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Abstract 19 

High-speed single-molecule fluorescence microscopy in vivo shows that transcription factors 20 

in eukaryotes can act in oligomeric clusters mediated by molecular crowding and intrinsically 21 

disordered protein. This finding impacts on the longstanding puzzle of how transcription 22 

factors find their gene targets so efficiently in the complex, heterogeneous environment of the 23 

cell. 24 

 25 

Introduction 26 

Cells regulate gene expression through binding of transcription factors (TFs) to promoters to 27 

turn gene expression on or off (1, 2). Simulations show that the time it takes for TFs to find 28 

their targets through pure 3D diffusion alone is ~six orders of magnitude larger than what is 29 

observed experimentally (3). Hypotheses to explain this observation have included TF 30 

heterogeneous mobility comprising a combination of free 3D diffusion combined with sliding 31 

and hopping on the  DNA plus longer jumps between different DNA strands called 32 

intersegment transfer (4–6). In eukaryotic cells, TF localization fluctuates, often between 33 

cytoplasm and nucleus (7). Although it has been observed that promoters can pool on the 34 

genome in clusters (8) it has not previously been seen that TFs themselves act in clusters, but 35 

instead are largely assumed to act as single molecules. Simulations which embody diffusion 36 

and binding suggest that multivalent TFs could, in principle, facilitate intersegment transfer 37 

(9). Previously, single-molecule fluorescence microscopy has been used to study TF 38 

localization in living cells across a range of model organisms, including bacteria, yeast and 39 

multi-cellular organisms (10–16). Many studies suggest complexities in diffusion and binding 40 

(4, 12, 15, 17, 18) which may include intersegmental transfer (4, 17, 18). However, until now, 41 

the direct experimental evidence for intersegmental transfer has been limited. 42 

Many of the important features of gene expression control in eukaryotes are 43 

exemplified in the model unicellular microorganism Saccharomyces cerevisiae (budding 44 

yeast). In particular, its glucose sensing pathway presents an experimentally tractable system 45 

to study gene regulation. Here, control of gene expression is achieved by TFs which include 46 

the Zn finger DNA binding protein Mig1 (19) that acts to repress expression from targets 47 

including GAL genes involved in glucose metabolism (20). Mig1 localizes towards the 48 

nucleus if the extracellular glucose concentration is increased (21), correlated to its own 49 

dephosphorylation by a protein called Snf1 (22, 23).  50 

In recent investigations from my own group (24) the spatiotemporal dynamics and 51 

kinetics of gene regulation in live S. cerevisiae cells, using its glucose sensing pathway as a 52 

model for signal transduction, was explored using physics methods which enable the 53 

understanding of the processes of life one molecule at a time (25, 26), employing ‘single-54 

molecule optical proteomics’ tools (27). The combination of these advanced light microscopy 55 

with genetics techniques has previously enabled valuable insights into the activities of several 56 

other processes for low copy number proteins (28) in both unicellular organisms and single 57 

cells from more complex multicellular organisms (29). These single-molecule/cell and super-58 

resolution microscopy tools have in particular been applied to integrated membrane proteins 59 

(30, 31), such as interaction networks like oxidative phosphorylation (32–36), cell division 60 

processes (37–39) and protein translocation (40), along with bacterial cell motility (41–44). 61 

The tools can also probe the aqueous environment of cells as opposed to just on their 62 

hydrophobic cell membrane surface, including processes of DNA 63 

replication/remodeling/repair (45–47), and systems more directly relevant to biomedicine 64 

such as bacterial infection (48–50). 65 

In this Points of View article I discuss further the findings from my team from single-66 

molecule fluorescence microscopy to track functional TFs with very high speed to match 67 



typical rates of protein diffusion in live cells and thereby enable ‘blur-free’ observations. We 68 

were able to quantify the composition and dynamics of Mig1 under normal and perturbed 69 

conditions which affected its state of phosphorylation, and also performed experiments on a 70 

protein called Msn2 which functions antagonistically, i.e. instead as an enhancer/activator, 71 

for many of the same Mig1 target genes (51) through a completely different signaling 72 

pathway. The results showed unexpectedly that Mig1 binds to its target genes as an 73 

oligomeric cluster which has stoichiometries in the range ~6-9 molecules. We found evidence 74 

that Mig1 molecules in a cluster are glued together through interactions of intrinsically 75 

disordered peptide sequences innervated by molecular crowding depletion forces in the cell. 76 

