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Highlights

• New explicit formulae fora priori errors boundsvia abstract operator theory

• Bounds obtained using computer algebra using only the inherent numerical solution

• True errors approximated to spectral accuracy by new bounds

• Volterra transformation bypasses numerical differentiation, improving accuracy
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Error analysis of a spectrally accurate Volterra-transformation method for

solving 1-D Fredholm integro-differential equations

Abigail I Fairbairn and Mark A Kelmanson∗

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract

Spectrally accurate a priori error estimates for Nyström-method approximate solutions of one-dimensional

Fredholm integro-differential equations (FIDEs) are obtained indirectly by transforming the FIDE into a

hybrid Volterra-Fredholm integral equation (VFIE), which is solved via a novel approach that utilises N -

node Gauss-Legendre interpolation and quadrature for its Volterra and Fredholm components respectively.

Errors in the numerical solutions of the VFIE converge to zero exponentially with N , the rate of con-

vergence being confirmed via large-N asymptotics. Not only is the exponential rate far superior to the

algebraic rate achieved in previous literature [29] but also it is demonstrated, via diverse test problems,

to improve dramatically on even the exponential rate achieved in the approach [21] of direct Nyström

discretisation of the original FIDE; this improvement is confirmed theoretically.

Keywords: Integro-ordinary differential equations, error bounds, spectral, collocation and related methods

2010 MSC: 45J05, 65L70, 65M70

1. Introduction

In the substantial literature on the approximation of solutions of one-dimensional Fredholm integro-

differential equations (FIDEs), corresponding error analyses are notably scarce. For example, though the

independent studies (in chronological order) [38, 4, 39, 28, 5, 15, 34, 40, 8, 31, 2, 1, 22, 35] present diverse

FIDE-solution techniques of varying degrees of efficiency and (disparate) accuracy, only [28, 40, 31, 1]

include a discussion of errors and, in even these cases, error analyses are limited (see summary in [21, §1])

to estimates of convergence rates: that is, the direct computation of theoretically predicted error bounds is

almost entirely absent.

The present work is therefore motivated on two fronts: to develop not only a novel numerical method

that converges exponentially in the dimensionN of the discrete numerical method, but also an explicit error

analysis that is implementable and yields errors in terms of only the computed numerical solution. In [21],

the authors develop a novel approach for achieving these two goals, but the method developed therein—

based on a combination of numerical quadrature and numerical differentiation—has a global error dictated

∗Corresponding author email address: M.Kelmanson@leeds.ac.uk

Preprint submitted to International Journal of Mechanical Sciences May 4, 2018
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by the latter process, which is considerably less accurate than the former because of the ill-conditioning

of its inherent differentiation matrix. Accordingly, an approach independent of [21] is presently pursued

in which the need for numerical differentiation is circumvented by first transforming the FIDE (as in, e.g.,

[29]) into a Volterra-Fredholm integal equation (VFIE); though the solution of this can be approximated in

a number of ways (see, e.g., [26, 16, 13, 9, 33]), a different approach, first explored by the authors in [19],

is adopted herein.

The remainder of this paper is structured as follows. In §2 is presented an FIDE-to-VFIE conversion

approach in [29], in which the VFIE is solved to (only; see below) quadratic order in the number N of

Simpson’s-rule panels used. In §3 the VFIE is solved numerically to spectral order in N , the degree of the

highest-order orthogonal polynomial used in the approximation of the VFIE solution. This approach obvi-

ates the need for the numerical differentiation matrices, used in a companion paper [21], the ill-conditioning

of which is reviewed and analysed in §3.1. In §4 is presented a novel error analysis, for the VFIE numerical

solution procedure, whose distinctive aspect is computation of the error in the numerical solution of the

original FIDE explicitly in terms of the numerical approximation of the derivate that results from the VFIE

reformulation. In §5 numerical results of test problems, some challenging, are presented that validate to

spectral accuracy both the implementation outlined in §3 and the error analysis of §4. Brief conclusions are

presented in §6.

2. Conversion from FIDE to VFIE

The canonical form on the normalised interval [−1, 1] of the first-order one-dimensional Fredholm

integro-differential equation (FIDE) for the unknown function u(x) is

u(x)− µ(x)
du

dx
(x)− λ

∫ 1

−1

K(x, y)u(y) dy = f(x) , x ∈ [−1, 1] , (1)

in which the source function f : [−1, 1] → R, the kernel K : [−1, 1] × [−1, 1] → R and coefficient

function µ : [−1, 1] → R are prescribed functions of x, y ∈ [−1, 1] and the parameter λ ∈ R is a constant.

