
A procedural procedural level generator generator

Manuel Kerssemakers, Jeppe Tuxen, Julian Togelius and Georgios N. Yannakakis

Abstract—Procedural content generation (PCG) is concerned
with automatically generating game content, such as levels,
rules, textures and items. But could the content generator itself
be seen as content, and thus generated automatically? This
would be very useful if one wanted to avoid writing a content
generator for a new game, or if one wanted to create a content
generator that generates an arbitrary amount of content with a
particular style or theme. In this paper, we present a procedural
procedural level generator generator for Super Mario Bros.
It is an interactive evolutionary algorithm that evolves agent-
based level generators. The human user makes the aesthetic
judgment on what generators to prefer, based on several views
of the generated levels including a possibility to play them, and
a simulation-based estimate of the playability of the levels. We
investigate the characteristics of the generated levels, and to
what extent there is similarity or dissimilarity between levels
and between generators.

I. INTRODUCTION

Recent years have seen a flurry of interest in creating
procedural content generators for different types of game
content. These generators build on a large variety underlying
techniques, including cellular automata [1], artificial evolu-
tion [2], L-systems, answer set programming [3], artificial
agents and fractal subdivision. Likewise, generators have
been made to generate a large variety of types of content for
a similarly large variety of games. Examples include quests
and mazes for action adventures [4], complete sets of rules
for board games [5] and maps for strategy games.

In almost all cases, a content generator is made to generate
a single type of content for a single game. While a paper
describing a new generator typically outlines how the PCG
algorithm could be brought to bear on other content gener-
ation problems, i.e. on other combinations of content type,
game constraints and desirable properties, actual and often
significant re-engineering is needed to do this in practice. For
the mind that is already thinking about how to automatically
generate game content, the natural continuation of this line
of thought is to think about if not the content generator itself
could be procedurally generated.

Smith and Mateas [3] discuss the role of the designer when
applying procedural generation techniques to a game. They
argue that as the designer takes a step back from designing
the actual artefact (e.g. a level), the design effort is spent on
shaping the design space of the content generator instead. Of
course, if the design of the actual content can be automated,
then the design of the design space should also be possible
to automate.

In this paper, we make an attempt to apply PCG techniques
to the actual content generator. In other words, we are

The authors are with the IT University of Copenhagen, 2300 Copen-
hagen, Denmark. (email: m.kerssemakers@gmail.com, {jtux, juto, yan-
nakakis}@itu.dk)

doing meta-PCG, and removing the designer one step further
from the eventual artefact. The main question we address is
whether it is indeed possible to procedurally generate content
generators. Developing the system that is described in this
paper required addressing questions of how to visualise a
large range of possible generated artefacts in a compact
form, how to ensure playability of levels generated by very
unconstrained generators, and how to retain designer control
in a two-layered generation process.

II. BACKGROUND

The work presented in this paper builds on a body of
previously published research, dealing with different aspects
of creating digital content, especially game content.

A. Super Mario Bros level generation

In the past few years, a number of researchers have
addressed the problem of automatically generating playable,
entertaining and in some cases even personalised levels for
platform games [6]–[8]. The earlier attempts all used differ-
ent platform games to test the proposed content generators,
making comparison of results problematic. To rectify that,
the Mario AI benchmark was defined based on a modified
version of Infinite Mario Bros, which is Markus “Notch”
Persson’s public domain Java-based clone of Nintendo’s
classic platform game Super Mario Bros. Released in 1985,
Super Mario Bros redefined the platform game genre and has
influenced the design of virtually every platform game since
(as well as countless games of other genres); it remains pop-
ular to this day. The Mario AI benchmark has been used for a
series of competitions focusing on developing AI agents that
play the game [9], as well as for a competition focusing on
level generation [10]. In the latter competition, competitors
submitted a number of very different level generators based
on diverse approaches.

