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Abstract

Inspired by the notion of surprise for unconventional dis-
covery in computational creativity, we introduce a general
search algorithm we name surprise search. Surprise search is
grounded in the divergent search paradigm and is fabricated
within the principles of metaheuristic (evolutionary) search.
The algorithm mimics the self-surprise cognitive process of
creativity and equips computational creators with the ability
to search for outcomes that deviate from the algorithm’s ex-
pected behavior. The predictive model of expected outcomes
is based on historical trails of where the search has been and
some local information about the search space. We showcase
the basic steps of the algorithm via a problem solving (maze
navigation) and a generative art task. What distinguishes sur-
prise search from other forms of divergent search, such as the
search for novelty, is its ability to diverge not from earlier and
seen outcomes but rather from predicted and unseen points in
the creative domain considered.

Introduction
The search for unconventional computational outcomes has
traditionally been the core challenge of computational cre-
ativity (Boden 2004). As a response to this challenge, sev-
eral notions or dimensions of creativity have been investi-
gated, either as search heuristics or as criteria for the as-
sessment of the creative process and its outcomes. Value
and novelty have arguably been the most popular of those
notions (Boden 1995; Ritchie 2007; Wiggins 2006). Ac-
cording to Ritchie (2007), value is the degree to which an
outcome is of high quality whereas novelty is the degree to
which an outcome is dissimilar to existing examples within
a domain. Boden (2004) and Ritchie (2007) claim that nov-
elty and value are the essential criteria for assessing creativ-
ity and Wiggins (2006) provides definitions for novelty and
value as different features that are relevant to creativity.

According to alternative views within computational cre-
ativity, however, novelty and value are not sufficient for the
discovery of unconventional outcomes (Grace et al. 2014;
Kulkarni and Simon 1988). Boden (1995) argued for the
distinction between novelty, unexpectedness and value. This
distinction is derived from the observation that creative out-
puts of high value are not merely novel but also unexpected.
Both outcomes from creative artwork and outcomes from
creative problem solving are often attributed creativity due

to the unexpectedness they elicit to an audience of evalu-
ators. The notion of surprise appears to be an underlying
aspect of the creative process which eventually is mani-
fested on the final creative outcome (Macedo et al. 2009;
Macedo and Cardoso 2002). As novelty does not cater for
the temporal aspects of discovery, it is suggested that sur-
prise is included as a core assessment dimension of a gen-
erated outcome (Grace et al. 2014; Maher 2010). Further,
computational processes that realize transformational cre-
ativity (Boden 2004) in which the creator breaks the do-
main’s rules and leads to unconventional problem solving
and highly novel yet important artifact creation are far from
being achieved. Recent views on aspects of surprise, how-
ever, have been proposed as potentiators of transformational
creativity (Grace and Maher 2015).

Following the perspective of a large volume of work
within computational creativity (Grace and Maher 2015;
Grace et al. 2014; Maher, Brady, and Fisher 2013; Macedo
and Cardoso 2002; Macedo et al. 2009; Macedo and Car-
doso 2001) we argue that surprise is distinct from novelty
and value: an outcome can be both novel and valuable, but
not necessarily surprising. While surprise is naturally geared
and driven by novelty, it stems from a violation of an expec-
tation (Maher, Brady, and Fisher 2013) rather than from a
new unseen outcome. Expectation does not necessarily im-
ply novelty; consequently, surprise can be seen as novelty in
a temporal space of unseen or expected outcomes (tempo-
ral novelty), rather than in a space of existing and already
seen outcomes. Studies in cognitive science suggest that
humans are not only capable of self-surprise but, most im-
portantly, that surprise is a core internal driver of creativity
(Grace and Maher 2015) and a crucial component of gen-
eral intelligence (Ortony and Partridge 1987). Thus, in our
view, surprise constitutes a powerful drive for computational
discovery as it incorporates predictions of an expected out-
come that it attempts to deviate from. These predictions may
be based on relationships in the solution space as well as his-
torical trends derived from the algorithm’s sampling of the
domain. By modeling surprise, not only do we attempt to
advance our knowledge in understanding the phenomenon
but — most importantly for the purpose of this paper — we
equip artificial creators with capacities to search for surpris-
ing outcomes (Macedo et al. 2009).

