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ABSTRACT 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an established treatment 

for many acquired or congenital disorders of the hematopoietic system. For some patients it 

may be the only curative option. Most children become long-term survivors and late toxicities 

are a major concern as their impact on health and quality of life can be serious. Therefore, a 

better understanding of the patterns of long-term toxicities and their risk factors is needed for 

more tailored treatment planning, follow-up programs and patient counseling. The general 

aim of the thesis was to study the spectrum of late toxicities in long-term survivors of 

pediatric allo-HSCT, to identify risk factors for adverse events and assess the additive toxicity 

associated with allo-HSCT in the treatment of childhood acute myeloid leukemia (AML). 

In a retrospective case-note review, data was extracted from medical records of 204 allo-

HSCT survivors with ≥4 years’ follow-up after allo-HSCT. Special focus was placed on 

gonadal function and pubertal development in 96 female allo-HSCT survivors (Paper I) and 

in 102 male survivors (Paper II). The burden of late adverse events was analyzed for the 

whole cohort of long-term survivors (Paper III) and the impact of various conditioning 

regimens based on cyclophosphamide (Cy), busulphan (Bu), single fraction or fractionated 

total body irradiation (sTBI or fTBI) was evaluated. In order to assess the additive late 

toxicity associated with allo-HSCT in the treatment of childhood AML, questionnaire data 

derived from 95 Nordic childhood AML survivors treated with allo-HSCT was compared 

with corresponding data collected previously from 101 childhood AML survivors treated 

according to the common Nordic AML treatment protocols but without allo-HSCT; siblings 

of allo-HSCT survivors were used as a second control group (n=53) (Paper IV).  

The burden of endocrine late effects was high after pediatric allo-HSCT; 38% had been 

treated with growth hormone, 38% had thyroxine substituted hypothyroidism, 50% had been 

treated with sex steroids, and 84% had at least one non-endocrine chronic health condition. 

TBI-based conditioning regimens were associated with the highest numbers of endocrine 

disorders, whereas the main risk factor for non-endocrine chronic conditions was chronic 

Graft-versus-Host Disease (Paper III). The risk of ovarian failure was high after both TBI- 

and Bu-based conditioning regimens and more than half (66%) of the female survivors 

needed hormone replacement therapy at their latest visit (Paper I). For male survivors, the 

recovery of spermatogenesis after allo-HSCT appeared more likely after chemotherapy-based 

conditioning regimens. Larger adult testicular volumes correlated with an active 

spermatogenesis suggesting that adult testicular volumes above 15mL may predict recovering 

spermatogenesis after allo-HSCT (Paper II). In the treatment of childhood AML, allo-HSCT 

was associated with significantly higher numbers of self-reported chronic conditions and 

health limitations, supporting the restriction of allo-HSCT to selected high-risk patients in 

first complete remission, whereas allo-HSCT without TBI after relapse may increase the risk 

of cardiovascular disorders (Paper IV). Several natural pregnancies were reported after allo-

HSCT in childhood or adolescence (Papers III and IV). Our findings contribute to the 

expanding pool of knowledge on late complications after pediatric allo-HSCT. 
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“One day, in retrospect, the years of struggle will  

strike you as the most beautiful.”  

― Sigmund Freud 
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BACKGROUND 

This thesis explores the spectrum of late adverse events after allogeneic hematopoietic stem 

cell transplantation (allo-HSCT) in childhood or adolescence. It also aims to identify risk 

factors for adverse events and reveal the additive toxicity associated with allo-HSCT in the 

treatment of childhood myeloid leukemia. Most children who receive allo-HSCT are 

expected to become long-term survivors and late effects research is therefore increasingly 

important. 

There is often a long latency before the impact of changes in the present treatment protocols 

and conditioning regimens on long-term health effects can fully be appreciated. Once the late 

toxicities become apparent, treatment regimens may already be altered and the findings may 

not always be applicable to more currently treated patients. However, for the expanding 

population of long-term survivors even the late toxicities of previous regimens are highly 

relevant. 

Recognition of late toxicities provides a basis for planning comprehensive follow-up 

guidelines and may also influence the future treatment regimens. The burden of late effects 

after allo-HSCT is influenced and modified by several factors. The exposures before, during 

and after transplantation all contribute to the spectrum and severity of late effects, 

schematically illustrated in Figure 1. More effective follow-up strategies with tailored 

screening and interventions can help modify and improve late outcomes and may ultimately 

help improve the health-related quality of life for survivors. 

 

Figure 1. Factors that can be involved in the development of late adverse events after 

allogeneic HSCT. 
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1 REVIEW OF THE LITERATURE 

1.1 ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION 

1.1.1 Origin of allo-HSCT 

The potential of bone marrow cells was discovered in the 1950s when it was observed that 

intravenous injection of bone marrow cells to irradiated mice could re-establish their blood 

cell production (1). The research field developed rapidly and in 1957 came the first report 

describing allo-HSCT in humans leading to the procedure as we know it today (2). In an 

allogeneic transplantation the hematopoietic system of a patient is replaced or repopulated by 

an intravenous infusion of hematopoietic stem cells derived from a related or an unrelated 

donor, whereas in an autologous HSCT recipient´s own stem cells are reinfused. Ever since 

the late 1970s allo-HSCT has been offered as a curative approach to an increasing number of 

patients with congenital or acquired diseases involving the hematopoietic system.   

1.1.2 Allo-HSCT indications 

During the year 2012 almost 69 000 HSCTs were performed worldwide (3) and the same 

year  allo-HSCT accounted for 42% of the pediatric stem cell transplantations in Europe (4). 

The largest disease indications were acute lymphoblastic leukemia (ALL) accounting for 

26% and acute myeloid leukemia (AML) accounting for 14% of all pediatric allo-HSCTs in 

Europe. The largest non-malignant disease indications included primary immunodeficiency 

(16%), bone marrow failure (12%) and thalassemia (8%) (4). Other allo-HSCT indications 

include myelodysplastic syndrome (MDS), juvenile monomyelocytic leukemia (JMML), 

chronic myeloid leukemia (CML) and non-Hodgkin lymphoma (NHL), severe aplastic 

anemia (SAA), severe combined immunodeficiency (SCID), and other severe T-cell and 

granulocyte disorders, hemophagocytic histiolymphocytosis, Diamond Blackfan anemia, 

sickle cell anemia, Fanconi anemia, and some inborn errors of metabolism (such as Morbus 

Hurler). New disease indications are constantly being explored and pediatric stem cell 

transplantations for non-malignant diseases have greatly increased during the past decades 

(5). At least one third of the pediatric allo-HSCTs have a non-malignant disease indication.  

1.1.3 Hematopoietic stem cells   

In allo-HSCT, donor hematopoietic stem cells (HSCs) are given in order to replace or 

repopulate the bone marrow. Stem cells can divide and have the capacity to differentiate into 

other cell lineages (Figure 2). CD34, a cell surface glycoprotein, is the most commonly used 

surrogate marker for identifying hematopoietic stem cells (6) and the total given number of  

CD34+ cells is considered to be prognostic in stem cell transplantation (7, 8).  
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The three primary sources of HSCs include: 

1) Bone marrow – stem cells are obtained from the bone marrow through bone marrow 

aspiration. 

2) Peripheral blood stem cells (PBSCs) – granulocyte colony stimulating factor (G-CSF) is 

given in order to mobilize PBSCs from bone marrow into peripheral blood and PBSCs are 

collected from peripheral blood with apheresis. 

3) Umbilical cord blood (CB) – stem cells are collected from blood vessels of the placenta 

after childbirth and cryopreserved for later use.  

 

Figure 2.  The Hematopoietic System. 

1.1.4 Donor 

The availability of a suitable donor can limit the use of allo-HSCT. The choice of a donor is 

guided by tissue compatibility or histocompatibility antigens located on chromosome 6. A 

well-matched donor matches for at least 9 of the 10 alleles of the human leukocyte antigen 

(HLA) system that encodes the major histocompatibility complex (MHC) proteins (9, 10). An 

ideal HLA-match matches 10/10 alleles and can be found for approximately half of the 

patients with Western European ancestry; for an additional 20–30% a match for 9/10 alleles 

is usually available (11). 

An HLA-matched sibling, if available, is often chosen. The chance of an individual sibling 

being an HLA-match is 25%. If a matched sibling donor is lacking, or not considered to be 

the most ideal, international unrelated donor registries may be searched for a matched 

unrelated donor (MUD). If a matched donor cannot be found within a satisfactory timeframe, 

a mismatched (haploidentical) related or unrelated donor can be considered. Modern graft 

processing technologies have enabled the safe use of haploidentical donors (12), and 

especially parental donors are often readily available.  
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1.1.5 Conditioning regimens 

Before the donor stem cells can be given the recipient needs to be prepared with a 

conditioning regimen. The purpose of conditioning regimens is to suppress the host´s bone 

marrow in order to allow engraftment of the donor cells. The choice of conditioning is mainly 

based on the disease indication. In malignant disease, a myeloablative conditioning (MAC) 

that eradicates the host´s hematopoiesis without allowing spontaneous recovery is usually 

chosen for eradicating minimal residual disease (MRD).  

Total body irradiation 

Total body irradiation (TBI) eradicates MRD and is immunosuppressive. The advantages of a 

TBI-based conditioning include its independence from drug absorption, metabolism or 

transport across the blood–brain barrier. TBI is usually combined with a chemotherapeutic 

agent, most commonly with cyclophosphamide (Cy), etoposide or cytarabine (ARA-C). TBI 

has been an important part in the preparative regimens for malignant disease for decades. Up 

to the 1980s conditioning regimens with TBI and/or Cy were preferred. In the earlier era, TBI 

was often given as a single fraction TBI (sTBI) of 10–12 Gy. Due to its high toxicity sTBI 

has been replaced by less toxic fractionated TBI (fTBI). fTBI is also often given as 10–12 Gy 

but divided into several fractions, usually of 2–4 Gy, over a period of two or three subsequent 

days. In the treatment of childhood AML, TBI has been replaced by Bu whereas in ALL, it is 

yet unproven whether TBI can be replaced by chemotherapy-based conditioning regimens 

without compromising survival (13). The results of an ongoing multinational randomized 

controlled trial, the ALL SCTped 2012 FORUM study, aimed at addressing this question are 

yet to be published.  

Chemotherapy-based myeloablative conditioning regimens 

Bu has been offered as the myeloablative alternative to TBI since the early 1980s (14). It is 

usually given in combination with Cy (14).  The oral administration of Bu has a highly 

varying bioavailability but by using intravenous administration with a pharmacokinetic 

directed dosing the systemic exposure can be more easily controlled. The systemic exposure 

of Bu has a strong correlation to the regimen-related severe adverse events (15).  