Our findings may reveal a more general eukaryotic cell strategy for the control of gene 77 

expression which uses intrinsic disorder of many TFs to form clusters that then enable large 78 

reductions in the time taken to find a given target gene. 79 

 80 

Results 81 

Single-molecule optical proteomics indicates the presence of Mig1 oligomeric clusters 82 

We used millisecond Slimfield single-molecule fluorescence imaging (46, 52, 53) on live S. 83 

cerevisiae cells (Fig. 1A) using a green fluorescent protein (GFP) reporter for Mig1 84 

integrated into the genome, including mCherry reporter on the RNA polymerase subunit 85 

protein Nrd1 to indicate the position of the cell nucleus. Slimfield was optimized for single-86 

molecule detection sensitivity by using an in vitro imaging assay (54). We also measured the 87 

maturation effect of the fluorescent proteins in these cells  (55) and estimate in to be  <15% 88 

immature fluorescent protein over the timescale of imaging experiments. Note, Slimfield 89 

limits the observation area to an equivalent diameter of <10 μm in the lateral plane to achieve 90 

rapid imaging sample times of millisecond and, in some instancesm  sub-millisecond levels 91 

(56) ,, but is less ideal to eukaryotic imaging of cells with larger nuclei. A host of other 92 

single-molecule techniques based on light-sheet imaging have larger fields of view, and also 93 

combine low background and low light toxicity. For the interested reader, these include: 94 

HILO (by Tokunaga M.N. et al. (57). AFM cantilever lightsheet  (by Gebhardt, J.C. et al. 95 

(11)), lattice light-sheet (by Chen B.C. et al. (58)), multi-focus (by Abrahamsson S. et 96 

al.(59)), remote focusing (by Yang et al.(60)), and diagonally scanned light sheet (by Dean et 97 

al.(61)). 98 

Under depleted /elevated extracellular glucose (-/+) we measured cytoplasmic and 99 

nuclear Mig1 localization bias respectively, visible in individual cells by our generating rapid 100 

microfluidic exchange (a few seconds) of extracellular fluid (Fig. 1B), and resolved two 101 

components under both conditions consistent with a diffuse monomeric pool and distinct 102 

oligomeric foci of Mig1 (Fig. 1C). The foci were also visible as hotspots using the green-red 103 

photoswitchable fluorescent protein mEos2 (62) excited by super-resolution stochastic optical 104 

reconstruction microscopy (STORM) (Fig. 1C), with modeling using 3C structural data of the 105 

yeast chromosome (63) and sequence alignment analysis for the location of Mig1 target 106 

promoters supporting the hypothesis that the majority of Mig1 clusters were specifically 107 

binding to Mig1 target genes.  108 

Nanoscale tracking determined the position of tracked Mig1 foci to a lateral precision 109 

of 40 nm (33, 64) coupled to stoichiometry analysis using stepwise photobleaching of  GFP 110 

(54) and single cell copy number analysis (65). An additional output from the tracking was 111 

the effective diffusion coefficient D as a function of its location in either the cytoplasm, 112 

nucleus or translocating across the nuclear envelope, as well as the copy number of Mig1 113 

molecules associated with each subcellular region and in each cell as a whole, indicating 114 

~850-1,300 Mig1 molecules per cell dependent on extracellular glucose. It should be noted 115 



that confinement may affect the apparent diffusion coefficient in the small volume of a yeast 116 

nucleus if the length the mean square displacement (MSD) of tracked particles is comparable 117 

to the diameter of the nucleus, however, if our case only the short length scale MSD regions 118 

are considered to determine D. 119 

In control experiments, a modified strain (51) generated with a binding site for protein 120 

PP7 on mRNA produced by one of the Mig1 target genes called GSY1 showed colocalization 121 

between PP7-GFP expressed off a plasmid and Mig1-mCherry expressed genomically under 122 

high glucose conditions. We also observed similar clustering and co-localization to PP7 for 123 

the antagonistic TF Msn2. These PP7 co-localization results suggest that clusters both of 124 

Mig1 and Msn2 are functionally active in regulating target gene expression of the test target 125 

gene GSY1. 126 

 127 

Cytoplasmic Mig1 diffuses rapidly but nuclear Mig1 can be mobile and immobile 128 

Cytoplasmic Mig1 fluorescent foci at glucose (+/-), and nuclear foci at glucose (-), were 129 

consistent with just a single mobile population whose D of 1-2 μm2/s consistent with earlier 130 

observations. However, nuclear foci at glucose (+) indicated a mixture of mobile and 131 

immobile components (Fig. 1D). These results suggested 20-30% of nuclear foci are 132 

immobile, consistent with a DNA-bound state. MSD analysis of foci tracks indicated 133 

