
This is a repository copy of Robust Mixed-Criticality Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/130366/

Version: Accepted Version

Article:

Burns, Alan orcid.org/0000-0001-5621-8816, Davis, Robert Ian orcid.org/0000-0002-5772-
0928, Baruah, Sanjoy et al. (1 more author) (2018) Robust Mixed-Criticality Systems. IEEE
Transactions on Computers. pp. 1478-1491. ISSN 0018-9340 

https://doi.org/10.1109/TC.2018.2831227

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2831227, IEEE

Transactions on Computers

1

Robust Mixed-Criticality Systems

Alan Burns Fellow, IEEE, Robert I. Davis Senior Member, IEEE, Sanjoy Baruah Fellow, IEEE,

Iain Bate Member, IEEE

Abstract—Certification authorities require correctness and survivability. In the temporal domain this requires a convincing argument

that all deadlines will be met under error free conditions, and that when certain defined errors occur the behaviour of the system is still

predictable and safe. This means that occasional execution-time overruns should be tolerated and where more severe errors occur

levels of graceful degradation should be supported. With mixed-criticality systems, fault tolerance must be criticality aware, i.e. some

tasks should degrade less than others. In this paper a quantitative notion of robustness is defined, and it is shown how fixed

priority-based task scheduling can be structured to maximise the likelihood of a system remaining fail operational or fail robust (the

latter implying that an occasional job may be skipped if all other deadlines are met). Analysis is developed for fail operational and fail

robust behaviour, optimal priority ordering is addressed and an experimental evaluation is described. Overall, the approach presented

allows robustness to be balanced against schedulability. A designer would thus be able to explore the design space so defined.

Index Terms—Real-Time Systems, Mixed Criticality, Fault Tolerance

✦

1 INTRODUCTION

Many high-integrity systems incorporate a certain level of fault

tolerance to deal with functional and temporal failures that may

occur during run-time. This remains the case in a mixed-criticality

system in which distinct functions of the system have been

assigned different levels of criticality to reflect different conse-

quences of failure, and which leads to different levels of service

that need to be guaranteed.

For systems that contain components that have been given

different criticality designations there are two, mainly distinct,

issues: survivability and static verification.

Survivability in the form of fault tolerance allows graceful

degradation to occur in a manner that is mindful of criticality

levels: informally speaking, in the event that all components

cannot be serviced satisfactorily the goal is to ensure that lower-

criticality components are denied their requested levels of service

before higher-criticality components are.

Static verification of mixed-criticality systems is closely re-

lated to the problem of certification of safety-critical systems. The

trend towards integrating multiple functionalities on a common

platform, for example in Integrated Modular Avionics (IMA)

systems and in the Automotive Open System Architecture (Au-

tosar), means that even in highly safety-critical systems, typically

only a relatively small fraction of the overall system is actually

of the highest criticality. In order to certify a system as being

correct (or acceptably safe), the design engineers, as guided by the

appropriate certification standards, must make certain assumptions

about the worst-case behaviour of the system during run-time.

Methods that certification agencies have accepted tend to be very

conservative, and hence it is often the case that the analysis

assumptions result in more pessimism than those the system
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designer would typically use during the system design process

if certification was not required.

A full review of what the certification standards say on the

subjects of timing and graceful degradation is beyond the scope

of this paper. Instead the reader is referred to [22] and [21]

respectively. A synopsis of these is that the standards, other

than ISO 26262 [30] for automotive systems, actually say very

little about timing. The main points from ISO 26262 [30] are

that software safety requirements should include any necessary

timing constraints (Section 6.4.2 of [30]); the software architecture

should describe temporal constraints on the software components,

including tasks (Section 7.4.5b of [30]); and software testing must

include resource usage tests to confirm that the execution time

allocated to each task is sufficient (Sections 9.4.3 and 10.4.3 of

[30]).

Common standards for software in safety critical applications

focus mainly on preventing or detecting defects. But it is not

generally possible to ensure that software-based systems will

never fail. Recognising this, some standards, researchers, and

authorities advocate building software so as to achieve surviv-

ability [32]. Survivability can be broadly defined as the ability of

a system to provide essential services in the face of attacks and

failures. The two terms ‘robustness’ and ‘resilience’ are often used

interchangeably to imply survivability — in Section 2 of this paper

we will draw a distinction between, and give precise definitions of,

these two terms. To improve survivability, engineers build systems

to reconfigure themselves in response to defined failure and attack

conditions [50]. Such reconfiguration is one way to achieve the

‘graceful degradation’ that IEC 61508 ‘recommends’ at low SILs

(safety integrity levels) and ‘highly recommends’ at high SILs [15]

(see Table 2 in Annex A, Part 6 and Table 12 in Annex E).

Let us now consider the application of these ideas to mixed-

criticality systems. For static verification we need to show that

in the worst-case scenario (i.e. all high-criticality functions si-

multaneously require their maximum pessimistic resource quotas)

all of these functions will meet their timing requirements. For

graceful degradation we need measured responses to varying

levels of overrun. Or, to put it another way, we do not want
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a disproportionate response to a small effect. Indeed for minor

overruns we would expect full system functionality to continue to

be delivered (a requirement that is termed fail operational or fail

passive).

In some previous publications on mixed-criticality scheduling

theory, the two related but distinct issues of static verification

and survivability (i.e., robustness & resilience) have led to some

confusion. Initially (e.g., in Vestal’s influential paper [56]), mixed-

criticality scheduling theory dealt primarily with static verifica-

tion. In doing static verification, it is acceptable, under certain

circumstances, to ‘ignore’ the computational requirements of less-

critical tasks when verifying the correctness of more critical

ones. Naive extensions of the resulting techniques to the analysis

of survivability characteristics required that the assumption be

made that low-criticality tasks could be simply dropped to ensure

schedulability of high-criticality ones. Clearly, this is not always

desirable or possible. Here we wish to address this shortcoming

of current mixed-criticality scheduling theory by focusing on run-

time robustness. To this end, we attempt to provide a systematic

approach to managing temporal overruns in mixed-criticality sys-

tems that explicitly considers survivability. The contributions of

the paper can be summarised as follows.

• We present a formalisation of the notion of survivability

by defining the concepts of robustness and resilience in

mixed-criticality systems, in a manner that is usable in an

engineering context.

• We define a metric for measuring the severity of timing

failures, and relate this metric to different levels of fault

tolerance.

• We instantiate these concepts by applying the developed

framework to the Fixed Priority (FP) scheduling of mixed-

criticality real-time systems.

These related yet distinct contributions can be considered to be

analogous to the contributions in Vestal’s paper [56], which had

(i) formalized the notion of static verifiability for mixed-criticality

systems1; and (ii) illustrated the use of the concept by applying

them to Fixed Priority scheduling.

