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LBPI: A WEB INTERFACE FOR THE IDENTIFICATION OF ALLOSTERIC 

LIGAND BINDING SITES  

 

Nabina Paudyal (MS) 

 

Supervisory Professor: Alemayehu Gorfe, PhD 

 

 The development of efficient tools for allosteric ligand binding site identification in 

potential drug targets is an important step for computational drug design. Ligand binding 

specificity analysis (LIBSA) is one of the protocols that utilizes filtering algorithms to assess 

the propensity of a site on a target structure or structures to bind a ligand. However, LIBSA 

requires expert skills to be properly executed. Thus, a Web interface, LBPI (Ligand Binding 

Pocket Identification) has been developed using Django, a Python based web framework. A 

Python Wrapper has also been developed to streamline pre-existing algorithms of LIBSA. The 

Wrapper helps in the preparation of files, execution of individual programs and generation of 

appropriate results. LBPI provides an ideal platform for making complex binding site 

identification protocols readily available for non-expert users to submit jobs and monitor the 

results. The goal of LBPI is to integrate available algorithms in a systematic way and make it 

easily available for both experts and non-experts. 
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CHAPTER 1  

INTRODUCTION TO STRUCTURE-BASED DRUG DISCOVERY 

The process of structure-based drug discovery, as outlined in Figure 1.1 starts with basic 

research towards investigating the effect of potential drug candidates on an identified 

druggable target. First, basic research is performed to identify appropriate disease-causing 

targets or druggable targets such as proteins. Compounds are then screened to identify potential 

hits and eventually identify a drug lead, which is further subjected to pre-clinical and clinical 

trials, and finally filing for approval by the Food and Drug Administration. The new drug 

introduced to the market is administered to patients ensuring its safety, potency, and 

bioavailability . 

 

Figure 1.1 Timeline for drug discovery 

1.1 Computational ligand design  

 Experimental screening approaches can be used to identify compounds for druggable 

targets but they can often be expensive and time-consuming (2). In addition, the number of 

druggable targets has increased enormously over the past 50 years (3). In this period, 

computational biology has made tremendous advances in facilitating drug discovery by 
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expediting the process and reducing cost. Various in silico applications have been introduced 

that are collectively referred to as computer aided drug design method (CADD) (4). FDA 

approved drugs required billions of dollars using traditional research and  methodologies, and 

thus discovery of new drugs has been declining since 1950 (5), which can be partly reversed 

through the use of CADD. The introduction of CADD also provided opportunities for 

developing novel techniques to enhance better understanding of drug mechanisms and improve 

efficiency (6).  

 There are two major techniques used in CADD: a) ligand-based computer aided drug 

design (LB-CADD) and b) structure-based computer aided drug design (SB-CADD) (7). LB-

CADD is a statistical approach that relies on structure-activity relationship information 

between existing ligands and their targets. This technique can also be used as an indirect drug 

design method that does not directly use knowledge of the target of interest and thus becomes 

more challenging if there is no known ligand for the target of interest. In this case, SB-CADD 

is typically a better approach (8). SB-CADD requires the 3D structure of the target for the 

identification of new chemical compounds. In 1973, Beddell and Goodford reported the first 

structure-based drug design method for designing compounds that emulate the function of 2-3 

diphosphoglycerate in human hemoglobin (9-11). Compounds that can modulate the function 

of the target by binding with high affinity and selectivity have a higher chance of becoming 

hits (7, 12, 13). A key aspect of SB-CADD is the development of efficient strategies for 

identifying potential hits through high throughput virtual screening (HTVS) involving 

molecular docking and calculation of scoring functions. SB-CADD also allow us for a detailed 
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understanding of the interaction in ligand-target complexes, and for addressing conformational 

changes of both compound and target (14, 15). The identified hits are further subjected to 

experimental procedures like biochemical or biophysical assays and undergo optimization 

before they become drug leads (Figure 1.2). 

 

Figure 1.2. Workflow of SB-CADD 

1.2 Structure based computer-aided drug design   

 Application of SB-CADD (or any other similar technique) requires a 3D structure of 

the target macromolecule, which can be obtained from X-ray crystallography or NMR 

spectroscopy (16, 17). X-ray crystallography offers detailed yet static information about the 

target structure while NMR provides an ensemble of structures for relatively small proteins 

(17). The structures of macromolecules obtained from these and other methods are deposited 

in the protein data bank (PDB) (18). PDB, the most commonly used database for protein 
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structure, was established in 1971 at the Brookhaven National Laboratory and the data 

deposited were maintained in Brookhaven, Tokyo, and Cambridge. At present PDB is managed 

by members of the Research Collaboration for Structural Bioinformatics (RCSB) consortium 

based at Rutgers and UC San Diego (16, 18). The first reported 3D protein structure was X-

ray structure of sperm whale myoglobin published in 1958, and deposited to the PDB as PDB-

id 1MBN in 1973 by Kendrew and Watson (11, 16, 19, 20). Statistics of yearly growth of total 

structure show an exponential growth with more than 125,000 biological macromolecules 

currently available in the PDB. These structures are solved by X-Ray crystallography or NMR. 

Comparative or homology modeling may also help in providing information about large 

macromolecules whose structure remains unidentified by experimental methods (21). While 

some experimental methods might be able to account for receptor flexibility, it is expensive to 

generate multiple structures for each macromolecule. Molecular dynamics simulations can be 

used to generate large conformations of target structures to account for its dynamic nature (22). 

Representative structures of these large number of conformations from MD can be generated 

through various methods, such as RMSD clustering and principal component analysis (23, 24).  

 Availability of ligand libraries is another important component of SB-CADD. Several 

repositories of chemical compounds are available. Some of the compounds in these libraries 

possess drug-like properties satisfying Lipinski’s Rule of 5: a drug-like compound should 

possess less than five hydrogen bond donors, less than ten hydrogen bond acceptors, should 

have a molecular weight of 500 Daltons or less and a logP (calculated log of octanol-water 

partition coefficient) less than 5 (25, 26). Examples of chemical databases include PubChem, 
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a database of 25 million unique compounds with annotations about their biological activities 

(27). Others include ZINC (28) and ChemDB (29), containing about 21 million and 5 million 

compounds respectively, with Vendor’s catalog (12, 28, 29).  

1.3 Molecular docking and scoring function 

 Molecular docking is widely used in structure-based drug design for the identification 

of compounds that interact with the target of interest by characterizing its binding mode and 

calculating its binding energy. The earliest reported molecular docking was in 1982, on two 

systems: interaction of heme with myoglobin, and binding of thyroid hormone analogs to 

prealbumin. At that time, both the macromolecule and the ligand were treated as a rigid body 

during docking (11, 30, 31). Molecular docking can be used for a) site-directed docking, which 

refers to docking of molecules at a specific site of the target for virtual screening of chemical 

compounds to identify potential hits or b) blind docking, which refers to docking of probe 

molecules or ligands on the entire surface of the target to identify an appropriate binding site. 

