
Towards a Generic Method of Evaluating Game Levels

Antonios Liapis1, Georgios N. Yannakakis1,2, Julian Togelius1
1: Center for Computer Games Research, IT University of Copenhagen, Copenhagen, Denmark

2: Institute of Digital Games, University of Malta, Msida, Malta
Mail: anli@itu.dk, georgios.yannakakis@um.edu.mt, julian@togelius.com

Abstract

This paper addresses the problem of evaluating the qual-
ity of game levels across different games and even gen-
res, which is of key importance for making procedural
content generation and assisted game design tools more
generally applicable. Three game design patterns are
identified for having high generality while being easily
quantifiable: area control, exploration and balance. For-
mulas for measuring the extent to which a level includes
these concepts are proposed, and evaluation functions
are derived for levels in two different game genres: mul-
tiplayer strategy game maps and single-player roguelike
dungeons. To illustrate the impact of these evaluation
functions, and the similarity of impact across domains,
sets of levels for each function are generated using a
constrained genetic algorithm. The proposed measures
can easily be extended to other game genres.

Introduction
Automatically evaluating the quality of game levels, and
other types of game content, is useful for several purposes.
One might want to pre-screen or classify levels generated
by users, or give rapid feedback to in-house level design-
ers. Most importantly, many procedural content generation
algorithms rely on being able to evaluate the quality of the
content they are generating. In particular, this goes for all al-
gorithms of the search-based variety, which use some kind of
search or optimization algorithm to find good levels or other
game content (Togelius et al. 2011). The literature contains
ample examples of evaluation functions that attempt to cap-
ture specific qualities of specific content types for specific
games, based either on qualitative reasoning and experience
of game-play, or on crowd-sourced player experience data
(Pedersen, Togelius, and Yannakakis 2010). Almost none of
the proposed evaluation functions can be meaningfully ap-
plied to content outside their own narrow domain. A func-
tion that evaluates the playability or interestingness of lev-
els for Super Mario Bros (Nintendo 1985) will not work
on maps for Starcraft (Blizzard 1998) or quests for Skyrim
(Bethesda 2011). In order to be able to produce general pro-
cedural content generation methods that can be plugged into

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unseen games with minimal adjustments, evaluation func-
tions with some degree of generality need to be devised. This
paper contends that the best way to achieve this is to ab-
stract away from game-specific features towards more high-
level concepts, while retaining applicability to a particular
game. Fortunately, game design literature contains a number
of qualitative concepts which we can build on to construct
relevant quantitative measures.

This paper introduces a method for evaluating game lev-
els consisting of six formulas evaluating area control, explo-
ration and balance. These formulas, inspired by game de-
sign patterns, are quite generic and can be applied to a broad
range of levels for different game genres; in this paper, this
is demonstrated with maps for multiplayer strategy games
and with dungeons for single-player roguelike games. The
methods suggested for evaluating game levels sacrifice ac-
curacy for speed, allowing for realtime feedback to the de-
signer while they edit a level. Moreover, this paper demon-
strates that using these evaluations or a combination thereof
as a measure of quality for a content generator can result in
high-quality game levels which satisfy one or more of the
followed design patterns.