Brownian diffusion over a few tens of ms but increasingly anomalous diffusion over longer 134 

timescales, consistent with glucose (+) Mig1 diffusion being impacted by interactions with 135 

nuclear structures, similar to that reported for other TFs (66). Here, this interaction depended 136 

on extracellular glucose despite Mig1 requiring a pathway of proteins to detect it, unlike the 137 

more direct detection mechanism of the prokaryotic lac repressor. Control experiments with 138 

Zn finger deletion strains of Mig1 indicated that Mig1 clusters bind to the DNA via their Zn 139 

finger motif with direct glucose dependence. At the high laser exceition intensities used for 140 

Slimfiled imaging photobleaching is rapid, and so typically a single GFP molecule will 141 

photobleach on average after 5-10 consecutive image frame. To account for this we 142 

interpolate observed foci brightness values back to the start of each photobleach using an 143 

exponential photobleach function. We observed no direct evidence for irreversible 144 

photobleaching (i.e. ‘photoblinking’) with GFP at these intensities, though other fluorescent 145 

proteins such as YFP have been known to exhibit such blinking behavior, which if so would 146 

need to be further characterized, for example using surface imnmobilized purified YFP in 147 

vitro samples. A general compromise here, however, is to confine tracking analysis to 148 

typically less than 100 ms of laser exposure so that irreversible photoblinking is more 149 

dominant than reversible blinking. 150 

 151 

 152 

Mig1 nuclear pore complex selectivity is mediated by interactions distant from the 153 

nuclear envelope 154 

We compared the spatiotemporal dynamics of different Mig1 clusters during translocation by 155 

converting trans-nuclear tracks into coordinates parallel and perpendicular to the measured 156 

nuclear envelope location, and synchronizing coordinate origins to be at the nuclear envelope 157 

crossing point for a given foci track. A heat map of spatial locations of translocating clusters 158 

indicated a hotspot of comparable volume to the nuclear pore complexes and accessory 159 

structures (67, 68) (Fig. 1E). The dwell time during nuclear envelope translocation was 160 

~10 ms, similar to previous estimates for transport factors (69) but here found to be 161 

insensitive to glucose (Fig. 1F), demonstrating that there is no direct selectivity on the basis 162 



of TF phosphorylation state by nuclear pore complexes themselves which suggests that cargo 163 

selectivity mechanisms of nuclear transport (70) are blind to phosphorylation state. Coupled 164 

with the observation that Mig1 at glucose (-) does not exhibit immobility in the nucleus and 165 

that Mig1 lacking the Zn finger still accumulates in the nucleus at glucose (+) this suggests 166 

that Mig1 localization is driven by changes in Mig1 binding affinity to other proteins,  e.g. 167 

the general co-repressor complex at the genome (71), or outside the nucleus not involving the 168 

nuclear pore complex. 169 

 170 

Mig1 nuclear clusters turn over in >100 s 171 

By modifying the microscope we were able to implement fluorescence recovery after 172 

photobleaching (FRAP) to probe nuclear turnover of Mig1, by focusing a separate laser onto 173 

just the nucleus, photobleaching this region with a rapid 200 ms pulse, and quantifying any 174 

subsequent fluorescence intensity recovery into that region (Fig. 1G). We could then acquire 175 

images with millisecond precision for individual frames but stroboscopically illuminating to 176 

extend the range of time scales for recovery before significant GFP photobleaching occurred, 177 

enabling FRAP observations at a single-molecule precision to timescales >1,000 s. Analyses 178 

demonstrated measurable recovery for both foci and the diffuse pool components in the 179 

nucleus, which could be fitted by single exponential functions indicating fast recovery of pool 180 

at both glucose (-) and (+) with a time constant of just a few seconds but a larger time 181 

constant at glucose (+) for nuclear foci of at least ~100s (Fig. 1H), with recovery of intensity 182 

being consistent with units of ~7-9 GFP molecules for the foci component but no obvious 183 

periodicity in stoichiometry measurable from pool recovery. These data suggested that 184 

molecular turnover at nuclear foci of Mig1 bound to target genes occurred in units of whole 185 