The remainder of the paper is organised as follows. Section

2 introduces the key notions and the proposed framework; it

gives definitions for robustness and resilience, and discusses the

concepts of a robust task and a robust system. It also includes

a motivational example. Related work is reviewed in Section 3,

followed by the employed system model in Section 4. Analysis for

the framework is derived in Section 5 together with an example

of its application to a simple task set. Robust priority assignment

and required run-time behaviour are covered in Sections 6 and 7.

Comprehensive evaluation is provided in Section 8. Extensions to

the model are discussed in Section 9. Finally, Section 10 concludes

with a summary and discussion of future work.

2 ROBUSTNESS, RESILIENCE, CRITICALITY AND

GRACEFUL DEGRADATION

In this section we seek to better understand survivability as it

applies to mixed-criticality systems. We introduce the related con-

cepts of robustness and resilience for such systems, and propose a

1. Although [56] does not explicitly state that it is dealing only with static
verification, it is clear from a reading of the paper that the concepts and results
there were intended for use in a priori verification of systems, not for dealing
with run-time survivability.

quantitative metric that permits us to specify a 2-parameter model

for specifying the robustness of a mixed-criticality system.

Criticality is an assignment to a system function. In the pa-

per [56] that launched mixed-criticality scheduling theory, Vestal

assigns a criticality level to each task derived from the system

function that the task is implementing or contributing to. But this

does not mean that it is equally important that every job of a task

executes in a timely fashion. Indeed for many tasks, for example

control tasks, a job can be dropped without any significant impact

on the safety or functionality of the system [44]. State update

tasks similarly can skip the occasional job as slightly stale state

is acceptable to a robust application. In high-integrity systems

that employ replication at the systems level (what are called

channels in on-board avionics systems) the switching from one

channel to another can induce a minor temporal disturbance that

the application is designed to tolerate.

To develop a framework for graceful degradation requires [32]:

• a monotonically increasing measure of the severity of the

system’s (temporal) failures, and

• a series of proportionate responses to these failures.

Moreover, the necessary run-time monitoring, to identify the

temporal failures, must be straightforward and efficient (i.e. have

low overheads).

There are a number of standard responses in the fault tolerance

literature for systems that suffer transient faults (equating to one

or more concurrent job failures in this work):

1) Fail (Fully) Operational – all tasks/jobs execute correctly (i.e.

meet their deadlines).

2) Fail Robust– some tasks are allowed to skip a job, but all

non skipped jobs execute correctly and complete by their

deadlines; the quality of service at all criticality levels is

unaffected by job skipping.

3) Fail Resilient – some lower criticality tasks are given reduced

service, such as having their periods/deadlines extended,

priorities dropped and/or their execution budgets reduced; if

the budget is reduced to zero then this is equivalent to a task

being abandoned2.

4) Fail Safe/Restart – where the level of failure goes beyond

what the tactics for Fail Resilient can accommodate more

extreme responses are required, including channel rebooting

or system shutdown (if the application has a fail-safe state). If

a fail-safe state cannot be achieved then the system may need

to rely on best-effort tactics that have no guarantees. This is,

of course, the last resort to achieving survivability.

Resilience therefore goes beyond robustness. (Informally, the

robustness of a system is a measure of the degree of fault it can

tolerate without compromising on the quality of service it offers;

resilience, by contrast, refers to the degree of fault for which it can

provide degraded yet acceptable quality of service.) A resilient

system may employ a range of responses and strategies for

graceful degradation to ensure that the most critical components of

the system continue to meet their deadlines. There is considerable

literature on these strategies as they apply to mixed criticality

systems: [13], [5], [4], [26], [27], [54], [53], [31], [52], [51], [45],

[20], [12], [37], [41], [57], [28], [24], [47], [36]. In this paper, we

focus on Fail Operational and Fail Robust; together these define

2. Where the situation requires that tasks must be dropped then secondary
criteria, such as importance [19] can be employed to drop lower criticality
functions in a disciplined way.
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the system’s robust behaviour. By concentrating on these strategies

we aim to, in effect, remove (or at least significantly reduce) the

need for more extreme responses.

From these considerations we propose the following defini-

tions.

Definition 1. A robust task is one that can safely drop one non-

started job in any extended time interval.

Definition 2. The robustness of a complete system is measured by

its Fail Operational (FO) count (how many job overruns can

it tolerate without jobs being dropped or deadlines missed)

and its Fail Robust (FR) count (how many job overruns can it

tolerate when every robust task can drop a single non-started

job). In the analysis section of this paper these values are

represented by the parameters, F and M .

Note with this two parameter model of robustness, FO count (F )

≤ FR count (M ).

Definition 3. A resilient system is one that employs forms of

graceful degradation that adequately cope with more than M
overruns.

We define a job overrun as a fault. More precisely [46] it is

an error that is the manifestation of a fault; however within the

context of this paper the single term ‘fault’ is adequate and will

be used. If a fault/error leads to a deadline being missed then the

system has experienced a failure. The consequences of this failure,

to the application, to a large measure determines the criticality of

the failing task.

Job L C(LO) C(HI) D C′(HI)
J1 LO 4 - 10 -
J2 HI 1 3 10 2
J3 HI 3 5 10 6

TABLE 1
A Simple Three Job Example

We illustrate the use of this important FO measure via a sim-

ple example system comprising jobs rather than recurrent tasks.

Consider the three jobs J1, J2, and J3 depicted in Table 1, that

are all released at time-instant zero and have a common deadline

at time-instant ten. Suppose that job J1 is of lower criticality (its

criticality level is “LO” in the terminology of mixed-criticality

scheduling theory), while jobs J2 and J3 are of higher criticality

(i.e., their criticality level is “HI”). Each job is characterized by a

LO-criticality execution time estimate C(LO); the HI-criticality

jobs have an additional, more conservative HI-criticality execution

time estimate C(HI). Under normal (fault-free) execution, all

jobs complete within their C(LO) bounds. The low criticality job

is constrained, by run-time monitoring and policing, to execute

for no more than its C(LO) bound. The high criticality jobs can

overrun (fail) by executing for more than their respective C(LO)
bounds but they are prevented from executing for more than their

respective C(HI) bounds.

Suppose that the jobs execute in criticality-monotonic or-

der – the HI-criticality jobs execute first. Under “traditional”

mixed-criticality schedulability analysis (i.e., the analysis inspired

by [56]), this system is deemed mixed-criticality schedulable,

since

• All jobs complete by their deadlines if each job completes

upon executing for no more than their respective C(LO)
values, and

• The HI-criticality jobs complete by their deadlines (al-

though the LO-criticality job may not) if each job com-

pletes upon executing for no more than their respective

C(HI) value.

Now consider a second system that differs from the one above

in that the C(HI) values are as depicted in the column labeled

C ′(HI); i.e., C(HI) is 2 (instead of 3) for J2 and 6 (instead of

5) for J3. It may be easily verified that this second system is also

mixed-criticality schedulable.