By hypothesis, (1) is solvable and so u(x) exists. In symbolic form, (1) is

u− µDu− λKu = f , (2)

where u, f ∈ C ≡ C[−1, 1], the Banach space with supremum norm ||·|| on which the action of the

differential operator D on u is defined by

Du = (Du)(x) ≡ u′(x) ,

wherein a prime denotes differentiation with respect to x. The action in (2) of the compact integral operator

K on u is defined by

Ku = (Ku)(x) ≡
∫ 1

−1

K(x, y)u(y) dy .

4
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The FIDE (1) is augmented by the boundary condition (BC)

u(ξ) = ζ, ξ ∈ [−1, 1] , (3)

i.e. ξ is a prescribed real constant in the interval containing all Legendre nodes.When the BC is given

for ξ = ±1, the FIDE can be converted into a Volterra-Fredholm integral equation (VFIE) following the

approach in, e.g., [29]; the details of this conversion for ξ = −1 are as follows. Define the function v(x)

by

v(x) ≡ u′(x) , (4)

integration of which, upon using (3), yields

u(x) = ζ +

∫ x

−1

v(y) dy , (5)

whence the FIDE (1) becomes

ζ +

∫ x

−1

v(y) dy − µ(x) v(x)− λ

∫ 1

−1

K(x, y)

(
ζ +

∫ y

−1

v(z) dz

)
dy = f(x) . (6)

By the existence of u(x) and (5), v(x) is integrable, hence the order of double integration in the final term

on the right-hand side of (6) can be exchanged, thereby rendering (6) as the VFIE

v(x) = g(x) +
1

µ(x)

∫ x

−1

v(y) dy − λ

∫ 1

−1

k(x, y) v(y) dy , (7)

in which the modified source function g(x) is given by

g(x) =
1

µ(x)

(
ζ − λ ζ

∫ 1

−1

K(x, y) dy − f(x)

)
,

and the modified kernel k(x, y) by

k(x, y) =
1

µ(x)

∫ 1

y

K(x, z) dz . (8)

By defining the action of the (Volterra) integral operator V on v ∈ C by

V v = (V v)(x) ≡
∫ x

−1

v(y) dy , (9)

and that of the (Fredholm) integral operator F on v ∈ C by

F v = (F v)(x) ≡
∫ 1

−1

k(x, y) v(y) dy , (10)

the symbolic form of the VFIE (7) corresponding to FIDE (2) is

v = g +
V v

µ
− λF v . (11)

The FIDE-to-VFIE conversion for the case when the BC is at x = 1 follows analogously by replacing

integrals
∫ x

−1
with

∫ 1

x
in (5), (6), (7) and (9) and replacing

∫ 1

y
with

∫ y

−1
in (8).

The original FIDE (2) can now be solved via (5) and (7) without the need for numerical differentiation.

The symbolic equation (11) will form the basis of the error analysis in section §4.

5
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3. Numerical Solution of the VFIE

Let yj,N , j = 1, . . . , N be a set of N distinct nodes in [−1, 1] ordered so that −1 ≤ y1,N < y2,N <

. . . < yN−1,N < yN,N ≤ 1, using which the action of the N -node Lagrange-interpolation operator LN on

v ∈ C is defined as

LN v = (LN v)(x) ≡
N∑

j=1

Lj,N(x) v(yj,N) , (12)

wherein the Lagrange basis functions are given by

Lj,N(x) =
N∏

l=1
l 6=j

x− yl,N
yj,N − yl,N

, j = 1, . . . , N . (13)

To approximate the Volterra term in (11), define the (Volterra-Lagrange) operator VN ≡ VLN . Application

of the operator V to both sides of the approximate Lagrange interpolation v ≈ LN v then yields

V v ≈ VN v = (VN v)(x) ≡
N∑

j=1

τj,N(x) v(yj,N) , (14)

in which

τj,N(x) = VLj,N(x) , j = 1, . . . , N .

To approximate the Fredholm term in (11), define the (Fredholm-Gauss) operator FN that approximates

the action of F by the Nyström quadrature

F v ≈ FN v = (FN v)(x) ≡
N∑

j=1

wj,N k(x, yj,N) v(yj,N) , (15)

in which wj,N and yj,N are respectively the weights and abscissae of the Gaussian integration rule. As

the weight function in the integral (10) for F v is unity, the nodes yj,N can be chosen as Gauss-Legendre,

Legendre-Gauss-Radau or Legendre-Gauss-Lobatto distributions. Via (14) and (15), the discrete approxi-

mation of VFIE (7) is obtained as

vN(x) = g(x) +
N∑

j=1

{
τj,N(x)

µ(x)
− λwj,N k(x, yj,N)

}
vN(yj,N) (16)

which, when collocated at nodes x = yi,N , i = 1, . . . , N , yields the N ×N linear system

(IN −MN)vN = gN . (17)

The matrix and vector entries in (17) are given by, for i, j = 1, . . . , N ,

{IN}i,j = δij , {MN}i,j =
τj,N(yi,N)