When it comes to computational search the dominant ap-
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proach towards obtaining outcomes of high value is to ad-
hoc design a function that will reward outcomes with respect
to a particular objective. An objective function characterizes
the value (or quality) of the outcome, and is used in the ma-
jority of evolutionary computation studies. However, diver-
gent search beyond objectives, such as novelty, has proven
far more efficient in a number of tasks such as robot naviga-
tion (Lehman and Stanley 2011a) and locomotion (Lehman
and Stanley 2011b). Similarly, in open-ended evolution
studies within artificial life (Channon 2001) it is typical to
consider open-ended search for e.g. survival (Yaeger 1994;
Adami, Ofria, and Collier 2000) instead of particular ob-
jectives. Given the subjective and human-centric nature of
creativity, studies within computational creativity and gen-
erative systems (Boden 2004; Ritchie 2007; Wiggins 2006)
have also focused on the creative capacity of search rather
than accomplishing specific objectives.

In this paper we draw inspirations from the above per-
spectives in computational creativity, divergent search and
open ended evolution and we propose the use of surprise
as a new form of evolutionary divergent search for compu-
tational creativity. Our hypothesis is that the search for sur-
prise (i.e. surprise search) is beneficial to computational cre-
ativity as it complements our search capacities with highly
efficient and robust algorithms beyond the search for objec-
tives or mere novelty. As a first step towards testing our
hypothesis, we herein introduce the idea of surprise search
and propose a general evolutionary algorithm that realizes it.
We also provide examples of the surprise search algorithm
within the domains of problem solving (for maze navigation)
and generative art.

Novelty of this Paper
It is important to note that several studies have already used
the notion of surprise for computational modeling (Grace et
al. 2014; Grace and Maher 2015; Maher, Brady, and Fisher
2013; Macedo and Cardoso 2002; Macedo et al. 2009;
Macedo and Cardoso 2001; Saunders and Gero 2004).
These formulations of surprise are similar to ours as they
measure a degree of deviation from expected outcomes
which are predicted by a model. Macedo and Cardoso
(2002; 2009; 2001) performed extensive experiments to test
whether the surprise scores derived from their model of sur-
prise match the ones rated by humans under similar cir-
cumstances. In other relevant studies, a surprise score has
been used to assess the creative capacity of design outcomes
(Grace et al. 2014; Maher, Brady, and Fisher 2013). To the
best of our knowledge, however, no study utilizes surprise
directly as a heuristic within the generative or the creative
search process. The model of surprise in our proposed algo-
rithm both drives the computational search for unexpected
outcomes and can also be used to evaluate the degree of un-
expectedness of an obtained solution, artwork or computa-
tional product.

Other aspects of unexpectedness such as intrinsic moti-
vation (Oudeyer, Kaplan, and Hafner 2007; Merrick and
Maher 2009) and artificial curiosity (Schmidhuber 2010;
Saunders and Gero 2004) have also been modeled in the lit-
erature. The concepts of novelty within reinforcement learn-

ing research are also interlinked to the idea of surprise search
(Kaplan and Hafner 2006; Oudeyer, Kaplan, and Hafner
2007). As a high-level concept, surprise (as described in
this paper) matches the notion of Schmidhuber (2010) which
rewards new patterns of a growing world model that a curi-
ous agent attempts to learn. As an algorithm, however, the
search for surprise does not resemble artificial curiosity and
intrinsic motivation as it is builds upon evolutionary diver-
gent search and is motivated by open-ended evolution rather
than improving a world model.

Surprise, Novelty and Value
In this section we discuss the notion of surprise as a potential
form of divergent search for computational creativity which
is manifested as both unconventional problem solving and
computational art. For that purpose we first draw inspiration
from the literature and attempt to define surprise; we then
compare it against the notions of novelty and value (Ritchie
2007) which arguably define the most popular criteria of cre-
ativity assessment for computational outcomes.

