
Multi-Level Evolution of Shooter Levels

William Cachia, Antonios Liapis, Georgios N. Yannakakis
Institute of Digital Games, University of Malta, 2080 Msida, Malta
{william.cachia.07, antonios.liapis, georgios.yannakakis}@um.edu.mt

Abstract
This paper introduces a search-based generative pro-
cess for first person shooter levels. Genetic algorithms
evolve the level’s architecture and the placement of
powerups and player spawnpoints, generating levels
with one floor or two floors. The evaluation of gen-
erated levels combines metrics collected from simu-
lations of artificial agents competing in the level and
theory-based heuristics targeting general level design
patterns. Both simulation-based and theory-driven eval-
uations target player balance and exploration, while re-
sulting levels emergently exhibit several popular design
patters of shooter levels.

Procedural content generation (PCG) has often been used
in the game industry to create single-player experiences
such as the dungeons of Diablo (Blizzard 1996), or large-
scale gameworlds which do not impact player balance (or
where imbalance can be mitigated via e.g. terraforming) in
games such as Endless Space (Amplitude 2012). Competi-
tive games often used for electronic sport, such as Starcraft
(Blizzard 1996) or Call Of Duty: Advanced Warfare (Activi-
sion 2014), rarely include procedurally generated content;
this can be traced back to a variety of design decisions on the
core gameplay (which often involves memorization of lo-
cales and action sequences) and production choices (e.g. bal-
ancing teams through matchmaking rather than generated
levels of varying challenge).

While the game industry continues to focus on the gen-
eration of levels for single-player games, recent academic
interest has been targeting genres traditionally considered
off-limits to PCG. Levels for strategy games such as Star-
craft were evolved by Togelius et al. (2013), who requested
experienced players’ feedback on the best generated levels.
Experts’ responses highlighted issues with human percep-
tion of balance, which in turn opens up new research on re-
ducing such effects via e.g. hard-coded symmetry (Uriarte
and Ontañon 2013). For first person shooter (FPS) games,
stochastic search has been used to generate simple, flat lev-
els based on simulations with artificial agents (Cardamone et
al. 2011; Lanzi, Loiacono, and Stucchi 2014) or on human
votes (Ølsted, Ma, and Risi 2015); however, search-based
PCG methods of FPS levels remains an under-explored area.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper introduces a method for evolving FPS lev-
els with more than one floors, allowing for more divergent
gameplay. A second floor allows popular design patterns
of FPS levels to emerge naturally, including multiple flank-
ing routes, positional advantage and sniper locations (Hullett
and Whitehead 2010). The design of the algorithm is largely
inspired by Cardamone et al. (2011), but expanded to also
optimize the placement of weapons, healthpacks and spawn-
points. The larger search space (a result of a more complex,
multi-floor level) needs to be explored in an efficient man-
ner; the proposed method involves a two-stage optimization
process where the level architecture is evolved in the first
stage while the game object placement is evolved in a sec-
ond stage. In order to evaluate the complex levels, several
simulation-based heuristics from Cardamone et al. (2011)
and Lanzi, Loiacono, and Stucchi (2014) are combined with
theory-driven evaluations of popular game level design pat-
terns (Liapis, Yannakakis, and Togelius 2013). Each stage
of evolution uses only those heuristics appropriate to that
stage, alleviating optimization effort (to a degree). Results
show how shooter levels with two floors compare to those
with one floor, based on the heuristics’ scores but also based
on the gameplay of the artificial agents which evaluate them.

Related Work
This paper discusses a method for generating shooter lev-
els via a genetic algorithm. The genetic algorithm attempts
to optimize a simulation-based fitness function derived from
playthroughs with artificial agents, as well as fitness func-
tions which capture (implicitly or explicitly) design patterns
common in shooter levels. The sections below elaborate on
the different methods of generating game levels procedu-
rally, and present an overview of level design patterns.