Myeloablative alternatives to Bu with less toxic profiles have been employed especially in 

non-malignant disease. Alkylating agents such as treosulfan, trophosphamide, melphalan and 

thiotepa and an antimetabolite fludarabine have been used in various combinations. For 

patients with SAA, Cy-based conditioning regimens are usually used, sometimes in 

combination with fludarabine and/or a low dose of TBI. 
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Reduced intensity conditioning regimens 

If the patient history suggests that the patient may not tolerate full myeloablative 

conditioning, for example in case of previous myeloablative therapy or severe infections, a 

RIC regimen may be employed.  In RIC regimens alkylating agents or TBI are generally 

reduced by one third (or more), making these regimens less toxic. Fludarabine is often the 

main agent used in combination with intermediate doses of alkylating agents like Bu. In 

malignant disease RIC regimens depend more on the graft-versus-leukemia effect for 

preventing relapse. The experience from RIC in the pediatric population is limited, but it has 

been well tolerated in recent clinical trials in the treatment of childhood AML in combination 

with immunotherapy (16). The reported survival rates after RIC in the treatment of pediatric 

AML have been comparable with MAC (17).  

Non-myeloablative conditioning regimens  

Non-myeloablative regimens are seldom used in children (except for SAA). The non-

myeloablative (NMA) regimens often contain TBI in low doses (<2 Gy) combined with 

fludarabine or Cy (18). NMA suppresses the immune system to enable engraftment but it 

does not eradicate host hematopoiesis, thus allowing the hematopoiesis to recover quickly, 

and at engraftment mixed chimerism is expected (19). 

1.1.6 Graft-versus-Host disease 

In GVHD, T-cells derived from the donor interact with activated host antigen-presenting cells 

(APCs); the recognition of the presented host peptides as foreign leads to attack against host 

cells and tissue damage (20). GVHD was the major obstacle in the early days of allo-HSCT 

and it is still a major cause of mortality and morbidity, although reports indicate that the 

proportion of grade III–IV acute GVHD declined by 20% between 1999 and 2012 (21). 

Many factors are likely to have contributed to the decrease, such as improved genomic 

donor/recipient matching, less frequent use of TBI and T-cell depletion techniques including 

the increased use of anti-thymoglobuline (ATG). Still, about 35–70% of allo-HSCT 

recipients develop acute GVHD and 20–50% develop chronic GVHD; the rates are 

influenced by type of transplant, patient characteristics, and GVHD prophylaxis regimen 

(21).  

Acute GVHD (aGVHD) has traditionally been defined as Graft-versus-Host occurring within 

the first 100 days after transplantation. The cytokine storm of aGVHD results in direct tissue 

damage, generally restricted to the skin, gastrointestinal tract and liver.  

Chronic GVHD (cGVHD) usually occurs with a more delayed presentation 100 days or later 

after allo-HSCT, involving a broader range of organs and having features that resemble 

autoimmune disorders (20). It was traditionally staged as limited or extensive according to 

the Seattle criteria (22), but the staging was revised by the National Institutes of Health (NIH) 

consensus meeting and includes now three grades: limited, moderate and severe (23). Studies 

indicate that different mechanisms are involved in the development of aGVHD and cGVHD 
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(24) and they can overlap and be present simultaneously (25). NIH classification has divided 

aGVHD into classical and persistent (late onset) aGVHD (23). 

The risk of GVHD is influenced by the source of HSCs, lower risk of cGVHD having been 

observed with cord blood source and higher risk with PBC source. The risk of cGHVD 

increases with increasing donor mismatch when un-manipulated graft is used and ranges from 

6% (26) to as high as 65%. T-cell depletion techniques at transplantation can reduce 

alloreactivity of GVHD, but may at the same time diminish the important Graft-versus-

Leukemia effect associated with allo-HSCT (27).  

Corticosteroids are the first-line treatment for both aGVHD and cGVHD but optimal in only 

about half of patients (21). For aGVHD prophylaxis after MAC allo-HSCT, a majority of the 

European transplant centers use cyclosporine combined with a shorter course of methotrexate 

(MTX) (28). Many different immunosuppressive approaches have been used in the 

management of cGVHD (21) including MTX, calcineurin inhibitors, mycophenolate mofetil, 

pentostatin, sirolimus, daclizumab, anti-tumor necrosis factor, tyrosine kinase inhibitors and 

extracorporeal photopheresis (ECP). In ECP leukocytes are collected from peripheral blood, 

photosensitized and re-infused after exposure to ultraviolet irradiation by using apheresis 

equipment (29). 

1.1.7 Graft-versus-Leukemia effect 

In the treatment of malignant disease GVHD cannot only be regarded as a complication. The 

strong immunological force against tumor cells, Graft-versus-Leukemia effect (GVL), was 

already observed by Thomas et al. in 1977 (30) when leukemia patients with GVHD showed 

lower relapse rates. GVL is partly mediated through T cells that detect MHC-bound target 

peptides on leukemic cells. Clinical observations indicate that GVHD and GVL often occur 

in the same patient and the underlying mechanisms are similar if not identical (27), and the 

prevention of GVHD without interfering with GVL is therefore a major challenge. 

In autologous HSCTs this important antileukemic phenomenon is lacking, and in the 

treatment of leukemia allo-HSCT can be considered superior to autologous HSCT. The 

benefit of using auto-SCT in the first complete remission (CR1) of pediatric AML seems to 

be marginal compared to chemotherapy only (31). At present, autologous HSCT serves 

mainly as autologous stem cell support after high-dose chemotherapy regimens in the 

treatment of malignant tumors. 

  



 

9 

 

1.2 THE TREATMENT OF CHILDHOOD AML 

Allo-HSCT has played an important role in the treatment of childhood AML ever since the 

first publication came in the late 1970s showing that allo-HSCT could cure patients with 

AML (30). International collaboration has been the key to progress in treating this 

heterogeneous and rare childhood cancer with an incidence rate of 7 per million children 

per year. The current survival rates are around 70% (32).  

Induction and consolidation therapy of childhood AML 

The treatment of AML is very intensive and treatment-related mortality is relatively high, 

around 10% (33, 34). AML treatment is based on anthracyclines and anti-metabolites. 

Cytarabine is combined with anthracycline and the standard induction therapy comprises 

three days of anthracyclines and 7–10 days of cytarabine. With these regimens > 85% of the 

pediatric patients enter complete remission (CR) (32). In most groups AML therapy consists 

of five courses of chemotherapy in total, with one or 2 courses of induction and three 

consolidation courses. CNS directed intrathecal therapy is routine but the majority, if not all 

pediatric study groups, have stopped using cranial radiotherapy (CRT). The Nordic Society 

for Paediatric Haematology and Oncology (NOPHO) protocols for AML have not included 

CRT. Instead, methotrexate has been used for CNS prophylaxis, and the treatment of CNS 

leukemia in the NOPHO-AML 2004 protocol included intrathecal triple therapy with 

cytarabine, methotrexate and prednisone. The doses of cytarabine, etoposide and cumulative 

doses of anthracyclines in the NOPHO-AML protocols are shown in Table 1. 

Table 1. Cytarabine, etoposide and anthracycline doses in the NOPHO-AML-84/88/93/2004/2012 protocols. 

SR indicates standard risk, *) good responders, **) poor responders.  

 

Treatment of relapsed AML 

Relapse rates vary between 21-40% in the different study groups making relapse a major 

cause of treatment failure (35). The NOPHO-AML 2004 protocol had a relapse rate of 

30%. Currently, relapsed AML is treated with intensive re-induction with one or two 

courses followed by allo-HSCT once in CR2 or aplasia. No predefined strategy existed for 

relapse treatment during the NOPHO-84, -88 and -93 protocols. 
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The role of allo-HSCT in the treatment of childhood AML 

Most study groups advocate allo-HSCT after relapse but the role and timing of allo-HSCT 

has been controversial (36). While allo-HSCT in CR1 associates with an increased event-

free survival, it seems to have only minimal effect on the overall survival (36). It has been 

estimated that ten AML patients would have to be transplanted in CR1 in order to prevent 

one relapse (37) and a significant proportion of patients can be cured after relapse (38). The 

proportion of pediatric AML patients who proceed to transplant varies greatly between the 

large childhood AML trials with figures ranging from 2 to 29% (35). Although no 

international consensus exists on timing of allo-HSCT there is some agreement on common 

markers for high-risk (HR) AML and risk-group stratification followed by risk-based 

treatment. Stratification to HR is determined by cytogenetics, residual disease (no remission 

after second induction) or relapse. Patients with HR AML, like patients with the FLT3-

internal tandem duplication (ITD) mutation that associates with a poor prognosis, are likely 

to benefit from an allo-HSCT in CR1 (39). The challenge is to accurately identify all those 

patients who benefit from an early allo-HSCT in CR1 and who could thereby be spared 

from relapse. 

Allo-HSCT in the NOPHO-AML protocols  

The indications for HSCT in CR1 in the NOPHO-AML protocols are listed in Table 2 (37, 

38). The recommended conditioning regimen in the NOPHO-AML 2012 protocol is a 

myeloablative combination of Bu/Cy/melphalan, while for selected patients with previous 

severe organ toxicity a less toxic RIC regimen can be considered (40).  

 

Table 2. The indications for allo-HSCT in CR1 in the NOPHO-AML-84/88/93/2004/2012 protocols and the 

proportion of patients transplanted in CR1. CR1 indicates first complete remission; MFD, matched family 

donor; MUD matched unrelated donor.  

  

Protocol Allo-HSCT indications in CR1 Donor Allo-HSCT in CR1

NOPHO-AML -84 All patients with an available 

matched family donor

MFD 16%

NOPHO-AML -88 All patients with an available 

matched family donor

MFD 21%

NOPHO-AML -93 Only high-risk patients with 

matched family donor

MFD 27%

NOPHO-AML 2004 >15% blasts on day 15 or no remission 

after second induction

or MLL dearrangements other than 

(t9;11)(p21;q23).

From 2009: Poor response

 to induction only.

MFD or

MUD

13%

NOPHO-AML 2012 Patients with a poor response 

after 2 induction courses,

patients with FLT3-ITD 

without NPM1 mutation

MFD or

MUD

Estimated 7-10% 

eligible
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1.3 ADVERSE EVENTS AFTER ALLOGENEIC HSCT IN CHILDHOOD AND 
ADOLESCENCE  

During the past decades great improvements have been made in supportive care, donor 

selection and the expanding experience on acute complications, with a subsequent reduction 

in transplant related deaths as well as an increase in long-term survival (41). However, the 

late treatment-related morbidity and mortality associated with allo-HSCT is still considerable 

and mortality rates may be twice as high when compared with the general population (42). 

Almost all the survivors of pediatric allo-HSCT will experience at least one late effect (43). 

While the endocrine late effects are most common, any organ may be affected. The type of 

conditioning regimen, age at transplantation as well as the presence of cGVHD have a major 

impact on the burden and spectrum of late effects (44-46).  

1.3.1 Acute complications 

Acute injuries and infections 

The conditioning regimen can induce acute injuries and is usually behind liver injuries 

leading to sinusoidal obstruction syndrome, or Hepatic Veno-Occlusive Disease, a potentially 

fatal complication that usually occurs during the first 30 days after HSCT (47). Thrombotic 

microangiopathy is another complication deriving from endothelial injury with a high 

mortality rate of 50–60% (48).  Posterior reversible encephalopathy syndrome (PRES) may 

also be related to vascular injury, and other neurological treatment-related complications are 

not uncommon. Hemorrhagic cystitis, characterized by hemorrhagic inflammation in urinary 

tract mucosa, is most likely caused by the toxicity of chemotherapy and irradiation at early 

presentation, whereas multiple causes including viral infections can be involved in late onset 

(49). Oral mucositis is a highly common complication affecting 47 (15) to 75% (50) of the 

patients after transplantation and increases the risk for infections. During the period of 

pancytopenia following transplantation, the risk of invasive fungal infections, opportunistic 

infections, bacteremia and viral reactivation is high.  