Surprise
The study of surprise has been central in neuroscience
(Donchin 1981), psychology (Ekman 1992), and cogni-
tive science (Ortony and Partridge 1987; Kulkarni and Si-
mon 1988). In neurophysiology there has been evidence
for the existence of particular event-related brain poten-
tials that can be attributed to unexpected events and, thus,
used as predictors of unexpectedness and event memora-
bility (Donchin 1981). In psychology and emotive mod-
eling studies, surprise defines one of Ekman’s six basic
emotions (Ekman 1992) that can be derived from generic
and culture-independent facial expressions. While the facial
expression of surprise is generic and manifested similarly
across people, surprise is characterized by startle physiolog-
ical responses. As a result, the classification of surprise as
an emotive state has been questioned by several cognitive
science studies and instead defined as a temporal-based cog-
nitive process of the unexpected (Meyer, Reisenzein, and
Schützwohl 1997; Lorini and Castelfranchi 2007), a viola-
tion of a belief (Ortony and Partridge 1987; Kulkarni and
Simon 1988), or a reaction to a mismatch (Lorini and Castel-
franchi 2007).

Beyond value and novelty, surprise has defined a core cri-
terion for assessing both the creative outcomes and the cre-
ative process of a computational creator. Within studies in
computational creativity, surprise (along with novelty and
value) has been attributed to the creative output of a com-
putational process in creative design and beyond (Grace et
al. 2014; Maher 2010; Maher, Fisher, and others 2012;
Maher, Brady, and Fisher 2013), defined as a response
to novelty (Wiggins 2006) or used to model agent be-
havior (Macedo and Cardoso 2002; Macedo et al. 2009;
Macedo and Cardoso 2001). Computational models of sur-
prise have also been used for traffic control (Horvitz et
al. 2005), for detecting surprising features in images (Itti
and Baldi 2005), and for detecting interesting experiments
for computational scientific discovery (Kulkarni and Simon
1988).



Variant types and taxonomies of surprise have been sug-
gested in the literature. An important distinction is between
active versus passive surprise (Ortony and Partridge 1987;
Grace et al. 2014): the first being the explicit expectation
that was formed actively prior to a stimulus, the latter be-
ing a mere assumption arising from earlier experience. The
main overarching element of surprise across any of its tax-
onomies, however, is the degree to which an observation
is expected. Thus, independently of the variant definitions
across the disciplines that study surprise as a phenomenon,
we can safely derive a general definition of surprise that sat-
isfies the key characteristics of that notion. For the purposes
of this paper, we define surprise as the deviation from the
expected and we use the notions surprise and unexpected-
ness interchangeably due to their highly interwoven nature
(Reisenzein 2000): unexpectedness being the approximate
cognitive appraisal cause of surprise.

Inspired by the relevant literature on surprise, we view
surprise for computational search as the degree to which ex-
pectations about a solution are violated through observation
(Grace et al. 2014). Surprise search acts as a variant diver-
gent search algorithm, similar to novelty search described
below. While novelty search diverges from previously and
currently seen outcomes, surprise search attempts to deviate
from expected but unseen outcomes. Our hypothesis is that
if modeled appropriately, surprise may enhance divergent
search and complement or even surpass the creative capacity
of traditional forms of divergent search such as novelty.

Novelty
Novelty and surprise are different notions by definition, as
it is possible for a solution to be both novel and/or expected
to variant degrees. Following the core principles of Lehman
and Stanley (2011a) and Grace et al. (2014), novelty is de-
fined as the degree to which an outcome is different from
prior outcomes within a particular domain. On the other
hand, surprise is the degree to which an outcome is different
from the expected outcomes in a particular domain.

Expectations are naturally based on inference from past
experiences; analogously surprise is built on the temporal
model of past outcomes. Surprise is a temporal notion as
expectations are temporal by nature. Prior information is
required to predict what is expected; hence a prediction of
the expected (Maher 2010; Macedo and Cardoso 2002) is
a necessary component for modeling surprise computation-
ally. By that logic, surprise can be viewed as a temporal
novelty process. Another interesting temporal metaphor of
the relationship between surprise and novelty is that the first
can be viewed as the time derivative of the latter — e.g. po-
sition (novelty) and velocity (surprise). While novelty de-
viates from positions in the search space, surprise deviates
from positions as predicted by a model of earlier positions;
the model resembles the trajectory of search.