Procedural Content Generation and Shooter Levels
There is a long history of procedural content generation in
the game industry; most generators in commercial games
target levels, from the dungeon generator of Rogue (Toy and
Wichman 1980) to the world generator of Civilization V (Fi-
raxis Games 2010). Recent academic interest in PCG (To-
gelius et al. 2011) attempts to identify new types of game
content which can be generated (Togelius, Nelson, and Li-
apis 2014), but also to discover new methods for generat-
ing it. Most generative methods fall under the categories of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/157728232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

constructive, generate-and-test and search-based. Construc-
tive methods use finely tuned algorithms to generate game
artifacts without testing whether they are playable or of
high quality; generate-and-test methods perform such tests
and regenerate artifacts until playability constraints are met.
Search-based methods often include some form of stochas-
tic search (and specifically evolutionary computation) and
attempt to optimize one or more desirable qualities in the
artifacts. Quality can be derived from mathematically de-
fined fitness functions grounded in theoretical frameworks,
from playtraces of simulated games (simulation-based eval-
uation), from models of player experience learned from real
human traces (Yannakakis and Togelius 2011), or directly
from human interaction (Liapis, Smith, and Shaker 2015).
The generator described in this paper uses both simulation-
based evaluations and mathematically defined fitness func-
tions which build on popular level design patterns.

One of the main inspirations for the proposed generator is
the work of Cardamone et al. (2011), one of the first attempts
at evolving FPS levels. In their paper, Cardamone et al. ex-
periment with different representations (including the digger
and all-black approach used in this paper) of shooter levels
as genes, and use simulation-based evaluations to drive the
evolutionary process. Their approach optimizes the archi-
tecture based on the space available for navigation and the
average fighting time of artificial agents in a playthrough;
powerups (healthpacks, weapons) and player spawnpoints
are dispersed deterministically and are not evolved. While
this paper uses the fitness dimensions of Cardamone et al.
(among other metrics), the proposed two-stage approach can
optimize game object placement after the level architec-
ture is evolved. The dual representation of level architec-
ture and game object placement used in the two-stage evo-
lutionary process resembles that of Cook and Colton (2011)
which used a similar composite representation (including the
game’s ruleset in the evolvable genes) but evolved all com-
ponents simultaneously rather than in stages.

Design Patterns and Shooter Levels
Design patterns have been used in many different fields
(software architecture being an obvious example) to de-
scribe a common problem in the field and then describe “the
core of a solution to that problem” (Alexander, Ishikawa,
and Silverstein 1977). Björk and Holopainen (2004) intro-
duce game design patterns as “a tool for understanding and
creating games”. The numerous game design patterns of
Björk and Holopainen were distilled to those most relevant
to level design (and most straightforward to compute) and
reworked as fitness functions by Liapis, Yannakakis, and To-
gelius (2013) for the evolution of game levels. As the pat-
terns which inspired them were general across games, so do
these evaluations of exploration, area control and balance
apply to many game genres, albeit at the cost of specificity.
This paper combines such general evaluations of game level
patterns with simulation-based evaluations (which are spe-
cific to the game genre, to the game engine and to the oppo-
nent AI in the game) in order to drive the evolution of object
placement in a multi-floor shooter level.

Although the design patterns of Björk and Holopainen can

Figure 1: An evolved multi-floor shooter level in Cube 2.

be used to describe all games, design patterns specific to
shooter levels have also been identified. Hullett and White-
head (2010) identify ten patterns pertaining to positional
advantage (sniper location, gallery, choke point), large-
scale combat (arena, stronghold), alternate gameplay (tur-
ret, vehicle section) and alternate routes (split level, flanking
route). Not all shooter levels need to include all patterns (es-
pecially e.g. patterns of alternate gameplay). While the gen-
erator does not explicitly evaluate evolving levels based on
these patterns, several design decisions in its conception are
informed by the patterns of Hullett and Whitehead1 or are
implicitly targeted by the current evaluation functions2.

Methodology
This section describes how shooter level topology is com-
pactly represented as a genotype, how this genotype evolves
and which criteria are used for evaluating it.