µ(yi,N)
− λwj,N k(yi,N , yj,N) ,

(18)

{vN}i = vN(yi,N) and {gN}i = g(yi,N) ,

6
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wherein δij is the Kronecker delta. Inversion of (17) yields the N nodal values vN(yi,N) which, when

substituted into the inversion formula (16), give the approximate solution vN(x) of (7), which in symbolic

form is

vN = g +
VNvN

µ
− λFNvN . (19)

Note that computing vN(x) directly via the inversion formula (16) is more accurate [18] than using La-

grange interpolation (12). By (5), the exact solutions v and u, of the VFIE and FIDE respectively, satisfy

the symbolic equation

u = ζ + V v , (20)

to which application of D to both sides yields Du = DV v, i.e. v = DV v, so that (D)−1 = V. Addition-

ally, (20) implies that there are two cases to consider when recovering the numerical solution uN from its

derivative vN computed via (17)–(19). First, if vN(x) is exactly integrable (case 1) then the approximate

numerical solution uN of (2) can be computed from vN as

ũN = ζ + V vN . (21)

Second, if functions µ(x), K(x, y) and f(x) in IDE (1) are such that (19) is not exactly integrable (case 2)

then the approximate numerical solution uN of (2) must in this case be computed from vN as

ûN = ζ + VN vN , (22)

which yields ûN(x) as a polynomial of degree N in x. Note that this method requires only (17)–(18), as

vN(x) does not need to be computed via (19) since only its nodal values, given by the solution vector vN

of (17), are present in the last term in (22).

3.1. Digression: ill-conditioned differentiation matrices

For completeness, circumvention of the use of numerical differentiation (as employed in [21]) is now

discussed. The action of the differentiation operator D in (2) is approximated by the operator DN , with

Du ≈ DNu =

N∑

j=1

L′
j,N(x)u(yj,N) , (23)

in which the Lagrange-basis function Lj,N(x) is defined in (13), the nodes yj,N , j = 1, . . . , N are defined

at the opening of §3, and a prime denotes differentiation with respect to x.

It is well-known that, when the node set are the roots of orthogonal polynomials, for suitable functions

u the action of D is approximated to spectral accuracy by the action of DN [36, Ch. 5]. In that event, direct

approximation of the term Du in (2) would have led to the matrix-vector product (in an obvious notation)

DN uN in the pre-transformed system from which (17) was derived. Here, the differentiation matrix DN

is given by

(DN)i,j = L′
j,N(yi,N) , i, j = 1, . . . , N . (24)

7
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To proceed, note that Lj,N(x) in (13) may be written in the more succinct form

Lj,N(x) =
pN(x)

(x− yj,N) p′N(yj,N)
, (25)

in which pN(x) is the monic polynomial with roots yj,N . Then (24) and (25) yield

(DN)i,j =





p′N(yi,N)

(yi,N − yj,N) p′N(yj,N)
, i 6= j

p′′N(yj,N)

2p′N(yj,N)
, i = j .

(26)

Because the nodes are presently based on Gauss-Legendre distributions in order to optimise the accuracy of

the quadrature (15)—specifically, the monic polynomials pN(x) are as given in (53)–(55) below—the ex-

pressions in (26) cannot be obtained in closed form. Though one may use elegant asymptotic and numerical

methods to approximate the roots of Legendre-based polynomials pN(x) (see, e.g., [37, 23, 30, 25]), the

(partial) victory is Pyrrhic because the subsequent evaluation in (26) cannot yield closed-form expressions

that are uniformly valid throughout x ∈ [−1, 1].

In [37, 23, 30, 25] and related literature, roots of the Legendre polynomials of the first kind are calcu-

lated as either perturbations or iterations of the initial estimate yj,N = − cos((4j − 1)/(4N + 2)π)1; that

is, in monic form,

pN(x) = P̃N(x) ≡
2N(N !)2

(2N)!
PN(x) and yj,N ≈ − cos((4j − 1)/(4N + 2)π) . (27)

Theoretical progress can be made in an approximate sense by considering the qualitative similarities of

differentiation matrices constructed via (26) using the Chebyshev polynomials of the first kind, for which

pN(x) = T̃N(x) ≡ 21−N TN(x) and yj,N = − cos((2j − 1)/(2N)π) , (28)

and for which (26) yields differentiation-matrix elements in closed form. Figure 1 demonstrates both

qualitative and quantitative similarities of differentiation matrices DN in (26) evaluated using both (27) and

(28), for two values of N . Figure 2 shows the relative and absolute errors of the corresponding elements

in the Legendre and Chebyshev differential matrices. The similarities and small errors (for the largest-

magnitude elements) give credence to the use of the closed-form Chebyshev differentiation matrix for

interpreting the behaviour arising in the non-closed-form Legendre case. However, it is well-known [12,

7, 6] that, in spite of the use of exact formulae in (26), the Chebyshev differentiation matrix (CDM) is in

practice ill-conditioned due to the combination of roundoff errors and matrix operations. That is, direct

discretisation of the differential form of FIDE (2) yields a potentially ill-conditioned system matrix in (17).

