated by SEMA3A was dependent on both macrophages and cytotoxic lymphocytes. In 

mice depleted in macrophages by a CSF-1 blocking antibody (clone 5A1), SEMA3A failed 

to reduce the tumor growth and to increase the infiltration of cytotoxic lymphocytes. 

Additionally, SEMA3A also lost its effect on tumor growth in mice depleted in CD8+ T-

cells or NK-cells.  

 

In summary, we identified a mechanism whereby SEMA3A increased the accumulation of 

M1-like TAMs by selectively inducing their proliferation, and at the same time reducing 
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the proliferation of M2-like TAMs. The increased proportion of M1/M2 TAMs resulted in 

an induced pro-inflammatory tumor microenvironment and subsequent increased 

infiltration and activation of cytotoxic lymphocytes that inhibited tumor growth (Figure 5). 

Depletion of all macrophages in our model did not inhibit tumor growth and we therefore 

provided results strengthening the theory that skewing the TAM phenotype, rather than 

depleting the whole population, serves as a preferable strategy in targeting TAMs in cancer. 

Only a few previous studies have shown the importance of in situ proliferation of 

macrophages in dictating the overall composition of the macrophage pool. We believe that 

identifying differential regulation of proliferation as a mechanism that contributes to the 

composition of TAMs widens the knowledge about how the TAM composition can be 

regulated. By elucidating mechanisms, we create new windows for therapies targeting the 

tightly regulated balance of TAMs.  

 

 

  

Figure 5. Summary of Study I. SEMA3A induces the proliferation of M1-like TAMs and reduces the 
proliferation of M2-like TAMs in an NP1 dependent manner resulting in accumulation and activation of CD8+ 
T-cells and NK-cells and restricted tumor growth. 
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6.3 STUDY II 
 
RNA Translational Control of the Tumor-Associated Macrophage Phenotype 

During tumor growth, the function of TAMs is dramatically altered by mechanisms that are 

not fully understood. It is well known that the proteome in TAMs, including surface 

markers and secreted proteins, is dynamically changing with tumor growth; from having a 

pro-inflammatory function at the initiation step of tumor growth to being more immune 

suppressive when the tumor is growing (37). However, how different mechanisms 

contribute to regulate gene expression in TAMs is not fully understood.  

 

To study mechanisms involved in changing the TAM phenotypes during tumor growth, we 

needed a model where there was a correlation between how the TAM population was 

composed to an easily defined property such as tumor size or stage of malignancy. To this 

purpose, we decided to use a cell-line derived from a tumor that arose in the mammary 

carcinoma model MMTV-PyMT. The MMTV-PyMT tumor model is a highly metastatic 

model that progresses through stages that resembles the development of human breast 

cancer (107). In the spontaneous MMTV-PyMT model, mice develop multiple tumors that 

at a given time point can be in different stages of tumor progression. In our study, such 

model would have been difficult to work with due to the heterogeneity of the tumors. 

Neither tumor size nor stage of malignancy would be a good property to correlate to TAM 

composition because the immune cell infiltration would be effected by other tumors 

developing in the same mouse. Instead, we decided to perform orthotropic injections into 

the mammary fat pad with a cell-line derived from this transgenic model. Doing this, we 

probably lost some of the similarities to human breast cancer progression when using cells 

that were derived from a late stage tumor and thereby already at the stage of injection had 

acquired mutations associated to late carcinoma. On the other hand, it gave us a more 

homogeneous model that allowed us to study single tumors at distinct sizes that were not 

influenced by other tumors developing in the same mouse. Because of the injection of fully 

transformed tumor cells, we chose to study the tumor growth and have tumor weight as the 

measurement we correlated to the composition of the TAM population, and not the tumor 

stage. We used two different gating strategies for flow cytometry analyses to verify that the 

tumor weight correlated to the shift in M1-like and M2-like TAMs during tumor growth.  