The most common molecular docking programs currently used are AutoDock (32, 33), GOLD 

(34), FlexX (35), DOCK (36). Binding energy typically obtained from molecular docking is 

calculated using a physics-based scoring function (33). 
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 Where ΔGbinding refers to the binding energy or the scoring function that depends on a 

12-6 Lennard-Jones potential (vdW) for non-polar interactions, a modified 12-10 Lennard-

Jones potential for hydrogen bonding interactions (hbond), a couloumb term for electrostatic 

interactions (elec), as well as torsional (tor) and solvation energy (sol). The ΔW coefficient for 

each interaction term is calculated by linear regression analysis of known protein-ligand 

complexes. Aij and Bij represent constants for the Lennard-Jones potential, which depend on 

the strength of van der Waals interaction between two atoms i and j with equilibrium distance 

rij (37). Whereas Cij and Dij represent constants for a modified Lennard-Jones potential with 

their value depending on the interaction between atoms i and j through H-bonding (33). E(t) 

represents directionality based on hydrogen bonding angle. The charges on atoms i and j are 

represented by qi and qj with Ɛ being the dielectric constant of the medium. The number of 

torsions of the ligand is represented by Ntor and depends on the number of its sp3-hybridized 

bonds. Finally, the solvation term is atom specific and is represented as Si for an atom i with 

fragmental volume Vi. The constant term σ in the calculation of solvation energy is a Gaussian 

distance of value is 3.5 Å (33). 
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1.4 Targeting of an active site versus allosteric site 

 Referring back to the workflow of SB-CADD shown in Figure 1.2, before the 

identification of potential hits it is very important to identify a feasible binding site on an 

appropriate druggable target, without which identification of a drug lead is very challenging 

(38, 39). Druggable targets, which are typically proteins, bind to other macromolecules like 

proteins or small molecules to execute their functions (17). Molecules binding to the active site 

can have high specificity and usually bind with high affinity (17). However, many drugs 

designed to target the active site and inhibit function might produce toxic effects by binding to 

other proteins with a structurally similar active site (40).  An alternative approach is to alter 

the function of the target protein via allosteric modulation (40, 41). Allosteric sites are distinct 

binding sites from the active site and can be feasible sites for developing novel drugs. When 

an allosteric ligand binds to the allosteric site it could modify the active site and thereby alter 

the function (42, 43). The mechanism for allosteric binding is well elucidated with the analysis 

of the available 3D structures of proteins (44). Drugs targeting allosteric sites are generally 

less toxic and have greater selectivity, and hence allosteric binding site identification is an 

important endeavor in current SB-CADD. (41).  

1.5 Approaches for allosteric ligand binding site identification 

 FTMAP (45), MDpocket (46), Sitemap (47), pMD (48), and LIBSA (49) are some of 

the approaches commonly used for allosteric ligand binding site identification. FTMAP is 

based on a fast Fourier transform (FFT) correlation approach for sampling consensus site on 
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the entire surface of the protein using small organic probe molecules. The speed with which it 

solves detailed energy expressions used for scoring protein-probe interactions makes this 

approach unique (45). MDpocket is a geometry based cavity detection approach based on the 

f-pocket algorithm. It helps in the identification and characterization of binding cavities that 

might be transiently present in MD trajectories or ensembles of protein conformations (46). 

On the other hand, Sitemap helps in the prediction and classification of target druggability 

based on ligand binding efficiency. In this method, site points are located on the protein’s 

surface, followed by the preparation of contours representing the nature of the site and hence 

prediction and classification of sites (47). pMD-membrane (48) and LIBSA (49) techniques 

developed previously in our lab utilize MD ensembles for identifying allosteric binding 

pockets. In pMD-membrane, MD is performed in the presence of small molecular probes to 

assess the propensity of a site on a soluble or membrane bound protein to bind a ligand. In this 

method, probe occupancy is used for evaluating druggability of a binding site, and modified 

force field parameters are introduced between selected probe and membrane atoms to mitigate 

potential effects of the probe molecules on the membrane (48). LIBSA utilizes three steps to 

identify binding sites: a) blind docking of the ligand onto a target receptor, b) application of 

filters on docked poses, and c) use of signal to noise ratio for quantification of binding site 

preferences (49).  

 Since LIBSA is the primary tool used for allosteric ligand bind site identification in 

this project, the next chapter provides a detailed description of this technique.   
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CHAPTER 2  

LIGAND BINDING SPECIFICITY ANALYSIS 

 Ligand binding specificity analysis (LIBSA) (49) is a novel approach for addressing 

the challenge of ranking blind docked results designed to identify preferred binding site(s). 

The general workflow of LIBSA starts with the processing of coordinate files of a target 

receptor (a single or multiple conformations) and a probe ligand followed by blind docking 

using AutoDock or any other docking algorithm (the original paper utilizes AutoDock for blind 

docking). Filtering algorithms were introduced (affinity filter and high pass filter) to remove 

docking noise and to prioritize poses, followed by quantification of binding site preferences. 

The flowchart in Figure 2.1 provides a schematic outline of LIBSA. 

 

Figure 2.1. Schematic outline of the LIBSA workflow, with the filters for the quantification of 

binding site preference. 

 Blind docking, which is the key component of LIBSA, refers to the identification of 

probable binding sites by docking probe molecules on the entire surface of the target. 

AutoDock, the most cited docking program in the literature, was first used for blind docking 

by Csaba Hetényi and David van der Spoel (50, 51). The basic procedure for blind docking 



10 

 

using AutoDock involves processing structure files for the probe ligand and the target molecule 

by adding Gasteiger charges and hydrogen atoms, and removing water molecules, ions and 

metals (if any). A grid, which is important for defining the search space, is built on a three-

dimensional box covering the entire protein with the center of the box overlapping with the 

center of the protein. This is done by means of AutoGrid. Lamarckian Genetic Algorithm 

(LGA), a common and efficient search method in AutoDock, determines the termination 

criteria based on the number of energy evaluations or the number of generations, whichever 

comes first (32, 33). Ultimately, conformations for the best binding mode of the ligand are 

obtained and their corresponding binding free energy is returned to the user as a log file. 

 

Figure 2.2. Blind docking of a ligand 0QV ((4-hydroxypiperidin-1-yl)(1H-indol-3-yl) 

methanethione) on the entire surface of GDP-bound K-Ras structure from PDB id 4EPW. 

Dense black dots represent poses of the probe ligand that might represent a probable binding 

site. The sparsely occupied region represented by fewer black dots might represent docking 

noise. 
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 Two filters, namely affinity filter and high pass filter, were developed in order to 

facilitate analysis of blind docking results. The filters use the log file (dlg format) from the 

docking program to remove docking noise. Filtering signal from noise is the most novel aspect 

of LIBSA (49). Each filter works in a different way but serves the same purpose: remove 

docking noise. Affinity filter reduces docking noise by utilizing docking free energy values. 