Graft failure 

In approximately 5% of the allo-HSCTs a graft failure can occur, which is associated with a 

reduced 5-year survival in malignant disease (51). The likelihood can be even higher in 

special cases, for example when mismatch is present or when RIC regimens are used. A 

chimerism analysis can be used to assess engraftment and graft failure early. Full chimerism 

is achieved earlier  after MAC than RIC regimens (14) and subsequently graft rejection is 

more common after RIC regimens (52). Many factors other than conditioning intensity may 

be involved in the occurrence of graft failure, including HLA match, immunosuppression 

regimen, cell dose, drug toxicities  and viral infections (53). 
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Acute Graft-versus-Host Disease 

Approximately one third or up to a half of the patients develop aGVHD which is usually 

limited to skin, gastrointestinal tract and liver (54). Based on the severity and number of 

organs involved it is staged and graded into four grades, 0–IV, where grades III and IV are 

associated with poor outcomes (54). 

1.3.2 Late effects  

1.3.2.1 Chronic Graft-versus-Host Disease 

cGVHD is an allo-HSCT specific complication and is associated with significant late 

morbidity affecting 20–50% of the allo-HSCT recipients (21). The incidence is lower in 

children than in adults and lower in matched sibling transplants than in MUD or mismatched 

grafts. cGVHD is considered one of the major barriers for achieving a high quality of life, 

and the resolution of cGVHD may significantly increase the health-related quality of life. 

1.3.3 Endocrine disorders, pubertal development and fertility 

Endocrinopathies and impaired growth are the most common long-term side effects affecting 

60% of the pediatric allo-HSCT survivors (43, 55-57), with transplantation at a young age as 

well as TBI-based conditioning regimens identified as major risk factors (58). The most 

frequently affected organs include the thyroid gland, the gonads and the pituitary. 

Hypothyroidism 

Hypothyroidism may occur late. Due to the increasing cumulative incidence over time 

continued annual screening for hypothyroidism is recommended for 10 years after Bu-based 

conditioning and for 30 years after TBI (59). Rates of 30–60% have been reported in long-

term survivors after TBI or Bu (60). The risk for hypothyroidism is highest after TBI while 

significantly lower rates have been reported after Cy-based conditioning regimens compared 

to TBI or Bu. 

Gonadal failure in female survivors  

Both TBI and Bu are highly gonadotoxic and primary gonadal failure is frequently reported 

in female survivors after allo-HSCT (61-63) and is influenced by the timing of allo-HSCT. 

Prepubertal girls with a larger ovarian reserve may have a better chance of spontaneous 

recovery even after TBI and/or high doses of alkylating agents. Many girls require medical 

induction of pubertal development and hormone replacement therapy (HRT) for regular 

menstruations and the risk of premature menopause is high (64).  

Elevated levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) can 

indicate gonadal failure. Lower levels of Anti-Müllerian hormone (AMH) can indicate a 

diminished oocyte reserve and help in the prediction of menopause. In addition, an ultrasound 

can be used for measuring ovarian volume and Antral Follicular Counts (65).  Premature 



 

13 

 

menopause with low estrogen levels can lead to osteoporosis, increase the risk of 

cardiovascular disorders and impair sexual and psycho-social well-being (66).  

Gonadal failure in male survivors  

The Leydig cells that are responsible for producing testosterone are relatively resistant to the 

effects of conditioning regimens and in most cases testosterone levels remain normal. Leydig 

cells can often retain normal function when radiation dosage to the testis is less than 20 Gy 

whereas direct testicular radiation above 20 Gy can cause permanent Leydig cell damage 

(67). In non-irradiated male survivors, pubertal development may be normal with the 

exception of testicular volumes (64, 68). A significant proportion of the survivors may 

develop Leydig cell insufficiency requiring testosterone treatment after cytotoxic drugs and 

irradiation (69). A study including 206 male survivors of pediatric allo-HSCT showed low 

testosterone levels (<2ug/mL) in 18% of the male survivors and an additional 5% needed 

treatment with testosterone (63).   

Fertility 

One of the major concerns of allo-HSCT survivors is infertility. Limited data exist on fertility 

rates after allo-HSCT and the previously reported figures are very low. A large EBMT survey 

reported fertility rates below 1%  for allo-HSCT survivors transplanted at all ages (70). 

However, some survivors may retain fertility even after myeloablative conditioning regimens 

(71). Very few reports have assessed involuntary childlessness among allo-HSCT survivors; 

however, pregnancies after allo-HSCT are regarded as rare events.  

Pregnancies in female survivors of allo-HSCT can be regarded as high risk with previous 

studies showing an increased risk of premature delivery and cesarean section (70, 71). 

Irradiation to the pelvic area can cause direct damage to the myometrium and the 

endometrium of the uterus as well as to the uterine vasculature (72). 

Male survivors have a very high risk of developing oligospermia or azoospermia after 

myeloablative conditioning regimens (63). In a cohort of 217 male HSCT survivors only one 

third (27%) had spermatozoa after a median follow-up time of 4.5 years (73). The sperm-

producing germinal epithelium of the testes and Sertoli cells are highly sensitive to irradiation 

and already lower doses of 0.2 Gy can cause testicular injury reflected by increased levels of 

FSH (74), and irreversible azoospermia can be caused with doses above 4 Gy (64). Higher 

cumulative doses of alkylating agents can also seriously impact the spermatogenesis and 

cause azoospermia. Survivors with no exposure to cytotoxic agents prior to transplant may 

have a higher chance of recovering their spermatogenesis after allo-HSCT provided that no 

irradiation is given (75). However, persistent cGVHD may negatively impact recovering 

spermatogenesis and increase the risk of azoospermia (73, 76).  

Based on current knowledge, the offspring of cancer survivors and allo-HSCT survivors have 

no increased risk of non-hereditary cancer or congenital malformations (77, 78). 
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1.3.4 Bone growth and skeletal late effects 

Growth is compromised in many survivors, and greater height deficits have been associated 

with younger age at time of allo-HSCT. Growth hormone (GH) deficiency is more likely 

after TBI-based conditioning regimens and is especially common in patients who have 

received CRT prior to allo-HSCT (79). Both TBI and GH deficiency associate with deficits in 

height and in the musculoskeletal system (80). While chemotherapy alone does not usually 

impair the hypothalamus-pituitary-gland-axis or cause GH deficiency, chemotherapy and 

irradiation can cause peripheral lesions in epiphyseal growth plates, cartilage and bones (81). 

Gonadal failure with delayed puberty, hypothyroidism and corticosteroid treatment can all 

contribute to impaired physical growth. High corticosteroid doses for long periods given as 

part of the leukemia treatment or as first line treatment of cGVHD, can cause osteoporosis 

and osteonecrosis. 

Many survivors of allo-HSCT seem to benefit from growth hormone (GH) treatment with 

improved final heights (82). The safety of using of GH treatment in patients previously 

treated for malignant disease has been debated. A recent report showed no increase in the risk 

of cancer mortality in the GH-treated population but a trend towards increased cancer 

mortality was seen with increasing GH doses among patients previously treated for malignant 

disease (83). 

1.3.5 Cardiovascular and metabolic disorders 

Compared to the general population, allo-HSCT survivors have an increased risk of 

cardiovascular disease. The risk of premature cardiovascular death has been 2.3- to 3.6-fold 

in previous reports (42, 84). Multifactorial causes may precede premature cardiovascular 

aging (85). Allo-HSCT survivors are at risk of developing insulin resistance and metabolic 

syndrome. In two large studies including both pediatric and adult HSCT survivors, the 

prevalence of diabetes was 14–17%, dyslipidemias and hypertension were detected in 44% 

and 28–36%, respectively (46, 86). The use of TBI has been associated with metabolic 

syndrome (87). While obesity is relatively uncommon after HSCT, a reduction in muscle and 

an increase in fat mass percentage can be present (88). Hypothyroidism, which is very is 

prevalent among HSCT survivors, associates with unfavorable lipid profiles (85). 

Irradiation can cause changes in arterial intima and induce premature cardiovascular aging 

(89). Higher cumulative doses of anthracyclines (exposures of 250 mg/m2 or more) and 

cardiac exposure to irradiation increase the risk of cardiac disease in childhood cancer 

survivors (90). Comorbidities and treatments received prior to allo-HSCT have great impact 

and the risk of late congestive heart failure after allo-HSCT may primarily be determined by 

the anthracycline exposures prior to HSCT (90).  

1.3.6 Pulmonary complications 

Pulmonary failure is a major cause of non-relapse late deaths after allo-HSCT; compared 

with the general population, allo-HSCT survivors´ risk of death due to pulmonary 
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dysfunction can be increased by as much as a 15-fold (42). Bronchiolitis obliterans (BO) is 

the pulmonary manifestation of cGVHD characterized by irreversible small airway 

obstruction and once it has developed it has a poor prognosis (91). The occurrence of late-

onset non-infectious pulmonary complications with BO, interstitial pneumonia and 

bronchiolitis obliterans organizing pneumonia (BOOP) may be lower after RIC regimens 

while TBI and Bu-based regimens can have direct pulmonary toxicity (92). 

1.3.7 Gastrointestinal disorders 

Allo-HSCT survivors have a substantially higher risk for hospitalization for liver diseases 

(93). In the earlier era, before screening for hepatitis C or B, viral hepatitis was a relatively 

frequent complication associated with frequent blood transfusions. The hepatic iron overload 

that is prevalent after allo-HSCT usually dissolves spontaneously over the years but it can 

cause liver dysfunction and may be involved in the development of many extra-hepatic 

complications (94). Problems of the gastrointestinal tract are often closely related to the 

presence of cGVHD. cGVHD may present with a non-viral hepatitis, chronic diarrheas and 

malnutrition, and some survivors may develop strictures in the gastrointestinal tract requiring 

surgical dilation.  

1.3.8 Renal dysfunction 

Acute or chronic renal dysfunction after allo-HSCT can be caused by nephrotoxicity from 

calcineurin inhibitors used for GVHD prophylaxis, antibiotics used for sepsis, tubular 

necrosis caused by ischemia or septicemia (95). Membranous nephropathy has been 

recognized as a HSCT-related cause of glomerular damage (95). cGVHD does not usually 

present itself in the urinary tract although microangiopathy has been proposed to be a renal 

manifestation of cGVHD. CMV and EBV reactivations are involved in late-onset 

hemorrhagic cystitis. 

1.3.9  Ocular late effects 

Cataract, a highly common side effect affecting 30–80%, is closely related to irradiation, and 

many TBI recipients develop opacities within the first years after allo-HSCT (94) often 

requiring a cataract operation. cGVHD can present with dryness of eyes, keratoconjunctivitis 

sicca and corneal ulcerations. 

1.3.10 Dental late effects 

Irradiation as part of the conditioning regimen can cause underdevelopment of the mandible, 

mandible joint and the teeth and the enamel, the shape of the teeth and roots may be defected 

(94). Oral manifestations of cGVHD include mucosal dryness and atrophy, and chronic 

stomatitis may decrease the quality of life.  

