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ABSTRACT
Novelty search is a recent algorithm geared to explore search
spaces without regard to objectives; minimal criteria novelty
search is a variant of this algorithm for constrained search
spaces. For large search spaces with multiple constraints,
however, it is hard to find a set of feasible individuals that
is both large and diverse. In this paper, we present two new
methods of novelty search for constrained spaces, Feasible-
Infeasible Novelty Search and Feasible-Infeasible Dual Nov-
elty Search. Both algorithms keep separate populations of
feasible and infeasible individuals, inspired by the FI-2pop
genetic algorithm. These algorithms are applied to the prob-
lem of creating diverse and feasible game levels, representa-
tive of a large class of important problems in procedural
content generation for games. Results show that the new
algorithms under certain conditions can produce larger and
more diverse sets of feasible strategy game maps than exist-
ing algorithms. However, the best algorithm is contingent
on the particularities of the search space and the genetic op-
erators used. It is also shown that the proposed modification
of offspring boosting increases performance in all cases.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
Constrained novelty search; Procedural content generation;
Feasible-Infeasible two-population GA; Level design

1. INTRODUCTION
Evolutionary algorithms have a rich history of success-

ful applications in solving numerical optimization problems.
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In the realm of constrained optimization, however, evolu-
tionary algorithms have often faced challenges due to the
very nature of stochastic, global optimization which is orig-
inally designed to react only to implicit constraints posed
by the fitness function. As researchers attempted to tackle
these challenges, a rich literature has arisen for handling
constraints with evolutionary algorithms summarized by [4].
Even so, there has not been a consensus for a single best
technique for constrained optimization; each technique has
benefits and drawbacks, making the choice of one technique
over another (and the details of its implementation) depen-
dent on the problem and, admittedly, personal preference.

Novelty search is a recent departure from traditional evo-
lutionary approaches, as it is driven by exploration of the
search space rather than by an objective function [9]. As
with objective-driven optimization in the nineties, handling
constraints via novelty search is not straightforward; meth-
ods used for objective-driven constrained optimization, such
as penalizing an individual’s fitness score, are not directly
transferable to constrained novelty search. This paper pro-
poses two-population alternatives for searching for novelty
in a constrained space, where feasible individuals are stored
in a separate population and evolve towards optimizing their
novelty while infeasible individuals evolve either towards
novelty or towards minimizing their distance from feasibility.

This paper compares the proposed two-population novelty
search methods with traditional novelty search and early at-
tempts at constrained novelty search; comparisons are made
on a case study of evolutionary design of game levels. Nov-
elty search can be particularly beneficial to computer games,
as it can generate diverse content which can potentially en-
gage and surprise a player, increasing the game’s replayabil-
ity value. On the other hand, essential game content such
as game levels or enemies must satisfy constraints of playa-
bility, competence, game balance or believability which can
be as rigorous as those of real-world engineering problems.

The structure of this paper is as follows: Section 2 pro-
vides a short survey on constrained optimization, novelty
search, and game content generation. Section 3 proposes the
two-population enhancements to constrained novelty search.
Section 4 presents a case study of constrained novelty search
for the procedural generation of game levels and Section 5
presents a number of experiments which test different con-
strained novelty search problems. Section 6 discusses the
larger points of constrained novelty search and suggests fur-
ther improvements; the paper concludes with Section 7.
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2. RELATED WORK
Novelty search is utilized in this paper for the constrained

optimization of game content. A short survey of the relevant
domains is presented below.