Apart from the popularity and design of the platform
game that the benchmark software is modelled on, another
reason for the appeal of the benchmark and competition
seems to be the very simple level representation. A level
is simply represented a two-dimensional matrix of height 15
and variable length, typically a few hundred. Each cell in the
matrix represents a single “block”; the cell can be empty, or
be one of a number of block types, including various forms of
impenetrable objects, enemies, collectables and power-ups.
The player character, Mario, is about one block wide and
two blocks high, and can jump a distance of a few blocks.
A level is won by traversing it from the left border of the
level to the right border without falling down a gap or getting
killed by an enemy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/157728269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


B. Search-based PCG

Search-based procedural content generation, or SBPCG,
refers to the use of evolutionary algorithms of other
search/optimisation algorithms to generate game content. A
recent survey [2] outlines the major research challenges
within this field and lists a number of examples where this
approach has been taken to generate content of various kinds.
When applying SBPCG to a content generation problem,
two key problems are defining the right evaluation function,
that assigns a number to a candidate content artefact based
on its quality or suitability, and defining a good content
representation. The representation can be very different from
the actual content artefact – e.g. a vector of real numbers or
rules in a grammar might be interpreted as a weapon or as
a personality. The process of creating the content from its
representation before evaluating it is called the genotype-to-
phenotype mapping.

C. Interactive evolution

Finding a good evaluation function (also called fitness
function) is a key problem for many applications of evo-
lutionary computation. While some properties of an evolved
object are very simple to measure, others are hard to even
reliably approximate using an algorithm. Good examples
are properties relating to the beauty, interestingness, fun or
ingenuity of an artefact. The obvious solution is to include
a human as part of the evaluation process: the evolutionary
algorithm presents candidate artefacts to a human user, who
responds by assigning a fitness value or selecting which
ones of the presented artefacts he/she likes best. Interactive
evolution, as this approach is called, has been used widely
in evolutionary art and music [11], [12].

D. Agent-based PCG

A very different approach to generating game content is
to use a large number of independent agents to create the
content. These agents might work in parallel or serially,
and might or might not have the ability to interact with
each other. A good example of this approach is Doran
and Parberry’s agent-based generation of terrain, where a
populations of different agents are let loose on an initially
featureless island in different “waves” [13]. One wave creates
mountains, followed by another wave of agents that create
rivers that flow from the mountains to the sea, followed by
shoreline agents that create nice beaches along the coast,
followed by erosion agents etc. While the results look good,
it is rather hard to control that gameplay-critical constraints
on the terrain (e.g. the existence of traversable routes out of
valleys) are observed.

E. Combining content generators

In the aforementioned SBPCG survey, it is observed that
the genotype-to-phenotype mapping can be considered a pro-
cedural content generator in its own right [2]. This provides
an opportunity to combine content generators, by putting
an “inner” PCG algorithm as the genotype-to-phenotype
mapping within a search-based “outer” PCG algorithm. What

is evolved in the outer generator is in other words the
parameters of the inner generator. In a recent paper, this
strategy is discussed and it is argued by using the inner
generator to ensure well-formedness and playability, the
outer generator can focus on ensuring the less tangible
aesthetic properties, such as interestingness and fun; this
way, the compositional content generator can combine the
best properties of both its constituent algorithms [14]. This is
demonstrated by generating dungeons for a fictive Roguelike
game using answer set programming as an inner generator
for guaranteeing basic playability, and an evolution strategy
as an outer generator with an evaluation function designed
to measure the challenge of the dungeon.

III. SYSTEM OVERVIEW

The system presented in this paper can be seen as a com-
positional procedural content generator, with an interactive
genetic algorithm as its outer generator and an agent-based
algorithm as the inner generator. The domain is levels for
Infinite Mario Bros, using the Mario AI benchmark; the
inner generator guarantees that levels are playable using
simulation-based testing, and the in outer loop the user
decides which inner generator generates the most interesting
levels. As the agent-based procedural content generator is
parameterised using a rather flexible language, it can also be
seen as an attempt to evolve the inner generator itself, with
the outer generator becoming a procedural procedural level
generator generator.

A. Interface and workflow

Figure 1 describes the workflow of the system, seen from
the perspective of a user using it as a tool via the graphical
user interface. The tool starts by selecting 12 generators
at random from a database of viable (inner) generators.
This database will be described further in the section about
the genetic algorithm (GA). These 12 generators make up
generation 0 and are visualised to the user. Each generator
can be visualised in several different ways. To begin with, a
“cloud map”, which can be briefly described as the average
level the generator output, is shown for each generator. The
cloud map is created by generating a number of maps and
at each tile position averaging the legend colour of the
there present tile in each map. The second visualisation is
a playability rating which shows to what extent the levels a
generator creates are playable by the AI. A user can right-
click to further inspect a generator and is then shown a
sample of its generated levels. On clicking one of these levels
it can be played in the Mario interface to verify the expected
gameplay value. Now, as long as the user is not satisfied by
any of the generators, they can iterate through the GA. This
is possible by clicking generators with preferred features to
mark them as parents and then clicking a button to go to
the next generation. When a satisfying generator is found, its
levels can be played endlessly. Right now this is only possible
from within the tool. Created generators can be exported to
be fed into new runs of the algorithm.