1.3.11 Secondary malignancies 

Cumulative incidence rates of secondary malignancies after HSCT vary between 3.5  and 7% 

at ten years, and a rate of 12.8% at 15 years has been reported (42, 96). No plateau has been 

seen after 20 years of follow-up. The more frequently reported second solid tumors include 
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breast cancer, skin cancer and thyroid cancer (88). Irradiation and conditioning regimens 

including TBI are the major risk factor for developing secondary malignancies.  

1.3.12 Neurocognitive deficits 

Frequent neurocognitive deficits have been reported after allo-HSCT and conditioning with 

TBI is an important risk factor. Especially in the youngest recipients of HSCT (age <3 years) 

a high percentage (78–85%) of long-term neurocognitive complications has been reported, 

with TBI and younger age at HSCT identified as risk factors (58, 97). During the earlier era, 

CRT was widely used in ALL with doses of 18–24 Gy for CNS leukemia prophylaxis, 

although effective; it has associated with serious neurotoxic side effects and neurocognitive 

dysfunction (98).  

Survivors of pediatric allo-HSCT may also experience deficits in social skills when compared 

to sibling controls (99). Depression, anxiety, and psychological dysfunction are also 

frequently reported after HSCT, and among adult survivors of HSCT an increase was found 

in deaths due to suicide or accidents when compared with general population (100). 

1.3.13 Late effects after childhood AML 

Some studies have been published comparing late toxicities after allo-HSCT for childhood 

AML treated with and without HSCT. The main results from these previous studies (101-

107) are listed in Table 3.  

In general, more favorable outcomes have been reported for survivors of childhood AML 

treated without HSCT. However, in a study that included 272 5-year survivors of childhood 

AML, the AML survivors had a significantly higher prevalence of a chronic health 

conditions (grades 3 or 4) when compared to their sibling controls (16% vs. 6%), and after 

20 years from diagnosis the AML survivors had a cumulative incidence of 1.7% for 

secondary malignancies and 5% for  cardiac events (108). The childhood AML survivors 

treated according to the NOPHO-AML protocols without HSCT or relapse have generally 

reported good health outcomes with normal pubertal development, and fertility has been 

comparable with their sibling controls (109-111). Although the conventionally treated AML 

survivors did not report more cardiovascular symptoms compared to healthy controls, a 

significant reduction of left ventricular function was seen that associated with increasing 

cumulative doses of doxorubicin (112). An increased risk of cardiovascular complications 

is correlated with increasing cumulative doses of anthracyclines and exposure to irradiation 

can further increase the risk (90). For relapsed AML survivors a higher 10-year cumulative 

incidence of cardiotoxicity has been reported when compared to AML survivors without 

previous relapse; 35% vs. 11%, respectively  (101).  
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 Table 3. Studies comparing late effects after treatment with HSCT versus without HSCT for childhood 

AML. Abbreviations: RT indicates radiotherapy; HSCT, hematopoietic stem cell transplantation; HRT, 

hormone replacement therapy; HRQL, health-related quality of life; Bu, busulphan; Cy, cyclophosphamide; 

TBI, total body irradiation.  

Number of patients Follow-up, years Therapy Main findings Reference

218 ≥5 y

Median 9 (range 5–14)

95 Chemo only

86 HSCT: 30 TBI

After HSCT in CR1: cardiotoxicity 8%  vs. 

14% after Chemo only (NS).  No 

difference in self-reported Quality of Life.

Barlogis et al, 2015.

180 ≥5 y

Median 20 (range 9–31)

100 Chemo only

26 Auto-HSCT

54 Allo-HSCT:

25 (46%) TBI

29 (54%) no TBI

After HSCT: more chronic health 

conditions, grades 1-4 (76% vs.44%),  any 

grade 3 or 4 (33% vs. 16%).  After allo-

HSCT lower physical mean summary 

scores. Overall HRQL scores were similar 

between the groups.

Schultz et al, 2014.

21 ≥5 y

Median 20 (range 9–31)

12 Chemo only

6 allo-HSCT, TBI

3 auto-HSCT, TBI

After HSCT: more pituitary deficiencies 

and metabolic syndrome (18% vs. 5%), 

hypothyroidism (50 %  vs. 0%), and 

dyslipidemia (63 %  vs. 7%)  compared to 

chemo only.

Blijdorp et al, 2013.

171 ≥2 y 131 Chemo only

40 HSCT: 40 BuCy

After HSCT 73% had one or more late 

sequela (cardiomyopathy, liver 

dysfunction, skeletal anomalies, HRT) vs. 

32% after chemo only. 

Klusmann et al, 2012.

77 ≥10 year

Median >15 years

 (range 11–38)

44 Chemo only

18 Chemo+RT

15 HSCT: 15 TBI Cy

After HSCT: More affected weight and 

height z-scores, more growth hormone 

deficiency (27%), hypothyroidism (20%), 

hypogonadism (53%), infertility (100%), 

and cataracts (60%). Cardiovascular late 

effects were comparable between the 

groups (HSCT 7% vs. chemo 9%). More 

neurocognitive problems after 

Chemo+RT and allo-HSCT.

Leung et al, 2000.

52 ≥1 year

Chemo ± RT: mean 7 years 

(range 1–15)

HSCT ± TBI: mean 5 years 

(range 2-15)

26 Chemo +/- RT

26 HSCT:17 BuCy, 9 TBI

Growth, cardiac and renal functions were 

comparable between the two groups.

 After HSCT: ovarian failure 67% vs. 0% 

after chemo only. 

Leahey et al, 1999.

33 ≥1.5 year

Chemo: Median 4 (range 1–8)

HSCT: Median 7 (range 2–9)

25 Chemo only

8 HSCT: 7 TBI, 1 BuCy

After HSCT: Growth failure (90%), thyroid 

disorders (40%) cardiac disorders (30%), 

cataracts (80%), signs of gonadal damage 

(90%). After Chemotherapy alone: no 

endocrinopathies but cardiac (30%), renal 

(8%), and hearing (16%) abnormalities.

Liesner et al, 1994.
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2 AIMS OF THE STUDY 

 

The specific aims of the thesis were: 

1. To determine the spectrum of chronic toxicities in long-term survivors of pediatric 

allogeneic HSCT 

2. To compare the chronic sequelae after various conditioning regimens (sTBI, fTBI, 

chemotherapy)  

3. To compare outcomes after allo-HSCT in first complete remission (CR1) versus after 

allo-HSCT in second complete remission (CR2) or more advanced disease 

4. To assess how much additive long-term toxicity is associated with allo-HSCT in the 

treatment of childhood AML 
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3 PATIENTS AND METHODS 

 

The following methods were applied in this thesis. More detailed information can be found in 

the individual papers. 

3.1 LONG-TERM SURVIVORS OF ALLOGENEIC HSCT (PAPERS I-III) 

A retrospective case-note review: Prospectively collected data from high-quality medical 

records was retrospectively reviewed. 

3.1.1 Study population 

All children treated with HSCT at the age of 1–19 years in Huddinge and Helsinki during 

1980–2000, and alive at least 4 years after HSCT with available medical records were 

included. The flow chart of the study population in Papers I–III is presented in Figure 3. The 

main characteristics of the whole cohort (n=204) described in Papers I–III are summarized 

in Table 4. 

 

 

Figure 3. Flow-chart. Study population in Papers I–III. 204 (91%) of the 4-year survivors of pediatric allogeneic 

HSCT transplanted in Huddinge and Helsinki 1978–2000.  
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Table 4. Characteristics of the 204 survivors of pediatric allogeneic HSCT transplanted in Huddinge and 

Helsinki during the years 1978 through 2000 included in Papers I–III. ALL, acute lymphoblastic; AML, acute 

myeloid leukemia; Cy, cyclophosphamide; CR, complete remission; GvHD; graft versus host disease HSCT, 

indicates hematopoietic stem cell transplantation; TBI, total body irradiation; sTBI, single fraction TBI; fTBI, 

fractioned TBI; and TNI, total nodal irradiation. Adapted from Paper III, Bone Marrow Transplantation (2015) 

50, 850–857.  

Paper I:  All adult/pubertal female survivors (n=92) who were late pubertal/post-pubertal or 

showed signs of ovarian failure at their latest visit were included.  

Paper II:  All male survivors (n=106) who were late pubertal or post-pubertal at latest visit 

were included.  

Paper III:  All survivors (n=204) with follow-up data of 4 years or more were included 

regardless of their pubertal status at latest visit. 
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3.1.1 Treatment characteristics 

The University Hospital in Huddinge used sTBI 10-12 Gy combined with CY (120 mg/kg) 

between 1978-1995. From 1993 fTBI was given as 12 Gy in four fractions. The Helsinki 

University Hospital used sTBI from 1978 till 1983. From 1984 TBI was given as fTBI 10-12 

Gy in 5-6 fractions.  

Patients with SAA received conditioning with Cy (200 mg/kg) either without or in 

combination with total lymph nodal irradiation (TNI) 6 Gy or fTBI (10Gy). Bu (16 mg/kg) 

was given in combination with Cy (100-200 mg/kg) to patients with immunodeficiency or 

inborn errors of metabolism. Patients with ALL and AML had received treatment according 

to the common NOPHO-protocols prior to allo-HSCT. 

3.1.2 Methods 

Follow-up procedures and data collection 

Time from allo-HSCT to the last recorded visit was determined as follow-up time. Annual 

visits included clinical and laboratory examinations. Every medical event or chronic health 

condition occurring after allo-HSCT until the most recent visit was noted. Medical records 

were reviewed in detail for data on medications and hormone replacement therapies (HRTs) 

both current and ever used (growth hormone, thyroxin and estrogen or testosterone), presence 

of cGVHD (limited or extensive) during follow-up, and data from growth charts were 

collected.  

For Paper I, data were collected on pubertal development, menarche and pregnancies. For 

Paper II, data on results from sperm analyses, pubertal development and pregnancies in 

partners were collected. Adverse health events (AE) were graded retrospectively according to 

CTCAE v3.0 (Figure 4). Only limited data could be obtained through the medical records on 

neurocognitive and psychological AEs. Causes of late deaths (more than 4 years after allo-

HSCT) were analysed separately. 

 

Figure 4. Grading of adverse health events (AEs). 
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3.1.3 Statistical methods 

All data in Papers I and II are reported as mean ±standard deviation (SD) and range and in 

Paper III as median and range. The SPSS statistical software, version 20, was used for all the 

statistical analyses in Papers I–III. 

In Papers I–III Mann-Whitney U test was used for continuous variables, and χ2 test and 

Fisher´s exact were used for categorical variables. Bi- and multivariate logistic regression 

were used for calculating odds ratios (ORs) with 95% confidence intervals. The continuous 

variables included age at HSCT, follow-up time from HSCT, and serum levels of FSH and 

LH. In the regression analysis, categorical predictors included dummy variables (0/1) 

prepubertal at HSCT, Leukemia diagnosis, SAA diagnosis, conditioning with TBI, and 

cGVHD. The categorical predictors remission status at HSCT, CRT, and in male leukemia 

survivors, testicular irradiation.  

