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Abstract

This paper uses detailed observaions from the COLd air Pooling EXperiment (COLPEX) to study the 

frequency and characterisics of cold air pooling in a small-scale valley typical of much of the 

southern UK and other lowland regions of the world. The ield experiment took place in and 

around the Clun Valley, Shropshire, England during July 2009-April 2010, which was a paricularly 

cold winter with a record low in the NAO index. Cold pools, deined here as where the minimum 

valley temperature overnight is at least 1°C colder than the surrounding hill tops, occur on 45% of 

nights over the observaional period, with strong cold pools (>4°C temperature diference) 

occurring on 12% of nights. As might be expected, cold pool formaion is closely linked to 

condiions with clear skies and light winds, oten associated with high pressure situaions. Cold 

pools are also closely linked with weak down valley drainage lows. This contrasts with non-cold 

pool nights or dayime condiions where several other mechanisms also contribute to the 

observed winds in the valley. The data set highlights the importance of cold air pools and drainage 

lows, even in quite moderate terrain, and the impact this can have on local microclimates.

Introducion

Cold air pools form (usually at night) in valleys when radiaive cooling leads to the formaion of 

cold air near the surface which drains down and collects in the valley botom. The process is well 

known and can be important for night-ime minimum temperatures, with impacts on road icing, 

fog formaion and air quality. The relaively small size of a typical UK valley means that these cold 

pools are not observed by the operaional surface network as the average spacing between Met 

Oice sites is ~40 km and are not usually captured even in the Met Oice 1.5km UKV operaional 

model. 

The COLd air Pooling EXperiment (COLPEX; Price et al, 2011) was an extensive ield experiment 

designed to observe cold air pools in small UK scale valleys. The experiment ran from July 2009 – 

April 2010 around the Clun Valley, Shropshire, UK. The Clun Valley has a width of 1-2 km and depth

of ~100-150m and is representaive of many small valleys in the UK and other lowland, temperate 

and mid-laitude regions of the world. A number of cases from COLPEX have already been studied 

in detail and compared with high resoluion (100m) numerical simulaions (Vosper et al 2014; 

Hughes et al 2015). This case study approach has also been used in a number of other recent 

studies in other parts of the world although they oten look at larger scale valleys (e.g. Lareau et al,

2013) or enclosed basins (Whiteman et al, 2008). Hawke (1944) took long term observaions from 

1929 to the mid 1940s in the Rickmansworth valley in Herfordshire, characterising the frost 

hollow in the valley. Galvin (2005a,2005b) revisited the Rickmansworth valley and ideniied the 

change in the valley climate, as a result of increased urbanisaion since the 1940s. The study of 

Pepin et al (2009) is notable in focussing on a smaller scale valley in Finland, although the high 

laitude leads to disincive features due to the extreme length of the days in summer and nights in

winter. Other UK case studies of small frost hollows (as opposed to valleys) include Graham (2012) 

and Burt (1997). This paper will look at the COLPEX dataset from a climatological standpoint to see 

what the frequency and characterisics of cold pools are in a small valley such as the Clun Valley. 



The Clun Valley and COLPEX ield experiment

The Clun Valley, is situated in a rural locaion near the Welsh-English border. The land is largely 

pasture land for grazing sheep and catle, with some arable farming on the lower parts of the 

valley. There are also small patches of woodland doted along the valley. The underlying geology is 

Silurian sandstone, mudstone and siltstone, giving rise to rounded hills, with quite steep valley 

sides. The rock is overlaid with free-draining acid brown soil over higher ground, with richer silts 

and glacial clay on the valley loors. 

The COLPEX experiment took place from July 2009 – April 2010 and involved extensive 

measurements in and around the Clun Valley including 3 measurement towers observing wind 

speed, temperature, humidity and turbulent lux measurements at several heights up to 30m or 

50m above the ground. These were complemented by a network of 22 HOBO temperature and 

humidity loggers and 10 automaic weather staions (AWS, which measured winds and pressure in 

addiion to air temperature and humidity). Here we focus primarily on the towers at Dufryn (on 

the valley loor) and at Springhill (hilltop to the south of the valley), and on HOBO and AWS data in 

the valley. Figure 1 shows the Clun Valley and the locaion of the sites. Figure 2 shows a selecion 

of photographs of the Clun valley, illustraing the rolling hills and the mixture of pasture land with 

small wooded areas. The photos also illustrate the 50m mast at Dufryn and one of the AWS sites. 