Initialize

Select view

Inspect View

Test/Play

Next Generation

Go Back <

Genetic 
Algorithm

Select view

Fig. 1. The workflow of the PPLGG GUI.

IV. INNER GENERATOR

The inner generator is defined as a collection of agents.
Each agent is specified with a set of attributes and be-
haviours, much like the software agents in Doran and Par-
berry’s work [13]. Our approach differs from theirs in several
ways, most importantly in that while Doran and Parberry
uses hard-coded agents with specialised behaviours like (like
“coastline agents” and “smoothing agents”), we use one
general agent – the GAgent – that can be parameterised
to provide a large variety of behaviours. The reason for
choosing the GAgent over hard-coded is to keep the space of
possible content generators as large as possible. The results
of this approach is indeed that a large variety of different
generative behaviours can be specified, most of which would
be unlikely to contribute to building entertaining levels. It
is therefore up to the fitness function in the GA to decide
whether or not a randomly initiated GAgent will survive as
part of a generator.

A generator contains anywhere between 14 an 24 agents
(these numbers were determined experimentally to be suit-
able for the chosen level length), which modify the level
through moving around on it and “drawing” or “erasing”
blocks of different kinds. The agents move independently
and usually concurrently. They can not communicate with

each other except through modifying the level.
An agent is defined by a number of parameters, that

specify how it moves, for how long, where and when it starts,
how it changes the level and in response to what. The agent’s
behaviour is not deterministic, meaning that any collection
of agents (or even any single agent) is a level generator that
can produce a vast number of different levels rather than just
a generative recipe for a single level.

The first five parameters below are simple numeric param-
eters that consist in an integer value in the range specified
below. The last five parameters are categorical parameters
specifying the logic of the agent, which might be associated
with further parameters depending on the choice of logic.

• Spawn time [0-200]: The step number on which this
agent is put into the level. This is an interesting value
as it allows the sequencing of agents, but still allows
for overlap.

• Period [1-5]: An agent only performs movement if its
lifetime in steps is divisible by the period.

• Tokens [10-80]: The amount of resources available to
the agent. One token roughly equals a change to one
tile.

• Position [Anywhere within the level]: The center of
the spawning circle in which the agent spawns.

• Spawn radius [0-60]: The radius of the spawning circle
in which the agent spawns.

• Move style: the way the agent moves every step.
– follow a line in a specified direction (of 8 possible

directions) with a specified step size.
– take a step in a random direction

• Trigger state: The condition for triggering an action,
checked after each movement step.

– always
– when the agent hits a specified type of terrain.
– when a specified rectangular area is full of a

specified tile type
– when a specified area does not contain a specified

tile type
– with a specified probability
– with a specified time interval

• Boundary movement: The way the agent handles hit-
ting a boundary.

– bounce away
– go back to start position
– go back to within a specified rectangular area

around the start position
• Action type: The type of action performed if it is

triggered.
– place a specified tile at position
– place a rectangular outline of specified tiles and

size around position
– place a filled rectangle of specified tiles and size

around position
– place a circle of specified tiles and size around

position



– place a platform/line of specified tiles and size at
position

– place a cross of specified tiles and size at position
– place or remove specified tiles in a specified area

according to the rules of Conway’s “Game of
Life” [15].

The core loop of the agent is very simple, as almost all
of the intelligence depends on the logic specified by the
parameters above. Every tick, each active agent first moves,
then checks whether it has to react to level boundaries.
Then it checks whether its action is triggered and if so, it
performs its action. Each time an action is performed, the
agent consumes a token; it continues until it has run out of
tokens.

V. OUTER GENERATOR

The inner generators are parameterised (or, depending
on your perspective, generated) by the outer generator. As
described below, this is an interactive genetic algorithm
where the user makes the ultimate quality judgment but is
aided by simulated play-through for quality checking.