Since energy values calculated through docking programs typically entail an error of 2kcal/mol 

(32, 52), accounting for binding preference based on the energy alone is not effective. Affinity 

filter addresses this challenge by considering the frequency of occurrence of docking scores. 

Firstly, an affinity histogram is prepared based on the distribution of binding scores, and a 

cutoff value is introduced to focus on the most prominent peaks. Peaks with frequency of 

occurrence more than or equal to cutoff value are identified as explicit peaks. Then for further 

analysis, peaks within a certain sampling window of the explicit peaks are included as auxiliary 

peaks. The docked conformations corresponding to the explicit and auxiliary peaks represent 

filtered poses based on affinity filtering. The second filter is a high-pass filter that utilizes the 

concept of digital signal processing for removing noise. It is based on the frequency of contact 

between heavy atoms of the probe molecule and heavy atoms of residues of the protein that lie 

within a certain distance. This histogram is presented as input for the filter. A cutoff for peak 

value is once again used to focus on the residue that interact most frequently with the ligand. 

The flowchart for utilization of LIBSA filters is shown in the right panel of Figure 2.1. The 

two filters can be used independently or together for reducing docking noise.  
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 Calculating the signal-to-noise (SNR) ratio is the final step of LIBSA. SNR helps to 

quantify binding site preference. With the calculation of SNR, a best binding site out of 

probable multiple binding sites can be identified, or ligands can be ranked for their preference 

to bind a site based on their SNR values. A contact histogram is required for computing SNR, 

and is prepared by considering the frequency of contacts between heavy atoms of the probe 

molecule and heavy atoms of residues of the protein that lie within a certain cutoff distance. 

With the application of LIBSA filters, filtered poses are utilized for preparing contact 

histogram from which the identified region of interest is considered as signal and other regions 

are considered as noise. SNR is calculated as, 


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
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 where ui is the height of the peak of residue i in the region of interest (considered as 

signal), Nsignal is the total number of residues that lie within the same patch, uj represents the 

height of the peak of residue j that is outside the signal region and Nnoise represents the total 

number of residues that lie outside the signal patch. 

 Ensembles-based SNR involves calculation of SNR over multiple representative 

conformations of a target of interest. Identification of a preferred binding site of an ensemble 

by utilizing LIBSA involves independent docking on each target conformation, followed by 

application of filters to each independent molecular dockings and averaging of the results to 

produce a single contact spectrum. The averaged spectrum is then utilized for calculating SNR 

as described above. 
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 LIBSA was applied to several sets of known protein-ligand complexes for validation. 

Few sets of probe-ligands were used on Ras protein conformations obtained from the PDB or 

MD simulation for re-identification of binding sites to test the robustness of LIBSA. In 

addition, andrographolide derivatives were used as ligands with K-Ras ensemble for 

quantification of preferred binding sites, and the ligands were ranked based on their binding 

preference of those ligands to a site. Hence, LIBSA can be applied in any challenging drug 

target for the identification of binding site or can be applied with diverse ligands for ranking 

them based on their preference to bind to a site. 

 However, application of LIBSA, which entails processing of files, performing blind 

docking, applying filters to reduce docking noise, and quantifying binding site preferences by 

calculating SNR, requires expert skills to be properly executed. The minimum skills required 

for the execution of LIBSA include, processing of structure files in appropriate file formats, 

setting grid and docking parameters, executing LIBSA algorithms written in C++ 

programming language, preparing histograms and providing values to the algorithms for 

calculation of SNR. Thus, LIBSA is not easily accessible to non-experts. Hence, to reduce the 

significant learning curve and make accessible to both experts and non-experts, we 

hypothesized that, a web interface for streamlining algorithms of LIBSA and automating its 

disparate protocols will facilitate efficient identification of allosteric binding pockets. 
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CHAPTER 3  

LBPI: A WEB INTERFACE  

3.1 Overview 

 Ligand Binding Pocket Identification (LBPI) is a Web interface designed for the 

identification of allosteric ligand binding sites by employing the protocols of LIBSA. The 

protocols include processing of coordinate files followed by molecular docking using 

AutoDock, and applying LIBSA filters for removing docking noise and quantifying binding 

site preference. LBPI is built on a freely-available Python-based web framework, Django (53), 

accompanied by a set of scripts written in the Python programming language that serves as a 

Wrapper. The main function of the web framework is to handle requests for uploading or 

downloading files, accept modules and parameters that have been passed through the web page, 

and return a response to URL to view the contents of the web page. It also stores information 

about file location. The Wrapper, on the other hand, helps to process coordinate files, automate 

the application of existing algorithms, pass variables to the relevant algorithms, execute 

programs and prepare histograms. The platforms to upload or download files, select program 

modules, and input user defined parameters and monitor results, are facilitated through the 

Web interface accessed via a web browser. The goals of the LBPI Web interface are to make 

LIBSA easily accessible to both experts and non-experts and to reduce the significant learning 

curve of the technical details needed to perform research independently by non-experts. 
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3.2 Python programming and its modules used as a Wrapper 

 Python (54, 55) is a freely available high-level object oriented programming language 

rich in a wide variety of libraries, including scientific libraries extending from bioinformatics 

to structural biology. Python programming is chosen for preparing a Wrapper as it requires 

fewer line scripts compared to other object-oriented languages such as C++, or C. Hence, it 

can be written with fewer errors and is easily understood (56, 57). Python is available in two 

versions: Python 2.X and Python 3.X. Since Python 3.X has more updated libraries and 

features, it is used in the development of our Wrapper. 

 Python modules such as sys, re, subprocess, NumPy (58), Matplotlib (59), etc. are used 

in the Wrapper for executing existing algorithms, and preparing results. The sys module is 

used as a command line argument for accessing the variables used, while the re module, 

commonly known as regular expression syntax, is used to match strings and implement 

simultaneous jobs designed for each matched string(s). Similarly, the subprocess module helps 

to access system commands and is used in executing new processes, followed by piping inputs 

and outputs. On the other hand, NumPy and Matplotlib are standard libraries of Python used 

for scientific computation and preparing 2D plots. Arrays of data are created by NumPy for 

data normalization and plotting of histograms, simple plots or bar plots utilizing Matplotlib. 

3.3 Django and its work structure used for web design 

 Django (53, 60), a freely available Python-based web framework, facilitates 

developing, testing and maintaining web applications. Django is very well documented and its 
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active community of users continuously update the Django project. Therefore, Django was 

chosen as a web framework for LBPI. Some of the scientific projects built on Django web 

framework are CHARMMing (61), TargetNet (62), ChemDes (63), and DEPTH (64). The 

working of Django starts with creating a project consisting of several sets of codes defined as 

applications. Applications of Django include Views, Models, Forms, URLs, and templates. 