 

Given that the overall function of TAMs in a tumor is rapidly changing in response to 

environmental changes, we hypothesized that translational control of existing mRNAs that 

allow for rapid changes in cellular concentrations of the encoded proteins, could be a 
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contributing mechanism to the regulation of macrophage gene expression and phenotype 

during tumor growth. To prove this hypothesis, macrophages were flow sorted from tumors 

of different sizes and subjected to simultaneous polysome and cytosolic RNA isolation, 

RNA extraction, and RNA sequencing. By using anota analyses, an algorithm designed to 

account for changes in translational efficiency that take polysomal bound RNA, total RNA 

and tumor weight into account, we found that during tumor growth, the gene expression in 

macrophages was regulated by translation to a higher degree than transcription. In fact, 

almost 1000 genes were regulated by translation while only 100 genes were regulated by 

mRNA abundance. This might reflect that TAMs need to adapt fast to microenvironmental 

changes. These results also highlight the importance of using several read-outs such as the 

transcriptional profile, protein expression, and cellular function, when defining the present 

state of a macrophage.  

 

GO analyses that show enrichment of cellular functions among genes regulated via 

translation, identified several clusters that correlated to transition from a pro- towards an 

anti-inflammatory signature of TAMs. In the clusters of cell cycle and proliferation, we 

found a translational upregulation of genes associated to increased proliferation and 

repressed apoptosis with increased tumor weight. Interestingly, during the past few years, 

we and others, have identified proliferation as an important mechanism regulating the 

composition of macrophages in inflammation (36, 39, 54). In the first study of this thesis, 

we identified in situ proliferation as a mechanism increasing the pool of anti-inflammatory 

macrophages in the tumor microenvironment. The results of the present study strengthen 

our previous data, and we can now speculate that proliferation is a general mechanism 

contributing to the composition of macrophages with different functions within the tumor. 

However, the role of proliferation is probably tissue and context dependent and there are 

studies showing that in situ proliferation of differentiated macrophages is not a mechanism 

contributing to the composition of TAMs (51).  

 

Another cluster that appeared in the GO included genes involved in metabolic processes. 

During tumor progression, it is an advantage for cells in the tumor microenvironment to be 

able to adopt their metabolism to the current circumstances. Tumor associated cells will 

experience tough physiological changes in pH, oxygen and nutrient availability and need to 

cope with these stressful conditions.  It is established that the two extremes of M1- and M2-

macrophages have different metabolic profiles (108). The energy metabolism in M1 

macrophages is characterized by aerobic glycolysis, converting glucose into lactate, 
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involving processes that contribute to the pro-inflammatory function of these cells, such as 

production of nitric oxide and ROS. M2-macrophages on the other hand, mainly use fatty 

acids and glutamine to fuel the tricarboxylic acid (TCA) cycle and produce ATP through 

oxidative phosphorylation (108). In the top of our data set over genes regulated by 

translation, was the family of carbonyl reductases (CBRs). CBRs are NADPH-dependent 

cytosolic enzymes that for instance catalyze the reduction of endogenous prostaglandins 

and steroids (109). In addition, we found genes that are involved in oxidative metabolism 

involving amide biosynthesis, peptide biosynthesis and fatty acid biosynthesis. 

Interestingly, also genes involved in glutathione metabolism were regulated. Glutathione 

maintain redox homeostasis by acting as a reducing agent protecting cells against ROS 

(110).  However, the role of the identified genes in TAMs is not known and needs further 

investigations. 

 

From the list of genes generated with anota analyses, we picked three genes that were 

significantly regulated at the level of mRNA translation but not under transcriptional 

regulation in macrophages during tumor growth. By flow cytometry and western blot 

analyses we could verify that these genes were higher expressed in M2- compared to M1- 

macrophages both in the TAM population and after polarization of BMDMs ex vivo. By 

looking at translational regulation, we have identified genes that have previously not been 

described as typical M1- or M2-penotype genes but in fact are differently expressed in the 

two phenotypes. However, if the genes have a significance in driving the functional 

phenotype remains to be elucidated. In addition to the genes mentioned here, we have a 

long list of possible candidates to go through. 

 

Moreover polysome-profiling of M1- or M2-BMDMs in vitro (data not shown) revealed 

that translation in TAMs during tumor growth partially depend on an M1- to M2-shift as 

the genes identified to be differently translated in the two phenotypes in vitro, also were 

found in the in vivo dataset. These results strengthened the hypothesis that genes found 

upregulated truly are important for the M2-phenotype. 