To exemplify the difference between the notions of nov-
elty and surprise, we will use a simple card memory game.
In this game each player is given a stack of unseen cards.
Players take turns revealing one card at a time, placing them
in a sequence. Players have to predict which card will be re-
vealed next. The winner of the game is the one that correctly

(a) High novelty

(b) High surprise

Figure 1: Illustrating the difference between novelty and sur-
prise in a card game example. The cards are drawn in se-
quence, with the last one placed rightmost. The rightmost
card in Fig. 1a does not share the colors or shapes of the
other cards, and is thus novel; however, it is not a surprise
that a completely different card is revealed (although admit-
tedly, predicting the next revealed card would be quite dif-
ficult). The fourth and the rightmost cards of Fig. 1b are
surprising, however. In the first case the player expects a
new unseen card based on the three cards already revealed
but, instead, the first card reappears. In the latter case, due
to the repetition of previous card patterns, the player expects
another green, curved shape rather than the depiction in the
last card.

predicts the next card. In this example the novelty of the
game outcome (i.e. next card) is the highest possible if all
cards revealed in the past are different. The surprise value of
the game outcome in that case is low as the player has grad-
ually internalized a model of expectedness of a new, unseen,
card every time. On the other hand, the novelty of the game
outcome decreases if seen cards are revealed after a while. In
that scenario surprise is increased as the game deviates from
the expected outcome which calls for a new card every time.
Clearly both surprise and novelty depend on the amount of
cards revealed (i.e. history of instances) and the amount of
cards available (i.e. how large is the domain). Figure 1 il-
lustrates the difference between the notions of novelty and
surprise in the card game example discussed above.

As a guide for evolutionary search, the concept of nov-
elty has primarily been integrated in novelty search, which
explicitly ignores the objective (or value) of the problem it
attempts to solve. Novelty search performs divergent evolu-
tionary search in order to handle deceptive fitness landscapes
(Whitley 1991) and premature convergence to local optima.
Earlier divergent search methods (e.g. (Angeline and Pol-
lack 1994; Wessing, Preuss, and Rudolph 2013)) provide
control mechanisms, modifiers or alternate objectives which
complement the gradient search towards better solutions. In
contrast, novelty search motivates exploration of the search
space by rewarding individuals which are different without
considering whether they are objectively ‘better’ than others.
Novelty search is different than a random walk, however, as
it explicitly provides higher rewards to more diverse solu-
tions and also because it maintains a memory of the areas of



the search space that it has previously explored. The latter is
achieved with a novel archive of past novel individuals, with
individuals with a high novelty score being constantly added
to this archive. Each individual’s novelty score is the aver-
age distance from a number of closest neighbors in the prob-
lem space; neighbors can be members of the current popula-
tion or the novel archive. The distance measure is problem-
dependent: examples include the distance between agents’
final positions in a two-dimensional maze, or the distance in
the position of a robot’s center of mass (Lehman and Stanley
2011a). Novelty search has also been integrated for adjust-
ing properties of images such as brightness and symmetry
(Lehman and Stanley 2012).

Value
Value has been defined as the degree to which a generated
outcome is of high quality within its domain (Ritchie 2007).
While in computational art and aesthetics value is largely a
subjective notion — which is often measured via the val-
ued ratings of domain experts — in creative problem solv-
ing the notion of value is clearly objective. In particular,
the quality of any solution or output is determined by its
distance to a predetermined goal within a set of constrains
imposed by the domain per se. The notion of value can
be directly linked to the notion of objective in optimization.
More specifically, within metaheuristic search the value of
an evolved solution is naturally assessed by its fitness value
to a given problem. While it is natural to think that measur-
ing progress in terms of fitness (Goldberg and Holland 1988;
Michalski, Carbonell, and Mitchell 2013) is the most appro-
priate approach towards finding a high-fit solution, recent
findings from evolutionary divergent search (Lehman and
Stanley 2011a; Lehman, Stanley, and Miikkulainen 2013)
suggest that explicit objective (fitness) design can be detri-
mental to evolutionary search, e.g. when the problem is de-
ceptive (Whitley 1991) or open-ended (e.g. in the case of
autotelic creative tasks).