In Paper II, for predicting any spermatozoa in the seminal fluid by using testicular size and 

1/FSH receiver operating characteristics (ROC) curves were constructed where standard error 

of the area under the curve (AUC) was estimated by using nonparametric distribution of 

parameters.  In order to test adult testicular volumes and serum gonadotropins as 

dichotomous dependent and independent variables the following cut-offs were used: 15 mL 

for testicular volumes (the normal lower 2SD value) and 10 IU/mL for serum gonadotropins. 

In Paper III, explanatory covariates were selected by using Pearson correlation for the step-

wise forward regression analysis for modeling the correlation of dependent variables (the 

total number of non-hormonal chronic health conditions and severity of chronic health 

conditions, multiple hormonal substitutions) with the explanatory covariates sex, pubertal 

status at transplant, age at transplant, cGHVD, follow-up time, diagnosis group (SAA, 

leukemia, Others) and conditioning regimen (sTBI, fTBI, TBI, Cy and Bu).  Additional 

covariates used only for the Leukemia group were cranial and testicular irradiation, and 

remission status at HSCT.  

No corrections were made for multiplicity. A p-value of <0.05 was set to indicate statistical 

significance in all papers.  

3.1.4 Ethical considerations 

The studies were approved by the Regional Ethical Review Board in Stockholm and the 

Research Ethics Committee of the Helsinki University Central Hospital. 
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3.2 LONG-TERM SURVIVORS OF CHILDHOOD AML TREATED WITH ALLO-
HSCT (PAPER IV) 

3.2.1 Study design 

A cross-sectional study. The questionnaire data was collected during 2012–2013. 

3.2.2 Study population 

All 2-year survivors of childhood AML treated with the NOPHO-AML-84, -88, -93 or 2004 

protocols with allo-HSCT at Nordic transplantation units in Sweden, Finland, Norway and 

Denmark when younger than 21 years were identified through the NOPHO-AML database. 

Patients with previous malignancies or Down syndrome were not included. They were mailed 

a questionnaire and invited to participate in the study. Whenever possible, a sibling of an allo-

HSCT survivor closest in age was asked to participate. In total, 95 out of the eligible 147 

survivors completed the questionnaire and 53 of them had a sibling control. The flow chart of 

the study population in Paper IV is shown in Figure 5. 

 

Figure 5. Flowchart of patients from the NOPHO-AML-84, -88, -93 and -04 trials included in the AML allo-

HSCT group alive on June 30th, 2012. 

3.2.3 Methods 

Basic background on disease status, treatment and cGVHD was retrieved from the NOPHO-

AML database and from the treating transplant centers. The questionnaire included 130 

questions on health, use of medications, medical conditions, physical health, activities of 

daily living, education, marital status, smoking, anxieties and concerns related to previous 

AML treatment. With the exception of six additional questions related to allo-HSCT, 

questions were part of the validated questionnaire from the Childhood Cancer Survivor Study 

(www.ccss.stjude.org) (113) and the questionnaire was identical to the one that was 

completed previously by the control group of 101 AML survivors treated with the NOPHO-

AML-84,-88 or -93 protocols but without allo-HSCT (109). The second control group were 

siblings (n=53) of participating allo-HSCT survivors, if there were several siblings the sibling 
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closest in age was invited to participate. The sibling questionnaire was identical with the 

exception of 15 AML- or allo-HSCT related questions that were omitted. Two reminders 

were sent both to the allo-HSCT survivors and siblings. 

3.2.4  Statistical analyses 

The data are reported as median and range. Categorical outcomes were compared by using 

Fisher´s exact test. For continuous variables Mean´s median test was used. Logistic 

regression analysis adjusted for gender, age and time-from-diagnosis was used when 

comparing outcomes between the two AML survivor groups. The results are reported both as 

crude and adjusted ORs. In sibling pair comparisons conditional logistic regression was used 

and exact logistic regression was used when the outcomes were too scarce and adjusting for 

confounders could not be performed. Dummy variables (0/1) for CR status, gender, cGVHD, 

age at allo-HSCT ≥10 years, follow-up time ≥10years, TBI, underweight and any chronic 

grade ≥3 condition were used in the uni- and multivariable regression analyses. Age at 

questionnaire was included as a continuous variable. A p-value of <0.1 in the univariable 

analyses was required for inclusion in the multivariable analyses. P-values <0.05 were 

considered significant. No corrections were made for multiplicity. 

3.2.5 Ethical considerations 

The national ethical boards in Sweden, Finland, Norway and Denmark approved the study 

according to the national regulations. The participants filled in a written informed consent. 
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4 RESULTS 

4.1.1 Ovarian failure and premature menopause (I) 

Altogether 92 female survivors who were late or post-pubertal or had ovarian failure by latest 

visit were included in the analyses. Their mean age at latest visit was 22±6 (range 8–40) years 

and mean follow-up time after allo-HSCT was 13±5.5 (range 6–27) years.  

At the time of allo-HSCT, 70 (76%) were prepubertal (Tanner 1), 12 (13%) mid-pubertal 

(Tanner 2–3) and 8 (9%) late or post-pubertal (Tanner 4–5). Out of the 92 included female 

survivors 71 (77%) had been conditioned with TBI-based, 10 (11%) with Bu-based and 10 

(11%) with Cy-based conditioning regimens. Forty-two (46%) had received fTBI and 29 

(32%) sTBI, and one girl had received TNI as the only form of irradiation. Twenty-six (28%) 

of the female survivors had cGVHD. 

Forty out of the 70 girls who were prepubertal at allo-HSCT had spontaneous pubertal 

development and 30 had spontaneous menarche. Out of the 40 women who entered puberty 

spontaneously, 35% had entered premature menopause by their latest visit. Almost all (90%) 

of the thirty prepubertal girls without spontaneous pubertal development had ovarian failure 

at their latest visit (Figure 6). More than 70% of all the female survivors who had received 

TBI or Bu experienced ovarian failure by their latest visit.  

 

Figure 6. Spontaneous onset of puberty and ovarian function evaluated at the latest visit among the 92 female 

survivors of allo-HSCT.  

 

A total of 30 (43%) of the prepubertal girls and three (25%) of the mid-pubertal girls had 

spontaneous menarche. All the girls without prior cytotoxic therapy who had received Cy-

based conditioning regimens for SAA had both spontaneous puberty and menarche. A higher 

proportion of the girls who had received Bu-based conditioning compared to TBI had 

spontaneous menarche; however, there was no significant difference when comparing Bu to 

fTBI (Figure 7).   
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Figure 7. Proportion of the girls with spontaneous menarche (n=33) within different conditioning groups. Only 

the girls who were prepubertal or mid-pubertal at allo-HSCT with no menarche prior to allo-HSCT are included 

in the numbers (n=72). 

The chance for spontaneous menarche was significantly higher if the patient had been 

transplanted for SAA, had not received TBI nor received treatment for leukemia, and had 

lower serum FSH and LH levels (Table 5). None of the survivors who had received CRT 

prior to allo-HSCT had spontaneous menarche. They had all been treated for ALL and 

received TBI-based conditioning regimens. sTBI was identified as the strongest predictor for 

needing HRT at latest visit (Table 5). 

 

Table 5. Predictors for lacking spontaneous puberty or menarche, and the need of estrogen replacement therapy. 

Results from bivariate logistic regression analysis. Table modified from original Paper I. Reprinted with 

permission of © 2014 European Society of Endocrinology. 

Out of the 92 female survivors, 86 (93%) were 15 years or older at latest visit. Ten (12%) of 

these 86 women had had 14 recorded pregnancies. Two of the pregnancies (14%) had led to a 

miscarriage. Twelve children had been born, of which three (25%) were born preterm. Four 

women with recorded pregnancies had received fTBI-, three Bu- and two Cy-based 

conditioning regimens. One woman with SCID had received sTBI with ovarian shielding and 

given birth to two children; both were born full-term and healthy. 

Predictors OR 95%CI p-value

Lack of spontaneous puberty

Age at HSCT 1.2 1.0–1.4 0.015

Lack of spontaneous menarche 

Diagnosis other than SAA 6.1 1.3–31 0.030

TBI 5.2 1.6–17 0.006

Leukemia 3.6 1.3–9.7 0.011

Age at HSCT 1.1 1.0–1.3 0.06

Increase in FSH (1 IU/I) 1.035 1.01–1.1 0.002

Increase in LH (1 IU/I) 1.09 1.03–1.1 0.001

Estrogen HRT at latest visit

sTBI 4.3 1.3–14 0.016

SAA 0.2 0.1–0.9 0.033
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4.1.2 Recovery of spermatogenesis and testicular volumes (II) 

Altogether 106 male survivors were late pubertal or post-pubertal at latest visit and were 

included in the analyses. The mean age of the late/post-pubertal male survivors at latest visit 

was 22±6 (range 12–42) years and mean follow-up time after allo-HSCT was 13±4.8 (range 

4–28) years.  

When receiving allo-HSCT, 82 (77%) were prepubertal (Tanner 1), 19 (18%) mid-pubertal 

(Tanner 2–3) and 5 (5%) late or post-pubertal (Tanner 4–5). Out of these 106 included male 

survivors, 71 (67%) had been conditioned with TBI-based, 18 (17%) with Bu-based and 17 

(16%) with Cy-based conditioning regimens. Five male survivors had received TNI. Twenty-

five (24%) of the male survivors had cGVHD.  

Out of the 82 males who were prepubertal at transplantation, 68 (83%) had spontaneous 

pubertal development. The only factor that significantly decreased the likelihood of 

spontaneous puberty was testicular irradiation given as part of the ALL treatment. At latest 

follow-up visit, 28 (26%) males were on testosterone replacement therapy. Serum 

gonadotropin values were available for 100 survivors. Leukemia patients had higher FSH 

levels than survivors treated for SAA and other disease indications (p<0.001 and p<0.01, 

respectively). Recipients of TBI-based conditioning regimens had higher FSH levels 

compared to recipients of non-TBI-based regimens (p<0.01) and LH levels were significantly 

higher after sTBI compared to fTBI (p<0.05). In our data, we did not see any significant 

correlation between the gonadotropin levels and cGVHD. 

Altogether 31 (29%) male survivors had had a semen analysis performed. Spermatozoa were 

detected in 10 (32%) of the samples. Factors that predicted active spermatogenesis were: a 

diagnosis other than leukemia, a testicular volume 15 mL or above, conditioning without TBI 

and FSH levels below 10 IU. The results from bi- and multivariate analyses are shown in 

Table 6.  

 

Table 6. Predictors for adult testicular volume <15 mL, active sperm production, and the need of testosterone 

substitution after allogeneic HSCT in childhood and adolescence. Only the significant values are indicated. 