 

To study the mechanism behind the identified translational regulation, we continued with ex 

vivo studies. Knowing that translation initiation factor eIF4E is an important step of 

regulating the speed of mRNA translation we performed western blot analyses for p-eIF4E 

and total eIF4E in M1- and M2-polarized BMDMs and found phosphorylation of eIF4E to 

be upregulated in M2- compared to M1-BMDMs without any significant differences in the 
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total protein. Interestingly, regulation of eIF4E has been found to be an important step of 

regulation for several factors involved in the pro-inflammatory immunity response. For 

instance, MEFs lacking functional eIF4e phosphorylation show enhanced activity of the 

transcription factor NF-kB (77), a factor known to skew macrophages towards an M1-

phenotype in response to LPS stimulation. 

 

To test whether blocking eIF4E phosphorylation would induce an M1-phenotype in M2-

macrophages we used an inhibitor, cercosporamide, that inhibits the activity of MNK2, one 

of the kinases that phosphorylates eIF4E. The macrophage phenotype was evaluated by 

several markers, including transcription, cell surface markers and functional assays. 

Cercoporamide efficiently inhibited the phosphorylation of eIF4E in M2-polarized BMDMs 

and induced the expression of M1-associated cytokines and markers at the same time as the 

expression of M2-markers was reduced at transcriptional and cell surface level. 

Additionally, M2-macrophages treated with cercosporamide demonstrated reduced 

proliferation and enhanced capacity to activate T-cells, as displayed by increased 

production of IFN-g in macrophage-T cell co-culture experiments. In conclusion, even 

though eIF4E is a general initiation factor, its activity seems to stimulate the translation of 

specific sets of mRNAs rather than global translation. The exact mechanisms are not fully 

elucidated. 

Figure 6. Summary of Study II. Translational regulation is an important mechanism regulating gene 
expression in TAMs during tumor growth. The phosphorylation of eIF4E is differentially regulated in 
M1- and M2-BMDMs and inhibition of eIF4E phosphorylation in M2-BMDMs induce a pro-
inflammatory BMDM phenotype that activates CD8+ T-cells. 
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In summary, we identified translational control as a mechanism regulating gene expression 

in TAMs during tumor growth. eIF4E phosphorylation is differentially regulated in M1- 

and M2-BMDMs and inhibition of eIF4E phosphorylation in M2-BMDMs induced a pro-

inflammatory phenotype (Figure 6). Elucidating mechanisms that regulate the composition 

and function of TAMs during tumor growth is of great importance. Even though the speed 

and efficiency of mRNA translation have been identified as a significant step of regulation 

of gene-expression, only a very limited amount of studies investigate its importance in 

macrophages. By demonstrating selective translational control in M1- and M2-

macrophages, we identified an additional mechanism possible to target therapeutically. 

Additionally, by generating a list of genes that are significantly regulated by translation, we 

have created opportunities to identify genes that have never been considered as important 

for the macrophage phenotype before. 

 

6.4 STUDY III 
 
Pro-Angiogenic microglia-induced expression of platelet-derived growth factor receptor 
beta in glioma cells promotes their migratory capacity 

Gliomas are the most common tumor of the CNS and can arise from different cell types. 

Gliomas originating from oligodendrocytes, oligodendrogliomas, are typically of grade II 

and III. Gliomas originating from astrocytes, astrocytomas, can be divided into grade II-IV, 

where grade IV represent GBM that is the most common and aggressive form of glioma 

(111). In this study, we used the PDGFB driven N/tv-a;Arf-/- mouse glioma model. This 

model represents a subset of human gliomas where a perturbed PDGF signaling pathway is 

observed (PDGFB can bind both PDGFRA and PDGFRB). For instance, in human glioma, 

amplification of the PDGFRA gene is a commonly occurring event (112). The expression 

of PDGFRB in tumors is mostly associated to stromal cells, however, one study also reports 

that PDGFRB can be expressed in cultured patient derived GBM cells (113). 