While as concepts surprise and novelty have common
characteristics (see earlier discussion), value can be seen as
an orthogonal concept in the search for good quality out-
comes. Value clearly distinguishes from novelty and sur-
prise as it is the degree of outcome quality rather than the
degree to which an outcome differs from other outcomes
(novelty) or the degree to which an outcome differs from
expected outcomes (surprise) in its class. Value, if used as
a direction for search, points to a direct assessment of the
outcome’s quality whereas both novelty and surprise imply
an indirect and divergent way of traversing the search space
for obtaining an outcome of high quality.

Since value is orthogonal to novelty or surprise, there are
ways of integrating it in divergent search e.g. via constraints
that accepted artifacts should have a minimum value (i.e. fit-
ness score) while individuals satisfying these constraints can
evolve towards divergence. Examples of constrained nov-
elty search, in particular, have been proposed by Liapis,
Yannakakis, and Togelius (2015) and Lehman and Stanley
(2010) for problem solving tasks (level generation and maze
navigation respectively), as well as Vinhas et al. (2016) for
evolutionary art and Liapis et al. (2013) for novel game ob-

ject generation. Surprise search can similarly be combined
with minimal value constraints, since feasible and infeasible
individuals can be evolved in separate populations (Liapis,
Yannakakis, and Togelius 2015) towards different goals.

The Surprise Search Algorithm
Based on the above discussion, surprise as a driver of evo-
lutionary search can be summarized as a mechanism for re-
warding individuals which exhibit behaviors which diverge
from the expected behaviors of the current population based
on prior observed behaviors. Like novelty search, surprise
search operates exclusively in the behavioral (or phenotypic)
space1: both predictions and prior evolutionary trends refer
to the phenotypic space (e.g. behaviors of an evolving agent
or output of an artificial painter).

Two components are therefore necessary for surprise
search: a predictive model which creates the expected be-
haviors based on past and current outputs, and a deviation
formula which assesses whether (and to what degree) the
actual behaviors deviate from the predicted behaviors. To a
certain extent, both of these components are domain-specific
and problem-dependent; this section presents certain core
properties of each component, while the specific parameters
can be tweaked depending on the problem at hand.

Predictive Model
There are multiple ways to predict future outcomes, from
simple extrapolation to machine learning. At its core, the
set of predicted outcomes p is derived from the formula in
Eq. (1), where m is the predictive model, h is the history
(i.e. how far in the past the model has to look to estimate the
future) and k is the locality (i.e. how many data points the
model has to consider per generation and, as a result, how
many predictions it must make).

p = m(h, k) (1)

History (h) refers to how far into the past the predic-
tive model observes when making predictions into the fu-
ture. At the absolute minimum, the two previous generations
must be considered, in order to assess a degree of behav-
ioral (outcome) change which can be expected in the current
generation. Earlier information can also be used, by look-
ing at previous generations further in the past, or by con-
sidering an archive of important past predictions. The lat-
ter concept is similar to the rationale of the novel archive
(Lehman and Stanley 2011a) in novelty search, where the
most novel individuals from past generations are stored. De-
viation from behaviors expected currently can be viewed
as a form of passive surprise (Ortony and Partridge 1987;
Grace et al. 2014) as they are assumptions which have not
been actively considered. Deviation from a surprise archive
can be viewed as a form of active surprise (Ortony and Par-
tridge 1987) in that predictions in the archive have been “en-
tertained” (to use the term of Ortony and Partridge) in the
past. We consider h to be a problem-dependent parameter
for the algorithm.

1Behavior and phenotype of e.g. an artificial evolutionary pro-
cess are terms used interchangeably in this paper.