Though differentiation-matrix accuracy can be improved at first [14] and higher [17] order, this aspect is

considered no further since discrete differentiation is circumvented in the present VFIE approach.

1In which the minus sign is consistent with the node ordering at the start of this section.

8
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Figure 1: Pictorial representations of differentiation matrices constructed via (26) with monic Legendre ((27), left) and Chebyshev

((28), right) polynomials for N = 16 (top) and N = 32 (bottom). Vertical axes show (DN )i,j and demonstrate the qualitative and

quantitative similarities resulting from the two nodal-distributions. Note that the Legendre implementation uses not the approximate

nodes indicated in (27) but rather the numerically computed pseudo-exact ones.

Specifically, using (26) and (28), one can show explicitly that the CDM elements with the largest

magnitude are, without error,

(DN)1,2 = −(DN)N,N−1 =
2 sin

3π

2N

sin
2π

N
− 2 sin

π

N

. (29)

Large-N asymptotics then yield an estimate of the CDM elemental supremum norm as

||DN ||∞ ∼ 3N2

π2
− 3

8
+O(N−2) , N → ∞ , (30)

and hence the CDM entries increase as O(N2) whereas the elements of the system matrix MN in (17)

remain well-conditioned, at orderO(1), asN increases, thereby strongly advocating adoption of the present

differentiation-free approach.
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Figure 2: Pictorial representations of the relative (left) and absolute (right) errors in the Legendre and Chebyshev differentation

matrices DN portrayed in Figure 1 for N = 16 (top) and N = 32 (bottom). Vertical axes show log10 errors and have been inverted

for clarity, so that smaller errors are denoted by taller elemental blocks.

4. Error Analysis

A theoretical analysis of the error incurred in computing uN is now presented. Though a basic con-

sideration of errors appears in the VFIE approach in [29], it not only computes the Volterra component

of the VFIE crudely using Simpson’s rule, but also concerns only convergence rates of ||v − vN || (NB and

not ||u− uN ||) using a known exact solution. By contrast, the present work computes both Volterra and

Fredholm components of the VFIE to spectral accuracy and, moreover, determines explicit error bounds

for ||u− uN || using only the approximate derivative vN of the numerical solution uN . The error analysis is

now presented for cases 1 and 2 given in (21) and (22) respectively.

Case 1

Defining the linear operators S and SN as

S ≡ V

µ
− λF and SN ≡ VN

µ
− λFN , (31)

10
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the exact solution (11) of VFIE (7) can be written as

v = g + S v (32)

and the numerical solution (19) of (11) can be written as

vN = g + SN vN . (33)

Subtraction of (33) from (32) yields

v − vN = S v − SN vN = S (v − vN) + (S− SN) vN . (34)

Since v = Du and vN = D ũN , (34) can be rearranged to yield

(I− S)D (u− ũN) = (S− SN) vN ,

giving an explicit error formula for the exact solution u of the FIDE (1) as

u− ũN = (D− SD)−1
(
(S− SN) vN

)
,

yielding the error bound

||u− ũN || ≤ C σN , (35)

where

C =
∣∣∣∣(D− SD)−1

∣∣∣∣ and σN = ||(S− SN) vN || . (36)

The term σN can be expressed via (33) as

σN = ||S vN − vN + g|| , (37)

which demonstrates that the error is proportional to the residual obtained when the numerical solution

vN(x) is inserted into the exact VFIE (7). Alternatively, via (31), a bound on σN can be obtained as

σN ≤ ||(V− VN) vN ||
||µ|| + |λ| ||(F − FN) vN || (38)

in which ||(V− VN) vN || is obtained from the definition of VN , which gives

(V− VN) vN(x) = V (I− LN) vN(x) =
V pN(x)

N !
v(N)

N (η) , η ∈ (−1, 1) , (39)

wherein pN(x) is the monic polynomial whose roots are the N nodes yi,N , i.e.

pN(x) =

N∏

i=1

(x− yi,N) . (40)

Therefore, in (39), there results

||(V− VN) vN || ≤ QN ||v(N)

N || = QN ||ũ(N + 1)

N || , (41)

11
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in which

QN ≡ ||V pN(x)||
N !