Mig1 clusters. 186 

 187 

Clusters are stabilized by molecular crowding and intrinsic disorder 188 

Native, denaturing gel electrophoresis and western blots on purified extracts from Mig1-GFP 189 

cells (Fig. 1I) indicated a single band corresponding to Mig1. In vitro Slimfield imaging of 190 

purified Mig1-GFP under identical imaging conditions for live cells similarly indicated 191 

monomeric Mig1-GFP foci in addition to a small fraction of brighter foci which were 192 

consistent with chance overlap of monomer GFP images. However, addition of a molecular 193 

crowding reagent in the form of low molecular weight polyethylene glycol (PEG) at a 194 

concentration known to correspond to small molecule ‘depletion’ forces in cells (72) resulted 195 

in significant numbers of oligomers (Fig. 1J), suggesting that Mig1 clusters present in live 196 

cells regardless of glucose may be stabilized by depletion components that are lost during 197 

biochemical purification.  198 

 Secondary structure predictions suggested significant regions of disorder away from 199 

the Zn finger binding motif. We measured changes in circular dichroism of the Mig1 fusion 200 

construct upon addition of PEG (Fig. 1K) in a wavelength range known to be sensitive to 201 

transitions between ordered and intrinsically disordered states (73, 74). We also noted similar 202 

levels of disorder content in the Msn2 protein far from the Zn finger motif. These 203 

observations suggested a TF ‘molecular bipolarity’, in regards to disorder content, which 204 

stabilizes a cluster compact core focused around the disordered regions that undergo a 205 

putative phase transition to a more structure state, while exposing Zn fingers and positive 206 

surface charges to enable specific and non-specific interactions with accessible DNA strands 207 

(Fig. 1L).  208 



 209 

Perspective 210 

Our findings address aspects of functional gene regulation in live cells which have hitherto 211 

been unexplored, using biophysical technology that has not been available until recently. The 212 

results strongly support a functional link between Mig1 and Msn2 TF clusters and target gene 213 

expression; a biological role of multivalent TFs for enhancing intersegmental transfer had 214 

been elucidated previously in simulations (9) but unobserved experimentally until our 215 

discoveries here, and so our findings impact on the longstanding question of how TFs might 216 

find their targets in the genome so efficiently. Clustering of a range of nuclear factors has 217 

been observed previously using single-molecule techniques, such as transient RNA 218 

Polymerase II cluster dynamics in living cells using time-correlated PALM (tc-PALM) (75, 219 

76). Also functional nuclear protein clusters have been seen (77) and the Bicoid transcription 220 

factor in fruit fly embryos has been observed to form clusters mediated in part mediated by 221 

intrinsically disordered peptide sequences (78).  222 

Quantifying nearest-neighbor distances between Mig1 promoter sites in the S. 223 

cerevisiae genome from the 3C model indicates 20-30% are <50 nm apart, small enough to 224 

enable different DNA segments to be linked though intersegment transfer by a single cluster 225 

(6, 9), which would also enable in principle simultaneous binding of >1 gene target from just 226 

a single TF cluster. There is a net positive charge in the vicinity of Zn finger motifis, and this 227 

would also enable non-specific electrostatic interactions with the negatively charged 228 

phosphate backbone of DNA, facilitating 1D sliding diffusion of the protein along a DNA 229 

strand. Thus, a cluster may be able to slide along DNA in a largely sequence-independent 230 

manner and undergo intersegmental transfer to a neighboring strand relatively easily, either 231 

spontaneously or stimulated by the presence of protein barriers on the DNA in a process 232 

likely to have some sequence dependence when an obstacle is encountered. In particular, 233 

bound RNA polymerases present during gene transcription at sequence specific sites could 234 

act as roadblocks to kick off translocating clusters from a DNA strand, to again facilitate 235 

intersegmental transfer and thus increase the ultimate chances that TF clusters will encounter 236 

one of the gene targets and specifically bind via the Zn finger motif, thus predominantly 237 

circumventing the requirement for significant amounts of slow 3D diffusion in the 238 

nucleoplasm. 239 

Our discovery is, to our knowledge, the first to make a link between predicted disorder 240 

and the ability to form oligomeric clusters in TFs. Our findings may potentially offer some 241 

insights into addressing the longstanding question of why in general there is so much 242 

predicted disorder in eukaryote transcription factors; ~90% of eukaryotic TFs indicate 243 

significant proportions of sequences with disordered content (79). Our finding that protein 244 

interactions based on relatively weak molecular crowding depletion forces has functional 245 

relevance in several areas of cell biology, such as processes involving  aggregation mediated 246 

through intrinsic disorder interactions;  for example, those of amyloid plaques found in 247 

neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases (80). Increased 248 

understanding of the clustering mechanism might therefore be of value in understanding the 249 

progression of these diseases. Open questions remain though: for example, are clusters homo-250 

oligomeric or do they contain multiple different TFs? How is specificity maintained inside a 251 

cluster? Are the components of the clusters themselves dynamic and undergo molecular 252 

turnover? Can the ability to cluster be controlled, for example by switching the state of 253 

phosphorylation?  254 
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 468 

Figure 1. TFs form clusters in eukaryotic cell. (A) Schematic of millisecond Slimfield 469 

microscopy. (B) Fluorescence imaging of Mig1-GFP (green) with nucleus indicated (red) by 470 