Let us now compute the FO counts for the original and the

modified system.

• The original system can be seen to have a FO count of 1.

If J3 overruns then the execution times could be (for the

three jobs) 4, 1, 5 – so J1, which runs last, completed

by its deadline of 10. Alternatively if J2 overruns the

execution times become 4, 3, 3; so again J1 completed by

its deadline. However, if both high criticality jobs overrun

(i.e. FO count would be 2) then J1 will miss its deadline

as the execution times would be 4, 3, 5.

• For the modified system however, the FO value is 0 since

it cannot remain fully operation if job J3 over-runs, as 4 +

1 + 6 > 10.

Thus, the original and the modified system are both deemed

schedulable in the mixed-criticality sense, but they have different

levels of robustness – this difference is not exposed by traditional

mixed-criticality scheduling theory. To provide a complete defini-

tion of an application’s survivability, we believe that it is necessary

to provide evidence that all deadlines are met during fault free

behaviour and provide a profile of the application’s robustness (as

represented by the values of FO count (F ) and FR count (M ) in

this paper).

Run-time response to overload. As stated above, we distinguish

between four qualitatively different forms of response that a

system may have to a run-time overload, depending upon the

severity of the response that is needed: (i) Fully Operational;

(ii) Fail Robust; (iii) Fail Resilient; and (iv) Fail Safe/Restart.

Different techniques are needed to deal with, and quantitatively

analyse, these different forms of survivability.

• Analysis of Fully Operational behaviour requires no

changes to the run-time algorithms; instead, careful modi-

fication to the scheduling analysis that is performed as part

of (pre run-time) verification suffices for determining the

FO count.

• If an overload becomes severe enough that fully opera-

tional behaviour is not possible, Fail Robust behaviour

may be achieved by adopting a disciplined approach to

eliminating the overload; this may be achieved by a

judicious dropping of jobs of individual robust tasks.

• For overloads that are even more severe, Fail Robust

behaviour may not be achievable and strategies must be

deployed for further reducing the system load by pro-

viding lower-criticality tasks reduced service; the design

and analysis of such Fail Resilient response strategies is

beyond the scope of this paper, but see the list of references

given earlier.

• Finally for very severe situations Fail Safe/Restart tech-

niques may be required; here guarantees may not be

possible and a ‘best-effort’ approach to survivability is all

that can be achieved.
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We now discuss our proposed approach towards Fully Operational

and Fail Robust behaviours.

Measuring the severity of timing faults In this paper we propose

the use of a ‘job failure’ (JF ) count to represent the (failed) states

of the system. If any high criticality job executes for C(LO)
without completion then the count increases (JF := JF + 1).3

Note that we do not distinguish between timing failures from jobs

of the same, or from different, high criticality tasks.

To bound the impact of a job failure we assume a maximum

execution time of C(HI) for this job. It would be possible to

introduce a new parameter, X , which would be an estimate of the

maximum overrun of any task (i.e. C(LO) < C(X) < C(HI)),
but in this initial study we restrict ourselves to the simpler model

(see discussion in Section 9).

With this framework an application is able to define its level

of robustness. In the following we use F to represent the FO

value and M the FR value. An example of the framework is:

Fail Operational when JF ≤ F = 3, and Fail Robust when

3 < JF ≤ M = 6. Only resorting to resilience strategies such

as period extending or task dropping when JF > 6. Analysis,

see Section 5, can be used to verify that the system can deliver

behaviour that satisfies the F and M parameters. This analysis

can also be used to determine the maximum time it would take

for a system experiencing M concurrent faults to experience an

idle tick (which resets JF to zero). This allows the common form

for expressing reliability, “number of faults to be tolerated in a

defined time interval”, to be used.

An orthogonal Reliability Model [14] may be used to assign

a probability to the likelihood of experiencing JF > 6 in, say,

an hour of operation. Hence the level of tolerance of concurrent

transient timing faults can be tuned to meet the needs of the

application. More severe or permanent faults will need more

extreme responses involving significant degradation or recovery

at a system level (through, for example, channel replication or

transition to a safe state). Here we allow robustness in the face of

rare transient timing faults to be delivered by employing a mixed-

criticality approach.

This paper does not attempt to provide guidance on what

the Fail Operational (F ) and Fail Robust (M ) values should be.

Various application-specific factors will impact on these values,

including the consequences of a timing failure, and the level of

redundancy provided at the system level. Both FMEA (Failure

Modes and Effect Analysis) and FTA (Fault Tree Analysis) [48]

can be employed to help determine F and M . Rather, the analysis

provided in this paper allows schedulability to be checked once

these values are identified, or the level of robustness determined

for a specified system. In the remainder of this paper (after the

Related Work section) we illustrate how existing analysis for fixed

priority mixed-criticality systems can be adapted to provide these

checks. However this analysis is not the main focus of the paper;

rather it is included to demonstrate that our model of robustness

is amenable to analysis. Its incorporation within other scheduling

frameworks should be straightforward.

3 RELATED WORK

Research into soft real-time systems deals with issues of minimis-

ing the latency of responses, minimising the number of deadline

3. However, whenever the system experiences an idle tick (or idle instant –
an idle instant is a point in time when there are no jobs released strictly before
that time which have execution time remaining) the count is set back to zero
(JF := 0).

misses, supporting value added computation such as that provided

by imprecise computations [38], [49], best-effort scheduling [39],

and overload management [33]. By comparison, a hard real-time

system is designed to meet all of its deadlines in a well-defined

worst-case set of circumstances. We note that this requirement

is not contradicted by the added constraint of providing robust

or resilient behaviour when this worst-case set of circumstances

is violated and timing overruns occur. A robust hard real-time

system is thus not a soft real-time system; however, some of the

techniques developed for soft real-time systems may be applicable.

There are a number of approaches that bridge between hard

and soft real-time behaviours. Koren and Shasha [34] introduced

the idea of allowing some jobs of a task to be skipped, according

to a skip-factor. The m-k firm scheme of Ramanathan [25], [44]

predefines specific jobs of a task as optional, with the scheduling

algorithm running them at a lower priority, thus ensuring schedu-

lability (hard real-time behaviour) of only the mandatory m out

of k jobs. The weakly-hard scheme of Bernat et al. [8] generalises

requirements for the jobs of a task that must meet their deadlines

according to a statically defined profile, such as requiring that at

least n out of any m jobs must meet their deadlines.

More closely related to the research presented in this paper

is the concept of Window-Constrained execution time Systems

(WCS); also aimed at hard real-time systems. In WCS, tasks are

allowed a profile of execution times that can include overruns. For

example a task with a worst-case execution time of 12 ticks can

have a profile that allows it to execute for 14 ticks in any two

out of four jobs. Balbastre et al. [2], [3] provide schedulability

analysis for WCS based on EDF scheduling.