Locality (k) refers to the granularity in which the trends
of past populations are observed. Locality can stretch from
global (i.e. each generation predicts a single descriptive fea-
ture of the population of size P in the current generation) to
individual (i.e. each individual traces its own lineage of par-
ents, grandparents etc. and attempts to surprise itself). A pa-
rameter k determines the level of prediction locality which
can vary from 1 (individual) to P (global) or anything in-
between. The level of prediction locality (k) in the outcome
space is a problem-dependent parameter that can be derived
empirically.

Predictive model (m) refers to a model which can calcu-
late a future outcome from current and past data as collected
based on k and h. As noted above, any modeling approach
can be used for such purposes: from a simple linear regres-
sion of points in the outcome space, to non-linear extrapola-
tions, or machine learned models (e.g. artificial neural net-
works or support vector machines). Depending on the local-
ity of the prediction (k), the model may derive a vector of
expected outcomes to deviate from. Again, we consider the
employed predictive model, m, to be problem-dependent.

Deviation Formula
We are primarily inspired by the calculation of novelty
(Lehman and Stanley 2011a) in the design of a deviation for-
mula for surprise. The formula in Eq. (2) calculates surprise
as the average distance of the n closest predictions made us-
ing the predictive model p. The formula assumes that the
more divergent an observed behavior is from predicted be-
haviors, the more surprising it is. Just like with novelty
search, the distance metric (ds) is domain-dependent and
can affect what is considered surprising (and therefore the
evolutionary search itself). The examples in the next section
demonstrate optimization for divergence from the expected
in maze navigation and generative art tasks; the same exam-
ples show different ways of calculating dissimilarity.

s(i) =
1

n

n∑
j=0

ds(i, pi,j) (2)

It should be noted that the deviation formula is purpose-
fully simple, as it is an intuitive way in which humans con-
sider divergence. However, there is potential in exploring
different formulas, e.g. so that results which are not too
similar but yet not too dissimilar are prioritized versus too
dissimilar outputs which can be perceived as atypical, alien
or random (Grace et al. 2014). This can be achieved in the
distance function itself, or by applying a normalizing func-
tion on ds(i, pi,j) (e.g. a Gaussian function). Following the
surprise model of Itti and Baldi (2005), ds can alternatively
be formulated as the difference between posterior and prior
beliefs of an observer.

Examples of Surprise Search
To illustrate how surprise search can work (and ways in
which it differs from search for value or novelty), this pa-
per uses two test beds: a maze navigation task, and a gen-
erative art activity. These two exemplar tasks are tackled by

(a) Objective (b) Novelty (c) Surprise

Figure 2: The process of different types of search for maze
navigation on the “hard” maze of Lehman and Stanley
(2011a). The solid black circle (bottom left) is the start-
ing position, and the empty black circle (top left) is the goal;
green dots represent the agents. For surprise search (Fig.
2c), red circles represent the population’s centroids of the
two prior generations; the red arrow is the direction of the
centroid, from the earliest generation to the latest generation,
while the blue circles are the predictions for the clusters’
centroids in the current generation. Surprise search rewards
the individuals in the current population (green) which devi-
ate from the closest prediction point (blue).

evolution and constitute computational creativity domains.
On one hand maze navigation focuses on problem solving:
there is an end-state and a clear performance measure, which
is whether the maze has been solved. For that purpose, we
use the maze example of Lehman and Stanley (2011a) for
its appropriateness in testing novelty due to the deceptive-
ness of the problem. On the other hand, a generative art
task represents autotelic creativity, where there is no stop-
ping condition and arguably no measure of success (Comp-
ton and Mateas 2015). Indeed, defining an objective for gen-
erative art would be subjective and ultimately ad-hoc; there-
fore we do not focus on objective-driven search for this task.
We briefly present the problems, the representations used,
and how the different strategies (objective-driven, novelty
search, and surprise search) explore the space of each prob-
lem’s possible solutions.