; (42)

moreover, by standard Gaussian quadrature results [27],

||(F − FN) vN || ≤ ψ(ν)

N F2N − ν , (43)

in which [21]

ψ(ν)

N ∼ 22ν − 1
√
π

N (1 − 2ν)/2

( e

4N

)2N

, N → ∞ and FM = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
k(x, y) vN(y)

)∣∣∣∣ , (44)

in which ν corresponds to the number of endpoints included in the distribution, i.e. ν = 0, 1 and 2 for

Legendre, Radau and Lobatto nodes respectively. Combining (38), (41) and (43) yields

σN ≤ QN

∣∣∣∣v(N)

N

∣∣∣∣
||µ|| + |λ|ψ(ν)

N F2N − ν . (45)

With σN in (35) bounded by (45), the constant C given by (36) can be bounded via

C =
∣∣∣
∣∣∣
(
(I− S)D

)
−1
∣∣∣
∣∣∣ = ||D−1 (I− S)−1|| = ||V (I− S)−1|| ≤||V|| ||(I− S)−1|| , (46)

in which, adopting the approach of Atkinson [3, Eqns. (4.1.13)–(4.1.17)], ||V|| is computed as

||V|| = ||V 1|| = max
x∈[−1,1]

|x+ 1| = 2 .

By (31), operators S and SN are linear combinations of V, F, VN and FN , for which, by the definitions of

Lagrangian interpolation and Gaussian quadrature respectively, (V−VN) v(x) → 0 and (F−FN) v(x) → 0

asN → ∞ for all v ∈ C and x ∈ [−1, 1]. That is, SN v is pointwise uniformly convergent to S v asN → ∞
for all v ∈ C and x ∈ [−1, 1], and hence, by [3, Thm 4.1.2] and [24, Eq. (4.7.17b)], (I−S)−1 in (46) exists

and is uniformly bounded by

∣∣∣∣(I− S)−1
∣∣∣∣ ≤ 1 +

∣∣∣∣(I− SN)
−1

∣∣∣∣ ||S||
1−||(I− SN)−1|| ||(S− SN) S||

, (47)

the denominator of which is positive by construction. The sub-elements on the right-hand side of (47) are

computed using the approach in Atkinson [3, Eqns. (4.1.13)–(4.1.17)], which gives ||S|| as

||S|| = ||S 1|| ≡||s|| ,

say, in which s(x) is given by (9), (10) and (31) as

s(x) =
x+ 1

µ(x)
− λ

∫ 1

−1

k(x, y) dy . (48)

Similarly, ||(S− SN) S|| in (47) is computed as

||(S− SN) S|| = ||(S− SN) S 1|| = ||(S− SN) s||

12
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and ||(I− SN)
−1|| as

||(I− SN)
−1|| = ||(I− SN)

−1 1|| ≡||rN || ,

say, in which rN(x) is the solution of

rN − SN rN = 1 ,

whose left-hand side is of the same form as VFIE (33). Consequently, nodal values of rN(x) are found by

solving a linear system with the same matrix as in (17), i.e.

(IN −MN) rN = 1 , (49)

in which IN and MN are as given in (18) and the entries of the vectors rN and 1 are given by

{rN}i = rN(yi,N) and {1}i = 1 , i = 1, . . . , N .

It is noted that, for the purposes of efficiency, (17) and (49) can be solved in the partitioned form

(IN −MN) (vN |rN) = (gN |1) .

Solving (49) gives the nodal vector rN , the elements of which are used in the Nyström inversion formula

rN(x) = 1 +
N∑

j=1

{
τj,N(x)

µ(x)
− λwj,N k(x, yj,N)

}
rN(yj,N) ,

from which||rN || can be computed directly; similarly,||s|| can be computed directly from (48). Finally, (35),

(37) and (46) give the case-1 theoretical bound

||u− ũN || ≤
2 (1 +||rN || ||s||)

1−||rN || ||(S− SN) s||
||S vN − vN + g|| (50)

on the (case-1) error u − ũN that is explicitly computable in terms of only the derivative vN of the case-1

numerical solution ũN .

Case 2

Subtraction of (22) from (21) and addition of u − u = 0 to the resulting left-hand side gives a bound

on the case-2 error as

ũN − u+ u− ûN = (V− VN)vN ⇒||u− ûN || ≤||u− ũN ||+||(V− VN) vN ||

which, by (41) and (50), yields

||u− ûN || ≤
2 (1 +||rN || ||s||)

1−||rN || ||(S− SN)s||
||S vN − vN + g||+QN ||v(N)

N || . (51)

As the case-2 solution arises when vN(x) is not integrable, the bound (51) is not computable as the operator

S contains the Volterra operator V via (31). Therefore, the term||S vN − vN + g|| in (51)—defined as σN in

13
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(37)—must be bounded using (45). Similarly, as S s will in general be uncomputable, a bound (analogous

to (45)) on ||(S− SN) s|| can be found as

||(S− SN) s|| ≤
QN ||s(N)||

||µ|| + |λ| ψ(ν)

N S2N − ν ,

in which

SM = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
k(x, y) s(y)

)∣∣∣∣ .