The key difference between work on WCS (and others men-

tioned above) and that presented in this paper, is that here we

consider the impact of overruns for Fail Operational or Fail Robust

over all of the (HI-criticality) tasks taken together. In other words

we see robustness as a property of the whole system, not of each

system task.

Thus the offline analysis derived in this paper for fixed priority

mixed-criticality based scheduling combines with a simple online

mechanism to support robust and gracefully degrading behaviour

at runtime when it is not known which jobs of which tasks will

exhibit execution time overruns. Such overruns are expected to

occur only rarely, but nevertheless could be clustered due to

common causes (e.g. jobs of multiple tasks running error-handling

code due to an invalid sensor reading). Here, we are not looking

at particular task profiles but rather we address overruns in the set

of executing tasks as a whole. So, for example, we may require a

system to remain schedulable if at most three jobs overrun, but not

more than three, and not any particular three. Hence, in this case,

the three overrunning jobs may belong to any one, two, or three

tasks in the system. Moreover, we allow jobs of robust tasks to

be skipped to provide a controlled form of graceful degradation.

WCS does not cater for these behaviours.

Another form of controlled degradation is proposed by Gu and

Easwarn [23]. They allow HI-criticality tasks to share a budget,

and thereby postpone the time when LO-criticality tasks need to

be dropped. Their approach however has a number of run-time

complexities and is only applicable to systems scheduled using the

EDF scheme. They also do not allow particular levels of robustness

to be verified; nor do they allow job skipping.

Another form of analysis that has some similarities with part

of what is proposed here is sensitivity analysis [55], [43], [10],

[17]. This is a form of offline analysis that attempts to estimate
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how far a schedulable system is from becoming unschedulable.

Typically a critical scaling factor (cf > 1) is derived such that

if all task execution times are multiplied by cf then the system

remains schedulable, but if any factor cf ′ > cf is used then

the system becomes unschedulable. Sensitivity analysis is used

as part of the design process to manage risk (it allows potential

problems to be anticipated). In this paper we are using analysis

to judge how many errors (job overruns) can be accommodated,

and how many jobs need to be skipped to bound the impact of job

overruns. Sensitivity analysis is also used by Burns et al. [14] to

determine how many functional errors a system can tolerate. Here

a functional error will result in extra computation (an exception

handler, recovery block, or re-execution from a checkpoint [42]).

This is therefore a different fault model to the one addressed in

this paper which considers temporal faults.

4 SYSTEM MODEL

In this paper we illustrate how the defined notion of robustness

can be incorporated into Fixed Priority Preemptive Scheduling

(FPPS) of a mixed-criticality system comprising a static set of

n sporadic tasks which execute on a single processor. We have

chosen fixed priority-based scheduling as this is used in safety-

critical industries such as avionics [7], [29]. We assume a discrete

time model in which all task parameters are given as integers. Each

task, τi, is defined by its period (or minimum arrival interval),

relative deadline, worst-case execution time, level of criticality,

and unique priority: (Ti, Di, Ci, Li, Pi). In addition, a Boolean

value indicates whether the task is robust or not, i.e. can have

a job skipped. We restrict our attention to constrained-deadline

systems in which Di ≤ Ti for all tasks. Further, we assume that

the processor is the only resource that is shared by the tasks,

and that the overheads due to the operation of the scheduler and

context switch costs can be bounded by a constant, and hence

included within the worst-case execution times attributed to each

task.

We assume that each task τi gives rise to a potentially un-

bounded sequence of jobs, with the release of each job separated

by at least the minimum inter-arrival time from the release of the

previous job of the same task. The worst-case response time of

task τi is denoted by Ri and corresponds to the longest time from

release to completion for any of its jobs. A task is referred to as

schedulable if its worst-case response time does not exceed its

deadline.

Note in the remainder of the paper we drop the task index

in general discussions where it is not necessary to distinguish

between parameters of different tasks.

The system is assumed to be defined over two criticality levels

(HI and LO) (extension to more levels is discussed in Section

9). Each LO-criticality task is assumed to have a single estimate

of its WCET: C(LO); each HI-criticality task has two estimates:

C(HI) and C(LO), with C(HI) ≥ C(LO), and by definition

the difference C(DF ) = C(HI)−C(LO). It follows that a HI-

criticality task also has two estimates of its utilisation: C(HI)/T
(its HI-criticality utilisation) and C(LO)/T (its LO-criticality

utilisation). The implementation platform is a uniprocessor, al-

though the approach developed is applicable to multiprocessor

platforms with partitioned tasks.

Most scheduling approaches for mixed-criticality systems

identify different modes of behaviour. In the LO-criticality (or

normal) mode, all tasks execute within their C(LO) bounds and

all deadlines are guaranteed to be met. In the HI-criticality mode,

however, only the HI-criticality tasks are guaranteed as some of

these tasks have executed beyond C(LO) (although no higher

than C(HI)). At all times LO-criticality tasks are constrained by

run-time monitoring to execute for no more than their C(LO)
bound. If any HI-criticality task attempted to execute for more

than C(HI) then the fault is of a more severe nature and system-

level strategies such as Fail Stop or Fail Restart must be applied.

The current scheduling scenario is abandoned.

As the C(LO) bounds are intended to be sufficient for all

tasks, any HI-criticality job that executes for more than C(LO) is

deemed to have failed in the temporal domain. The job however

continues to execute and will complete successfully, assuming its

C(HI) bound is respected.

The response time of a task in LO-criticality mode is denoted

by R(LO) and in HI-criticality mode by R(HI).

5 ANALYSIS FOR A FIXED PRIORITY INSTANTIA-

TION OF THE FRAMEWORK

As indicated above, we demonstrate that the proposed framework

can be incorporated into a scheduling scheme, with relevant

analysis, by focusing on fixed priority based scheduling and by

extending AMC analysis [5]. This AMC analysis has become the

standard approach to apply to mixed criticality systems imple-

mented upon a fixed priority based platform.

5.1 Original AMC Analysis

Before any level of robustness is considered the task set must be

passed as schedulable. This analysis has three phases:

1) Verifying the schedulability of the LO-criticality (normal)

mode,

2) Verifying the schedulability of the HI-criticality mode,

3) Verifying the schedulability of the mode change itself.

First the verification (for all tasks) of the LO-criticality mode

is undertaken:

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈

Ri(LO)

Tj

⌉

Cj(LO) (1)

where hp(i) is the set of all tasks with priority higher than that of

task τi.
This response-time equation (and the others in the paper), is

solved in the standard way by forming a recurrence relation (fixed

point iteration).

Next the HI-criticality mode:

Ri(HI) = Ci(HI) +
∑

j∈hpH(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI) (2)

where hpH(i) is the set of HI-criticality tasks with priority higher

than or equal to that of task τi – we also use hpL(i) to denote the

set of LO-criticality tasks with priority higher than or equal to that

of task τi. Note Ri(HI) is only defined for tasks of HI-criticality.