Shooter Level Representation
For the purposes of this generator, the minimal components
necessary for shooter levels are considered. These compo-
nents are topological (rooms, corridors and stairs) as well
as game-specific (spawnpoints and powerups). Topological
components form the level architecture in the Cube 2 en-
gine3, using two different representations depending on the
floor being created. For the first floor, corridors and rooms
are placed and interconnected; corridors and rooms define
this floor’s passable tiles, and anything beyond these tiles
consists of walls. For the second floor, a random digger
approach is used: an agent converts impassable space into
passable by moving and turning at random (guided by prob-
abilities) and adds stairs to the first floor. The height of the
first floor’s walls extends well beyond the height of the two
floors, allowing players from the second floor to jump down
and join the action. The digger begins at the center of the
map; when it adds a passable tile (by moving forward), a

1For instance, the use of a digger for the second floor to create
flanking routes and hidden areas and, on the first floor, the use of
rooms to form arenas and corridors to form chokepoints.

2For instance, the exploration fitness rewards multiple paths
(which can act as flanking routes) between two spawnpoints.

3http://sauerbraten.org/

(free-floating) balcony is created if the floor below has pass-
able tiles or a tunnel is dug out if the floor below has walls.

Corridors and rooms can only be placed on the first floor,
while the random digger can only operate on the second
floor; this creates open spaces for arenas (Hullett and White-
head 2010) on the first floor, while the random digger is
likely to create narrow, winding corridors which provide
flanking routes to the arenas below, or create narrow bal-
conies which can act as a gallery (if placed above a corridor)
or a sniper location (if placed above an arena) as per the pat-
terns of Hullett and Whitehead. Moreover, the continuous
“trail” of the digger ensures that all areas in the second floor
are connected, and therefore accessible to all players.

Once the architecture has been created, scripts add loca-
tions where players start the game and resurrect when they
are killed (spawnpoints) and locations where powerups ap-
pear at regular intervals. Powerups can be healthpacks and
weapons: a healthpack powerup increases a player’s health
up to a maximum value, while a weapon powerup increases
a player’s available shots with a specific weapon (unlocking
that weapon if a player did not posses it). Gameplay fol-
lows standard tropes of the genre: players start the game at
a spawnpoint (chosen randomly) and need to find and kill
their opponents while also managing their health by col-
lecting healthpacks and ammunition for their more powerful
weapons (rifles in this study). Upon dying, players reappear
at full health at a randomly chosen spawnpoint.

The components of the shooter level (the phenotype) are
represented in the genotype as an array of real numbers.
Rooms are represented by their central coordinates and size,
corridors are represented by their coordinates and the corri-
dor’s width and length (negative length aligns corridors ver-
tically rather than horizontally). The second floor’s digger
is represented as five probability values: the probability to
move forward, to turn left, to turn right, to move onto a vis-
ited cell, to place a flight of stairs. To avoid a low locality
in the search space by having a digger create different sec-
ond floor “trails” from one generation to the next, a seed
for all diggers’ randomness is set at the start of evolution.
Since spawnpoints and powerups can be placed on either
floor, a spawnpoint is represented by its Cartesian coordi-
nates and its floor; in addition to those values, powerups in-
clude a type value, which determines if the powerup is a
healthpack or a weapon pickup. To sidestep the imbalance
between weapons, all weapon powerups in the reported ex-
periments are rifles.

Shooter Level Evaluation
Evaluating shooter levels is not straightforward: the current
generator evaluates levels based on simulations with artifi-
cial agents, based on the available space for navigation and
based on the presence of specific level patterns.

Simulation-based metrics are derived from brief play-
throughs of four artificial agents, which are included in the
Cube 2 software and are set on an average skill level (simu-
lating a more human-like aiming skill). The simulations set
out to test how well the level accomplishes two design goals:
(a) have players engage their opponents as much as possible
and (b) maintain a balance in player kills. Goal (a) emulates

the frantic pace of an FPS deathmatch, and penalizes long
periods of downtime where players search for their oppo-
nents when the game starts; however, it also penalizes in-
stances where opponents kill each other quickly due to the
lack of cover, escape routes, or healthpacks (all of which
prolong the fight). This goal is evaluated based on the arti-
ficial agents’ fighting time, initially used by Cardamone et
al. (2011), which is calculated from the moment a player en-
gages any opponent to the moment the player is killed. Total
fighting time (T̄f) is averaged from all players in the game
and all their “lives” (i.e. the times they respawned); this to-
tal fighting time is used to drive evolution. Goal (b) aims
to ensure that all players have an equal chance of winning,
and is in line with the player balance game design pattern
(Björk and Holopainen 2004). An equal kill count among
artificial agents (of the same skill level) means that there is
little impact from the initial spawn locations of players. The
kill ratio heuristic (Kr), initially used by Lanzi, Loiacono,
and Stucchi (2014), was extended for more than two oppo-
nents (four in this study) and is calculated as per eq. (1).