Collecting results, the computable case-2 error bound is given by

||u− ûN || ≤
2 (1 +||rN || ||s||)

(
QN

∣∣∣∣v(N)

N

∣∣∣∣+ |λ|||µ||ψ(ν)

N F2N − ν

)

||µ|| −||rN ||
(
QN ||s(N)||+ |λ|||µ||ψ(ν)

N S2N − ν

) +QN ||v(N)

N || . (52)

Computable error bounds (50) and (52) have now been derived for the general FIDE (2). Attention now

turns to the derivation of exact formulae for computing QN in bound (52).

4.1. Explicit Formula for QN

As stated after (15), the above error analysis can be implemented using Gauss-Legendre (Legendre),

Legendre-Gauss-Radau (Radau) or Legendre-Gauss-Lobatto (Lobatto) nodal distributions, for which the

factor QN defined in (42) can be found explicitly. Recall that ν = 0, 1 and 2 for Legendre, Radau and

Lobatto nodes respectively. Then the monic polynomials (40) associated with each distribution are given

by the explicit formulae

p(0)

N (x) =
2N(N !)2

(2N)!
PN(x) , (53)

p(1)

N (x) =
2N(N !)2

(2N)!
(PN − 1(x)− PN(x)) , (54)

and

p(2)

N (x) =
2N(N !)2

(2N)!

2N − 1

N(N − 1)
(x2 − 1)P ′

N − 1(x) , (55)

in which only the Radau polynomial containing x = −1 is considered as results for x = 1 can be de-

rived from p(1)

N (−x), which yields the same value of QN . First note that, using the Legendre polynomial

relationships
(x2 − 1)P ′

N(x)

N
= xPN(x)− PN − 1(x)

and

(2N + 1)xPN(x) = (N + 1)PN + 1(x) +N PN − 1(x) ,

(55) can be rewritten as

p(2)

N (x) =
2N(N !)2

(2N)!
(PN(x)− PN − 2(x)) , (56)

using which (53), (54) and (56) have the general form

p(ν)

N (x) =
2N(N !)2

(2N)!

(
(1 + ν − ν2)PN−ν(x) +

ν(3− (−1)ν)

4
PN(x)

)
. (57)

14
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Using now the Legendre polynomial relationship

(2N + 1)PN(x) =
d

dx
(PN + 1(x)− PN − 1(x)) ,

integration of (57) using (9) and subsequent use of the definition (42) gives the bound

Q(ν)

N ≤ 2NN !

(2N)!

(||PN + 1 − ν − PN − 1 − ν ||
2(N − ν) + 1

+
ν(3− (−1)ν)

4

||PN + 1 − PN − 1||
2N + 1

)
, (58)

because |1 + ν − ν2| = 1 for ν = 0, 1 and 2. To compute the bound (58) note that, when N is even,

||PN − PN − 2|| = |PN(0)− PN − 2(0)| , (59)

so that, using the Legendre-polynomial definition

PN(x) = 2N

N∑

i=0

(
N

i

)(
N+i−1

2

N

)
xi ,

there results

PN(0) =
2N

(
N−1
2

)
!(

− (N+1)
2

)
!N !

,

which, augmented by the Gamma-function definitions

Γ
(
1
2 +N

)
=

(
− 1

2 +N
)
! =

(2N)!
√
π

4N N !
and Γ

(
1
2 −N

)
=

(
− 1

2 −N
)
! =

(−4)N N !
√
π

(2N)!
,

yields the explicit formula

PN(0) =
(−1)N/2N !

2N
[ (

N
2

)
!
]2 . (60)

Therefore, by (59) and (60),

||PN − PN − 2|| =
(2N − 1)N !

(N − 1) 2N
[ (

N
2

)
!
]2 (61)

for N even. Because when N is odd, (59) no longer holds, an exact bound similar to (61) cannot then be

found. Using Stirling’s formula, (61) becomes

||PN − PN − 2|| ∼
2N − 1

N − 1

√
2

Nπ
, N (even) → ∞ . (62)

Indeed, an exact relationship of the form (59) cannot be derived for odd N , for which the value of x̂N , say,

in

||PN − PN − 2|| = |PN(x̂N)− PN − 2(x̂N)| ,

cannot be expressed in terms of N . However, it transpires (as confirmed numerically below) that (62) is in

practice a good asymptotic approximation of ||PN − PN − 2|| for all N . Therefore, (58) and (62) yield the

asymptotic prediction Q̃(ν)

N of the bound on Q(ν)

N

Q̃(ν)

N ∼ 1√
π

( e

2N

)N
(

1

(N − ν)
√
N + 1− ν

+
ν(3− (−1)ν)

4N
√
N + 1

)
, N → ∞ . (63)
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In Figure 3 are presented plots, corroborating this assertion, of exact spatial-distribution moduli |Q(ν)

N (x)|
(bounded by (58)) and asymptotic bounds Q̃(ν)

N (63) for ν = 0, 1 and 2 and for N = 9 and 10, for both

values of which the bounds are seen to be accurate; more so for ν = 0 (Legendre) and ν = 2 (Lobatto) than

for ν = 1 ((left) Radau). An alternative form of this corroboration is presented for only ν = 0 in Figure 4,

which reveals that asymptotic formula (63) is extremely accurate for both even and odd N of order as low

as O(1).