For the mode change itself:

Ri(HI∗) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI∗)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

Ri(LO)

Tk

⌉

Ck(LO) (3)
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this ‘caps’ the interference from LO-criticality tasks. Note

Ri(HI∗) ≥ Ri(LO), and Ri(HI∗) ≥ Ri(HI), hence only

equations (1) and (3) need be applied.

We are now able to derive analysis for Fail Operational and

Fail Robust. It is assumed that the task set is fully defined,

priorities are assigned and the two levels of robustness are fixed:

F Number of HI-criticality job overruns that must be

tolerated without any performance degradation.

M Number of HI-criticality job overruns that must be

tolerated with at most one job being skipped per

robust task.

As noted earlier M ≥ F .

5.2 Fail Operational Analysis

For Fail Operational behaviour, up to F HI-criticality jobs are

allowed to execute up to their C(HI) values. This will result in

extra load on all tasks in the LO-criticality mode:

Ri(F ) = LD(Ri(F ), F ) + Ci(LO) +

∑

j∈hp(i)

⌈

Ri(F )

Tj

⌉

Cj(LO) (4)

where LD(Ri(F ), F ) is the extra load in the response time

Ri(F ) from up to F HI-criticality jobs of priority Pi or higher

executing for C(HI) rather than C(LO).
We define LD using a multiset (or bag), BG. The multiset

contains the Cj(DF ) (i.e. Cj(HI) − Cj(LO)) values of tasks

that have the following properties:

Lj = HI ∧ Pj ≥ Pi

The multiset contains the Cj(DF ) value
⌈

Ri(F )
Tj

⌉

times. LD is

then the sum of the F largest values in BG. Note when analysing

response times, for some tasks (especially high priority ones) BG
may contain fewer elements than the parameter F . In this case

LD is simply the sum of all the elements in BG.

Once R(F ) is computed, the mode change can be considered.

This requires an update to equation (3), since the move to the

HI-criticality mode has been postponed and hence the ‘capping’

of LO-criticality work during the transition to the HI-criticality

mode needs to be modified:

Ri(HI∗) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI∗)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

Ri(F )

Tk

⌉

Ck(LO) (5)

5.3 Fail Robust Analysis

Assuming a system is schedulable with the particular JF value of

F , the next requirement for Fail Robustness is for JF to increase

to M (M for maximum number of job failures to be tolerated).

With this behaviour, all robust tasks can drop a job once JF
exceeds F . So if such a task is released at least once after R(F )
then a job can be skipped. We model this by adding a new term

that reduces the load:

Ri(M) = LD(Ri(M),M) + Ci(LO) +

∑

j∈hp(i)

(⌈

Ri(M)

Tj

⌉

− Sj

)

Cj(LO) (6)

where Sj equals 1 if the task is robust and
⌈

Ri(M)

Tj

⌉

>

⌈

Ri(F )

Tj

⌉

(7)

otherwise it is 0. The function LD is as defined for equation (4),

but for M HI-criticaility jobs.

Note this straightforward formulation is potentially pessimistic

in that a skipped task could still be a member of BG and

contribute C(DF ) to the load even though C(LO) is being with-

drawn. To remove this pessimism the number of times Cj(DF )

is placed in BG is reduced to
⌈

Ri(M)
Tj

⌉

− Sj .

As no skipping can occur before R(F ) we can conclude that

R(M) ≥ R(F ). We must therefore again modify equation (3):

Ri(HI∗) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI∗)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

Ri(M)

Tk

⌉

Ck(LO) (8)

The analysis given in equation (8) is likely to be pessimistic,

but can be improved upon (as shown in equation (9)) by account-

ing for the jobs that are skipped if the system moved to the HI-

criticality mode from the robust mode (see also Section 7):

Ri(HI∗) = Ci(HI) +

∑

τj∈hpH(i)

(⌈

Ri(HI∗)

Tj

⌉

− SH
j

)

Cj(HI) +

∑

τk∈hpL(i)

(⌈

Ri(M)

Tk

⌉

− SL
k

)

Ck(LO) (9)

Here, the definition of S is extended; SL
j is defined using equation

(7) whereas SH
j takes the value 1 if the task is robust and:

⌈

Ri(HI∗)

Tj

⌉

>

⌈

Ri(F )

Tj

⌉

Note a robust task that has not dropped a job before the move

to the HI-criticality mode can still do so. The above analysis

benefits from this behaviour.

5.4 Choosing F and M – a Pareto Front

A system designer must trade off schedulability and robustness;

however, robustness can be achieved by fail operational and/or

fail robust behaviour. Fail operational is clearly preferred, but the

maximum overall robustness is not necessarily achieved by first

maximising F and then maximising M . For example, a task set

may be schedulable with F=1, M=8 or with F=2, M=4. Which

is best is clearly a design issue, but the choice is of a common

form known as a Pareto front.

Consider the analysis derived above, from equation (4), R(F )
is monotonically non-decreasing in F . Further, from equations (6),

(7) and (9), R(M) is monotonically non-decreasing in R(F ). It

follows that for F ′ > F , then the maximum supported values M ′

and M have the relationship: M ≥ M ′. Hence although F and

M are, in some senses, independent parameters there are a small
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Fig. 1. Pareto Optimal Choices

number of optimal pairings that the designer should choose. This

can be illustrated by an example.

A randomly generated system with 20 tasks and LO-criticality

utilisation of 0.75 was analysed by choosing values of F from

0 to 13 (at which point the task set is unschedulable). For each

value of F the maximum value of M is computed via a binary

search. The task set is itself a typical example of those generated

during the evaluation experiments reported in Section 8. Figure

1 shows the Pareto optimal choices. At one extreme if F is set

at 0 then 24 overruns can be accommodated by job skipping. At

the other extrene, if F is set to 12 then no further robustness

can be achieved, skipping adds nothing. In all there are 5 Pareto

optimal combinations of F and M : (2,24), (7,19), (10,16), (11,15)

and (12,12). The designer must choose one, remembering that the

choice is influenced by how close together job skipping is allowed.

A high M , due to a low F , will increase the likelihood of a move

to the robust mode. This will then increase the possibility of such

events being too close together – see discussion in Section 7.

A final point to note is that if F and M are given then the

analysis can be used to compute the number of robust tasks that

would be required to deliver these values. This might be a useful

number to know, but whether a task is robust or not is a property

of its semantics and would not be an easy property to add during

system integration (when the scheduling analysis is undertaken).

5.5 Example task set

To illustrate the use of the above analysis a simple example is

presented below. Consider the three task system defined in the

following table. The aim here is to maximise F and then M .