The workflow of Django is as shown in Figure 3.1. 

.  

Figure 3.1. The workflow of the Django framework. 

 A Django template consists of HTML contents, tags (if, else, extend, for etc.) and 

variables (which change with the results) for viewing web applications.  A Django-powered 

site is viewed on a web browser through Django templates containing a specific URL (Uniform 

Resource Locator), a web address written in a certain pattern mapped with its Django Views. 

Each view in Django application is written as Python function assigning specific tasks, and 

hence renders requests and returns responses as Django templates. Django Models cover 

essential fields and behaviors of the data to be stored, and derive essential information from 

the data. The file field attribute of the model helps in setting folder and file names for the data 
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file to be stored. Django Forms are used to accept user inputs as files or data, validate the inputs 

and convert them to Python objects.  

 The Django framework, the Python Wrapper and Web interface templates written in 

HTML, complement each other to automate LIBSA protocols, execute jobs and return the 

results to the user for the identification of druggable binding sites and quantification of binding 

site preferences.  
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CHAPTER 4  

IMPLEMENTATION OF LBPI 

4.1 Overview 

 As discussed in previous chapters, the goals of LBPI are to make LIBSA easily 

accessible to both experts and non-experts and thereby reduce the significant learning curve 

needed to use the tool independently. In this chapter we present the implementation of LBPI 

in two ways, option 1 and option 2, as shown in Figure 4.1: 

 

Figure 4.1. Front-page of LBPI with two options of use highlighted in box 1. Manual is made 

available in the page through the link highlighted in box 2. 

Option 1: Process files  perform blind docking  apply LIBSA filters  calculate SNR 

 This option starts with processing coordinate files for docking, followed by blind 

docking and executing LIBSA as illustrated in Figure 4.2.  
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Option 2: Process docking files  apply LIBSA filters  calculate SNR 

 This option starts with processing of a target structure file used for docking and the 

docking log files. These files are converted to LIBSA readable formats if needed and serve as 

input to LIBSA. The flowchart shown in Figure 4.2 holds true for this application as well, 

except that the module for blind docking is skipped and processing of coordinate files is 

replaced by processing of docking output files.  

 

Figure 4.2. A schematic outline of the workflow of LBPI. 

 



20 

 

4.2 Implementation of blind docking and filters (option 1): 

4.2.1 Processing coordinate files 

 LBPI offers an option for submitting and processing structure files along with example 

files for demonstration purposes. Figure 4.3 shows a snapshot of the Web interface for 

processing structure files.  

 

Figure 4.3. Choices for submitting coordinate files that are for both the target receptor and 

the probe ligand as in the red boxes 1 and 3. Red box 2 represents a list of PDB chain 

identifiers and co-crystals that exist in the target structure returned to the user for selection. 

For docking, the blue box highlights example files provided for demonstration purposes. 

 The process of submission and preparation of the target structure for molecular docking 

is done automatically. Submission of a structure or structures can be done in two ways: a) 
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uploading a file in a pdb or mol2 format or b) providing a valid 4 letter PDB id for retrieving 

the structure from the protein data bank. The Python snippet shown in Figure 4.4 highlights a 

function in Django Views that handles the user request for submitting the structure via the 

POST method. Document and Document Form used in the script are defined as functions in 

Django Models and Django Forms for storing the file in a defined folder, and handling file 

submission, respectively. A structure submitted by providing valid pdb id is handled through 

the GET method.  

 

Figure 4.4. Python snippet from Django Views representing a function which accepts and 

returns user requests for submitting files via the Web interface. 

 The Wrapper invoked through Django Views after submission of the target file assists 

in the conversion of a mol2 file format to a pdb file format by means of Open Babel (65). 

Figure 4.5 shows a snippet from the Wrapper used for extracting chain identifiers and co-

crystals that might be present in the coordinate file. A list is then returned to the user for 

selection of chains and co-crystals to be included in the target structure for docking. The 

prepared structure is then processed automatically with tasks such as renumbering of residue 
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id, addition of atomic Gasteiger charges and polar hydrogens, removal of ions and water 

molecules by invoking Python scripts in MGL Tools of AutoDock, via the Wrapper. 

 

Figure 4.5. A Python snippet from the “Wrapper” for extracting chain identifiers and 

residue names to facilitate returning of a list of chain identifiers and co-crystals to the user. 

 Similarly, the probe ligand can be submitted in pdb, sdf, smi or mol2 file formats. It 

can also be submitted as line notation entry termed as SMILES (simplified molecular-input 

line-entry system) (66). The Wrapper converts SMILES strings to a 3D coordinate file in pdb 

format utilizing Open Babel. The ligand coordinate file is then made available for download 

through the Web interface to confirm if the desired structure has been generated. The working 

of Django framework for handling submitted structure for ligand and processing of prepared 

ligand structure is similar to that explained for processing of the target structure.  

4.2.2 Docking of the probe on the entire surface of the target protein 

 Following the preparation of coordinates of the probe and the target molecule, the 

Wrapper calculates the size of the target molecule to map a cubical grid on the entire surface 

of the target to define the search space for docking. The parameters required for blind docking 

can be provided through the Web interface as shown in Figure 4.6, which include: 

Spacing is the distance in Å between the centers of two grid points, with the same value used 

in every dimension for a cubic box. The default (recommended) value depends on the size of 

the target and ranges from 0.1 Å to 1 Å.  
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Energy evaluations is the maximum number of energy evaluations to be performed during 

docking. Its value ranges from 250,000 to 25,000,000 depending on the number of rotatable 

bonds present in the probe ligand, with the default being 250,000. 

Number of generations is the maximum number of generations a docking should attain to 

terminate the run. The default is 27,000, which is sufficient for ligands with less than 10 

torsions.  

Number of runs refers to the number of independent runs to be requested for docking. Its 

maximum value is 256 and is used as default. 

 

Figure 4.6. Parameters required for blind docking shown in the red box. Blue box highlights 

downloadable ligand coordinate files generated by LBPI. 

 The parameters submitted through the Web interface are handled by Django Views by 

the code snippet shown in Figure 4.7, which is then passed to the Wrapper through system 
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arguments as shown in Figure 4.8, for executing specific tasks assigned as shown in Figure 

4.9.  

 

Figure 4.7. Python snippet from Django Views showing the method used to accept input 

parameters.  

 

Figure 4.8. Python snippet from the “Wrapper” representing system arguments for passing 

parameter values retrieved from the framework shown in Figure 4.7. 

 

Figure 4.9. Python snippet from the “Wrapper” showing the passing of parameter values 

through system arguments to invoke Python scripts present in MGL Tools of AutoDock for 

preparing parameter files needed for docking. 
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Figure 4.10. Grid box mapping the surface of the protein with its center overlapping the 

center of the protein. 