A. Interactive genetic algorithm

The genetic algorithm keeps a population of 10 individ-
uals. Each individual is a level generator, and is simply
represented as a list of its constituent agents. The agents, in
turn, are represented by the values of all their parameters,
as described above. Each generation, it displays all 12
individuals to the user, and the user chooses one or more
individuals to form the basis of the next generation. When the
user chooses to move on to the next generation, an entirely
new population is generated based on mutation and crossover
of the selected parents.

As mentioned above, the users are aided in their decisions
about which levels to select as parents by being able to
experience them in several forms: as a cloud visualisation, as
visualisations of individual generated levels, through playing
individual levels, and through a playability rating. Figure 2
shows a level as represented in the individual level view,
and how a small slice of it looks in the game view. The
playability rating is calculated automatically by the program
through sampling ten levels from each generator, and letting
an AI try to play them to completion. In this version of
the generator, we use Robin Baumgarten’s Mario-playing
agent, which won the 2009 Mario AI competition and is
based on searching the state space of the game with A*. The
playability ratio is simply defined as the average proportion
of the ten levels that the agent manages to clear before dying.
It is perfectly possible, and perhaps desirable (though this is
up to the user), for a level generator to have a playability
rating of 1.

Initial testing revealed a problem in that a large proportion
of completely randomly initialised generators only generate
levels that are neither playable nor interesting. Furthermore,
in a population of 10 randomly initialised level generators
some agent types might be missing altogether, for example
there might not be any agents that add coins or there might

= = = =

Fig. 2. A single generated level, and a small part of the same level in the
game view.

be no agents that draw platforms to stand on in the second
half of the level. This means that there might not be enough
good genetic material in the first generation to get evolution
started, as long as evolutionary runs are completely randomly
seeded.

We therefore introduced an initialisation step, to ensure
a reasonably high playability ratio for the initial genera-
tors. Unlike in the interactive GA this process of finding
suitable candidates for the database is done offline and is
non-interactive. To filter out a suitable generator the GA
evaluates fitness of a randomly seeded generator by playing
three of its levels and then returning the average traversed
horizontal distance among the play-throughs, representing
playability. After the evaluation step it applies tournament
selection to determine parents and uses the mutation (50%)
and crossover (90%) operators to produce a new population.
The algorithm returns a level generator whenever one is
found that produces only playable levels, or after a specified
number of generations (100). This generator is then added
to the database selectable for use as a starting point for
the interactive GA. Figure 3 shows the generators that were
created in the initialisation step of an example run.

B. Mutation and crossover

Crossover of two generators is defined as follows. A
random number between 0 and 1, r, is determined. then
r∗size of parent1 agents are picked randomly from parent
1, and (1 − r) ∗ size of parent2 agents are picked at
randomly from parent 2. Together these agents make up
the new generator. No cross-over is done between agents
themselves, since generators need to swap features and
features are mainly recognised as entire agents.

Mutation changes one of the agents by shifting all at-
tributes by a small amount. Mutation of a generator can also



Fig. 3. The database of initial content generators (cloud view).

add a new agent or remove a randomly chosen agent. The
results of the crossover and mutation operators are visualised
in figure 4

VI. EVALUATION

This section reports on informal self-evaluation of the
system and associated tool by the designers.

A. User experience

Searching a large space by stochastic methods usually
involves a very large number of evaluations. This is a
problem for interactive evolution, as human evaluation of
candidate artefacts takes time and effort, and humans have a
limited attention span. The problem of users losing interest
in partaking in the evolutionary process after a number of
generations is called user fatigue. In the current system we
have tried to circumvent user fatigue with the initialisation
process, which ensures a high playability rate of every
generator saved in the database. This way users can start
working with their preferences right away, instead of having
to select for playability.

Based on our own experience of the system, we consider
this approach to have succeeded given the broad design goal
that it should be easy for a user to generate playable and
interesting levels. However, for a user looking to create a
generator that creates some specific level feature, it can still
take many generations before that goal is achieved, if ever.

Most importantly, we felt in control in the selection pro-
cess. This is partly because of its high level of transparency:
when comparing parents and their off springs it is very clear
from which parent each feature comes from.