Kr = −
∑B

i=1
Ki

K logB

(
Ki

K

)
(1)

where B is the number of artificial agents in the simulation;
K is the total number of opponents killed by all agents; Ki

is the number of opponents which were killed by agent i.
Another heuristic introduced by Cardamone et al. (2011)

is free space. Levels with enough free space are easier to
navigate than those with narrow corridors, although the lat-
ter allow players to take cover and hide, which can increase
fighting time. The free space metric (S) is calculated as the
number of passable tiles on both floors, divided by the map’s
dimensions. Note that for the second floor, S ignores areas
which are open-air (allowing players to jump) but cannot be
traversed via e.g. ramps or balconies.

In order to specifically adjust the locations of powerups
and spawnpoints, this paper uses the generic methods for
evaluating game levels of Liapis, Yannakakis, and Togelius
(2013), adapting them to the needs of shooter levels. The de-
sign goals for object placement are: (a) to place spawnpoints
faraway from each other and in difficult to discover locations
(to avoid camping behaviors) and (b) to have some powerups
nearby where players spawn but also some powerups far
away to prompt level traversal. Goal (a) is achieved with
area control (fa) and exploration (fe) heuristics and their
balance dimensions (ba, be) in eq. (2-5). Goal (b) is achieved
with powerup distribution (fp) in eq. (6); fp rewards levels
where an equal amount of powerups is in safe areas (near
spawnpoints) as in unsafe areas (far from all spawnpoints).

fa = 1
W

∑W
i=1 Ai (2)

ba = 1− 1
W (W−1)

∑W
i=1

∑W
j=1
j 6=i

|Ai−Aj |
max{Ai,Aj} (3)

fe = 1
W

∑W
i=1 Ei (4)

be = 1− 1
W (W−1)

∑W
i=1

∑W
j=1
j 6=i

|Ei−Ej |
max{Ei,Ej} (5)

fp = 1− |2Ps

P − 1| (6)

where W and P is the number of spawnpoints and power-
ups, respectively; Ai is the area of passable tiles which are
safe for spawnpoint i; Ei is the exploration effort (simulated
as flood fill area coverage) to reach all other spawnpoints
starting from spawnpoint i; Ps is the number of powerups in
a safe area (for any spawnpoint). Safety of a tile to a spawn-
point is measured as the distance from that spawnpoint to the
closest other spawnpoint; if the safety score is above a con-
stant value (0.35 in this study), the tile is considered safe.

Shooter Level Evolution
In order to more efficiently search the large space of possible
levels, the generator described in this paper evolves shooter
levels in two stages. Each stage evolves different parts of the
genotype, and attempts to limit the breadth of fitness dimen-
sions being optimized. The first stage evolves the architec-
ture of the level, placing rooms and corridors and finding
the right probabilities for the second floor’s digger. The sec-
ond stage evolves the placement of game objects (powerups,
spawnpoints) on an otherwise static level. The rationale for
the two-stage process (and the order of its stages) is that ar-
chitecture needs to be finalized before the finer details such
as powerups can be placed. The fittest individual of the first
stage defines the architecture of the shooter level used in
the second stage; all individuals in the second stage use the
same architecture, changing only the position and type of
powerups and spawnpoints.

Since the different stages in the proposed process evolve
different aspects of the shooter level, the fitness function
for each stage needs to be carefully designed. Levels are
evolved to maximize Farc in eq. (7) in the first stage: the
first stage evaluates available space for gameplay (S) and
attempts to secure an adequate fighting time and kill ra-
tio for the artificial agents in the simulations. The second
stage places more emphasis on object placement evaluated
via Fobj in eq. (8); however, simulation-based heuristics are
retained since simulations can capture the emergent impact
of the moving game objects. Evolution in the second stage
attempts to optimize Farc + Fobj .