 

In the PDGFB-driven N/tv-a;Arf-/- model that we used, mice lacking the tumor suppressor 

p19Arf (Arf-/-) and expressing the tv-a virus receptor in glial progenitor cells, were infected 

with retroviruses containing the RCAS vector expressing PDGFB. The virus can only infect 

glial progenitor cells that express the tv-a receptor and mice developed tumors in 1-3month 

after virus injection. Histopathological evaluation characterized the tumors into human like 

glioma of grade II-IV. Grade IV tumors displayed areas of necrosis and clusters of non-
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perfused vessels, characteristics typical for GBM (114). In addition, grade IV tumors had 

accumulation of TAMMs. 

 

TAMMs represent an interesting population to study because of its composition of 

macrophages with different origin. Under homeostatic conditions, the macrophages of the 

brain, the microglia, all originate from embryonic yolk sac progenitors. However, during 

pathological conditions such as glioma, the blood brain barrier is compromised (111) and 

BMDMs can infiltrate the tumor and contribute to the myeloid population (115). In fact, the 

majority of immune cells within brain tumors are macrophages, often comprising up to 

~30% of the tumor mass (116). The accumulation of M2-polarized TAMMs positively 

correlates with the histological grade of human gliomas (117) and has been shown to be 

involved in the malignant progression from low- to high-grade tumors in mice (86).  

 

When studying the localization of TAMMs, we found that they often were located to a-

SMA+NG2+PDGFRB+ pericytes. To our surprise, TAMMs were also found to co-localize to 

a population of glioma cells that also expressed pericyte markers a-SMA and PDGFRB. 

The PDGFRB+ tumor cells could be found in all categories of tumors, and were physically 

tightly interlinked with TAMMs. When looking in human grade II and III astrocytomas, 

only a few PDGFRB+ tumor cells were found, correlating to a low accumulation of 

TAMMs. However, human GBMs were found to have a high infiltration of TAMMs that 

correlated to an increased number of PDGFRB+ tumor cells.  

 

Because of the correlation between both the number and the localization of TAMMs and 

PDGFRB+ tumor cells, we hypothesized that TAMMs could drive tumor cells to express 

PDGFRB. As described earlier, TAMMs are a very heterogeneous population and in vitro, 

we will never be able to create an equivalent heterogeneity, as the situation is in vivo. To 

resemble macrophages with different origins and grade of polarization, we used both 

microglia and BMDMs, polarized to an M1- and M2-phenotype with IFN-g+LPS and 

IL4+IL10+TGF-b. By performing co-cultures and transwell assays, we could show that 

cell-to-cell contact with microglia, but not BMDMs, could induce PDGFRB expression in 

glioma cells. M2-polarized microglia were shown to induce the expression of PDGFRB to a 

bigger extent then M1-polarized microglia. Intriguingly, the upregulation of PDGFRB after 

co-culture with M2-microglia was shown to induce the migratory capacity of glioma cells 

towards serum. Importantly, the population of PDGFRB+ tumor cells was observed also in 
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other experimental glioma models including gliomas driven by EGF and RAs/Akt (data not 

included in the manuscript) indicating that this phenotype is not only driven by a PDGFB 

signature. 

 

It has become evident that microglia display a distinct molecular signature that differs from 

myeloid and other immune cells (118) and microglia and monocyte-derived myeloid cells 

can play distinct roles during neuropathological conditions (95). In the context of brain 

tumors, Bowman et al show that the transcriptional profile of tumor-associated microglia, 

tumor-associated monocyte derived macrophages, and microglia and monocytes from non-

tumor bearing mice, separate into four distinct clusters. Further, the findings of the study 

demonstrate that both the chromatin landscapes established before tumor initiation and 

tumor-mediated education influence the transcription profile of TAMMs (115). Despite the 

described transcriptional differences, the functional difference between tumor-associated 

microglia and tumor-associated macrophages is poorly understood. Our finding that 

microglia, but not BMDMs, can induce PDGFRB expression in tumor cells in vitro 

demonstrated a functional difference between those cells. We did not explore the ontogeny 

of the macrophages that were in close proximity to PDGFRB expressing tumor cells in 

vivo, however, several specific markers that can be used to distinguish between microglia 

and BMDMs in gliomas are emerging in the literature (95, 115, 119). 

