University of Vork

This is a repository copy of Corrigendum: A system's wave function is uniquely determined by its underlying physical state.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/130325/
Version: Accepted Version

Article:

Colbeck, Roger Andrew orcid.org/0000-0003-3591-0576 and Renner, Renato (2018)
Corrigendum: A system's wave function is uniquely determined by its underlying physical state. New Journal of Physics. 039501. ISSN 1367-2630
https://doi.org/10.1088/1367-2630/aab328

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A system's wave function is uniquely determined by its underlying physical state corrigendum

Roger Colbeck ${ }^{1, *}$ and Renato Renner ${ }^{2, \dagger}$
${ }^{1}$ Department of Mathematics, University of York, YO10 5DD, UK
${ }^{2}$ Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
(Dated: December 29, 2017)

In the published version of this article [1] there is an omission in the intermediate calculation in Appendix B that makes it difficult to verify the bound of Equation (5). Furthermore, the form of $\left|\zeta_{j}^{k}\right\rangle$ written in the displayed equation above Equation (B1) in [1] is erroneous. We stress though that the bound (5) is correct and hence the conclusion of the paper is unaffected.
The issue arises because we write $\left(\hat{Z}_{d}\right)^{\frac{k}{2 n}}$ without stating which of the roots of \hat{Z}_{d} is taken. Furthermore, not all choices work. To state carefully a choice that works, we define $\operatorname{sh}_{A}[v]$ to be the number in $(-1 / 2,1 / 2]$ that is equal to $v+m$ for some $m \in \mathbb{Z}$ and $\operatorname{sh}_{B}[v]$ to be the number in $[-1 / 2,1 / 2)$ that is equal to $v+m$ for some $m \in \mathbb{Z}$. For $x \in\{0, \ldots, d-1\}$ and $a \in\{0,2, \ldots, 2 n-2\}$, the projectors Π_{x}^{a} are along the vectors $\left|\zeta_{x}^{a}\right\rangle=U_{d} Z_{n, d}[a] U_{d}^{\dagger}|x\rangle$, where

$$
Z_{n, d}[a]:=\sum_{j=0}^{d-1} \exp \left[\pi i \operatorname{sh}_{A}[j / d] \frac{a}{n}\right]|j\rangle\langle j|,
$$

while for $y \in\{0, \ldots, d-1\}$ and $b \in\{1,3, \ldots, 2 n-1\}$, the projectors Π_{y}^{b} are along the vectors $\left|\zeta_{y}^{b}\right\rangle=U_{d} Z_{n, d}^{\prime}[b] U_{d}^{\dagger}|y\rangle$, where

$$
Z_{n, d}^{\prime}[b]:=\sum_{j=0}^{d-1} \exp \left[\pi i \operatorname{sh}_{B}[j / d] \frac{b}{n}\right]|j\rangle\langle j| .
$$

These lead to the bound given in Equation (5). For details of the rest of the calculation we refer to Appendix B of [2].
Acknowledgement. We are grateful to Giorgos Eftaxias for discussions that led to the discovery of the problem.
[1] R. Colbeck and R. Renner, A system's wave function is uniquely determined by its underlying physical state, New J. Phys. 19013016 (2017).
[2] R. Colbeck and R. Renner, A system's wave function is uniquely determined by its underlying physical state, arXiv:1312.7353v2 (2017).

[^0]
[^0]: *roger.colbeck@york.ac.uk
 ${ }^{\dagger}$ renner@phys.ethz.ch