Modified from original Paper II. Reprinted with permission of ©2014 Wiley Periodicals, Inc, 

Bivariate Multivariate

OR 95% CI P OR 95% CI P

Adult testicular volume  < 15mL

TBI 15 4.0–59 <0.001 15 4.0–59 <0.001

Leukemia 4.9 1.5–17 <0.01

FSH > 10 IU 1.1 1.0–1.2 <0.04

Active sperm production

No leukemia diagnosis 17 2.6–113 <0.003 20 1.9–210 <0.01

Testicular volume ≥ 15 mL 14 2.1–98 <0.007 17 1.4–216 <0.03

No TBI 30 2.8–322 <0.005

FSH < 10 IU 0.8 0.7–1.0 <0.047

Testosterone substitution

TBI 9 2.0–41 <0.004 7.8 1.7–36 <0.009

Prepubertal at HSCT 4.8 1.0–11 <0.04 7.2 1.3–41 <0.03

Testicular irradiation 11 2.1–58 <0.005 10 1.5–68 <0.02

Leukemia 5.4 1.7–18 <0.004

CRT for leukemia 3.5 1.1–11 <0.03

No spontaneous puberty 5.4 1.6–18 <0.007
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Testicular volumes were less affected by chemotherapy-based conditioning regimens. 

Testicular volumes above 15 mL predicted spermatozoa in sperm samples with 80% 

sensitivity and 91% specificity (Figure 8). 

 

 

Figure 8. Receiver operating characteristic curve (ROC) for testicular volume (AUC 0.89, n=31) detecting 

spermatozoa in seminal fluid. The sensitivity and specificity for cut-off value 15 mL is indicated by an arrow. 

Modified from original Paper II, reprinted with permission of ©2014 Wiley Periodicals, Inc, 

 

None of the fifteen survivors with testicular volumes above 15 mL had received sTBI but five 

of them had been conditioned with fTBI. Two of the 10 patients who had recovered their 

spermatogenesis had been treated for acute leukemia and their testicular volumes were 15mL 

and 25 mL; both had received fTBI and neither of them had cGVHD. The other eight 

survivors with detectable spermatozoa had been treated for SAA (n=4), chronic 

granulomatous disease (n=1), CML (n=1), thalassemia (n=1), and myelodysplastic syndrome 

(n=1). The median testicular volume in survivors with spermatozoa was 17 (range 10–35) 

mL, four had received fTBI but none of them had received sTBI or testicular irradiation.  

Eight survivors with small adult testicular volumes (≤4 mL) had all been treated for acute 

leukemia, and six (80%) of them had been conditioned with sTBI and two (20%) with fTBI. 

Three of them had received testicular irradiation as well. Sperm samples (n=2) from this 

group showed no detectable spermatozoa. 

 

To our knowledge only two out of the 106 male survivors in our cohort had fathered 

offspring. One had been treated for SAA with Cy-based conditioning and the other had been 

treated for chronic myeloid leukemia and conditioned with fTBI (10 Gy) with no anti-

leukemia treatment given prior to allo-HSCT. 
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4.1.3 Adverse events and late mortality (III) 

Late effects were determined through medical records in 204 (91%) of the cohort of pediatric 

allogeneic HSCT survivors transplanted in Huddinge and Helsinki 1978–2000. The median 

follow-up time was 12 (range 4–28) years after allo-HSCT.  

Non-hormonal chronic conditions 

Almost all (84%) of the survivors had at least one chronic non-hormonal adverse event (AE). 

TBI-based conditioning associated with the highest burden of late toxicities and sTBI was 

more toxic than fTBI. However, there was also considerable morbidity associated with the 

Bu-based conditioning regimens and practically all (97%) Bu-conditioned survivors had at 

least one non-hormonal chronic condition (Figure 9A).  

 

 

Figure 9 A-B Non-hormonal adverse events graded according to CTCAE v3.0 excluding cataracts. Cumulative 

incidence of chronic health conditions among survivors (A) after TBI-based conditioning regimen compared 

with BUu- based and Cy-based conditioning regimens and (B) among survivors with and without cGVHD. The 

number of patients included in each group and significant P-values are given. Adapted from original Paper III, 

Bone Marrow Transplantation (2015) 50, 850–857. Reprinted with permission of ©Springer Nature. 
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However, survivors conditioned with Bu had significantly fewer severe (grade 3 or higher) 

conditions compared to the survivors conditioned with sTBI and fTBI (10% vs. 42% and vs. 

28%, respectively). cGVHD was identified as a major risk factor for non-endocrine chronic 

conditions.  Patients with cGVHD had both higher numbers (98% vs 70%, p>0.001) and 

more severe (grade 3 or higher) (80% vs. 46%, p>0.001) non-endocrine chronic conditions 

compared to patients without cGVHD (Figure 9B). Severe grade 3 or 4 conditions had been 

diagnosed in half (50%) of the survivors with a follow-up time of 20 years or more (shown in 

Appendix: Paper III, Figure 1D).  

Endocrine disorders 

TBI-recipients had the highest prevalence of endocrine disorders: growth hormone deficiency 

had been diagnosed in 67%, hypothyroidism in 46%, and 62% of the survivors received HRT 

with either testosterone or estrogen. The prevalence of growth hormone deficiency and HRT 

use was significantly higher compared to Bu while the difference in hypothyroidism was not 

significant. Among Cy-conditioned survivors only two had hypothyroidism and two were on 

HRT (Table 7). Physical growth was less impacted by the chemotherapy-based conditioning 

regimens. Extremely short statures were seen mainly after TBI-based conditioning regimens 

and in leukemia survivors. The Cy-conditioning group consisted of patients treated for SAA 

while the Bu-conditioning group included many patients with inborn errors of metabolism, 

and in some of those cases height SDS was improved after allo-HSCT. 

 

Table 7. Hormone deficiencies and hormonal substitutions within the different conditioning groups. 

 

The impact of remission status at transplantation  

The remission status at allo-HSCT did not significantly impact number of hormonal 

substitutions or number of chronic health conditions in leukemia survivors (Figure 10). 

However, leukemia survivors transplanted in CR 2 or higher needed more frequently HRT 

with estrogen or testosterone.  

sTBI (n=60)

n(%)

fTBI (n=85)

n(%)

sTBI vs. fTBI

p-value

TBI (n=145)

n(%)

BU (n=30)

n(%)

TBI vs. BU

p-value

BU (n=30)

n(%)

CY (n=23)

n(%)

BU vs. CY

p-value

Growth hormone

deficiency 40 (67) 29 (34) <0.001 69 (48) 7 (23) <0.02 7 (23) 0 (0) <0.02

Thyroxine 

deficiency 39 (65) 28 (33) <0.001 67 (46) 8 (27) 0.07 8 (30) 2 (9) NS

Testosterone or 

estrogen HRT 40 (67) 50 (59) NS 90 (62) 9 (30) <0.002 9 (30) 2 (9) 0.09
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Figure 10. The impact of CR status (A) on the number of needed hormonal substitutions and (B) on the 

prevalence of non-endocrine chronic conditions among allo-HSCT survivors treated for leukemia. CR1 indicates 

allo-HSCT in first complete remission; CR≥2, allo-HSCT after relapse; CTCAE, adverse event graded according 

to the CTCAE version 3.0. 

Secondary malignancies 

Altogether thirteen patients among the 247 allo-HSCT patients who had survived at least 4 

years after allo-HSCT had been diagnosed with a secondary malignancy. The secondary 

malignancies included malignant mesothelioma (n=1), malignant melanoma (n=1), malignant 

meningiomatosis (n=1), renal carcinoma (n=1), papillary thyroid carcinoma (n=1), secondary 

AML (n=2), ALL (n=1), breast cancer (n=1), oligodendroglioma (n=1), basal cell carcinoma 

(n=1), and oral cancer (n=1), and one patient had an unspecified second malignancy. Only 

survivors conditioned with TBI had been diagnosed with secondary malignancies with the 

exception of one patient with SAA who died 12 years after allo-HSCT due to oral cancer. 

Causes of late deaths 

Twenty-two patients died late, more than 4 years after HSCT, between 5 and 24 years after 

allo-HSCT at a median age of 17 (range 10–36) years. Eight (36%) of them died due to 

complications related to extensive cGVHD. All the causes of late deaths are listed in Table 8.  
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Table 8. Causes of late deaths (≥48 months after HSCT) by the year 2010 after pediatric allo-HSCT at Huddinge 

and Helsinki University Hospitals between 1978 and 2000. Modified from original Paper III with permission of 

©Springer Nature. 

4.1.4 Additive toxicity associated with allo-HSCT in childhood AML 
treatment (IV) 

 

The AML survivors who had been treated with allo-HSCT reported significantly more health 

disorders (Figure 11) and more frequent use of medications than the AML survivors treated 

with chemotherapy only. The medications used more frequently by allo-HSCT survivors 

during the past two years included agents for thyroid disorders (hypothyroidism) (21% vs. 

0%, p<0.001), cardiovascular conditions (10% vs. 1%, p<0.05), analgesics (32% vs. 11%, 

p<0.01) and nutritional supplements (36% vs. 8%, p<0.001), and a higher proportion of the 

female survivors aged >14 years used estrogen (51% vs. 9%, p <0.001). 

 

 

 

Figure 11. The proportion of childhood AML survivors treated with allo-HSCT (n=95) and without allo-HSCT 

(n=101) reporting at least one disorder in an organ system, and any severe grade ≥3 or grade 4 condition as 

graded by CTCAE version 3.0 * excluding gonadal failure and infertility. P-values were calculated with logistic 

regression adjusted for sex, age and time from diagnosis. Only significant p-values are indicated. 

 

Years from HSCT

Late causes of death (n=22) Median (range) n

Chronic GVHD

Pulmonary cGVHD 8 (6-13) 7

Gastrointestinal cGVHD 10 and 13 2

Secondary malignancy 10 (9-16) 5

Relapse 6 (5-12) 3

Infection 6 (6) 2

Cardiovascular    22 and 24 2

Primary diagnosis 18 1
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TBI associated with reporting more endocrine disorders and ocular complications (Figure 

12). Survivors who received allo-HSCT after relapse in CR2 reported more gastrointestinal 

disorders compared to survivors transplanted in CR1 (Figure 13). More survivors 

transplanted in CR2 had cGVHD compared with survivors transplanted in CR1 (42% vs. 

32%, NS). The prevalence of cGVHD was significantly higher among allo-HSCT survivors 

conditioned with Bu compared with TBI (44% vs. 16%, p<0.005). 

 

 
Figure 12. The proportion of childhood AML survivors treated with allo-HSCT including TBI (n=44) and 

without TBI (n=50) reporting at least one disorder in an organ system, and any severe grade ≥3 or grade 4 

condition as graded by CTCAE version 3.0 * excluding gonadal failure and infertility. P-values were calculated 

with unadjusted logistic regression. Only significant p-values are indicated. 

 

Figure 13. The proportion of childhood AML survivors who received allo-HSCT in CR1 (n=57) and in CR2 

(n=36) reporting at least one disorder in an organ system, and any severe grade ≥3 or grade 4 condition as graded 

by CTCAE version 3.0 * excluding gonadal failure and infertility. P-values are calculated with unadjusted 

logistic regression. Only significant p-values are indicated. 
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Survivors transplanted with Bu-based conditioning in CR1 had an increased OR for reporting 

endocrine disorders and gastrointestinal disorders when compared with survivors treated with 

chemotherapy only remaining in CR1. In addition, survivors transplanted after relapse (in 

CR2) and conditioned with Bu had a significantly increased OR (OR 3.6, 95% CI 1.1–12) for 

reporting cardiovascular disorders when compared with survivors treated with chemotherapy 

only remaining in CR1 (Appendix: Paper IV, Figure 3B). 