Related Work
The lack of a common language to describe games and
their components has given rise to the notion of game de-
sign patterns. Introduced by Björk and Holopainen (2004),
game design patterns are touted as “a tool for understanding
and creating games”, with each pattern describing “a part of
the interaction possible in a game”. Although patterns de-
scribed by Björk and Holopainen focus on gameplay, they
include patterns of game levels (e.g. Spawn Points, Safe
Havens) and identify gameplay patterns pertaining to spa-
tial navigation, such as Exploration. More domain-specific
patterns have emerged for describing quests and levels in
role-playing games (Smith et al. 2011) as well as levels for
first-person shooters (Hullett and Whitehead 2010). Accord-
ing to the current literature, these design patterns facilitate
the study of existing games, the discussion between design-
ers as well as for teaching game design or level design. This
paper contends that such patterns, or a sufficiently descrip-
tive subset thereof, can be used for evaluating games and
levels, providing tangible feedback to human designers or
for driving the automated generation of content.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/157728303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The automated generation of content has a long history
in the game industry; the first ventures included the gener-
ation of dungeons in Rogue (Toy and Wichman 1980) and
of the gameworld in Elite (Acornsoft 1984). Perhaps due to
the success of these early titles, world or level generation
has been a popular domain for procedural generation in ti-
tles such as Torchlight (Runic 2009) and Civilization IV (Fi-
raxis 2005). Recent academic interest in procedural game
content generation has also been directed towards the cre-
ation of game levels for existing games such as Starcraft (To-
gelius et al. 2010) or TORCS (Cardamone, Loiacono, and
Lanzi 2011). Many of these applications use search-based
processes (Togelius et al. 2011) such as genetic algorithms,
which require an evaluation function in order to select the
most appropriate content for reproduction; these evaluations
can be provided directly or indirectly by humans (Hastings,
Guha, and Stanley 2009; Cardamone et al. 2011), or can be
formulated mathematically according to predicted entertain-
ment (Pedersen, Togelius, and Yannakakis 2010) or concepts
popularized by successful games such as chokepoints (To-
gelius et al. 2010). Sorenson and Pasquier (2010) propose
a generic framework for level generation using a Feasible-
Infeasible two-population Genetic Algorithm, and show its
potential in platformer game levels and 2D adventure games.
Their work shares the goal of a domain-independent frame-
work and the method of constrained evolutionary optimiza-
tion with this paper; however, the presented encoding of lev-
els as sketches allows for a faster optimization while the pre-
sented evaluation methods are more extensive, do not require
a single path from a start to a goal position, and use the no-
tion of challenge only implicitly when choosing evaluations.

Methodology
This paper presents quantifiable metrics which can be used
to evaluate game levels. While applicable to any type of
game level, these metrics are used to evaluate map sketches,
i.e. coarse abstractions of game levels. Such simple sketches
are easy to design, fast to evaluate, and can be optimized
automatically via a genetic algorithm. This section presents
the concept of map sketches, the formulas used to evaluate
them, and the evolutionary algorithm used to optimize them.

Map Sketches
The notion of a map sketch stems from the need of abstract-
ing complex game levels into their basic building blocks.
Map sketches were introduced by Liapis, Yannakakis, and
Togelius (2013a), and are in many ways the game level
equivalent to procedural caricatures (Smith and Mateas
2011) or abstract game mechanics (Nelson and Mateas
2007), which isolate the essential mechanics of a game from
thematic context and details. The abstract visualization and
compact size allows both a human designer and an algorithm
(an artificial designer) to process and edit map sketches with
less effort. A map sketch consists of a grid layout with a
small number of tiles; the basic building blocks of a sketch
are empty tiles and impassable tiles, which allow and block
movement respectively, as well as special tiles which are
domain-dependent (e.g. bases, traps, spawn points, check-
points). Special tiles can be further divided into different

sets of tile types, and are usually the definitive factors of the
map’s gameplay. In this paper, special tiles are considered to
allow movement. An additional level of domain-dependent
interpretation, which can be either stochastic or determin-
istic, allows the abstract map sketches to be converted into
fully detailed maps for use in different game genres.

Evaluating Level Patterns
In order to inform the formulas which can evaluate game
levels in a domain-independent (or at least domain-minimal)
fashion, the closest analogue is the study of Björk and
Holopainen (2004) in general game design patterns. Al-
though this study includes hundreds of patterns, some of the
more high-level patterns which translate well to level design
are those of symmetry, area control and exploration. Sym-
metry is “a common feature in games to ensure that play-
ers have equal opportunities” and instantiates patterns such
as player balance or team balance1. Area control “can give
access to otherwise unavailable actions and can make the
use of actions and tactics easier” and usually incorporates
control over the game’s resources. Finally, exploration is the
“goal of learning the layout of the game world, or locating
specific parts or objects in it” and assumes that some infor-
mation about the level is initially imperfect or uncertain.