Maze Navigation
In the maze navigation task, an agent controlled by an artifi-
cial neural network (ANN) enters a maze enclosed by walls
at the start position of the maze, and has a specific time-
frame (i.e. simulation steps) to find the goal position of the
maze (see Fig. 2). The agent has 6 line trace sensors along
its perimeter, measuring the distance to the nearest wall, and
4 “radars” which inform it on which side of the agent the
goal is (if within range). These 10 inputs, along with a bias,
are used as input to an ANN, which outputs the change in
speed and the change in direction of the agent (2 outputs).
The ANN is evolved using neuroevolution of augmenting
topologies (NEAT) which adds complexity to initially sim-
ple networks during the course of evolution (Stanley and
Miikkulainen 2002). A population of 500 ANN-controlled
agents is tested in every generation: their final position at
the end of the allocated timeframe in one generation can
be seen in Fig. 2. This paper discusses the general princi-



ples of the search process, highlighting the differences be-
tween surprise, novelty and objective search; Gravina et al.
(2016) provide an in-depth analysis of the differences in ef-
ficiency and robustness between the three algorithms in the
maze navigation task.

When using objective-driven search, Lehman and Stan-
ley (2011a) calculate the fitness of each individual based
on how close it is to the goal. This is a “reasonable” per-
formance metric, which however falls short as it does not
consider walls and can cause individuals to get stuck in the
dead-end at the top left corner of the maze in Fig. 2a, which
acts as a local optimum. In order to find the global opti-
mum and solve the maze, the agents must explore areas of
the maze with the lowest fitness (i.e. the bottom right cor-
ner); therein lies the deceptiveness of the problem under the
current objective function.

When using novelty search, Lehman and Stanley (2011a)
calculate the fitness (or novelty score) of each individual
based on its final position, and its distance from the clos-
est final positions of other individuals in the population or
in a novel archive. This drives individuals to explore more
of the space, and separate themselves from current and past
discovered locations. This process eventually pushes some
of the most novel individuals to the goal (see Fig. 2b).

When using surprise search, instead, we suggest grouping
individuals into k clusters; each predicted point is calculated
based on the linear interpolation of a cluster in the popula-
tion of the two previous generations (see Fig. 2c). In other
words, the prediction locality of surprise search in this prob-
lem is determined by the number of clusters (k) chosen (k is
10 in this example), h involves two subsequent generations
of the population and m is a linear regression function. The
fitness (or surprise score; s in Eq. (2)) of individuals in the
current population is calculated based on the deviation (ds
is Euclidean distance) of each individual from the closest
predicted point. This rewards agents who diverge from an
expected behavior. Note that while novelty search deviates
from points of the maze that have been previously explored,
surprise search deviates from predicted points which may
have not been reached yet by the agents, or may never will
(such as points outside of the maze in Fig. 2c).

Generative Art
In the generative art example, colorful images are generated
via evolving compositional pattern-producing neural net-
works (CPPNs). These neural networks can have different
activation functions (e.g. sigmoid or Gaussian curves) which
produce symmetries and repetitions in the output (Stanley
2006). In that regard, the CPPN-based artwork is similar to
the output of PicBreeder (Secretan et al. 2011), although
this example uses a simplified representation and evolution-
ary strategy. Each pixel in the colored image is represented
as a HSB (hue, saturation, brightness) triplet, and the CPPN
produces these three output values using the x, y coordi-
nates of the pixel as input. Fig. 3 shows how an outcome
(Fig. 3a) produces a mutated offspring in the next genera-
tion (Fig. 3b). In this example, we predict one expected out-
come per individual in the population, taking into account
their own parent (i.e. we predict based on genotypic history,

(a) Grandparent (b) Parent (c) Predicted
offspring

(d) Surprising
offspring

(e) Grandparent (f) Parent (g) Predicted
offspring

(h) Surprising
offspring

Figure 3: Two examples of surprise search in generative art,
illustrating how surprise and predictions can be computed.
Images depict potential outcomes of the process.

rather than phenotypic similarity as in the maze example).
The predicted outcome is based on the differences in HSB
values between the parent and grandparent (h = 2) of the
evaluated individual, applied on the parent. Similarly to the
maze navigation surprise search setup, m is a simple linear
regression model and h = 2; however, the k value consid-
ered here is P (where P is the size of the population), as
each image has an individual prediction. Fig 3c provides an
example prediction: as the bottom left area becomes lighter
(Fig. 3b) compared to the earlier image (Fig. 3a), it is pre-
dicted that the same area will become even brighter in the
current generation. Another example is in Fig 3g: as the
entire canvas from the grandparent (Fig. 3e) to the parent
(Fig. 3f) shifts the hue towards warmer colors, it is predicted
that the offspring canvas will consist entirely of red colors;
moreover, the left-most darker region in the parent’s canvas
is expected to become even darker in the offspring’s canvas.