Farc = 1
3 (T̄f + Kr + S) (7)

Fobj = 1
5 (fa + ba + fe + be + fp) (8)

The first stage evolves levels’ architecture disregarding
spawnpoints and powerups when doing so; however, spawn-
points are essential for gameplay (otherwise players can not
start the game somewhere) while powerups play a significant
role both for gameplay purposes (without rifle pickups in the
level, the default weapon is very weak) and as nodes for the
artificial agents’ pathfinding. Rather than bias search by ran-
domly placing powerups and spawnpoints in the evolving
levels or by randomly mutating object placement while ar-
chitecture also changes (as the object is likely moved inside
a wall), levels in the first stage of the two-stage evolution
use the method of Cardamone et al. (2011) for uniformly
distributing objects in the level. This method is constructive,
and divides each floor into 16 blocks of equal size: if suf-
ficient free space exists within the block, one powerup and
two spawnpoints are placed inside the block.

In both stages, levels are evolved via mutation alone.
During evolution, parents to mutate are chosen based on a
tournament selection of size 3, i.e. three individuals are se-
lected from the previous population at random and the fittest
among them becomes a parent. Every level component de-
scribed in the chosen parents’ genotype has a chance of mu-
tating; most level components have a 10% probability of
mutating, although certain probabilities were adjusted based
on preliminary testing. Mutation adjusts the current param-
eters, increasing or decreasing them by a random value; for
instance, coordinate mutation of a powerup moves it up or
down and left or right from its current position while type
mutation of a powerup may change it from weapon to health-
pack. Due to the admittedly high mutation rates, repair func-
tions for each stage of evolution correct any errors intro-
duced during mutation. In the first stage, if mutation renders
a room or corridor inaccessible from the rest of the level,
then the repair function removes it from the phenotype (re-
placing it with walls). In the second stage, if mutation moves
a powerup or spawnpoint outside passable areas, then the
repair function moves it to a random passable area on the
same floor. The entire population is replaced by offspring of
fit parents, except for the three fittest individuals which are
transferred to the next generation (i.e. elitism of 3).

It should be noted that in the first stage of evolution,
only the genetic information for rooms, corridors and dig-
ger probabilities is used to create the level, with powerups
and spawnpoints placed in a constructive fashion described
above. In the second stage of evolution, only the coordinates
and types of powerups and spawnpoints are used to create
the level, with the architecture loaded from the final best in-
dividual of the first stage. This reduces the number of genetic
parameters which need to be optimized per stage.

Experiments
This paper evaluates the generator based on its behavior dur-
ing evolution and — primarily — based on the shooter levels
it produces. The two-stage evolutionary method proposed is
used to generate shooter levels with two floors, as well as
shooter levels with one floor (by omitting the random dig-
ger). Results are collected from 10 independent evolution-
ary runs for each type of level. Each run optimizes a popu-
lation of 50 individuals for a total of 60 generations; the first
stage evolves towards Farc of eq. (7) for 30 generations and
the second stage for Farc + Fobj of eq. (8) for another 30
generations. To control for the random nature of deathmatch
games, simulation-based evaluations are averaged from five
2-minute simulations with four artificial agents.

Optimization Behavior
The final results of two-stage evolutionary runs for shooter
levels with one or two floors are collected in Table 1.
The values are averaged from 10 independent runs of each
method, with standard deviation included in parentheses. It
is clear that levels with a second floor, when optimized, can
achieve a higher T̄f metric than levels with a single floor;
comparisons between two-floor and one-floor level evolu-
tion shows significant differences using a two-tailed Mann-