In order to be meaningful, area control and exploration
require a set of two or more tiles identified as reference tiles
(SN); reference tiles usually have a special purpose in the
game, such as player bases. For control measures, each ref-
erence tile can “own” a number of nearby tiles, if it is closer
to these tiles than all other reference tiles. The safety of any
tile t to a reference tile i is measured by eq. (1); the closest
reference tile i has a positive safety value, while remaining
reference tiles have a safety value of zero. For exploration
measures, it is assumed that if a large part of the map must
be covered in order to discover one reference tile when start-
ing from another reference tile, then the exploration value is
high. This map coverage is simulated by a flood fill algo-
rithm, and the exploration required from a reference tile i to
all other reference tiles is shown in eq. (2).

st,i(SN) = min
1≤j≤N

j 6=i

{
max

{
0,

dt,j − dt,i
dt,j + dt,i

}}
(1)

Ei(SN) =
1

N − 1

N∑
j=1
j 6=i

Ei→j

P
(2)

where N is the number of elements in set SN ; dt,i is the
distance from tile t to element i; P is the number of pass-
able tiles on the map; and Ei→j is the map coverage when
a four-direction flood fill is applied starting from element i
and stopping once element j has been found (see Fig. 1).

According to Björk and Holopainen (2004), control en-
compasses both control of areas and control of strategic re-
sources: the former includes all passable tiles and the latter

1To avoid confusion between Björk and Holopainen’s gameplay
symmetry and visual symmetry, this paper uses the term balance
instead.

(a) (b) (c) (d)

Figure 1: Sample metrics for the map sketch in Fig. 1a
with SM (stars), SN (triangles) and impassable tiles (black).
Measuring safety of M tiles with regards to N tiles, the pur-
ple star is much closer to the blue triangle than to the red
triangle, and thus has a high safety value. The remaining
stars have small safety values since they are equally close
(green star) or equally faraway (brown star) from both trian-
gles. Measuring the area control of N tiles, Fig. 1b displays
safe tiles for the red triangle (A1 in red) and for the blue
triangle (A2 in blue). Measuring the exploration of N tiles,
Fig. 1d displays exploration from the red triangle to the blue
triangle (E1→2) and Fig. 1d displays exploration from the
red triangle to the blue triangle (E2→1).

includes only tiles which provide bonuses or serve a particu-
lar function (usually special tiles). While both evaluations of
control require the definition of reference tiles, the safety of
strategic resources also requires the definition of tiles con-
stituting strategic resources (named target tiles or SM). The
mathematical formulation of strategic resource control (fs),
area control (fa) and exploration (fe) are shown below:

fs(SN , SM) =
1

M

M∑
k=1

max
1≤i≤N

{
sk,i}

fa(SN) =
1

P

N∑
i=1

Ai

fe(SN) =
1

N

N∑
i=1

Ei

where M and N is the number of elements in sets SM and
SN respectively; sk,i is the safety metric of element k of SM

to element i of SN , i.e. sk,i(SN) from eq. (1); Ai is the map
coverage of safe tiles for element i (see Fig. 1b); P is the
number of passable tiles in the map and Ei is the exploration
metric from eq. (2) for element i. A tile t is safe for element
i if st,i < Cs; the constant Cs = 0.35 throughout this paper,
as it creates a good ratio of contested areas in most maps.

The evaluations of fs, fa and fe either average or aggre-
gate among reference tiles. To ensure that reference tiles are
symmetrical in terms of these evaluations, e.g. that the ex-
ploration value of one reference tile is not much larger than
the others’, the evaluations of balance are introduced. The
mathematical formulation of strategic resource control bal-
ance (bs), area control balance (ba) and exploration balance

(be) are shown below:

bs(SN , SM) = 1− 1

MN(N − 1)

M∑
k=1

N∑
i=1

N∑
j=1
j 6=i

|sk,i − sk,j |

ba(SN) = 1− 1

N(N − 1)

N∑
i=1

N∑
j=1
j 6=i

|Ai −Aj |
max{Ai, Aj}

be(SN) = 1− 1

N(N − 1)

N∑
i=1

N∑
j=1
j 6=i

|Ei − Ej |
max{Ei, Ej}

Evolutionary Optimization
Map sketches are optimized towards the measures of qual-
ity presented above via artificial evolution. A map sketch is
directly encoded in a genotype as an array of integers with
an integer denoting whether the tile is impassable, empty or
a specific type of special tile. The direct encoding used has
the least representational bias, while the small size of map
sketches does not hinder its evolutionary optimization.