Limitations in physical activities 

 

A higher proportion of the allo-HSCT survivors experienced limitations in physical activities 

when compared to the conventionally treated AML survivors as well as sibling controls (39% 

vs. 7% and vs. 9%, respectively). In multivariable analysis (among allo-HSCT survivors 

only), the factors that significantly increased the OR for reporting limitations in vigorous 

activities (such as lifting heavy objects, running and strenuous sports) were the presence of 

cGVHD, allo-HSCT after relapse in CR2, being underweight and the presence of any severe 

grade ≥3 chronic condition (Table 9). The OR for reporting limitations in moderate physical 

activities (such as pushing a vacuum cleaner, moving a table or carrying groceries) was 

increased by being underweight (BMI-z-scores <2SD or BMI<18.5) and by the presence of 

any grade 3 CTCAE chronic condition (Table 9).  

 

 

Table 9. Factors associated with reporting limitations in physical activities among AML survivors treated with 

allo-HSCT (n=95). Only the explanatory variables with p-values <0.1 in univariable analyses were included in 

the multivariable analyses shown in the table. 

 

Despite the higher burden of health problems, more than half (57%) of the allo-HSCT 

survivors rated their health as excellent or very good, while a significantly high proportion 

(15%) reported having a health problem or an impairment that kept them from attending 

school or work. Allo-HSCT survivors´ employment and marital status did not significantly 

differ from siblings. Although allo-HSCT survivors were less likely to smoke compared to 

their siblings and chemotherapy only survivors, as many as 8% of the survivors aged ≥15 

years reported being current smokers. 

 

 

 

Limitations in vigorous activities, results of multivariable analysis for OR.

Variable Category OR 95%CI P -value

cGVHD cGVHD vs. no cGVHD 3.6 1.1, 12 0.04

CR status CR2 vs. CR1 3.3 1.0,11 0.05

TBI TBI vs. no TBI 0.8 0.4, 1.4 0.35

Underweight (BMI SD<-2 or BMI<18.5) Underweight  vs. Healthy/Overweight 12 1.4,101 0.02

Chronic condition grade ≥3 Any grade ≥3 vs. no grade ≥3 12 3.5, 42 <0.001

Limitations in moderate activities, results of multivariable analysis for OR.

Variable Category OR 95%CI P -value

Underweight (BMI SD<-2 or BMI<18.5) Underweight  vs. Healthy/Overweight 5.7 1.0, 32 0.048

Chronic condition grade ≥3 Any grade ≥3 vs. no grade ≥3 11 3.2, 40 <0.001
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Fertility 

Out of the survivors aged ≥15 years, 24% of the female and 11 % of the male survivors 

reported involuntary childlessness for more than a year. The figure among female siblings 

was similar, 22%, whereas none of the male siblings had experienced involuntary 

childlessness. Three (8%) of the male survivors 15 years or older reported six natural 

conceptions in their partners. Ten (27%) of the female allo-HSCT survivors aged ≥15 years 

reported a total of 18 pregnancies; 12 of these pregnancies had resulted from natural 

conception. The miscarriage rate was relatively high (6/17, 35%), but all the children were 

born reportedly healthy and only three were born prematurely. None of the women had 

experienced congestive heart failure during or after pregnancy. All the reported pregnancies 

are listed in Appendix: Paper IV, Table 4.  
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5 DISCUSSION 

5.1.1 Ovarian failure and premature menopause after pediatric allo-HSCT (I) 

The high proportion of female survivors with premature ovarian failure in Paper I confirms 

the ovarian toxicity of alkylating agents and irradiation with ovaries in the field. The majority 

of the SAA patients retained their ovarian function, indicating that an allo-HSCT with Cy-

based conditioning regimen without prior cytotoxic drugs or irradiation does not necessarily 

compromise fertility, and similar findings have been reported by others (114). Both TBI and 

Bu were highly gonadotoxic. While we could not show any significant differences in 

gonadotoxicity between TBI and Bu, ovarian failure tended to be more frequent after sTBI 

and fTBI. Surprisingly many of the women with reported pregnancies had been conditioned 

with fTBI while one pregnancy was reported after sTBI in a patient who had not received 

prior cytotoxic therapy and who received sTBI with ovarian shielding. 

We observed that some female survivors had a temporary return of their ovarian function. It 

would be important not to miss this period of spontaneous ovarian recovery as it can offer an 

opportunity for fertility preservation methods including oocyte cryopreservation. Also, the 

patients should be informed of the need of contraceptives to avoid unwanted pregnancies. In 

non-malignant disease, the collection of ovarian tissue from prepubertal girls with a re-

implantation post allo-HSCT can offer a means of retaining normal ovarian function and 

fertility. In malignant disease the risk of possible contamination with malignant cells limits 

the use of this technique (115). The risk of contamination has been regarded as high for 

patients with leukemias, stressing the importance of identifying MRD in the ovarian tissue 

before re-implantation (116).  

All children born to the allo-HSCT female survivors were reportedly healthy at birth, which 

supports the previous studies that have not shown increased risk of congenital anomalies in 

offspring born to childhood cancer survivors and transplanted patients (70, 77). Only two 

miscarriages had been noted in the medical records, in reality the numbers may be higher as it 

is not certain that patients report miscarriages occurring very early. In this study we also 

lacked the information on the wish to become a parent and the estimation of fertility rates is 

not possible. A new evaluation of the same cohort after an additional 10 years might give a 

more accurate picture of their fertility outcomes. 

5.1.2 Testicular function after pediatric allo-HSCT (II) 

Recovery of spermatogenesis 

In Paper II, 10 out of 31 men whose semen sample was analyzed showed spermatogenesis 

indicating that a long-term recovery of spermatogenesis is possible during extended follow-

up. Based on our results the survivors who have received chemotherapy-based conditioning 

regimens have a higher chance of long-term recovery of spermatogenesis, their serum levels 

of FSH were more likely to be within normal range and they also had larger adult testicular 

volumes compared to survivors who had received TBI-based conditioning regimens.  
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There were, however, even a few survivors who recovered their spermatogenesis after TBI-

based conditioning regimens. Our results did not confirm the previous finding that cGVHD is 

strongly associated with azoospermia (73), this might be due to the study size. 

Testosterone substitution 

Although Leydig cells tolerate more irradiation and cytotoxic therapy than the germ cells, a 

significant proportion (26%) of the male survivors received testosterone substitution at the 

latest follow-up visit. Other studies have also shown that a significant percentage of male 

survivors may have low testosterone levels (< 2ng/mL), with many male survivors requiring 

testosterone substitution at a young adult age (63). In Paper II, we identified TBI, 

prepubertal status at HSCT and direct testicular irradiation as the main predictors for needing 

testosterone HRT. 

Spermatogenesis 

Based on our results, we propose that measuring adult testicular volume, in addition to 

measuring FSH levels (117), can provide a useful tool for predicting the potential of 

recovering spermatogenesis. Eight male survivors who had received TBI with or without 

direct testicular irradiation at a prepubertal age experienced an arrest in testicular growth with 

testicular volumes remaining at volumes 4 mL or less. Spermatogenesis occurs in the 

seminiferous tubules and 80–90% of the bulk of testis is formed by functional seminiferous 

tubules (118) making the relationship between testicular volume and spermatogenesis 

significant. Median adult testicular volumes in the Nordic countries vary between 15–23 mL 

and in our study we set a cut-off at 15 mL. With this cut-off volume, 80% of the survivors 

with viable sperm could be identified with a 91% specificity. Our results indicate that larger 

testicular volumes may imply fertility even in patients who have been treated for leukemia or 

have received TBI. At follow-up, detecting an arrest in testicular growth in pubertal boys may 

indicate a higher risk of azoospermia. However, a sperm sample is needed for verifying any 

suspected azoospermia.  

Fertility preservation 

In vitro fertilization and intracytoplasmic sperm injection can offer a chance of fathering 

offspring even with low sperm counts (119). Cryopreservation of sperm should be offered to 

all pubertal and post-pubertal boys prior to cytotoxic therapies. For prepubertal boys, the 

fertility preservation options are at an experimental level. In non-malignant disease re-

implantation of cryopreserved testicular tissue or cells might be a useful fertility preservation 

approach while in malignant disease it includes a risk of malignant contamination (120). For 

prepubertal boys, in-vitro differentiation of germ cells combined with techniques for fertility 

preservation might offer a fertility preservation option for leukemia patients as well (120). 

These techniques require testicular biopsies, which can negatively impact testicular growth, 

and inclusion in these experimental studies is reserved only for patients at very high risk of 

developing azoospermia.  
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5.1.3 Adverse events and late mortality after pediatric allo-HSCT (III) 

In Paper III, almost all (85%) of the long-term survivors of pediatric allogeneic HSCT had a 

chronic health condition. With longer follow-up times, adverse events tended to increase both 

in numbers and severity in the TBI group. This can at least in part be explained by the more 

toxic procedures in the earliest era. Among the Bu-treated patients, the paradoxical increase 

in adverse events during the shortest follow-up times is most likely explained by the fact that 

more AML patients received Bu during the later era (instead of TBI), and the finding thus 

reflects the additive toxicity of previous leukemia treatments. The currently treated patients 

may experience less late toxicities from Bu as several improvements have been made in 

administering Bu that have decreased Bu-related morbidities and mortality (121). For 

example, the use of therapeutic dose-monitoring of Bu that allows more controlled systemic 

exposures was not available in the Nordic countries prior to 2000 but is currently a routine.  

The conditioning regimen had a major impact on the burden of late effects. Non-hormonal 

chronic conditions were more frequent among patients conditioned with TBI or Bu-based 

regimens and in patients who had cGVHD. sTBI was shown to be the most toxic of the 

conditioning regimens and caused significantly more hormonal and non-hormonal late effects 

than fTBI. Hormonal late effects had somewhat higher prevalence among after TBI-based 

than Bu-based conditioning regimens.  

 sTBI has been abandoned, but fTBI is still widely used in pediatric ALL and associated with 

a higher burden of late adverse events compared to Bu. Our results support the notion that 

due to the high burden of late toxicities the use of TBI in children should be limited and, if 

possible, omitted. It is yet to be shown if TBI can be replaced in the treatment of childhood 

ALL without compromising survival. Cy-based conditioning regimens were clearly the least 

toxic, and they were used in SAA patients whose treatment prior to allo-HSCT did not 

include cytotoxic drugs.  

Transplantation after relapse in CR2 did not associate with a significantly higher burden of 

late effects but there was a higher need of hormone replacement therapy in relapsed patients. 

Among the late causes of death, extensive cGVHD was the major cause of late mortality. 