Two floors One floor
Fitn. Fittest Average Fittest Average
T̄f 30.0 (4.8) 22.0 (1.8) 23.2 (3.8) 17.7 (1.9)
Kr 0.90 (0.11) 0.84 (0.04) 0.96 (0.03) 0.86 (0.04)
S 0.76 (0.08) 0.76 (0.05) 0.62 (0.05) 0.60 (0.03)
Farc 0.89 (0.11) 0.78 (0.06) 0.88 (0.11) 0.69 (0.05)
fa 0.46 (0.05) 0.43 (0.05) 0.48 (0.06) 0.54 (0.07)
fe 0.54 (0.05) 0.52 (0.04) 0.49 (0.06) 0.52 (0.04)
ba 0.67 (0.09) 0.62 (0.07) 0.60 (0.10) 0.67 (0.08)
be 0.95 (0.02) 0.93 (0.01) 0.91 (0.03) 0.92 (0.01)
fp 0.90 (0.05) 0.87 (0.02) 0.89 (0.12) 0.89 (0.03)
Fobj 0.70 (0.01) 0.67 (0.01) 0.67 (0.04) 0.71 (0.01)

Table 1: Scores of the final evolved levels at the end of the
2nd stage, both for the overall fittest levels (with regards to
Farc + Fobj) and the average in the population. Note that
T̄f is in seconds of fighting time; when calculating Farc this
value is divided by 30.

Whitney U-Test (p < 0.01) for both the maximum and aver-
age values of T̄f . How the introduction of an additional floor
affects gameplay and agent behavior will be elaborated, with
examples, in the next section. The S metric is unsurprisingly
significantly higher for two-floor levels, since the second
floor offers additional free space for navigation. However,
remaining scores of Table 1 do not differ between one-floor
and two-floor evolution. Another interesting finding is that
Kr is high for both types of levels; an obvious reason is
that the competing artificial agents have the same skill level
and decision making processes. Another likely reason is the
fact that on death, players spawn at a random spawnpoint;
with enough respawns, all players start from all spawnpoints
and therefore have access to the same affordances (health,
weapon pickups). Contrary to Kr, most of the evaluations
pertaining to game object placement do not reach high val-
ues (as demonstrated by Fobj); it is unclear what prompts
this behavior, as Fobj has an equal impact to evolution as
Farc in the second stage. It could be presumed that the mu-
tation scheme which changes spawnpoint and powerup co-
ordinates either leads to small changes which do not im-
prove Fobj substantially in 30 generations, or leads to de-
structive changes which cause the repair function to often
place spawnpoints and powerups in random new locations
(reducing the locality of search). Another reason for this be-
havior is due to the fact that the first stage has already opti-
mized Farc; high values in Farc as a result of the first stage
can dominate the sum of fitnesses and lead to sub-par op-
timization of Fobj . This is obvious for one-floor levels in
Table 1, since the fittest levels in Farc + Fobj have a lower
Fobj score than the population’s average.

Sample generated levels and their patterns
In order to better understand how the heuristics’ scores of
Table 1 actually translate into shooter levels, it is worthwhile
to investigate the behavior of the artificial agents evaluating
them. Indicatively, this paper will show the fittest among the
best evolved levels of the 10 independent runs and the least
fit among them; this should demonstrate how different level

patterns can affect both its fitness score and agents’ behavior.
Figure 2 shows the best and worst among the fittest levels at
the end of the second stage of evolution; Figure 1 also shows
the level of Fig. 2a within the Cube 2 environment. While the
first floors of all four levels superficially look similar, with
large rooms and winding corridors, there are obvious differ-
ences in the second floor setup between Fig. 2a and 2b. The
random digger of Fig. 2a seems to have a high probability of
adding stairs, as 11 stairs connect the floors (compared to 4
stairs in Fig. 2b). Regarding object placement, both Fig. 2b
and Fig. 2d have spawnpoints placed relatively close to each
other, in the same central arena formed by multiple rooms
and corridors, while Fig. 2a better disperses spawnpoints in
the level. When a single floor is evolved, maps seem “busier”
than when two-floor levels are evolved, i.e. have more wind-
ing maze-like corridors and dead-ends, especially in Fig. 2c.
A likely explanation for this level structure is that, without a
second floor with tunnel (dug-out) sections to provide cover,
the single floor must rely on winding corridors with health-
packs to provide cover and confuse opponents, thus ensuring
player survival and thus increase fighting time.