τi L P C(LO) C(HI) T = D
τ1 HI 1 1 4 5

τ2 LO 2 4 - 20

τ3 HI 3 1 2 30

For each task response times can be computed: R which ig-

nores criticality and assumes each task executes for C(L), R(LO)
which assumes each task executes for C(LO) and R(HI∗) which

is delivered by AMC and equation (3). These values are as follows:

τi R R(LO) R(HI∗)
τ1 4 1 4

τ2 20 5 -

τ3 ∞ 7 30

Note τ3 is unschedulable without the use of mixed-criticality

scheduling. We can now compute the response times for each task

when there are F job overruns. Two values need to be computed:

R(F ) and R(HI∗) for that value of F . Equations (4) and (5) are

used for this purpose to give the following results. Note that τ3 is

not schedulable with F = 4, since R(HI∗) exceeds its deadline.

τi R(1) R(HI∗) R(2) R(HI∗)
τ1 4 4 4 4

τ2 9 - 13 -

τ3 10 30 14 30

τi R(3) R(HI∗) R(4) R(HI∗)
τ1 4 4 4 4

τ2 17 - 20 -

τ3 18 30 27 34+

For example consider R3(F = 3), starting with an initial

estimate of 14 (as R(3) ≥ R(2)). Within 14 ticks there have been

three releases of τ1 and one release of τ3, hence BG contains

{3, 3, 3, 1} giving an LD term of 9 (i.e. the sum of the three

largest values within BG). Equation (4) thus becomes:

R3(3) = 9 + 1 +

⌈

14

5

⌉

1 +

⌈

14

20

⌉

4 = 17

one more iteration gives 18, and then:

R3(3) = 9 + 1 +

⌈

18

5

⌉

1 +

⌈

18

20

⌉

4 = 18

Equation (5) then becomes:

R3(HI∗) = 2 +

⌈

R3(HI∗)

5

⌉

4 +

⌈

18

20

⌉

4

which has the solution 30.

The analysis shows that this task set can survive three job over-

runs with no missed deadlines. However, to push the robustness

further, a fourth job overrun can only be accommodated by job

skipping. This assumes that τ1 and τ2 are robust, and that they

have not skipped a recent job. Consider the required behaviour

when M=4 for τ3. First we compute R3(4) using equation (6). If

we start the iterative solution with R3(4)=R3(3)=18 then there is

no skipping and we compute R3(4)=21. Now with the value of

21, the relationship contained in equation (7) is true for both τ1
and τ2 and hence both of these tasks have a value of S that is 1.

So each of these tasks drops a job and R3(4) remains with the

value 21. The final step is to compute R3(HI∗); from equation

(9) we have:

Ri(HI∗) = 2 +

(⌈

Ri(HI∗)

5

⌉

− 1

)

4 +

(⌈

21

20

⌉

− 1

)

4

which has the solution 22. The fourth job overrun must occur

before time 20, and hence the fifth release of τ1 and the second

release of τ2 are skipped. This scenario is illustrated in Figure 2.
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Fig. 2. Fail Robust schedule for Example Task Set

6 ROBUST PRIORITY ASSIGNMENT

Vestal [56] showed that deadline monotonic priority assignment

is not optimal for schemes in which tasks have more than one

‘worst-case execution time’ (i.e. C(LO) and C(HI)).
For the system model and analysis derived in this paper, we

now show that Audsley’s priority assignment algorithm [1] is

applicable. This algorithm first identifies some task which may be

assigned the lowest priority; having done so, this task is effectively

removed from the task set and priority assignment is recursively

obtained for the remaining tasks. The advantage of applying

Audsley’s algorithm is that it delivers an optimal assignment in a

maximum of n(n+1)/2 task schedulability tests. If the algorithm

were not applicable then an exhaustive search over all n! possible

priority orderings would potentially be required.

For the analysis derived in Section 5 it is straightforward to

confirm that Audsley’s algorithm is still applicable. To do this it

is sufficient to demonstrate that the following conditions hold for

the applied schedulability test, Z [16]:

1) The schedulability of a task may, according to test Z, be

dependent on the set of higher priority tasks, but not on the

relative priority ordering of those tasks.

2) The schedulability of a task may, according to test Z, be

dependent on the set of lower priority tasks, but not on the

relative priority ordering of those tasks.

3) When the priorities of any two tasks of adjacent priority

are swapped, the task being assigned the higher priority

cannot become unschedulable according to test Z, if it was

previously schedulable at the lower priority. (As a corollary,

the task being assigned the lower priority cannot become

schedulable according to test Z, if it was previously un-

schedulable at the higher priority).

For fixed values of F and M then an inspection of equations

(4) & (5) and (6) & (9) and the definitions of LD and BG shows

that indeed these three conditions hold, and hence an optimal static

priority ordering can be obtained using Audsley’s algorithm.

Note that if the analysis is being used to estimate the robust-

ness of a given system (i.e. for a fully specified task set what

values of F and M can be sustained) then a simple scan over the

values of F and a binary search for the maximum M (for a given F)

can be used to determine the Pareto Front and each Pareto Optimal

pair of values.

We note that for each iteration, the optimal priority ordering

must be re-computed as it will depend on the particular values of

F and M .

7 RUN-TIME BEHAVIOUR

It is important that any scheme developed for improving system

robustness must itself be straightforward and efficient. It must

not add, in any significant way, to the complexity or run-time

overheads of the system’s implementation. We have focussed our

attention on fixed-priority based scheduling as this has industrial

application in the safety-critical field [7], [29]. And in these appli-

cation areas run-time monitoring is used, and indeed mandated.

To ensure necessary temporal isolation between different crit-

icality levels some form of run-time monitoring is required. At a

minimum this will prevent any LO-criticality job from executing

for more than its WCET bound, i.e. C(LO). Given that this

monitoring is already a requirement, it is a minor addition to also

require that HI-criticality jobs are monitored. This monitoring will

both check that the C(HI) bound is not infringed and keep a

count of the number of HI-criticality jobs which have overrun; i.e.

executed beyond C(LO).
The analysis developed in Section 5 allows the two parameters

F and M to be determined. If more than F HI-criticality jobs

have overrun then the system’s criticality mode is changed from

normal to robust. In this mode the next job of all robust tasks

is skipped. Subsequently if more than M HI-criticality jobs

overrun the system’s criticality mode changes to HI-criticality.

Now significant degradation must occur, LO-criticality work may

need to be dropped. As indicated in Section 2, there are a number

of possible strategies published for managing this behaviour and

providing increased system resilience. In this paper we do not

attempt to evaluated these schemes; the most appropriate will

clearly be application dependent.

At any idle instant, t, the count of job overruns is re-set to 0,

and the system’s criticality mode is returned to either normal or

normal-no-skip. If all robust tasks are ready to skip (again) the

system goes back to normal, otherwise it goes to normal-no-skip.