Price et al (2011) give a fuller descripion of the experimental setup. 

The winter of 2009-10 was unusually cold, the coldest since 1978/9, with mean UK temperatures 

2.0°C below the 1971-2000 average (Prior and Kendon, 2011) and rainfall just 77% of the average, 

with the west of the UK being the driest relaive to normal. The weather paterns were dominated 

by winds with a northerly or easterly component (Prior and Kendon, 2011). These condiions 

explain the relaively dry winter on the west side of the country. However several periods of low 

pressure led to precipitaion and occasional periods of snow cover, paricularly from mid 

December through to mid January. Over the winter, the Welsh borders saw 20-30 days of snow 

cover. These unusual condiions were linked with record low values of the NAO index for December

– March (Osborn, 2011). The data set is too short to strictly be considered a climatology, in 

paricular since the period concerned is not necessarily representaive of the longer term 

climatology of the region. Nonetheless it provides a rare detailed set of measurements of cold pool

characterisics over a number of months.

Cold pool characterisics

Here, cold pool strength is measured using a pair of HOBO temperature and humidity data loggers,

one sited on the valley loor (HOBO 2, 200m above mean sea level) and the second on the adjacent

hilltop (HOBO 16, 360m above mean sea level). Data were available from 23rd July 2009 to 16 April 

2010. For each night the cold pool strength is deined as the maximum 10-minute average 

temperature diference between the hilltop and valley sites over the course of the night. A night is 

deined as a cold air pool night in this instance if this value is greater than 1°C. Nights where the 

cold pool strength was greater than 4°C were classiied as strong cold pools. Figure 3a shows the 

distribuion of cold pool strengths across the whole ield campaign, while Figure 3b gives a 

breakdown of cold pool strength by month. What is clear from these igures is the ubiquity of cold 

pools in this valley during the study period, with 56% of nights having a maximum cold pool 

strength greater than 1°C, and 20% of nights exceeding 4°C. The cold pools were distributed 

throughout the year, although there was a slight bias to stronger cold pools over the winter 



months (likely caused by longer nights, by weaker morning convecion delaying CAP break-up and 

in some cases by snow cover). The two strongest cold pools (9.0°C and 9.6°C) are clear outliers 

and occurred in January when there was very cold weather and snow lying on the ground. On 

these nights temperatures reached -17.9°C and -18.2°C respecively. Even puing these two aside,

there were 15 nights when the cold pool strength exceeded 6°C. This is substanial given that 

there is only 160m height diference between the two HOBO sites. Although not shown, similar 

distribuions of cold pools were observed with other pairs of valley loor / hill top measurements 

along the Clun Valley. 

Figure 3c shows the ime at which the maximum cold pool strength occurred for all cold pool and 

strong cold pool events. Cold pool strength can peak at any ime during the night, though there is 

an increase in occurrence later in the night and around dawn. In paricular, almost all of the strong 

cold pool events have their maximum later in the night, with a clear peak in the hour following 

sunrise. The spread of maximum strength throughout the night is likely a relecion of the 

frequency with which condiions can change during the night leading to the weakening or removal 

of the cold pool. The strongest cold pools occur on nights where the cold pool can coninue to 

develop throughout the night, and so in these cases the maximum strength is most likely to be 

observed around sunrise. The fact that for a large number of cases the maximum occurs ater 

sunrise is likely due to a combinaion of the fact that valleys are shaded and so there may be a 

delay ater sunrise before direct sun reaches the valley loor and that erosion of the stable 

boundary layer by heaing at the surface does not occur immediately at sunrise. 