 

Figure 7. Summary of Study III. TAMM accumulation is correlating to accumulation of PDGFRB 
expressing tumor cells human and PDGFB driven N/tv-a;Arf-/- glioma growth. Microglia induce the 
expression of PDGFRB in glioma tumor cells increasing their migratory capacity in vitro. 
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Collectively, our data demonstrated a functional difference of TAMMs of different 

ontogeny. Microglia, but not BMDMs, could induce the expression of PDGFRB in tumor 

cells that fuels their migratory capacity towards serum (Figure 7). The findings of the study 

highlight the importance of dissecting the TAMM population and identify specific 

functional differences among the heterogeneous population. By doing this, therapeutic 

targeting of specific subtypes could be used for a more successful targeting of the TAMM 

population in glioma.    

 

6.5 STUDY IV 

Activated monocytes augment TRAIL-mediated cytotoxicity by human NK cells 

through release of IFN-γ 

NK-cells are cytotoxic lymphocytes able to kill tumor cells without prior antigen 

stimulation. In hematological malignancies, NK-cell therapies have demonstrated clinical 

benefits, but for solid cancers the clinical responses are limited. Improving persistence and 

homing, as well as overcoming the suppressive tumor microenvironment are fields of 

research to improve NK-cell therapies to solid tumors. 

 

In this study, we investigated the effect of ZA on the expression of TRAIL in human NK 

cells. ZA is a bisphosphonate used to prevent loss of bone and lower the risk of skeletal 

complications in patients with bone metastasis. Besides its main bone antiresorptive 

activity, ZA displays potential immune therapeutic properties by triggering the activation of 

gd T-cells (120). In addition, ZA has also been shown to induce the expression of NKG2D 

on NK-cells in vitro (121). 

 

Here, we could show that co-culture of human NK-cells with purified monocytes in the 

presence of ZA + IL-2 results in an upregulation of TRAIL on the NK-cells. Following co-

culture, NK-cell cytotoxicity against TRAIL sensitive tumor cells was elevated compared 

to unprimed NK-cells. Transwell assays revealed that cell-to-cell contact was not necessary 

but instead the induced expression of TRAIL was shown to be dependent on IFN-g 

produced by monocytes in the presence of ZA and IL-2 (Figure 8). Treatment with ZA 

increased the expression of IL-2Rα and IL-2Rβ transcripts in monocytes suggesting that 

ZA-treated monocytes may respond stronger to IL-2 stimulation and subsequently increase 

their IFN-g production. 
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Interestingly, ZA has previously been shown to have an effect on macrophages including 

suppressing the expression and inhibiting the activity of MMP-9 in macrophages in cervical 

cancer. Inhibition of MMP-9 resulted in reduced VEGF-A mobilization and subsequent 

reduced angiogenesis and tumor growth (122). In concordance, cancer patients treated with 

a single dose of ZA display a long-lasting reduction of VEGF levels in serum (123). 

 

In conclusion, our study highlights the importance of cells from the myeloid linage in 

regulating the ultimate killers, the cytotoxic cells.  

 

6.6 CONCLUSIONS, SIGNIFICANCES AND FURTHER PERSPECTIVES 
Current immunotherapies towards the macrophage/monocyte linages show limited success. 

Strengthen by Study I and IV that highlight the importance of myeloid cells in regulating 

the innate and adaptive immunity to inhibit tumor growth, we believe that modulating the 

function of the existing pool of TAMs would be a more successful strategy than depleting 

the whole population. However, in order to do this, a more detailed insight into how TAMs 

are regulated is needed to identify new opportunities for therapeutic intervention. In this 

thesis, we identify control of proliferation (study I and II) and translation (study II) as 

Figure 8. Summary of Study IV. ZA in combination with IL2 induce the expression of IFN-g from 
monocytes leading to an up-regulation of TRAIL on NK-cells, inducing their cytotoxicity against tumor cells. 
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possible targets. Additionally, in study III, we identify a functional difference between 

macrophages of different origin showing another window for selective regulation.  

 

As more advanced technologies are developed we will get a better insight into how the 

complex TAM population is regulated. The possibility to deeply study features of single 

cells will help us to understand more about the heterogeneity of the TAM population. 

Additionally, more reliable animal models for linage tracing experiments are emerging, 

creating new opportunities for studying the ontogeny of macrophages. 
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