While map sketches are evaluated on area control, ex-
ploration or balance, there are some minimal criteria which
must be met for the map to be playable. In this paper, a map
is playable only if all special tiles (SI) are connected with
each other via a passable path. Playability is secured through
constrained optimization carried out by a Feasible-Infeasible
two-population Genetic Algorithm (Kimbrough et al. 2008)
which maintains a population of infeasible individuals along
the population of feasible individuals. All offspring which
fail to satisfy the playability constraints are transferred to
the infeasible population, regardless of their parents’ origin.
The infeasible population evolves towards minimizing the
distance from feasibility; this process increases the likeli-
hood of infeasible parents creating feasible offspring. The
distance from feasibility dinf for a set SI , which normally
includes all special tiles on a map, is:

dinf (SI) =
2uc

I(I − 1)

where I the number of elements in set SI and uc the number
of disconnected pairs of elements in set SI .

In addition to the constraint of connectivity among all spe-
cial tiles, the number of each type of special tile can be con-
strained to a range of values. Maps failing these additional
constraints are repaired automatically by removing excess
special tiles and adding missing special tiles. This repair
mechanism is stochastic, with excess special tiles chosen at
random and removed while a missing special tile is placed
on a randomly chosen empty tile.

Each population (whether feasible or infeasible) opti-
mizes its individuals through fitness-proportionate roulette-
wheel selection, where each individual may be selected
more than once. The best individual of the generation is
transferred unchanged to the next generation. Recombina-
tion is performed through two-point crossover. An offspring
has a 1% chance of being mutated; during mutation, a por-
tion of the map’s tiles (between 5% and 20%) are trans-
formed. Tile transformation follows two strategies, each

(a) Sketch (b) Final Strategy Map

Figure 2: An example strategy game map sketch and the final
map it creates via randomization and cellular automata; dark
areas are impassable, white tiles are player bases and blue
tiles are resources.

having an equal chance of being applied on each tile: a
tile may be swapped with a random neighboring tile, or an
empty tile may be changed to impassable and vice versa. All
results presented in this paper are created from 100 genera-
tions of evolution on a total population of 100 maps.

Case Study: Strategy Game Levels
While strategy games encompass a broad range of
playstyles, their levels’ most universal features consist of
resources (R) and players’ starting locations (bases or B):
in the presented abstraction of strategy games only one re-
source type is considered (see Fig. 2). Following typical
strategic gameplay, each player is expected to start at a base
tile (chosen at random) and collect resources in order to
build units; such units must reach the enemy players’ bases
and destroy them.

Evaluations & Results
Some of the most competitive multiplayer games are strat-
egy games such as Starcraft (Blizzard 1998); the high degree
of antagonism places player balance as the most significant
property of high-quality maps. In addition, easily controlled
space near each player largely determines the difficulty of
the map, while readily accessible resources allow players to
build up their forces before attacking their enemies. When
resources are predominantly in contested areas, players must
rush to secure them with the few forces they can initially
muster, creating a faster and more aggressive gameplay. Fi-
nally, the location of the players’ bases also affects the pace
and challenge of the map since enemy bases which are dif-
ficult to find can afford the enemy player time to build up
their forces without being harassed.

Translating these desirable properties of strategy game
maps to evaluation functions is straightforward. Area con-
trol around bases amounts to fa(SB), with its corresponding
evaluation of balance ba(SB). Easy access to resources from
bases amounts to fs(SB , SR), with its corresponding evalu-
ation of balance bs(SB , SR). Discovery of enemy bases is
measured by fe(SB) and its corresponding evaluation of
balance be(SB). The evaluation functions presented above

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3: Strategy game maps optimized according to dif-
ferent evaluation schemes. Results displayed are the best in-
dividuals among 20 runs, after 100 generations of evolution
on a population of 100 individuals.

were deemed highly useful by expert game developers and
level designers in a user study in which user-authored strat-
egy maps were being evaluated (Liapis, Yannakakis, and
Togelius 2013b). Combining all these evaluations results in
high-quality maps favoring slow, defensive gameplay; alter-
natives to these evaluations are also included in Fig. 3.