Offspring

Selected Parents

Fig. 4. Offspring, generated from three parents by recombination and
mutation. (All generators shown in cloud view.)

B. Diversity of generated levels

The amount of variability between levels differs from
generator to generator: some generators seem to produce
essentially the same level with minor variations, others
generate levels that look completely different from each other
in the game view, while retaining a common “theme” or
“style”. (From the higher-level inspector view it is almost
always easy to see which levels are created by the same
generator.) This variance is mostly due to the variance in the
agent spawn radius. This attribute states in which radius from
its starting position an agent may be spawned. A high value
means that levels from that generator will be more different
locally. Figure 5 shows an example of the same area in four
different levels from the same generator, and discusses their
similarities.

Within the same level, one can likewise often see large
differences between different parts. This is due to that some
agents are only active within part of a level, depending on
the starting position, number of tokens and movement logic.
Different levels generated by the same generator usually
show the same differences between parts; for example, one
generator might generate levels that all have many more coins



Fig. 5. The start of four levels (the first screen) generated by the same
generator. One can immediately see that the four level segments are related,
so to speak created in a particular style. Certain higher-level descriptions
hold true for all four levels, e.g. that there are multiple short platforms
stacked on top of each other and vertically elongated fields of coins. A
theme that seems to recur is solid stone blocks in cross-shaped patterns. At
the same time, the segments are completely different from each other: no
individual features can be found in the same place in the four levels.

Fig. 6. Typical variance within a level. Four screens from different parts
of the same level. No clear common theme can be discerned, apart from the
absence of enemies and the near-absence of brick-blocks.

in the second half than the first, even though they differ in
the precise locations of these. Figure 6 shows four screens
taken from different parts of the same level.

C. Performance

For real-time level generation, or for use as a genotype-to-
phenotype mapping in artificial evolution, a content generator
needs to be blazingly fast. To measure the speed of an
arbitrary procedural level generator we sampled 100 levels
each from 100 random generators. To test the scalability of
the algorithm over different map sizes, we tested with three
different several widths (the “standard” width is 180 blocks,
corresponding to levels that take 1-2 minutes to play). As ran-

domly initialised level generators tend to produce unplayable
levels, we also redid the test with generators randomly
sampled from the database of diverse level generators used
for initialising evolutionary runs. From the results in table I
we can see that generation time increases approximately
linearly with level length, and that the generators from
the database are significantly slower than randomly created
generators. The latter is probably due to that playable levels
are characterised by being more dense than the unplayable
levels generated by many random generators. The most
important fact, however, is that levels of ordinary length (300
blocks) can indeed be generated blazingly fast – more than
20 per second on the standard laptop we used for testing. This
opens up for using the generators online, for real-time level
generation in response to user actions. One could imagine a
game where each level is generated by a different generator.
Each of these would have different features and difficult,
thus making the game different on each play through, but
still retaining a reasonable learning curve and a set narrative
progression and thematic diversity throughout the length of
the game.

width time
80 5ms
180 16ms
1000 84ms

width time
80 24ms
180 45ms
1000 160ms

TABLE I
AVERAGE GENERATION SPEED PER LEVEL RELATIVE TO LEVEL WIDTH

FOR RANDOM GENERATORS (LEFT) AND DATABASE GENERATORS
(RIGHT).

VII. DISCUSSION

Originally, the procedural procedural level generator gen-
erator described in this paper was meant to be able to
generate levels for any games for which levels could be
described as a two-dimensional matrix (including other plat-
formers, Roguelikes, Zelda-style action-adventures etc). The
constraints of the particular game would be included as
parameters for the generators. During work with the system,
this turned out to be a too ambitious goal at this stage.
However, in principle it would be possible to create a
procedural generator of procedural level generators that is to
a large extent game-agnostic. When prototyping a new game,
it would be no doubt be very useful to be able automatically
generate interesting levels for it. Key stepping stones towards
making this system more generic would be to develop a
language in which to encode the playability constraints of
the new game, and a way of automatically learning an AI
that can play the new game proficiently in order to test the
playability of the levels.