 The maximum length of the target protein structure in each direction represents the 

length of the cubic grid box after adding 10 Å in each direction to accommodate the ligand in 

the search space. For a cubic box of length l, the recommended spacing (Srec) for efficient 

calculation of interaction energies is Srec =  
𝑙

126
 Å, where 126 is the maximum total number of 

grid points allowed in AutoDock. For Srec ≥ 1 Å, Srec is set to 1 Å as AutoDock has a spacing 

(S) limit of  (0.10 ≤ 𝑆 ≤ 1) Å. If a user provides a spacing value through the Web interface, 

the number of grid points (N) is calculated as, 
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 With the adjustment of the grid box around the protein surface with its center located 

at the center of the protein, and using the parameters provided through the Web interface, the 

Wrapper invokes corresponding AutoDock Tools for blind docking. The target file used for 

docking and the docking log file obtained from docking are then converted to LIBSA readable 

formats to execute LIBSA.  

4.2.3 LIBSA filters 

 The module for LIBSA filters in the Web interface is as shown in Figure 4.11. 

Histograms for contact and affinity spectra from docking are displayed through the Web 

interface to help the user decide about the filter to be used for removing docking noise. 

Histograms are prepared with the help of the Wrapper using NumPy and Matplotlib library as 

shown in Figure 4.12, which is then returned to the user through the Web interface.  
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Figure 4.11. LBPI facilitates selection of LIBSA filters with parameters for corresponding 

selected filters as shown in red boxes. Blue box 1 represents processed log files available for 

download, which can be viewed with any graphical interface. Histograms provided in blue 

box 1 represent affinity and contact spectra obtained from docking without utilizing filters. 

Histograms in blue box 2 represent affinity and contact spectra after applying LIBSA filters. 

SNR values are provided along with the residues representing the region of interest.  
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Figure 4.12. Python snippet of scripts written for preparing NumPy array used by Matplotlib 

as pl for preparing histogram. 

 If LIBSA filter is selected, the Web interface allows the user to input the appropriate 

parameters. These parameters include bin size, which is the width of bins to be used when 

calculating histograms; threshold, which refers to the cut-off for the peak height ranging from 

0 to 1 due to normalization, peak values less than the defined threshold are excluded; sampling 

bin size 1 to 100, the number of bins to the left and right of the selected explicit peak; and cut-

off, the distance between any heavy atom of the ligand and the target in Å for calculating the 

number of contacts. The default value for each parameter is provided based on the 

recommendations in the original Journal article (49).  When the parameter values are submitted 

through LBPI, the Wrapper automates the execution of LIBSA and returns the results to the 

user through LBPI. Figure 4.13 represents a snippet of a function based on the selection of data 

through LBPI. A function in Django Views assigned for the corresponding filter passes the 

parameter values and executes the LIBSA algorithm for affinity filtering. Finally, the results 

are returned to the user as an HTML page in LBPI.  
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Figure 4.13. Python snippet from Django framework for selecting filters. 

 

 Based on the selection of LIBSA filters through LBPI, a contact histogram is calculated 

and returned to the user for them to decide on parameters to be provided for calculating SNR. 

These parameters include peak value, which refers to the minimum value of the dominant 

peaks in the contact spectrum to be considered for locating residues representing the center of 

region of interest. Then neighboring residues within a certain distance of these central residues 

that satisfy the peak histogram criterion are selected to define a binding region of interest. This 

region serves as a signal to calculate SNR through LBPI.  

4.2.4 Ensemble-based SNR 

 LBPI facilitates uploading of multiple receptor conformations through the ‘For 

ensembles’ button provided in the processing of receptor section. All conformations should 

consist of an equal number of atoms and should be in the pdb file format. When uploaded, 

these conformations are saved in separate folders and are processed separately with the help of 

the Wrapper. At least 2 target conformations should be uploaded. A probe ligand is then 

uploaded, processed and sent to each folder for docking, application of filters and obtaining 
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contact and affinity spectra independently.  Next, by means of the Wrapper, a single contact 

spectrum and affinity spectrum is produced by averaging the corresponding spectra obtained 

for each target conformation. Finally, a binding region of interest is identified and SNR is 

calculated for the identified region of interest to get a best binding site for the ensemble. 

 

Figure 4.14. Uploading multiple conformations to calculate SNR by averaging over an 

ensemble. 

4.3 Implementation of filters (option 2)  

4.3.1 File preparation 

 In this section, a target pdb or mol2 file used in molecular docking or obtained in a 

pdbqt format from AutoDock is accepted and processed as a LIBSA readable format. For the 

probe, a dlg file from AutoDock is accepted and similarly processed. The processed dlg file 

includes conformation of the probe from docking with its corresponding binding energy. 
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Figure 4.15 shows a snapshot of this section from the Web interface. This section then proceeds 

to the utilization of filters as the module for blind docking is skipped in this section. 

 

Figure 4.15. Options for submitting files of the receptor and log files from docking is 

highlighted in the red box with example files highlighted in the blue box. 

4.3.2 LIBSA filters 

 LIBSA filters in this section is similar to the one described in section 4.2.3 and shown 

in Figure 4.11. The filters selected, parameters provided and histograms prepared through the 

Web interface in this section are as explained in section 4.2.3 for the identification of 

appropriate binding site and quantification of its binding site preference. 

4.4 Summary 

 We have shown that LBPI has been implemented in 2 ways to enable flexibility. Option 

1 is mainly targeted to non-experts who would like to focus on the identification of binding 

sites using LIBSA protocols without the knowing technical details of molecular docking or 

LIBSA filters. However, the advantage of choosing option 2 over option 1 is that users 
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(especially experts) can directly focus on the application of LIBSA filters by skipping 

molecular docking. Also, users can choose a wide range of customizable parameters for 

molecular docking to obtain log files required for LIBSA filters instead of conducting docking 

with AutoDock via LBPI. However, this section is feasible to experts who are acquainted with 

molecular docking. Our implementation of LBPI thus allows users the flexibility necessary to 

select the modules on the basis of their preference. 
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CHAPTER 5  

APPLICATIONS 

5.1 Re-docking with LBPI  

 We applied LBPI on three protein-ligand complexes (mentioned as cases in Table 1 

and throughout this section) taken from the protein data bank for re-identifying the known 

binding site of their co-crystal ligand. For each case, first, we used LBPI for extracting the 

protein structure from the PDB and then uploaded the corresponding ligand coordinate 

extracted from the complex structure utilizing Visual Molecular Dynamics (VMD), a graphical 

interface (67). The information about proteins and ligands used are shown in Table 1 and 

Figure 5.1. Next, we provided parameters to LBPI for molecular docking (mentioned in Table 

1) and LIBSA filters (default parameters were used). The submission of these parameters to 

LBPI executed molecular docking and LIBSA filters automatically. The results obtained and 

the site identified via LBPI are shown in Table 1 and Figure 5.2. For cases 1 and 2, we 

identified a single binding region of interest (green region) for the corresponding ligands and 

compared with it with the known binding site (the region with the ligand shown in red). The 

identified region agrees well with the known binding site. Also, the value of the computed 

SNR for these regions was greater than 1 (Table 1, Figure 5.2), illustrating that LBPI 

successfully identified the known binding sites as preferred binding sites for cases 1 and 2. For 

case 3, we identified two potential binding sites (green and blue regions in panel C, Figure 5.2) 

and compared their SNR values. As the SNR for the green region is higher than the blue region, 
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we conclude that the green colored binding region (Figure 5.2, panel C) is the preferred binding 

site, which remarkably coincided with the known binding site. 