Figure 3: Exact values of |Q
(ν)
N (x)| for x ∈ [−1, 1] (curves) and asymptotic bounds Q̃

(ν)
N (63) (horizontal lines) for N = 9 (left

column) and N = 10 (right column) and ν = 0, 1 and 2 (top, medium and bottom rows). The plots demonstrate two things: first,

that (63) is a good approximating formula for both even and odd N ; second, that the large-N asymptotic predictions are accurate

even for moderate values of N .
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Figure 4: Exact values of

∣∣∣
∣∣∣Q(0)

N

∣∣∣
∣∣∣ (blue circles) compared with asymptotic formula Q̃

(0)
N (63) (red crosses); results for ν = 1 and

ν = 2 are qualitatively identical. The large-N asymptotic predictions are seen in this depiction to be accurate even for low values of

N .

4.2. Asymptotic Convergence Rates

Using the asymptotic rates (44) and (63), for ψ(ν)

N and Q̃(ν)

N respectively, there results

ψ(ν)

N

Q̃(ν)

N

∼ π (4N)(2ν + 1)/2 (N − ν)
√
(N + 1)2 − ν(N + 1)

4N
√
N + 1 + ν(3− (−1)ν) (N − ν)

√
N + 1− ν

( e

8N

)N

, (64)

in which the asymptotic condition “N → ∞” is here and subsequently relaxed as a result of the obser-

vations drawn from Figure 4. Analysis of (64) reveals that ψ(ν)

N /Q̃(ν)

N ∼ O(N−N), whence (45) may be

approximated by

σN ≤ Q̃(ν)

N

∣∣∣∣v(N)

N

∣∣∣∣
||µ||

so that, by (35), the asymptotic error convergence rate for case 1 is

||u− ũN || ∼ Q̃(ν)

N ||v(N)

N || . (65)

Following a similar argument, the asymptotic error convergence rate (52) for case 2 is also given by (65),

with ũN replaced by ûN ; consequently, both are henceforth replaced by uN . Because by construction the

denominator in (47) must be positive, the predicted rate (65) for both cases is therefore valid provided that

||v(N)

N || ∼ o(NN) and F2N − ν ∼ o(N 2N) . (66)

By (65) the error u − uN in the exact solution u of FIDE (2) is predicted explicitly in terms of the

numerical solution vN of approximate VFIE (19), where u′N = vN . By contrast, in the independent ap-

proach adopted in [21] (hereafter referred to as case 0), the error in u is given explicitly not by vN but by
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the numerical solution, uN say, of the approximation

uN − µDN uN − λKN uN = f , (67)

of (2), in which DN is the symbolic representation of the differentiation operator D acting on LN defined

in (12). In [21], the error u− uN is shown to have the asymptotic error-convergence rate

||u− uN || ∼ φ(ν)

N ||u(N)

N || ,

in which the factor φ(ν)

N arises through numerical differentiation; it has the asymptotic form

φ(ν)

N ∼ 2ν−3/2

N (ν2
− ν − 4)/2

( e

2N

)N

. (68)

Therefore by (63) and (68), as N → ∞,

Q̃(ν)

N

φ(ν)

N

∼ N (ν2
− ν − 4)/2

2ν − 3/2
√
π

(
1

(N − ν)
√
N + 1− ν

+
ν(3− (−1)ν)

4N
√
N + 1

)
∼ N (ν2

− ν − 7)/2 , (69)

and so φ(ν)

N > Q̃(ν)

N for all N so that, provided that both norms
∣∣∣∣v(N)

N

∣∣∣∣ and ||u(N)

N || are of the same order, by

(63) and (68) the case 0, case 1 and case 2 errors are predicted to converge at the same rate as N → ∞.

Additionally, by (69), the case 1 and case 2 errors are predicted to be uniformly lower than the case 0 errors

incurred in [21].

5. Numerical Results

Using the algebraic manipulator Maple, the methods and bounds derived above were respectively

implemented and validated on four test problems, each with known solutions, chosen to demonstrate the

accuracy of the theory on potentially challenging problems. The components of each test problem are

shown in Table 1. As the results were qualitatively similar for each nodal distribution, only the results for

the Legendre distribution, for which ν = 0, are presented.