While in normal-no-skip mode up to F faults can be tolerated, but

no job skipping is allowed. If F+1 faults occur in this mode then

the system’s criticality mode changes directly to HI-criticality.

When the system returns to normal or normal-no-skip modes then

a task that is marked as ‘skip next job’ but which has not yet

released that job, no longer needs to degrade. Its next job does not

need to be skipped.

It is assumed in this work that the C(LO) estimates for

both LO- and HI-criticality tasks have been produced with sound

engineering techniques. Hence any overrun is effectively a timing

fault and will be a rare event in a well-tested system. It follows

that F overlapping faults and the move to the robust mode will

happen very rarely if at all.

As discussed in Section 2 a Reliability Model can be used to

assign a probability to the possibility of more than M concur-

rent faults occurring within a defined interval. In the evaluation

reported in the next section, we therefore focus on isolated fault

sequences.

8 EVALUATION

In this section, we present an empirical investigation, examining

the effectiveness of our approach to robustness within the context

of fixed-priority based scheduling. As the main characteristic of

our approach to robustness is to count the number of job overruns

from any HI-criticality task, those schemes that give profiles to

each individual task cannot be applied directly. For example a

system of 10 tasks with a job fault limit of 3 jobs, would need to
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look at all possible permutations of 3 faults from up to 30 jobs

to ensure that the worst case has been covered (30, as 3 faults

could come from 3 executions of 1 task, or 2 from 1 and 1 from

another, or 3 from any of the 10 tasks). This lack of applicability

of other schemes means that an evaluation based on an exploration

of different algorithms and methods would not be valid or useful.

The criteria for comparison (improved robustness as defined in

this paper) cannot be defined for other schemes that have been

derived with other criteria in mind. Moreover, our use of fixed

priority based scheduling, as apposed to EDF, which a number of

other approaches adopt, makes a direct comparison impossible. In

terms of industrial usage a fixed priority based approach is more

appropriate than EDF (which has currently little/no application in

the high criticality arena; although this may change in the future).

The evaluations reported in this section therefore address the

trade-off between schedulability and robustness. The experiments

consider, over a wide range of system and task parameters, the

decrease in schedulability that results from various levels of

robustness as defined by the two parameters F and M .

8.1 Taskset parameter generation

The task set parameters used in our experiments were randomly

generated as follows:

• Task utilisations (Ui = Ci/Ti) were generated using the

UUnifast algorithm [9], giving an unbiased distribution of

utilisation values.

• Task periods were generated according to a log-uniform

distribution with a factor of 100 difference between the

minimum and maximum possible task period. This repre-

sents a spread of task periods from 10ms to 1 second, as

found in many hard real-time applications.

• Task deadlines were set equal to their periods.

• The LO-criticality execution time of each task was set

based on the utilisation and period selected: Ci(LO) =
Ui/Ti.

• The HI-criticality execution time of each task was a fixed

multiplier of the LO-criticality execution time, Ci(HI) =
CF · Ci(LO) (e.g., CF = 2.0).

• The probability that a generated task was a HI-criticality

task was given by the parameter CP (e.g. CP = 0.5).

• The probability that a generated task was skippable was

given by the parameter SP (e.g. SP = 0.5).

The values over which these parameters range are informed by

industrial practice [35].

8.2 Schedulability tests investigated

We investigated the performance of the following techniques and

associated schedulability tests. In all cases, Audsley’s algorithm

was used to provide optimal priority assignment [1].

• AMC-rtb: This is the standard schedulability test for

AMC [5] given by (1) and (3) in Section 5.

• AMC-F-xx: This is the test for Fail Operational behaviour,

given by (4) and (5), with a value of F equal to xx.

• AMC-M-yy: This is the test for Fail Robust behaviour,

given by (6) and (9), with a value of M equal to yy. (Note

this analysis first checks that the system is Fail Operational

with F = 0 i.e. schedulable according to AMC-rtb).
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Fig. 3. Schedulability for Fail Operational

• AMC-FM-xx-yy: This is the test for both Fail Operational

and Fail Robust behaviour, with values of F = xx, and

M = yy.

• FPPS: This is an exact test for FPPS (standard Fixed

Priority Preemptive Scheduling). It checks if the system

is schedulable when all LO-criticality tasks execute for

C(LO) and all HI-criticality tasks execute for C(HI)
(i.e. it ignores, and therefore does not exploit, the fact that

the task set is mixed criticality).

8.3 Baseline Experiments

In our baseline experiments, the task set utilisation was varied

from 0.05 to 0.954. For each utilisation value, 1000 task sets were

generated and the schedulability of those task sets determined

using the algorithms / schedulability tests listed above. The graphs

are best viewed online in colour.

Figure 3 plots the percentage of task sets generated that were

deemed schedulable for a system of 20 tasks, with on average 50%

of those tasks having HI-criticality (CP = 0.5) and each task having

a HI-criticality execution time that is 2.0 times its LO-criticality

execution time (CF = 2.0). The various solid lines in Figure 3 show

Fail Operational schedulability for increasing values of F . Note

that these lines have a strict dominance relationship between them.

They are dominated by AMC-rtb (which is effectively F = 0) and

they dominate FPPS (which is effectively F = ∞). We observe

that there is a degradation in schedulability as support is added

for an increasing number of overruns; for example at utilisation of

0.8 schedulability for F = 0 is approximately 60%, whereas for

F = 2, it has dropped to (again approximately) 38%. However,

if the advantages obtained from a mixed criticality approach are

ignored the level of schedulability is close to zero.

Figure 4 uses the same task set configurations as Figure 3;

however, it shows Fail Robust schedulability for increasing values

of M , assuming that F = 0. Note the probability that each

generated task was marked as ‘skippable’ was set to SP = 0.5.

Again, supporting an increasing number of overruns leads to a

degradation in schedulability; however, due to the processor time

4. Utilisation here is computed from the C(LO) values only.
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Fig. 4. Schedulability for Fail Robust
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Fig. 5. Schedulability for Fail Robust combined with Fail Operational

freed up by skipping jobs, this degradation is substantially less

than in Figure 3.

Figure 5 combines analysis of both Fail Operational and

Fail Robust behaviour, showing how schedulability degrades for

increasing values of F and M , with M set to 4F . Comparing

Figure 3 and Figure 5, we observe that due to the skipping of jobs

(note SP = 0.5), adding Fail Robust comes at a relatively small

cost in terms of schedulability.

8.4 Weighted Schedulability Experiments

In the following figures we show the weighted schedulability

measure Wz(p) [6] for schedulability test z as a function of

parameter p. For each value of p, this measure combines results

for all of the task sets τ generated for all of a set of equally spaced

utilization levels (0.05 to 0.95 in steps of 0.05).