 

Figure 5.1. Chemical structures of ligand 0QV, SB2, and EST from PDB 4EPW, 1QKT and 

1A9U respectively. 

 To put it briefly, by directly submitting coordinate files of the proteins and known co-

crystallized ligands and other parameters to LBPI, we were able to identify the correct binding 

site for all three cases without reverting to manual procedures or knowing the technical details 

of the molecular docking protocol or LIBSA filters. 
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Figure 5.2. (A-C) Contact histograms after applying affinity and highpass filter to remove 

docking noise (left). The target structure shown in grey surface with the co-crystallized 

ligand is represented in red and the docked poses in black dots; SNR for the region of 

interest is shown in the right panel and is highlighted in green on the protein surface, which 

coincides with the co-crystal site.  



36 

 

Table 1. Summary of re-docking results with LBPI 

Case PDB 

id  

Co-crystallized ligand Protein  Docking 

parameters 

(E.E., N.G.)* 

SNR (predicted 

binding site residues) 

1 4EPW 0QV 

(4-hydroxypiperidin-

1-yl)(1H-indol-3-

yl)methanethione 

K-Ras 2.5*106  

 

2.7*104 

1.672 (7, 39, 55, 56, 

57, 70, 71, 72, 74) 

2 1QKT EST 

(estradiol) 

Nuclear-

estrogen 

receptor 

2.5*105  

 

2.7*104 

1.582 (42, 43, 44, 80, 

81, 82, 83, 84, 86, 85, 

88, 100, 101, 102, 

219, 221, 223) 

3 1A9U SB2 

4-[5-(4-fluoro-

phenyl)-2-(4-

methanesulfinyl- 

phenyl)-3h-imidazol-

4-yl]-pyridine 

Kinase 

protein 

(P38) 

2.5*105  

 

2.7*104 

1.198 (47, 79, 80, 

103, 104, 105, 106, 

107, 155, 156, 157, 

161, 162, 163) 

0.921 (233, 235, 236, 

237, 263, 264, 265, 

286, 287, 288) 

* E.E. = energy evaluations and N.G. = number of generations 

5.2 Cross-docking with LBPI  

 We demonstrated an additional use of LBPI by performing cross-blind docking of 

ligand NIL (obtained from 3GP0) to a kinase-protein, P38, obtained after removing the co-

crystals in 1A9U. The coordinate files were submitted to LBPI as mentioned earlier, and 

parameter values were provided to LBPI in a similar way as case 2, shown in Table 1. The 

result obtained after executing molecular docking and application of LIBSA filters through 

LBPI is shown in Figure 5.3. The calculation identified two regions as binding regions of 

interest, shown in green and blue regions on the protein structure in Figure 5.3, along with the 
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SNR. Since SNR for the green region is higher, it is considered a preferred binding site as 

compared to the blue region.  

 

Figure 5.3. Contact histogram after affinity and high pass filtering of docking results for NIL 

(3GP0) to protein kinase P38 (1A9U).   

 The crystal binding site of ligand NIL in 3GP0 is similar to the crystal binding site of 

ligand SB2 in 1A9U (68, 69). On comparing the preferred binding region obtained from LBPI 

with the known crystal binding site, we could say that LBPI was able to locate the correct 

binding site from cross docking of NIL on P38. 

 Further, for a rigorous test, we took four different ligands 0QR (N-(6-aminopyridin-2-

yl)-4-fluorobenzenesulfonamide), 0QW ((2-hydroxyphenyl)(pyrrolidin-1-yl) methanethione), 

0QX (2-(1H-indol-3-ylmethyl)-1H-imidazo[4,5-c] pyridine) and BZI (benzimidazole) from 

PDB- 4EPX, 4EPT, 4EPV and 4DSU respectively (Figure 5.4), and cross-docked them to 

GDP-bound K-Ras using 4EPW crystal structure, after removing all co-crystals. As discussed 
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in earlier sections, the coordinate files and parameters were provided to LBPI. The parameters 

values used were similar to case 1 shown in Table 1.  

 

Figure 5.4. Chemical structures of ligands 0QR, 0QW, OQX and BZI from PDB 4EPX, 

4EPT, 4EPV and 4DSU respectively 

 Docked poses obtained from docking through LBPI were rendered with VMD for each 

ligand and shown in Figure 5.5. The histograms prepared by LBPI after executing LIBSA 

filters are shown in Figure 5.6. The ligands we have chosen for cross docking are known to 

bind at the same site as the co-crystallized ligand 0QV in 4EPW (70, 71). When cross-docked, 

LBPI identified two regions of interest, region 1 (pink) and region 2 (cyan) for each ligand, 

except for BZI, which has only one predicted site, region 1 (pink). After computing the SNR 

values (Figure 5.6) for the identified regions through LBPI and comparing them, the ligands 

could be ranked as BZI > 0QX > 0QW > 0QR for their binding preference to region 1, and 

0QW > 0QX > 0QR > BZI for their binding preference to region 2. LBPI correctly identified 
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region 1 as the preferred binding site for 0QX and BZI but failed for ligands 0QR and 0QW, 

as the SNR for region 2 was higher than the SNR for region 1 for these ligands.  

 

Figure 5.5. Docked poses obtained from AutoDock for 0QR (blue), 0QW (yellow), 0QX (red) 

and BZI (green). Regions 1 and 2 are represented by pink and cyan color respectively and 

indicate the binding regions of interest for calculating SNR for each ligand.  

 Since the ligands used for cross docking were selected from PDB files of the same 

protein but of different conformations, each protein conformation might differ in terms of the 

size and volume of the correct binding site. Thus we checked if re-docking of 0QW and 0QR 

to their parent protein structure through LBPI could identify the appropriate binding site. The 

procedure for submitting coordinate structures and parameter values to LBPI was the same as 

mentioned before. Our results (Figure 5.7) show that only one binding site was identified for 

0QW, whereas, once again, two possible sites were identified for 0QR. The computed SNR for 
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the predicted regions of interest for both 0QR and 0QW suggest that the preferred binding site 

identified by LBPI coincides with the known binding site for both ligands. 