 

This deiniion of cold pool strength based on two measurements provides no informaion on the 

depth of the cold pool, and could possibly mask cases where there is a shallow cold pool with an 

adiabaic layer above. Figure 4 shows the temperature diference across upper and lower layers of 

the valley on cold pool nights using a third HOBO part way up the valley side (HOBO 18, 310m 

above mean sea level). In almost all cases the temperature gradient in the botom half of the valley

was higher than in the top half (points to the right of the green line). For all cold pool cases the 

temperature increased with height over the botom half of the valley, while the temperature in the

top half could be either increasing or decreasing with height. In a number of cases the gradient in 

the upper half of the valley was actually close to or larger than the dry adiabaic lapse rate (points 

below the red dashed line) suggesing a shallow cold pool in the lower half of the valley with an 

adiabaic layer above, while in other cases the upper part of the valley was as stable as the lower 

part of the valley, suggesing a deep cold pool. Interesingly, some of the very strongest cold pools 

(orange +), were almost exclusively conined to the botom half of the valley, with temperature 

diferences close to zero over the upper part of the valley. While the measurements here do not 

allow a precise evaluaion of the cold pool depth, they do suggest a variety of cold pool depths 

depending on the condiions. Although not shown, temperature gradients between 1.2m and 25m 

and between 25m and 50m on the tower at Dufryn were also invesigated . These were much 

more scatered, but showed air temperature increasing with height at both levels for all cold pool 

cases, suggesing the cold pools were usually deeper than 50m. These conclusions are consistent 

with the radiosonde proiles of temperature observed at Dufryn for a number of IOPs (intensive 

observaion periods) during COLPEX. 

The strong cooling in cold pools is someimes associated with the formaion of valley fog. Fog 

formaion only occurred in a small proporion of cold pool cases during COLPEX. Visibility and 

rainfall was measured in the valley at Dufryn using a Biral HSSVPF-730 present weather sensor. 

Over the 9 months of the ield campaign there were 24 days (92 hours in total) on which visibility 

was below 1km (aviaion fog) and only 9 days (15 hours) when visibility was less than 180 m (thick 



fog). As a percentage, these correspond to 8.0% and 3.3% of days, respecively. There were no 

occurrences of dense fog with visibility less than 50m. Unlike the cold pool strength, there is a 

strong seasonal variaion in the occurrence of fog, with the vast majority of cases occurring during 

December – February (81 out of the 92 hours). In terms of iming, fog can occur throughout the 

day, although the most common imes are overnight, paricularly towards dawn, when the cold 

pools are strongest. Again, the unusual condiions of winter 2009/10 may not make this a 

representaive esimate of the climatological occurrence of fog. Ongoing work on fog formaion in 

such small-scale valleys forms part of the Local And Non-local Fog EXperiment (LANFEX; Price et al, 

2018).

Controls on cold pool formaion

Figure 5 shows the distribuion of cold pools as a funcion of the mean night-ime wind speed and 

direcion outside the valley, and Flw (the raio of the mean night ime downwelling to upwelling 

long wave radiaion). For clear sky nights with litle cloud cover the downwelling longwave 

radiaion is much less than the upwelling radiaion (small Flw), leading to radiaive cooling, while for

cloudy nights downwelling and upwelling longwave radiaion are similar and so Flw is close to 1. 

The wind speed and direcion are measured at 30m AGL (above ground level) at the Springhill site 

on the hill top adjacent to the Clun Valley. Long wave radiaion components are measured at 2m 

AGL at the Dufryn site on the valley loor. As might be expected, cold pool nights (paricularly 

strong cold pool nights) favour low wind condiions, although even with very low wind speeds 

there are sill nights on which a cold pool is not formed. There is also a close link between wind 

direcion and cold pool formaion. It is likely that much of this is due to the correlaion in the data 

between wind direcion and other factors: prevailing SW winds tend to be stronger and are oten 

associated with potenially cloudy low pressure systems, while high pressure systems with slack 

winds and clearer skies are oten linked with more northerly or easterly winds. There is however 

also the possibility that the wind direcion can directly promote or suppress cold pool formaion 

and drainage lows either through channelling of the wind down or up the valley, or through the 

large scale pressure gradient aiding or opposing the drainage low. Northerly winds for example 

not only tend to be associated with high pressure systems and light winds, but also lead to a west-

east, i.e. down valley pressure gradient. These efects are hard to disentangle with the available 

observaions and addiional measurements in valleys with diferent orientaions are really needed 

to understand this fully.