Let Sz(τ, p) be the binary result (1 or 0) of schedulability test

z for a task set τ with parameter value p:
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Wz(p) = (
∑

∀τ

u(τ) · Sz(τ, p))/
∑

∀τ

u(τ) (10)

where u(τ) is the utilization of task set τ .

The weighted schedulability measure reduces what would

otherwise be a 3-dimensional plot to 2 dimensions [6]. Weighting

the individual schedulability results by task set utilization reflects

the higher value placed on being able to schedule higher utilization

task sets.

We show how the results are changed by varying each of the

key parameters (one at a time). Figure 6 varies the range of task

periods, Figure 7 varies the Skip Proportion (SP ), Figure 8 varies

the Criticality Proportion (CP ), Figure 9 varies the Criticality

Factor (CF ), and finally Figure 10 varies the number of tasks. In

each of the experiments, we explored schedulability for combined

Fail Operational and Fail Robust behaviour.

Figure 6 illustrates how the weighted schedulability measure

varies with the range of tasks periods. For a small range of

periods of 100.5 ≈ 3.16 then values of F ≥ 16 are enough

that almost all overruns that could possible take place in a busy

period are accounted for, and thus schedulability is effectively the

same for AMC-FM-16-64, AMC-FM-32-128, and AMC-FM-64-

256 as it is for FPPS. As the range of task periods increases then

differences appear, since there may be many jobs in the longest

busy period. At the extreme with a range of task periods of 4 orders

of magnitude, then 64 overruns is a relatively small number in

comparison to the total number of jobs in the busy period for low

priority tasks and thus AMC-FM-64-256 has significantly better

performance than FPPS.

Figure 7 illustrates, for the case of Fail Robust behaviour with

F = 0, how the weighted schedulability measure varies with the

proportion of generated tasks that are marked as skippable. As the

proportion, SP , of tasks that may have jobs skipped increases, so

Fail Robust improves, with increasing schedulability seen for all

values of M . We note that in a similar graph for AMC-FM-xx-yy

(combining both Fail Operational and Fail Robust behaviour) the

dominating factor is the value of F , thus in that case the lines

show a more gradual upward slope with increasing values of SP .
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Figures 8, 9, and 10 illustrate respectively how the weighted

schedulability measure varies with the probability that a gener-

ated task is HI-criticality (CP ), the Criticality Factor (CF =
C(HI)/C(LO)), and the number of tasks. In all cases the

performance of the combined Fail Operational and Fail Robust

analysis provides an intermediate level of schedulability, degraded

from that of AMC-rtb, while improving upon FPPS. We observe

that in Figure 10 that when there are very few tasks, the lines for

larger values of F approach the line for FPPS. This is because the

number of overruns which need to be supported Fail Operational

exceed the maximum number of job releases in a busy period,

hence the analysis reduces to the same as FPPS.
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9 EXTENSIONS TO THE BASIC MODEL

In this section we look at extensions to the basic model derived

above. We consider more than two criticality levels and a finer

grained monitoring of job overruns.

9.1 More than two criticality levels

In keeping with many papers on mixed-criticality systems the

detailed analysis developed in this paper has been restricted to

systems with just two criticality levels. Many standards make

use of more than two levels, perhaps up to five; however actual

applications rarely make use of all five levels on the same system.
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Two distinct criticality levels, and one non-critical level, is a

common use case.

In Vestal’s original paper [56] all tasks had execution-time

estimates for all criticality levels, implying for five levels, five

estimates for each task. Later studies [4] restricted this to require

estimates only for the criticality level of the task and all levels

below. A further restriction [11], [40] is to require only two

estimates, one for the task’s criticality level and one for the lowest

criticality level in the system.

The number of job timing failures allowed (the F and M
parameters used earlier in the paper) could be defined in terms of

any job executing beyond criticality level bounds. For example,

using Vestal’s model and five criticality levels: L1 (lowest) to

L5 (highest): a value for F of 4 would include either four

jobs executing for more than C(L1) but less than C(L2), or

one job executing for more than C(L1) but less than C(L5)
(or any intermediate combination leading to the overrun of four

boundary values). A simple run-time count of overruns is all that

is required. The analysis for two criticality levels extends in a

straightforward way to any number of levels (just as the standard

AMC analysis does [18]). With the dual-criticality model when M
is exceeded then this indicates a serious overrun and LO-criticality

tasks are abandoned in order to protect HI-criticality work. With

five criticality levels then a series of increasing M values can be

derived (M1, M2, M3, M4). Now if M1 is exceeded L1 tasks

are abandoned, if M2 is subsequently exceeded then L2 tasks are

abandoned, etc. In the extreme (highly unlikely) case, if M4 is

exceeded then only the highest criticality tasks (L5) are retained.

9.2 Finer grained job monitoring

The model derived in detail in this paper assumes that if a job

of a HI-criticality task overruns its C(LO) estimate then it will

execute for C(HI). This is however a pessimistic assumption.

An overrun is much more likely to be marginal with the job

completing well before its C(HI) estimate. A number of alter-

native formulations are easily derived following the framework

developed in this paper. For example, an overrun quantum, C(O)
could be defined; with the F and M parameters counting the

number of such exceedances. So a HI-criticality task that does not

complete by C(LO) is initially assumed (for a single overrun)

to execute for C(LO) + C(O). If it still has not competed after

executing for C(LO) + C(O), then a second overrun is noted

and an execution time of C(LO) + 2C(O) is assumed, and

so on. The analysis developed in Section 5 can easily be modi-

fied to accommodate this finer grained monitoring (by replacing

C(DF ) = C(HI)− C(LO) with C(O)).

10 CONCLUSION

This paper has focused on improving the robustness of mixed-

criticality systems. Although software components and their tasks

can be assigned criticality levels, this does not mean that every

job of a task has that level of importance. Many tasks are naturally

robust to the occasionally missing or late job (or can be designed

to be so).

Worst-case execution time analysis and the appropriate

schedulability analysis allows the timing properties of a system to

be verified. For most high integrity applications this is a necessary

but not sufficient condition for deployment. A system must also be

able to demonstrate that it is tolerant of failures, both permanent

and transient. Most timing faults are transient. They manifest

themselves as job execution time overruns that may or may not

lead to deadline misses.

In this paper we have used the simple metric of job-overrun

count to measure the degree of timing failure. The key to graceful

degradation is that the response to such failures must be commen-

surate with the magnitude of the failure. We have shown how a

system can be scheduled so that it can fully tolerate a number of

job overruns (fail operational) and can further tolerate a number

of additional overruns by dropping a single job from each of

those tasks that permit skipping a single job (fail robust). Our

evaluation shows the effectiveness of the developed framework,

as well as illustrating the trade-off between schedulability in the

event of no overruns and support for fail operational and fail robust

behaviour. Further improvements are possible with finer grained

overrun monitoring.

Future work will focus on formalising the concepts of uncer-

tainty and robustness.
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