 

Figure 5.6. Panels A, B, C, and D represent contact histograms for 0QR, 0QW, 0QX and BZI 

after docking on K-Ras (4EPW) and applying both affinity and high pass filters. SNR 

computed for region 1 is represented in pink and SNR computed for region 2 is represented 

in cyan.  
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Figure 5.7. Contact histograms for 0QR and 0QW obtained from docking these ligands to the 

parent protein X-Ray structure. SNR for region 1 and region 2 is represented as pink and 

blue respectively. 

 However, the SNR computed for 0QR when docked on a single K-Ras structure of 

PDB id 4EPW or 4EPX is still less than 1. I believe this is because the docking protocol did 

not account for the flexibility of the target protein. With the incorporation of receptor 

flexibility, the conformational space sampled gets improved (72, 73) and thereby the 

probability of finding the right binding site with better SNR values. To check this, we selected 

5 different conformations of K-Ras from an MD simulation for ensemble blind docking of 

0QR and 0QW. We submitted the five conformations of K-Ras and that of the ligand to LBPI. 

Using the default parameters, we executed docking and LIBSA filters for each conformation 

and averaged the results to obtain a single spectrum. Figure 5.8 and Figure 5.9 show contact 

histograms for each conformation as well as the single average contact histogram obtained 

after averaging the contact histograms of each conformation. Visual analysis of the results 
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shows two probable binding regions in some of the conformations for 0QR but just one for 

0Qw. However, the result of the average spectrum suggests a single binding region with SNR 

> 1 for both 0QW and 0QR. The region agrees well with the known binding site in the X-Ray 

structure. Hence, we conclude that LBPI can successfully identify the preferred binding site of 

a protein with single conformation or multiple conformations and a diverse set of ligands 

without manually performing molecular docking and LIBSA analysis.  

 

Figure 5.8. Contact histograms after blind docking of 0QR on five K-Ras conformers (A to E) 

and a single averaged contact histogram (F). 
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Figure 5.9. Contact histograms after blind docking of 0QW on five K-Ras conformers (A to 

E) and a single averaged contact histogram (F). 

5.3 Identification of binding sites of test ligands with LBPI  

 We used LBPI on three test ligands promazine, E22, and V2, for the identification of 

their potential preferred binding site on the K-Ras protein structure PDB id 4EPW. The 

experimental analysis in our lab suggested that all three ligands may bind to the same site that 

coincides with a known binding site for ligand 0QV in PDB 4EPW. We utilized LBPI to extract 

K-Ras structure from 4EPW and submitted our test ligands through the Web interface. Default 

parameters were provided to LBPI to conduct docking and LIBSA analysis. The results (Figure 
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5.10) show that the predicted binding site of promazine agrees well with our experimental 

analysis whereas the predicted binding site for E22 and V2 differs from the expected site. This 

could be due to the limitation of using a single X-Ray structure, as discussed in the previous 

section. To check if using multiple conformations would help, we utilized five conformations 

of K-Ras obtained from an MD simulation. The coordinate files were uploaded and default 

parameters were submitted via LBPI for executing molecular docking and application of 

LIBSA filters.   

 

Figure 5.10. Contact histograms for three test ligands promazine (A), E22 (B) and V2 (C) 

docked on X-Ray structure 4EPW of K-Ras.  
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 Visual analysis of the results for each conformation (Figure 5.11 and Figure 5.12) 

indicated two distinct binding sites for both E22 and V2, depending on the conformation of K-

Ras used for docking. However, when averaged, a single region was identified as a preferred 

binding site for E22 and V2 with a computed SNR of 1.165 and 1.339, respectively. The SNR 

>1 indicates that this is the potential binding site for both ligands, which agrees well with our 

experimental results. In summary, LBPI was able to identify potential binding sites for our test 

ligands, particularly if multiple target conformations are used.  

 

Figure 5.11. Contact histograms after blind docking of E22 on five K-Ras conformers (A to 

E) and a single averaged contact histogram (F). 
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Figure 5.12. Contact histograms after blind docking of V2 on five K-Ras conformers (A to E) 

and a single averaged contact histogram (F). 

5.4 Identification of the binding preferences of estrogens with LBPI  

 Estrogens are hormones responsible for the development and balance of the female 

reproductive system (74). Estradiol, estrone, and estriol are the most common naturally 

occurring estrogens (75). Some of the other estrogen compounds including 17 alpha estradiol, 

ethinyl estradiol and, estradiol valerate are either naturally occurring or artificially synthesized. 

All of these estrogenic compounds are clinically used as steroidal estrogens (75). These 

compounds bind to estrogen receptor proteins and induce conformational changes in the 

protein. From the data available in the literature, the relative binding affinity of these 
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compounds (Table 2) for estrogen receptor alpha is ethinyl estradiol > estradiol > estrone > 17-

alpha estradiol > estriol > estradiol valerate (74-77) To study the predicted binding preference 

of these estrogen compounds using LBPI, we docked these compounds on the structure of 

estrogen receptor protein extracted from pdb id 1QKT, after removing its co-crystal through 

LBPI followed by the use of LIBSA filters to identify a potential binding site for each 

compound. 2.5*106 energy evaluations and 27000 number of generations were used for 

docking and default parameters were used for LIBSA filters. The results are shown in Figure 

5.14 and Table 2. Estradiol and 17-alpha estradiol are stereoisomers and differ in their binding 

affinity by two folds, with estradiol binding more strongly to estrogen receptor (78). However, 

the results obtained from LBPI show minor differences in binding affinity of these compounds 

(Table 2). Similarly, for other estrogenic compounds, identical binding pattern was seen with 

minor differences due to the change in very small group present in the 17th position of estradiol, 

except for estradiol valerate. Estradiol valerate, which possesses valerate group was larger than 

any groups present at the 17th position of estradiol and has a higher number of rotatable bonds 

and thus the difference observed in its binding affinity was notable.  
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Table 2. Relative binding affinity for estrogen compounds from literature and summary of 

results obtained from LBPI. 

 

Compounds 

Relative 

binding 

affinity 

Affinity 

from 

LBPI 

 

Residues identified by LBPI 

SNR 

from 

LBPI 

Estradiol 1 -9.6 42, 43, 44, 83, 84, 85, 86, 88, 100, 101, 

102 

1.581 

Estradiol 

17-alpha 

0.58 -9.2 42, 43, 44, 80, 81, 83, 84, 85, 86, 88, 

100, 101, 102 

1.420 

Estradiol 

valerate 

0.02 -6.8 2, 3, 4, 59, 60, 61, 62, 63 

 

219, 221, 222, 223, 224 

1.115 

 

1.136 

Estriol 0.14 -9.3 42, 43, 44, 80, 81, 82, 83, 84, 85, 86, 88, 

100, 101, 102, 219, 220, 221, 222, 223 

1.733 

Ethinyl 

estradiol 

2.33 -9.9 42, 43, 44, 80, 81, 83, 84, 85, 86, 88, 

100, 101, 102, 220, 221, 222 

1.332 

Estrone 0.6 -10.15 42, 43, 44, 80, 81, 83, 84, 85, 86, 88, 

100, 101, 102 

1.455 

 

 The results (Table 2, Figure 5.14) obtained from this study suggests that through LBPI 

energy values obtained were not significantly different for estrogen compounds. This is 

because the compounds are structurally very similar. On the other hand, estradiol valerate has 

larger valerate group attached at the 17th position of estradiol and thus the difference observed 

was significant. This demonstrates the limitation of the docking program and suggests that to 

study substantial changes in binding affinity of a compound and its derivatives, there should 

be a significant difference in their structures. However, LBPI was able to identify the correct 

binding site for estrogen compounds except for estradiol valerate (Table 2). For estradiol 
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valerate, two binding sites were observed out of which the most preferred binding site based 

on calculated SNR through LBPI was able to capture some of the surrounding residues of the 

correct binding site. 