As might be expected, cold pool formaion is also strongly linked to clear skies, quaniied through 

Flw. Nights without cold pools typically have high values of Flw. (>0.93 more than 65% of the ime), 

while cold pool nights have values of Flw less than 0.93 at least 80% of the ime, and there are no 

cases of strong cold pools with a value of Flw larger than this. Wind speed, coupled with cloud 

cover, therefore provide the best indicators for cold pooling condiions. This agrees well with a 

more quanitaive study of cold pool formaion in COLPEX by Sheridan et al (2014) and with the 

idealised numerical study of Vosper and Brown (2008).

Drainage lows in the valley

Wind measurements were made at muliple heights at the 3 main sites, and also at a single height 

(2m) at a number of automaic weather staions distributed around the Clun valley and its 

tributary valleys (see Figure 1). Figure 6 shows wind roses at 2m and 50m from the Dufryn site in 

the Clun valley. The wind roses are based on 10-minute mean winds over the whole night. Results 

are shown for all nights, and just for cold pool nights. In all cases night ime wind speeds are low 



(<5 ms-1 at 2m) relecing the sheltered nature of the valley. Wind direcions are predominantly 

down valley, although for some non-cold pool nights up valley or across valley low is observed, but

this is relaively uncommon. Wind speeds are higher at 50m, and slightly more westerly in 

direcion, paricularly on cold pool nights. This likely relects the cases where the cold pool is less 

than 50m deep and so the wind direcion at 50m is less strongly coupled to the near surface winds.

Figure 6 also shows wind speeds at 2m in one of the side valleys. AWS 7 is in a N-S aligned side 

valley (see Figure 1) to the north of the Clun valley, northeast of Dufryn. The side valley is steeper 

and narrower than the main Clun valley. Compared to the measurements at Dufryn, the low in 

the side valley is even more constrained along the valley axis, and mostly from the north. In cold 

pool condiions the low is almost exclusively down valley, while for some other nights there is up-

valley low. 

Figure 7 reinforces this interpretaion by showing the probability distribuion of hourly averaged 

winds as a funcion of both the ambient wind direcion (at Springhill, 30m above ground level, 

AGL) and the wind direcion at Dufryn (2m or 50m AGL).  This approach was taken by Whiteman 

and Doran (1993) to study the mechanisms driving low in a larger valley. For nights with stronger 

ambient winds at Springhill (>5 ms-1) and for dayime condiions the hilltop and valley winds are 

strongly coupled (most points lie along the solid black line), while for lighter ambient winds (<5 ms-

1 at Springhill) the low within the valley is predominantly along-valley (NW winds in the valley 

irrespecive of the wind direcion at hill top, blue dashed line). The decoupling is strongest at 

Dufryn (2m), with a greater likelihood of the 50m wind direcion aligning with the Springhill 

ambient hill top wind direcion if the cold pool is less than 50m deep. Even at 2m AGL and for wind

speeds less than 5ms-1 there are some occasions when the valley low is coupled to the low alot. 

This happens primarily when the low at the hill top has a strong up valley component, which can 

overcome a weak drainage low and prevent formaion of a cold pool. The other two mechanisms 

proposed by Whiteman and Doran (1993) are channelled low, either forced-channelling (black 

dash-dot line) or pressure driven channelling (green doted line). At Dufryn there is litle evidence 

of either of these mechanisms.

Figure 7 also shows probability distribuions of winds at AWS 7, where there is predominantly N 

(down-valley) low on low wind speed nights. The steeper and narrower valley at AWS 7 leads to a 

more constrained low direcion than in the Clun valley, even during the day. The primary 

diference is that for windy nights or during the day southerly winds are much more likely when 

there is a southerly component to the ambient wind, compared to low wind speed nights. The 

requirement for a southerly wind component and the fact these similar up valley winds occur both 

on windy nights and during the day suggests that these are largely channelled low rather than 

thermally driven up-valley winds. Comparing the data to the black dash-dot line (forced 

channelling) and the green doted line (pressure driven channelling) suggests that pressure driven 

channelling may play a role in this side valley, unlike in the main Clun valley. 

The threshold of 5 ms-1 for low wind night-ime condiions is consistent with those used in previous

studies, however choosing a diferent (but sill low) threshold leads to qualitaively similar results 

and so the general conclusions are not too sensiive to this choice. Taking a more stringent 

condiion and only ploing results for strong cold pool nights (not shown) gives even stronger 

dominance of down-valley low. 