Figures 2e-2l show death locations and heatmaps of the
simulations used to evaluate these maps. It seems that most
agents die on the first floor regardless of the architecture and
accessibility of the second floor in Fig. 2a and 2b. This is
a persistent pattern in all 10 of the final best evolved two-
floor levels: only 16% of agent deaths occur on the second
floor. Interestingly, the numerous stairs to the second floor
in Fig. 2a do not result in more visits of agents to the sec-
ond floor as shown in Fig. 2i: 19% of the agents’ heatmaps
for Fig. 2a are on the second floor, compared to 27% for
Fig. 2b. Another interesting pattern is that the top-most flight
of stairs in Fig. 2i is never visited, despite a convenient short-
cut via the second floor; there is little incentive to visit that
area of the first floor as it contains a single healthpack. For
one-floor levels, the winding corridors and smaller arenas
of Fig. 2c result in movement and combat (and deaths) to
be concentrated at the narrow corridors of the bottom of the
map. It should be noted that level architecture is not the only
factor in this behavior, as the narrow corridors at the bottom
of Fig. 2c divide the level into two otherwise disjointed map
halves, with two spawnpoints on the left half and four on
the right half. Comparatively, the architecture of Fig. 2d has
more pathways between different parts of the map, leading
to a more evenly distributed agent heatmap.

Discussion
Results of evolution highlighted several contributions to the
procedural content generation of shooter levels, as well as
several limitations that should be addressed in future work.
The evolution of levels in a two-stage process, first with
evolving architecture and then with evolving game object
placement, resulted in levels which allowed players to en-
gage in combat for longer periods of time — although ob-
ject placement heuristics seem to be dominated by the first
stage’s fitnesses. A more interesting finding is the impact
that an additional floor has on fighting time, as it allows
for players to “timeout” from combat (which predominantly

(a) Best 2-floor level (b) Worst 2-floor level (c) Best 1-floor level (d) Worst 1-floor level

(e) Kills of Fig. 2a (f) Kills of Fig. 2b (g) Kills of Fig. 2c (h) Kills of Fig. 2d

(i) Heatmap of Fig. 2a (j) Heatmap of Fig. 2b (k) Heatmap of Fig. 2c (l) Heatmap of Fig. 2d

Figure 2: Best and worst among the fittest evolved shooter levels among 10 individual runs. For two-floor levels, the left map is
the first floor while the right map is the second (top) floor. Large brown rectangles represent stairs to the second floor, red tiles
represent weapons, blue tiles represent healthpacks and green tiles represent spawnpoints. On the second floor map, white areas
are free-floating balconies above the first floor, while dark gray areas are dug out from the walls of the first floor (and signify
tunnels); light gray shapes represent the floor below it, to show where players can jump off to or aim at from the second floor.

happens on the first floor, based on heatmaps of several gen-
erated levels) and explore otherwise less visited locations.

An important caveat in the findings of this paper is the
assumption that the artificial agents used during simulations
accurately reflect how human players would perform in the
same levels. If the behavior of agents is not as human-like
as would be desired, this can affect the evaluations of qual-
ity which drive evolution (i.e. fighting time and kill ratio)
but also the conclusions drawn from playtraces of the sam-
ple generated levels. For instance, while artificial agents
may travel only towards powerups such as healthpacks and
weapons, human players may seek out-of-the-way areas (de-
void of powerups) to hide from combat, or to stage an am-
bush. Future work must validate this paper’s findings with
human players competing against each other in a few of the
best generated levels of this method.

Optimizing the many different heuristics of shooter lev-
els by aggregating them in a weighted sum was expected to
lead to sub-par performance of the evolutionary algorithm.
The use of a two-stage process where the first stage only
optimizes a subset of the heuristics was expected to miti-
gate this problem, although this paper does not include com-

parisons with simpler approaches (search-based or construc-
tive) for the sake of brevity. A performance boost could also
be achieved by limiting the number of heuristics by testing
which ones result in better levels4 and are not conflicting
with vital metrics such as fighting time. Other solutions in-
clude introducing more stages of evolution with fewer mov-
ing parts and simpler evaluations, or using multi-objective
evolutionary methods (Coello 1999).