Figure 3 displays strategy game maps evolved towards
maximizing different combinations of the evaluations pre-
sented above and variations thereof. These maps constitute
the best among 20 runs of artificial evolution, with the evalu-
ation functions being maximized in each strategy game map
shown below; combined evaluations (denoted with a ∪) are
aggregated into a single fitness as the sum of all scores:

Fig. 3a: Fs = fs(SB , SR)∪bs(SB , SR)

Fig. 3b: Fa = fa(SB)∪ba(SB)

Fig. 3c: Fe = fe(SB)∪be(SB)

Fig. 3d: Fs∪Fa∪Fe

Fig. 3e: ¬fs(SB , SR)∪bs(SB , SR)∪Fa∪Fe

Fig. 3f: bs(SB , SR)∪Fe∪fa(SR)

Fig. 3g: Fs∪fa(SR)∪ba(SR)

Fig. 3h: bs(SB , SR)∪fa(SR∪SB)∪ba(SR∪SB)

Fig. 3i: Fs∪Fe

Fig. 3j: Fs∪Fa∪Fe

(a) Sketch (b) Final Dungeon

Figure 4: An example dungeon sketch and the dungeon level
it creates; black areas are impassable, red tiles (triangles)
are enemies, yellow tiles (circles) are rewards and gray tiles
(squares) are exits.

Case Study: Roguelike Dungeons
Following the success of Rogue (Toy and Wichman 1980),
dungeons for single-player games (roguelikes) are a popular
domain of procedural content generation. The special tiles in
roguelike dungeons consist of dungeon exits (X), enemies
(E) and treasures (T). Following the roguelike play logic, a
player changes dungeon levels once they step on an exit tile;
it is assumed that the player starts the current level at one
of the exit tiles. Within this dungeon level, a player encoun-
ters and battles monsters at enemy tiles and collects rewards
(weapons, spells, or gold) on treasure tiles.

Evaluations & Results
At its most basic, the purpose of a roguelike dungeon is
for the player to travel from the entrance to the exit; plac-
ing the exit tile in a hard to reach location extends the
gameplay time of the level. While traveling to the exit, the
player encounters monsters and collects treasures; in order
to make gameplay challenging, treasure is usually offered
as a reward for vanquishing monsters. Treasures are there-
fore usually near a monster acting as its “guardian”. Assum-
ing that all treasures and monsters are equally valuable or
powerful respectively, it would be useful for each monster
to provide equal rewards in terms of treasure. A popular de-
sign paradigm for dungeons, exemplified in Diablo (Bliz-
zard 1996), is the absence of monsters near the entrance of
each level, allowing some breathing room for a player to
prepare for the coming challenges. Finally, assuming that
monsters are powerful enough to challenge a player, having
the player battle two monsters simultaneously is over the in-
tended challenge level of the dungeon. Evenly distributing
the monsters throughout the dungeon, with no monster be-
ing close to another, averts the danger of a player having to
fight two monsters at once.

These desirable properties of roguelike dungeons can be
transformed into evaluation functions with minor reinterpre-
tations. Since entrance and exit are both represented as exit
tiles (X), a winding path from the entrance to the exit can
be evaluated by fe(SX). The placement of treasures close to
monsters can be evaluated by fs(SE , ST), while the place-

(a) (b) (c) (d)

(e) (f)

Figure 5: Dungeons optimized according to different eval-
uation schemes. Results displayed are the best individuals
among 20 runs, after 100 generations of evolution on a pop-
ulation of 100 individuals.

ment of monsters away from each other and from the en-
trance can be achieved by fa(SX∪SE). The evaluations of
balance (bs, ba, be) are not as significant in the single-player
dungeons as in the competitive multiplayer strategy maps.
However, having a balanced distribution of treasures near
each monster as per bs(SE , ST) couples challenge and re-
ward more closely, while balance in the space “allotted”
to each monster and exit tile ba(SX∪SE) better distributes
these special tiles on the map. Finally, the balance in the ex-
ploration from the entrance to the exit and vice versa as per
be(SX) seems the least useful of the proposed evaluations;
however, since the entrance can be in any tile within SX ,
preemptively ensuring that all of them are equally difficult
to find guarantees a winding path from entrance to exit.