Conclusions



Cold air pooling and drainage lows are well acknowledged processes, but there is a lack of data 

available with which to quanify their strength and frequency. This detailed data set gives an 

insight into cold air pool staisics in a typical lowland English valley. Perhaps the most striking 

aspect of the data is the frequency with which cold pools form and the large temperature 

diferences that can occur, even in small valleys. Although observers oten report such cold air 

pooling events, and locals oten know about individual frost pockets, the wider public oten forget 

how import such small-scale processes are in determining night ime minimum temperatures. 

Winter 2009/10 was paricularly cold in the UK, which may well have increased the frequency and 

strength of the cold pools, however they were observed to occur frequently through the year and 

not just during the paricularly cold winter. Wind speed, coupled with cloud cover, provide the best

indicators for cold pooling condiions. Wind measurements show that overnight wind low in these

small valleys is dominated by down-valley drainage lows, paricularly on low wind speed nights 

conducive to cold air pooling. Whether the dayime valley low is coupled to the ambient low, or 

channelled down the valley seems dependent on the valley size and geometry. Together all these 

features clearly illustrate the signiicant impact of cold pools on the local climate in a valley. The 

lower night-ime temperatures would lead to a signiicantly increased risk of road icing and impact 

crop growth. Downscaling forecast data using the ideas developed from the COLPEX project ofers 

a useful way to provide more detailed road temperature forecasts for local authoriies and highway

authoriies (Sheridan et al, 2010; Sheridan, Vosper and Smith, 2018). 
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Figure 1: Map showing the central part of the Clun Valley. Marked are the main measurement sites 

(black lags), AWS (green squares) and HOBO loggers (red triangles). Height contours are ploted at 

intervals of 10m, with thicker, labelled, contours every 50m. Map data is © Crown Copyright and 

Database Right 2018. Ordnance Survey (Digimap Licence)



Figure 2: Selecion of photos showing views of the Clun valley. The photo on the right shows the 

50m mast at Dufryn and the botom middle photo shows one of the valley loor AWS. Photos are 

taken by Andrew Ross (top let, top middle) and Bradley Jemmet-Smith (top right, botom let, 

botom middle).



Figure 3: Cold air pooling occurrence (a) number of events as a funcion of cold pool strength, (b) 

frequency of events (categorised by cold pool strength) for each month 1st August 2009 – 16th April 

2010 and (c) number of events (cold pool or strong cold pool) as a funcion of ime of maximum 

cold pool strength relaive to sunrise.



Figure 4: Temperature diference over an upper layer of the valley (HOBO 16 – HOBO 18) against 

temperature diference over a lower layer of the valley (HOBO 18 – HOBO 2) at the ime of 

maximum cold pool strength for cold pool nights. Blue x mark are for cold pools with strength <4°C

and orange + are for strong cold pools with strength >4°C. The solid green line is for constant 

temperature gradient over lower and upper parts of the valley. The red dashed line is for a dry 

adiabaic cooling rate of 10°C / km in the upper layer of the valley. 



Figure 5: Frequency distribuion of nights as a funcion of wind speed, wind direcion (both at 30m 

above ground level at the hilltop Springhill site) and raio of downwelling to upwelling long wave 

radiaion (Flw) (measured in the valley at Dufryn) for non-cold pool nights, all cold pool nights, 

strong cold pool nights and all nights.



Figure 6: Wind rose plots of 2m (top) and 50m (middle) wind speed at Dufryn and 2m wind speeds

at AWS 7 (botom)  for all nights (let) and cold pool nights only (right)



Figure 7: Probability distribuion of 1 hour averaged wind direcions as funcion of the valley wind 

at Dufryn (2m or 50m AGL) and AWS 7 versus the ambient wind at Springhill (30m AGL) for low 

ambient wind speed (<5ms-1) and high ambient wind speed (>5ms-1) nights and for dayime. The 

solid black line shows coupled low, solid blue  line shows down-valley low, the solid red line 

shows up-valley low, the black dashed-doted line shows wind channelled low and the green 

doted line shows pressure driven low.  Wind direcion observaions are sorted into 16 bins of 

22.5° width.