Figure 5 shows that, for each test problem, the case-1 errors are lower than the case-2 errors and so, as

expected, it is more accurate to integrate the numerical VFIE solution exactly to obtain the FIDE solution

Problem Type Solution u(x) µ(x) Kernel K(x, y) λ

1 Smooth sinx+ x2 secx (x3 − 1) y cos y 1
3

2 Runge 1
1+25x2

1
x−2 (x+ 1)(y2 − 5) − 1

2

3 Steep e15x ex ex+y 1

4 Oscillatory cos 12x 1
x5−3x+1 sinx y3 2

Table 1: Test problems with solutions of four qualitatively distinct forms. The Runge phenomenon [10, 11], extreme gradient and

high-frequency oscillations, in the solutions of problems 2, 3 and 4 respectively, offer well-documented challenges to approximation

methods.
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rather than to integrate its Lagrange interpolant. Additionally, as predicted at the end of Section 4.2, the

new case-1 and case-2 errors are smaller in magnitude than the case-0 errors incurred in [21], confirming

that bypassing the need for numerical differentiation by converting from FIDE to VFIE form yields a more

accurate numerical solution.

Figure 5 also reveals that the case-1 error bound is more accurate (by comparison with the actual

computed errors) than the case-2 error bound, particularly for problem 2 in which the case-2 error bound

diverges whilst the true errors converge with increasing N : this divergence, and the large discrepancy

between true case-2 errors and error bounds for the other problems, is due to the terms
∣∣∣∣v(N)

N

∣∣∣∣ and F2N − ν in

the error bound (52). Via the mean-value theorem used to derive (39), the truncation parameter η ∈ (−1, 1)

that yields the true error (V − VN) vN is unknown, so v(N)

N (η) must be replaced by
∣∣∣∣v(N)

N

∣∣∣∣, the latter of

which may be much greater than the former. The same argument applies to the Gaussian-quadrature error

term (43), which includes the unknown values of x and y in (44); as these are unknown, F2N − ν must be

computed by maximising over x, y ∈ [−1, 1], and so the quadrature error may also be over-estimated.

6. Conclusions

A novel method for the accurate numerical solution of one-dimensional, first-order Fredholm integro-

differential equations has been developed by first converting the problem into a Volterra-Fredholm integral

equation. The technique has been validated on diverse and challenging test problems. A novel error anal-

ysis has been conducted and validated to yield explicitly computable (using only the numerical solution)

error bounds that predict true computational errors to spectral accuracy. Two independent sub-approaches

have been analysed depending upon whether or not intermediate stages of the novel process admit exact

integration. For both cases, errors are shown theoretically and numerically to be smaller in magnitude than

the errors incurred by a previous approach [21].
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1995.

[25] N. HALE AND A. TOWNSEND, Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature

nodes and weights, SIAM J. Sci. Comput., 35(2), (2013), A652–A674.

[26] F. A. HENDI AND A. M. ALBUGAMI, Numerical solution for Fredholm–Volterra integral equation of the second

kind by using collocation and Galerkin methods, Journal of King Saud University - Science, 22 (2010), 37–40.

[27] F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New York, 1974.

[28] S. M. HOSSEINI AND S. SHAHMORAD, Tau numerical solution of Fredholm integro-differential equations with

arbitrary polynomial bases, Appl. Math. Model., 27 (2003), 145–154.

[29] P. LINZ, A method for the approximate solution of linear integro-differential equations, SIAM J. Numer. Anal.,

11 (1974), 137–144.

[30] F. G. LETHER, On the construction of Gauss-Legendre quadrature rules, J. Comp. Appl. Math., 4(1) (1978),

47–52.

[31] K. MALEKNEJAD AND M. ATTARY, An efficient numerical approximation for the linear class of Fredholm

integro-differential equations based on Cattani’s method, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011),

2672–2679.

[32] M. M. MUSTAFA AND I. N. GHANIM, Numerical solution of linear Volterra-Fredholm integral equations using

Lagrange polynomials, Mathematical Theory and Modeling, 4 (2014), 137–146.

[33] S. NEMATI, Numerical solution of Volterra–Fredholm integral equations using Legendre collocation method, J.

Comput. Appl. Math., 278 (2015), 29–36.

[34] J. RASHIDINIA AND M. ZAREBNIA, The numerical solution of integro-differential equation by means of the Sinc

method, Appl. Math. Comput., 118 (2007), 1124–1130.

[35] P. K. SAHU AND S. RAY, Legendre spectral collocation method for Fredholm integro-differential equation with

variable coefficients and mixed conditions, Appl. Math. Comput., 268 (2015), 575–580.

[36] L. N. TREFETHEN, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.

[37] F. G. TRICOMI, Sugli zeri dei polinomi sferici ed ultrasferici, Ann. Mat. Pura Appl., 31 (1950), 93–97.

[38] M. A. WOLFE, The numerical solution of non-singular integral and integro-differential equations by iteration

with Chebyshev series, Comput. J., 12 (1969), 193–196.
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