Figure 5 displays dungeons evolved towards maximizing
different combinations of the evaluations presented above.
These dungeons constitute the best among 20 runs, with
the evaluation functions being maximized in each dungeon
shown below; combined evaluations (denoted with a ∪) are
aggregated into a single fitness as the sum of all scores:
Fig. 5a: Fs = fs(SE , ST)∪bs(SE , ST)

Fig. 5b: Fa = fa(SX∪SE)∪ba(SX∪SE)

Fig. 5c: Fe = fe(SX)∪be(SX)

Fig. 5d: Fs∪Fa∪Fe

Fig. 5e: Fs∪Fa∪Fe

Fig. 5f: Fs∪Fa∪Fe

Extensions and Future Work
This paper demonstrated how generic and parametrizable
formulas of game level quality can be used to quantita-
tively evaluate two disparate types of game levels: multi-
player strategy games and single-player roguelike dungeons.

(a) Sketch (b) Final FPS Map

Figure 6: A sample FPS map sketch and the final level it
creates, with weapons (W) in orange, healing packs (H) in
blue, and team spawn points (P) in purple. The map shown
is evolved, as with other presented experiments, to optimize:
fa(SP∪SH)∪ba(SP∪SH)∪fe(SP∪SW)∪be(SP∪SW).

.

Figure 7: An example of how a platformer level can be eval-
uated with the current formulas. The level starts and ends at
the flags, enemies are in green and rewards as yellow coins;
the player is assumed to jump up to 2 blocks. Unlike the cur-
rent method, the platformer needs a directed graph, i.e. the
first monster (top) can reach the second (bottom) but not vice
versa since the purple arrow is one-directional; the player
can’t jump back to the ledge. The coin area is an example of
high exploration, as there are multiple paths to the finish.

Moreover, these measures of quality can be used to drive an
optimization method — in this case a constrained genetic
algorithm — which can automatically generate high-quality
game levels. While this paper focused on two adequately dif-
ferent game genres to demonstrate how general the formulas
are, there is a broad number of game levels which can also
be evaluated by the same formulas.

Competitive multiplayer first-person shooters (FPS) such
as Team Fortress 2 (Valve 2007) can be evaluated as strategy
maps (replacing resources with weapons and ammo); co-
operative first-person shooters such as Left 4 Dead (Valve
2008) can be evaluated as dungeons (replacing monsters
with bosses and rewards with ammo and healing). An exam-
ple map sketch created for a competitive FPS level is shown
in Fig. 6. For shooters, a useful addition to the current eval-
uations would include the line of sight of each tile.

The current model of evaluating game levels implicitly as-
sumes an undirected graph for navigation; for games where
backtracking is not part of the intended experience, such as
platformers, a directed graph would better represent the level
progression (e.g. a cliff which an avatar can jump off but not
climb up again). Such a directed graph can easily be inte-

grated with strategic resource safety and area control, while
exploration can be simulated as breadth-first-search. Figure
7 shows an example platformer level and how it can be eval-
uated with a directed graph. Similarly to platformer levels,
adventure games — especially those featuring lock and key
puzzles — can be evaluated via a directed graph to ensure
that the key is reachable before the locked door is opened.

It should be noted that the evaluation methods presented
could be further enhanced. Additional metrics based on the
affordances and constraints of other game genres (such as
shooters and platformers) have already been suggested; the
existing formulas could also be refined. Specifically, the
safety metric is problematic when more than two reference
tiles are included in the set; in such cases, unsafe tiles can
be equally far from two of these elements, while remaining
elements may be much farther way. Finally, the current for-
mulas evaluate the initial topology of the level but do not
take into account the game’s progression. Further enhance-
ments to these evaluations could include simulations of ac-
tual gameplay; unlike the proposed metrics, however, such
simulations would likely be particularly domain-dependent.