Two cardiovascular deaths more than 20 years after HSCT in relatively young patients are 

indicative that allo-HSCT survivors may experience serious cardiovascular events 

significantly earlier compared to the general population (42, 84). Our results confirm the need 

of lifelong follow-up after allo-HSCT in childhood. 
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5.1.4 Long-term health-related outcomes after allo-HSCT for childhood AML 
(IV) 

The overall survival after allo-HSCT and chemotherapy only is comparable in the latest 

studies (36, 37) and allo-HSCT is not recommended in first remission for pediatric AML in 

general due to the higher burden of side effects (37). In Paper IV we confirm the high burden 

of late effects associated with allo-HSCT reflected by the higher use of medications, higher 

prevalence of endocrinopathies, limitations in physical activities as well as more neurological 

disorders than among the AML survivors treated with chemotherapy only. Our results 

support sparing the low-risk patients from allo-HSCT and the toxicities associated with allo-

HSCT.  Although the currently treated childhood AML patients do not receive TBI, Bu is still 

widely used and was associated with a higher prevalence of cGVHD and significant 

morbidity in our study. 

Half of the survivors had received TBI and half Bu. A few patients treated during the earliest 

era may also have been recipients of the more toxic sTBI. There was a strong association 

between TBI and cataracts, and although the highest prevalence of endocrine problems was 

seen after TBI, a significant proportion of survivors treated with Bu reported 

endocrinopathies. However, secondary malignancies were diagnosed only after TBI. Our 

follow-up may be too short for detecting secondary cancers after BU and cognitive 

impairments were not captured objectively. 

From a clinical point of view, the choice is between allo-HSCT in CR1 or reserving allo-

HSCT to CR2 for only those who relapse. Based on our results it seems that allo-HSCT in 

CR1 vs. CR2 does not make a large difference on the overall burden of late effects (Papers 

III and IV) but associates with an increased risk for cardiovascular disorders in AML 

survivors due to higher cumulative doses of anthracyclines. The higher prevalence of 

gastrointestinal disorders after relapse is most likely explained by the higher prevalence of 

cGVHD among the relapsed patients in our study. However, the influence of the higher 

cumulative doses of anthracyclines or alkylating agents on gastrointestinal disorders cannot 

be excluded (122). Considering that metabolic syndrome and insulin resistance are frequently 

described conditions following allo-HSCT, it is notable that none of the transplanted AML 

survivors in our study had been diagnosed with type 2 diabetes.  

One of the most unfortunate consequences of the myeloablative conditioning regimens used 

for allo-HSCT is infertility. The several reported natural conceptions in this cohort indicate 

that some children can retain their fertility even after very intensive treatments followed by 

myeloablative allo-HSCT. In line with previous reports, a high proportion (4 out of the 12 

reported pregnancies) ended in spontaneous miscarriages while the completed pregnancies 

resulted in healthy offspring (70, 123). The previously reported fertility rates among 

childhood AML patients treated according to the same AML protocols but without allo-

HSCT did not differ from siblings (110) indicating that survivors treated according to the 

NOPHO-AML treatment protocols without allo-HSCT have a good chance of retaining their 

gonadal function and fertility. Therefore, one of the major advantages in sparing low risk 
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patients allo-HSCT would be the higher chance of preserved fertility when highly 

gonadotoxic conditioning with Bu is avoided. Less gonadotoxic alternatives to Bu are needed 

in the conditioning regimens of pediatric AML. 

A future study comparing allo-HSCT and chemotherapy only could consider limiting the 

allo-HSCT cohort to the recipients of Bu-based conditioning regimens transplanted in CR1 

for a fairer comparison. Considering the relatively high number of reported pregnancies, 

follow-up studies focusing on fertility issues and pregnancy outcomes in this cohort would 

also be interesting to conduct. 

5.1.5 Strengths and limitations 

The first three papers, Papers I–III, used detailed data collected from high-quality medical 

records. We were able to include 91% of the surviving cohort; only 9% was lost to follow-up 

and we could not retrieve their medical records. There is always a potential selection bias 

when not all eligible patients are included but due to the small number of missing patients it 

is unlikely that this potential bias would substantially alter our results. Although the data had 

been recorded prospectively the data collection for this study was performed retrospectively 

and some data was harder to obtain through the medical records. The data relies largely on 

the documentation done by the treating clinicians and could be influenced by the issues 

discussed during the outpatient visits. However, the follow-up programs included pre-defined 

screening and contacts with different specialists during the visits and were similar between 

the two transplant centers. Most patients met a pediatric endocrinologist for evaluations of 

pubertal development. Establishing exact figures for fertility/infertility through medical 

records can be difficult. Male survivors may be reluctant to leave sperm samples and 

establishing data on pregnancies in their partners is limited as it may not always be noted in 

medical records or paternity verified. In addition, the wish to become a parent or data on 

involuntary childlessness is seldom noted in the medical records. In Paper III we lacked 

more detailed objective neurocognitive follow-up data and Karnofsky scores. Recording of 

some milder neurocognitive deficits may have been missed at the annual visits and the 

neurocognitive late effects may be underestimated in this study considering that in Paper IV, 

almost one third of the transplanted patients reported neurological or neurocognitive 

dysfunction through self-report. 

In Paper IV, data was collected from a population-based cohort and the participation rate 

was good, 65%. In addition, the survivors had been treated according to the same Nordic 

AML treatment protocols. However, the data relies on self-report on adverse outcomes and 

medications. It also relies on how well the physicians screened and informed the patients of 

their medical conditions. Possible local differences in the criteria for initiating medical 

treatment can influence the results comparing medications. However, considering that the 

data was collected from two well-investigated patient groups with regular follow-up visits the 

risk of information bias between these two AML treatment groups can be considered low. 

Although the data from the conventionally treated patients was collected four years earlier, 

the time from AML diagnosis was comparable between the two groups and might give a 
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fairer comparison between the two treatment modalities.  It should be noted that although 

both cohorts can be considered young, the conventionally treated patients were significantly 

younger, and this may impact our results for outcomes that are strongly correlated with 

increasing age. In statistical analyses we try to control for this by adjusting for both the time 

from diagnosis and age at questionnaire when comparing the two AML treatment groups. 

The indications for allo-HSCT have changed over the years and the conditioning regimens 

have been altered in an attempt to minimize both immediate and late toxicities. During the 

earlier era patients were allocated to allo-HSCT in CR1 by biological chance whereas during 

the later era mainly high-risk patients have proceeded to allo-HSCT in CR1, and this can 

introduce confounding by indication among the more recently treated patients.  

A higher proportion of patients transplanted in CR2 had cGVHD which might possibly 

interfere with the interpretation of the effect CR status at allo-HSCT has on the spectrum and 

severity of the late effects. However, we found very little difference in long-term outcomes in 

relation to CR status, similar to results in Paper III. In Paper IV, the higher prevalence of 

cGVHD in CR2 might have emphasized the burden of late effects after allo-HSCT in CR2, 

but our results showed mainly an increase in gastrointestinal disorders after allo-HSCT in 

CR2 in univariable comparisons within allo-HSCT. 

In the sibling-pairs comparisons power was lost as only 53 allo-HSCT had a sibling 

comparison available. All the statisticians consulted advised against pooling of the allo-

HSCT survivors´ sibling data with the previously collected data from siblings of survivors 

treated with chemotherapy only. The sibling comparisons were done by using conditional 

regression where only the sibling pairs were compared. In sibling comparisons there is bound 

to be some information bias in medical conditions due to the fact that most siblings had had 

scarce contact with health care and had not been screened for medical conditions in the same 

manner as the AML survivors.  

5.1.6 Summary and conclusions 

Allo-HSCT has offered cure for numerous children and adolescents who would otherwise 

have been lost. However, our studies confirm the significant burden of late effects after allo-

HSCT. Our results suggest that it may ultimately be the conditioning regimens and cGVHD 

that define the burden of late toxicities after allo-HSCT. Especially endocrine disorders 

showed strong correlation with the type of conditioning regimen used while non-hormonal 

chronic conditions had a strong correlation with cGVHD. We found significant morbidity 

after Bu-based conditioning regimens and most importantly, the gonadotoxic effects of Bu 

were comparable with TBI. The advantages achieved by the switch from TBI to Bu-based 

conditioning regimens includes somewhat lower frequency of endocrine disorders and less 

affected physical growth, and in males, there may be a higher chance of recovering 

spermatogenesis in the long-term. Also the risk for secondary malignancies is also most 

likely lower than after TBI but extended follow-up is needed to confirm this.  
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In the treatment of childhood myeloid leukemia, allo-HSCT after AML relapse can increase 

the risk of cardiovascular late toxicities. Allo-HSCT with Bu involves high risk of infertility 

which for many survivors is one of the most devastating late side effects after allo-HSCT. 

The presence of cGVHD is a major risk factor for a variety of late side effects and it also 

strongly correlates with compromised physical performance. Therefore, as long as allo-HSCT 

involves the risk of suffering from moderate or extensive cGVHD, proceeding to allo-HSCT 

in CR1 may significantly compromise health-related quality of life.  

Although the risk of infertility is very high after allo-HSCT, the previously reported fertility 

rates of below 3% after allo-HSCT may be too pessimistic for childhood AML patients who 

receive allo-HSCT. We discovered a relatively large subpopulation of young women who had 

retained their fertility, and more pregnancies can be expected in more extended follow-up. 

However, the fertility window may be substantially shortened by the intensive treatments and 

further studies are warranted for evaluating the long-term gonadal function and for obtaining 

more comprehensive fertility rates.  

Studies based on the current and previous treatments on the late effects after pediatric allo-

HSCT have all come to the same conclusion: life-long surveillance, counseling and disease 

prevention is needed after this very intensive treatment. Reproduction issues need to be 

addressed in a timely fashion and they require good collaboration between the treating 

oncologists and reproductive specialists. The disease occurrence after HSCT does not follow 

the same patterns as in the general population and many diseases classically associated with 

older age can appear at an early age. Early recognition of the specific long-term toxicities 

after allo-HSCT is needed and can only be facilitated through increased awareness among the 

treating clinicians and primary health-care providers.  

5.1.7 Future perspectives 

The future landscape of late effects after allo-HSCT will most likely be altered as treatments 

employ new approaches to minimize toxicities. Over time, the procedure of allo-HSCT can 

be expected to become more individualized, more effective and hopefully less toxic. 

Reducing Graft-versus-Host Disease while at the same time increasing Graft-versus-

Leukemia would substantially improve the outcomes after pediatric allo-HSCT for leukemia. 

In order to achieve high-quality cure with allo-HSCT, less toxic conditioning regimens that 

do not compromise immediate survival are needed and the risk of extensive GVHD needs to 

eliminated. 

An improved understanding of the T-cell function and immune environment can help 

introduce more targeted novel immunotherapeutic approaches that could spare healthy 

tissues. Novel immunotherapies include engineering T-cells that mainly target tumor cells. 

Chimeric antigen receptor (CAR)-transgenic T cells provide an attractive approach for 

treating relapsed hematological malignancies. Other novel immunotherapy approaches 

include tumor-associated antigen vaccinations and monoclonal antibodies (124). In the 

treatment of AML, first results from a clinical trial employing the first antibody-drug 
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conjugate gemtuzumab ozogamicin (GO) in consolidation following RIC allo-HSCT indicate 

it to be well-tolerated with a 5-year overall survival of 61% (16) however possible late 

toxicities associated with GO are yet to be demonstrated.  

Regardless of which new approaches become more established treatments, continued late 

effects research is needed to discover any possible long-term side effects of the new 

therapies. Also, the population of previously treated long-term survivors needs continued 

follow-up and repeated late effects studies for detecting any new, previously unknown long-

term side effects.  
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