While future work should focus on improving the qual-
ity of evaluations (and their fidelity with human play) as
well as the genetic algorithm, another important area for im-
provement is the presentation of the final levels. This is of
paramount importance if the generated levels are intended
for human play (e.g. as part of a verification process of cur-
rent findings), since bland and repetitive rooms can quickly
lead to user fatigue. Procedurally generating a more elabo-
rate presentation of the final levels can use constructive ap-
proaches and include placing different wall and floor tex-

4For instance, the high values of Kr for all generated levels in-
dicates that it could be omitted as a fitness dimension since players
respawning at random locations evens out most map imbalances.

tures in different rooms, making bridges and balconies more
obvious (with e.g. railings, curved arches, or buttresses) and
adding light sources or sound sources to help navigation.

Conclusion
This paper presented a method for representing and evolv-
ing levels for first person shooter games which span more
than one floors. Several heuristics were proposed for eval-
uating these levels, which were inspired from earlier work
on simulation-based FPS level generation and theory-driven
evaluations of typical level design patterns. The heuris-
tics primarily targeted competitive play in deathmatch-style
game setups popular in the shooter genre. Finally, the paper
proposed and tested a two-stage method for generating lev-
els by initially evolving their architecture and subsequently
the placement of game objects within them. Experiments
showed that a second floor affects both the simulated play-
ers’ movement patterns and the time they spend in combat.
Moreover, different level patterns emerged in the generated
levels, and their effect on gameplay was observed.

Acknowledgments
The research was supported, in part, by the FP7 ICT
projects C2Learn (project no: 318480) and ILearnRW
(project no: 318803), and by the FP7 Marie Curie CIG
project AutoGameDesign (project no: 630665).

References
Alexander, C.; Ishikawa, S.; and Silverstein, M. 1977. A
Pattern Language. Oxford University Press.
Björk, S., and Holopainen, J. 2004. Patterns in Game De-
sign. Charles River Media.
Cardamone, L.; Yannakakis, G. N.; Togelius, J.; and Lanzi,
P. L. 2011. Evolving interesting maps for a first person
shooter. In Proceedings of the Applications of evolutionary
computation, 63–72. Springer-Verlag.
Coello, C. A. C. 1999. A comprehensive survey of
evolutionary-based multiobjective optimization techniques.
Knowledge and Information Systems 1(3):129–156.
Cook, M., and Colton, S. 2011. Multi-faceted evolution of
simple arcade games. In Proceedings of the IEEE Confer-
ence on Computational Intelligence and Games.
Hullett, K., and Whitehead, J. 2010. Design patterns in fps
levels. In Proceedings of the 5th Conference on the Founda-
tions of Digital Games.
Lanzi, P. L.; Loiacono, D.; and Stucchi, R. 2014. Evolv-
ing maps for match balancing in first person shooters. In
Proceedings of the IEEE Conference on Computational In-
telligence and Games.
Liapis, A.; Smith, G.; and Shaker, N. 2015. Mixed-initiative
content creation. In Shaker, N.; Togelius, J.; and Nelson,
M. J., eds., Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. Springer.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. To-
wards a generic method of evaluating game levels. In Pro-
ceedings of the AAAI Artificial Intelligence for Interactive
Digital Entertainment Conference.

Ølsted, P. T.; Ma, B.; and Risi, S. 2015. Interactive evolution
of levels for a competitive multiplayer fps. In Proceedings
of the IEEE Congress on Evolutionary Computation.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.;
Hagelbäck, J.; Yannakakis, G. N.; and Grappiolo, C. 2013.
Controllable procedural map generation via multiobjective
evolution. Genetic Programming and Evolvable Machines
14(2):245–277.
Togelius, J.; Nelson, M. J.; and Liapis, A. 2014. Charac-
teristics of generatable games. In Proceedings of the FDG
Workshop on Procedural Content Generation.
Uriarte, A., and Ontañon, S. 2013. PSMAGE: Balanced
map generation for starcraft. In Proceedings of the IEEE
Conference on Computational Intelligence and Games.
Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing 2(3):147 – 161.