The maps and dungeons included in this paper were gen-
erated by a constrained genetic algorithm able to create high-
quality game content while ensuring that certain playabil-
ity and designer-specified criteria are met. Due to the small
size of the map sketches and the fast evaluation methods
presented in this paper, the evolutionary process is com-
putationally lightweight and fast compared to experiments
where a complete Starcraft map was optimized (Togelius et
al. 2010). As the size of the maps and the number of special
tiles increase, however, the number of feasible individuals
decreases and optimization is slower. The aggregation of dif-
ferent fitness dimensions into a weighted sum is designed to
speed up evolution, but may be problematic when the com-
bined fitness dimensions are conflicting; this behavior could
be avoided via multi-objective evolutionary methods.

Conclusion
In this paper, we have introduced three generic metrics for
game levels: area control, exploration and balance. We have
also shown that it is straightforward to derive specific evalu-
ation functions for particular games in different genres based
on these metrics, and that using the derived evaluation func-
tions in search-based game level generation creates maps
with the intended patterns. Moreover, we have suggested a
number of ways in which this work can be expanded: gen-
eralizing the proposed metrics to more game genres and es-
tablishing new metrics. Following this path, we hope to ar-
rive at an agreed-upon collection of game level metrics that
can be reused in a plug-and-play manner in procedural con-
tent generation and assisted game design tools, which would
substantially benefit game development and game research.

Acknowledgments
This research was supported, in part, by the FP7 ICT project
SIREN (project no: 258453) and by the FP7 ICT project
C2Learn (project no: 318480).

References
Björk, S., and Holopainen, J. 2004. Patterns in Game Design.
Charles River Media.
Cardamone, L.; Yannakakis, G. N.; Togelius, J.; and Lanzi, P. L.
2011. Evolving interesting maps for a first person shooter. In
EvoApplications (1), 63–72.
Cardamone, L.; Loiacono, D.; and Lanzi, P. L. 2011. Interactive
evolution for the procedural generation of tracks in a high-end rac-
ing game. Interface 395–402.
Hastings, E. J.; Guha, R. K.; and Stanley, K. O. 2009. Auto-
matic content generation in the galactic arms race video game.
IEEE Transactions on Computational Intelligence and AI in Games
1(4):245–263.
Hullett, K., and Whitehead, J. 2010. Design patterns in fps levels.
In Proceedings of Foundations of Digital Games.
Kimbrough, S. O.; Koehler, G. J.; Lu, M.; and Wood, D. H. 2008.
On a feasible-infeasible two-population (fi-2pop) genetic algorithm
for constrained optimization: Distance tracing and no free lunch.
European Journal of Operational Research 190(2):310–327.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2013a. Generating
map sketches for strategy games. In Proceedings of Applications
of Evolutionary Computation.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2013b. Sentient sketch-
book: Computer-aided game level authoring. In Proceedings of
ACM Conference on Foundations of Digital Games.
Nelson, M., and Mateas, M. 2007. Towards automated game de-
sign. In Procedings of the 10th Congress of the Italian Association
for Artificial Intelligence.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2010. Model-
ing player experience for content creation. IEEE Transactions on
Computational Intelligence and AI in Games 2(1):54–67.
Smith, A. M., and Mateas, M. 2011. Computational caricatures:
Probing the game design process with ai. In Proceedings of AIIDE
Workshop on Artificial Intelligence in the Game Design Process.
Smith, G.; Anderson, R.; Kopleck, B.; Lindblad, Z.; Scott, L.;
Wardell, A.; Whitehead, J.; and Mateas, M. 2011. Situating quests:
Design patterns for quest and level design in role-playing games.
In Proceedings of the 4th International Conference on Interactive
Digital Storytelling.
Sorenson, N., and Pasquier, P. 2010. Towards a generic frame-
work for automated video game level creation. In Proceedings of
the 2010 international conference on Applications of Evolutionary
Computation - Volume Part I, 131–140.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.; Hagelback, J.;
and Yannakakis, G. 2010. Multiobjective exploration of the star-
craft map space. In 2010 IEEE Symposium on Computational In-
telligence and Games (CIG), 265–272. IEEE.
Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C. 2011.
Search-based procedural content generation: A taxonomy and sur-
vey. IEEE Transactions on Computational Intelligence and AI in
Games (99).