Nrd1-mCherry, showing different cellular locations, stoichiometry determined by step-wise 471 

photobleaching that can be measured using Fourier analysis and edge-detection filters (54, 472 

81, 82). (C) STORM imaging using Mig1-mEos2. (D) Mobility analysis for cumulative 473 

distribution function (CDF) and Gamma fits. (E) Mig-GFP localization through a nuclear 474 

pore complex. (F) Dwell time for tracks translocating the nuclear envelope. (G) Images and 475 

(H) analysis for FRAP indicating turnover of nuclear Mig1-GFP. (I) Native and denaturing 476 

gels on purified Mig1-GFP. (J) Mig1-GFP cluster stoichiometry in presence/absence of 477 

molecular crowding. (K) Circular dichroism spectra in presence/absence of molecular 478 

crowding. (L) Cartoon model for shape of a Mig1 cluster in vicinity of DNA strands. 479 
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Reviewer 1:  
. 
Here is a small list of omitted citations on this subject that should be included to make the review more 
fairly 
balanced: 
GR (Gebhardt, J.C. et al. https://www.nature.com/articles/nmeth.2411) 
TetR (Normanno, D. et al. https://www.nature.com/articles/ncomms8357) 
p53 (Mazza, D. et al https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424588/) 
Sox2 (Liu Z. et al. https://elifesciences.org/articles/04236 
and 
Chen J. et al. https://www.ncbi.nlm.nih.gov/pubmed/24630727) 
TFIIB 
(by Zhang Z. et al. http://genesdev.cshlp.org/content/30/18/2106) 
 
 
These references have now been added 
 
2. The only imaging modality presented in this mini-review is Slimfield. This technique limits the 
observation area to a 
few micrometers, and hence is unsuitable to eukaryotic imaging of cells with larger nuclei. A host of 
other singlemolecule 
techniques based on light-sheet imaging have much bigger fields of view, and have the added 
advantage of 
low background and low light toxicity. 
Here are omitted references of imaging modalities that have been recently implemented to image 
eukaryotic nuclei: 
HILO 
(by Tokunaga M.N. et al. https://www.nature.com/articles/nmeth1171) 
AFM cantilever lightsheet 
(by Gebhardt, J.C. et al. https://www.nature.com/articles/nmeth.2411) 
lattice light-sheet 
(by Chen B.C. et al. http://science.sciencemag.org/content/346/6208/1257998) 
multi-focus 
(by Abrahamsson S. et al. https://www.nature.com/articles/nmeth.2277) 
remote focusing 
(by Yang et al. https://www.biorxiv.org/content/early/2018/02/28/273359) 
diagonally scanned light sheet 
(by Dean et al. https://doi.org/10.1016/j.bpj.2016.01.029) 
 
These references have now been added 
 
 
 
3. Paragraph lines 50-64. Confusing mix of references for different model organisms: yeast, multi-
cellular, and bacterial) 
 
I have now clarified that these references refer to a range of different model organisms 
 
4. Paragraph lines 114-126. The review should highlight how confinement affects apparent diffusion 
coefficient in the small volume of a yeast nucleus. 
This has now been added 
 
5. Paragraph lines 128-144. The review should state how bleaching and dye-photophysics (blinking, 
dark-state transitions) are accounted for. This is especially relevant for Slimfield imaging conditions of 
high laser power densities. 
Discussion has been added here concerning how blinking and bleaching dye photphysics are 
accounted for. 
 
6. Line 194: References 63 and 64 do not in fact argue for the static "transcription factories". These 
papers rather should be cited for time-correlated PALM (tc-PALM), which accurately accounts for dye-
photophysics, and describe live cell RNA Polymerase II cluster dynamics that are quite transient. 
This has now been added 
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7. Lines 33-34: Eukaryotic TFs do not always fluctuate between cytoplasm and the nucleus. 
This has now been corrected 
 
8. Line 88: The author should address how <15 % fluorophore maturation is compatible with single-
molecule counting. 
The ‘<15%’ refers to the immature fluorescent protein level – this has now been clarified 
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