In the background, we discussed a compositional proce-
dural content generator which uses an evolution strategy as
an outer generator and an inner generator based on answer
set programming (ASP) [14]. It is interesting to compare
that system with the system described in the current paper:
both can be seen as compositional content generators, or as



procedural procedural content generator generators. In both
cases, the inner generator could at any point be removed
from the outs generator and produce a huge number of
unique levels. Apart from the domain and type of evaluation
function, the main difference is that in the aforementioned
paper the inner generator was expressed in ASP and in the
current system it is expressed as logics and parameters for
a population of agents. The strength of ASP as an inner
generator is that it can guarantee that certain constraints are
met, in particular such as having to do with well-formedness
and playability. The agent-based approach cannot guarantee
the satisfaction of any constraints at all – this is why
the simulation-based testing using an AI player is needed.
However, the agent-based generator has the distinction of
producing levels with a certain style. Cursory inspection of
randomly chosen outputs from any given ASP-based dungeon
generator show no obvious commonality in style; the agent-
based generators, on the other hand, do.

Another aspect of the generators generated by the cur-
rent system that should not be overlooked is that many
of them generate levels that quite simply do not look like
any platform game levels we have seen before. Most of
the generators submitted to the Mario AI level generation
competition [10] rely on placing (possibly parameterised)
pre-specified elements of different kinds. Other generators,
like Tanagra, use completely different methods for generating
level geometry but have other limitations (e.g. the current
Tanagra implementation seems never to generate branching
paths or vertical stacking of any kind) [7]. At their best,
the levels generated by the agent-based generators manage
to break conventions about how certain blocks should be
placed relative to each other, while still seeming purposeful.
For those who believe that one of the reasons for engaging
in PCG research is to allow for machine creativity beyond
the constraints humans seems to apply to themselves, this
should be good news.

VIII. CONCLUSION

We have presented a procedural procedural level gener-
ator generator, where an interactive evolutionary algorithm
evolves agent-based generators consisting of populations of
agents that draw and erase blocks whilst traversing the
level canvas. Alternatively, the system can be understood
as a compositional procedural content generator with an
interactive evolutionary algorithm as its outer generator and
an agent-based inner generator. The two perspectives are
complementary rather than exclusive. We believe the system
could relatively easily be generalised to games of other
genres, given that the game rules could be expressed in an
appropriate language and an AI to play the game be learned.

ACKNOWLEDGMENTS

The research was supported in part by the Danish Research
Agency (FTP) project AGameComIn (number 274-09-0083).

REFERENCES

[1] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular Automata
for Real-time Generation of Infinite Cave Levels,” in Proceedings of
the ACM Foundations of Digital Games. ACM Press, June 2010.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: a taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
pp. 172–186, 2011.

[3] A. Smith and M. Mateas, “Answer set programming for procedural
content generation: A design space approach,” IEEE Transactions on
Computational Intelligence and AI in Games, 2011.

[4] J. Dormans, “Engineering emergence,” Ph.D. dissertation, Amsterdam
University, 2012.

[5] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology,
2008.

[6] K. Compton and M. Mateas, “Procedural level design for platform
games,” 2006.

[7] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive planning
and constraint solving for mixed-initiative level design,” IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 3, no. 3,
pp. 201–215, 2011.

[8] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player Ex-
perience for Content Creation,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 1, pp. 54–67, 2010.

[9] S. Karakovskiy and J. Togelius, “The mario ai benchmark and com-
petitions,” IEEE Transactions on Computational Intelligence and AI
in Games, 2012.

[10] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten, “The 2010 Mario AI championship:
Level generation track,” IEEE Transactions on Computational Intelli-
gence and Games, 2011.

[11] H. Takagi, “Interactive evolutionary computation: Fusion of the capac-
ities of EC optimization and human evaluation,” Proceedings of the
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[12] J. Romero and P. Machado, The art of artificial evolution: a handbook
on evolutionary art and music. Springer-Verlag New York Inc, 2007.

[13] J. Doran and I. Parberry, “Controllable procedural terrain generation
using software agents,” IEEE Transactions on Computational Intelli-
gence and AI in Games, 2010.

[14] J. Togelius, T. Justinussen, and A. Hartzen, “Compositional proce-
dural content generation,” in Proceedings of the FDG Workshop on
Procedural Content Generation, 2012.

[15] M. Gardner, “Mathematical games: The fantastic combinations of john
conways new solitaire game life,” Scientific American, vol. 223, no. 4,
pp. 120–123, 1970.