A surprising outcome, in these examples, can be mea-
sured based on the per-pixel difference (e.g. ds can be the
Euclidean distance) in hue, saturation and brightness be-
tween the predicted outcome and the actual offspring. For
instance, Fig. 3d has a high surprise score since the hues
of the entire image have shifted to greens and blues, and
the image is overall darker. Similarly, Fig. 3h is surprising
since the image is overall lighter and shifted hues towards
colder colors. It should be noted that Fig. 3h is similar to
Fig. 3e; as with the card game example, the novelty score of
such an image would not necessarily be high as the previous
outcome (which likely is stored in the novel archive) is visu-
ally close to the evaluated outcome. The surprise score, on
the other hand, takes into account the “trajectory” of evolu-
tion and predicts the expected outcome assuming a direction
from previous to current outcomes.

Discussion and Conclusions
This paper introduced the notion of surprise for computa-
tional search, provided a general algorithm that follows the



principles of searching for surprise and presented two exam-
ples implementing the core idea of deviation from expected:
a maze navigation problem and a generative visual art task.
We argue that surprise search may show advantages over
other forms of evolutionary divergent search such as novelty
search. Based on the advantages of novelty over objective
search, we can safely assume that a divergent search-based
algorithm like surprise will manage to outperform traditional
fitness-based evolution (i.e. objective search) in highly de-
ceptive problems. Our hypothesis is that, similarly to nov-
elty search, deviation from expected outcomes in the search
space may result in higher exploratory capacity and diver-
sity; both of which are beneficial properties for computa-
tional (evolutionary) search.

Surprise search operates similarly to novelty search with
respect to evolutionary dynamics. As surprise search makes
predictions for the current generation based on a set of ob-
served behaviors in prior generations, it maintains a tempo-
ral window of where search has been. However, surprise
search operates differently to novelty search with respect to
the goal: surprise maximizes deviation from the expected
outcomes whereas novelty maximizes deviation from previ-
ous and current outcomes. This evidently creates a new form
of divergent search that considers prior behaviors indirectly
to make predictions to deviate from. The comparative envis-
aged advantages of surprise search over other forms of diver-
gent search are inherent to the way the algorithm searches,
attempting to deviate from predicted unseen behaviors in-
stead of prior seen behaviors.

As surprise search ignores objectives, a concern could be
whether it is merely a version of random walk. Surprise
search is not a random walk as it explicitly maximizes un-
expectedness. Surprise search allows for a temporal archive
of outcomes that accumulates a record of earlier positions in
the problem space. Gravina, Liapis, and Yannakakis (2016)
compared the behavior of surprise search versus random
search (random fitness values) in the maze navigation ex-
periment, demonstrating the differences in both performance
and behavior between the two.

This position paper introduced a general form of the sur-
prise search algorithm and examples of its implementation;
extensive empirical studies need to be performed to provide
evidence for the advantages of surprise as a form of diver-
gent search. The two examples used in this paper are in-
dicative types of test beds for surprise search. For problem
solving tasks (such as maze navigation), the algorithm’s ef-
fectiveness needs to be tested through tasks of varying de-
grees of deception and complexity. Initial experiments with
surprise search in the maze navigation domain indicate that
it is as efficient as novelty search, and tends to find solu-
tions faster and more often than both traditional objective
and novelty search (Gravina, Liapis, and Yannakakis 2016).
For computational art, the algorithm’s expressivity and cre-
ative capacity can be assessed, based on its ability to deviate
from expected outcomes or based on creativity assessment
models such as FACE or IDEA (Pease and Colton 2011).
Finally, the surprise score introduced can be used to comple-
ment any computational creativity assessment method con-
sidered.
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