 

Figure 5.13. Chemical structure of estrogen compounds 
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Figure 5.14. Contact histograms obtained after applying affinity and high-pass filters to 

remove docking noise for estrogen compounds to estrogen receptor (1QKT). 
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5.5 Identification of allosteric ligand binding site for sorafenib on p38 through LBPI 

 Compounds targeting the ATP binding site for modulating the function of kinase 

proteins are identified as inhibitors e.g. binding of SB2 to P38 as shown in Figure 5.2 case 3 

(69). Research has also been performed in investigating compounds that alter the function of 

proteins through allosteric modulation without directly binding to the ATP binding region. 

Sorafenib has been identified as a notable allosteric inhibitor that binds to the region 

immediately next to the ATP binding region of kinase protein and modulates the function (79, 

80). To identify a potential binding site for sorafenib in kinase protein (P38) through LBPI, we 

extracted the structure of P38 from pdb id 3HEG and performed docking with its co-crystal 

sorafenib (BAX) utilizing LBPI. 2.5*106 energy evaluations and 27000 number of generations 

were used for docking and default parameters were used for LIBSA filters. Three binding sites 

were identified through LBPI represented as blue, green and pink (Figure 5.15), of which the 

blue region coincides with the known binding site and it is the favorable binding site as it has 

SNR greater than 1. Hence, LBPI was able to identify the correct binding site as the preferred 

binding site for sorafenib.  

 When we compare the results obtained from LBPI for identifying potential binding 

sites for SB2 on P38 (Figure 5.2, case 3) and sorafenib on P38 (Figure 5.15), LBPI was able 

to correctly identify the catalytic binding site for SB2 and allosteric binding site for sorafenib 

respectively. We can thus conclude that, in the long run LBPI can be used for identifying 

potential binding sites be it catalytic or allosteric for any drug targets.  
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Figure 5.15. Contact histogram after affinity and high pass filtering of docking results for 

sorafenib to its protein kinase P38 (3HEG) shown in left panel, structure of P38 with docked 

poses in yellow, three identified region from LBPI, co-crystal (sorafenib) in red, and chemical 

structure of sorafenib in right panel.  
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CHAPTER 6  

CONCLUSIONS AND FUTURE DIRECTIONS 

 Computational approaches introduced for identifying allosteric ligand binding sites e.g. 

LIBSA requires expert skills to be properly executed and hence limits its users. Building a 

computational pipeline as a web interface by automating protocols will bridge the gap and help 

users focus on the biological applications. We have presented a Web interface, LBPI, which is 

built on Django, a Python framework, supplemented by a Python Wrapper, for automating the 

protocols of LIBSA, executing it and monitoring the results. LBPI is implemented in two ways 

to allow users flexibility. Option 1 is mainly targeted to inexperienced users for applying 

LIBSA protocols without undergoing technical details for docking and LIBSA filters. On the 

other hand, option 2 is mainly targeted to users who are expert in molecular docking and can 

directly focus on utilizing LIBSA filters by skipping molecular docking through the Web 

interface. The user manual and example files provided through the Web interface will help 

users to get better acquainted with the workings of LBPI. Through LBPI, by submitting 

structure files for target and probe ligand of appropriate file format, providing few 

customizable parameters and selecting modules for LIBSA filters will help in the effective 

identification of binding sites without understanding technical details.  

 For demonstration purposes of LBPI, we have used three known protein-ligand 

complexes, and directly submitted coordinate files of those proteins and their co-crystallized 

ligands and other parameter values to LBPI to successfully identify their correct binding sites 

without manual procedures.  Further, from cross docking of a diverse set of ligands on different 
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target conformations obtained from the protein databank, we showed that there are cases where 

LBPI fails to identify the correct binding site. This was largely due to the limitation of using a 

single X-Ray structure for the target, which might be unsuitable in terms of the size and volume 

of the binding pocket. This suggests that for effective identification of a binding site, a single 

structure may not be sufficient. Hence, we have demonstrated that LBPI was able to correctly 

identify predicted binding sites for each ligand when multiple target conformations from MD 

simulation are used. We have also shown that LBPI helps rank ligands based on SNR 

calculated for a preferred site. We have also shown the use of LBPI for a successful 

identification of preferred binding sites (based on experimental analysis done in our lab) for 

test ligands on a single X-Ray structure or multiple target conformations. Further, we utilized 

LBPI to study the predicted binding preference of different estrogenic compounds. It is due to 

the limitation of docking program which failed to show the substantial change in the binding 

affinity as the estrogenic compounds used in LBPI had very minor change in the structures. 

However, it was able to locate the correct binding site for each estrogen compounds, which is 

the major goal of LBPI. Finally, LBPI was able to correctly identify catalytic and allosteric 

site for catalytic and allosteric inhibitor respectively, through which we can conclude that LBPI 

is capable of identifying potential binding site of a ligand based on preference of binding to a 

site.  

 We have demonstrated the successful use of LIBSA through LBPI for diverse set of 

drugs but only a few target structures. However, Hocker et al. in the original paper of LIBSA 

have demonstrated its application for a more diverse set of druggable targets (49). Thus we 
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expect that LBPI will be utilized on even more challenging drug targets for the identification 

of potential binding site(s). The time required for executing LIBSA filters and performing 

docking through LBPI is comparable to standalone LIBSA. However, the efforts required to 

prepare structure files, understand technical details for performing docking and executing 

LIBSA algorithms is reduced significantly through LBPI. The demonstration for the 

performance of LBPI on a set of examples was done locally in our lab. Our next goal is to work 

on making it available through the Internet to make it easily accessible to both experts and non-

experts and reduce the significant learning curve for understanding the technical details and 

focus more on biological applications. We can facilitate the calculation of SNR based on 

residues provided by the users. Next, we can add the ensemble approach in option 2 for 

focusing the use of LIBSA filters for ensemble. Furthermore, we have a clear vision of adding 

pMD protocols (developed in our lab) to LBPI, which consist of MD simulation in presence 

of probe(s) to assess the propensity of a site in a wide variety soluble or membrane proteins 

(48).  
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