2.1 Constrained Optimization
While genetic algorithms have demonstrated, early on,

their potential in numerical optimization, it has never been
straightforward how constraints should be handled. Such
constraints are of paramount importance to engineering prob-
lems [16], where solutions are often required to satisfy a min-
imal functional performance or safety and a maximal size or
cost. The presence of constraints divides the search space,
where optimization takes place, into a feasible space and
an infeasible space. Depending on the problem, the feasi-
ble space can be fragmented, non-convex or simply much
smaller than the infeasible space (see Fig. 1a). Several sur-
veys have presented different methods for performing genetic
optimization in such a divided search space, including [4, 15,
7]; this section covers some popular approaches. A straight-
forward method for handling constraints is either to assign
a low fitness score to infeasible individuals or re-generate
them until a feasible one is found. Such approaches amount
to a“death penalty” for infeasible individuals, and have been
argued against [14] since evolution does not exploit informa-
tion stored within infeasible individuals. More sophisticated
approaches reduce the fitness score of infeasible individuals
by a penalty score, which can be a constant number, a mea-
sure of feasibility or a value dynamically adapted to the
current state of search [4]. Although penalties have been
generally successful in constrained optimization problems,
their main drawback comes from the many parameters that
need to be fine-tuned in order to avoid the detrimental ef-
fects of too low or too high penalties. Alternatively, infea-
sible individuals can be “repaired” to become feasible, of-
ten assigning a penalty to their fitness score proportionate
to a repair “cost”; however, defining a repair function and
a repair cost is not always straightforward and results are
very sensitive to these design choices. Another approach is
to use completely separate heuristics for the fitness scores
of feasible and infeasible individuals; for feasible individu-
als the fitness score is in accordance with the objective of
constrained optimization while for infeasible individuals the
fitness score is the distance from feasibility. When select-
ing parents, the Two Sexes evolutionary strategy [7] requires
that a feasible individual mates with an infeasible one, while
in the Feasible-Infeasible two-population genetic algorithm
(FI-2pop GA) [6] feasible individuals mate only with other
feasible individuals, and similarly for infeasible individuals.
The FI-2pop GA maintains two populations: the feasi-

ble population containing individuals which satisfy all con-
straints and the infeasible population containing individuals
which do not satisfy all constraints. Each population has
its own objective function and selection scheme, with tradi-
tional FI-2pop GA approaches selecting infeasible individu-
als according to their proximity with the border of feasibility,
where optimal solutions often lie [17]. Although each popu-
lation (feasible or infeasible) selects parents only among its
own members, offspring are tested for feasibility and may be
transferred to another population. The migration of feasible
offspring from infeasible parents to the feasible population
(and vice versa) allows for a form of interbreeding which
increases diversity in both populations.

2.2 Novelty Search
Novelty search is an objective-free method of genetic

search which replaces optimization towards a fitness func-
tion approximating the quality of a solution with optimiza-
tion towards the diversity of solutions. Novelty search can
outperform objective-driven search when a fitness function
is ill-defined, difficult to quantify, or subjective [9]. Novelty
search prompts exploration of the search space by favoring
individuals which are different from the current population
as well as from previous “novel” content. Each individual i
in the population is assigned a ρ(i) value, which determines
its preference for selection; ρ(i), which is presented in Equa-
tion (1), is the average distance between individual i and its
k closest individuals, either in the current population or in
an archive of novel individuals. In every generation, the l
most novel individuals are stored in this archive.

ρ(i) =
1

k

k∑
j=1

dist(i, µj) (1)

where µj is the j-th-nearest neighbor of i (within the pop-
ulation and in the archive of novel individuals); distance
dist(i, j) is a domain-dependent heuristic which evaluates
the “difference” between individuals i and j.

In order to guide exploration towards valuable solutions,
the notion of minimal criteria novelty search (MCNS) was
introduced in [8]; MCNS assigns a fitness of 0 if an individual
i does not satisfy certain criteria, and ρ(i) as per Equation
(1) if it does. By assigning the lowest possible fitness to
infeasible individuals, MCNS severely limits their chances
of reproducing. MCNS demonstrated an improvement over
unconstrained novelty search and against objective-driven
GAs with deceptive fitnesses in [8]. However, assigning the
same low score for all infeasible individuals renders MCNS
suboptimal in highly constrained problems, where discovery
of feasible individuals is unlikely or where feasible parents
are likely to generate infeasible offspring.

2.3 Procedural Generation of Game Content
While the game industry has been using procedural con-

tent generation (PCG) since the eighties to increase a game’s
unexpectedness and replayability, academic interest in PCG
for games is relatively new [21]. Search-based approaches [20]
— primarily genetic algorithms — have been very popular
in generating content such as racing tracks [3], platformer
levels [19], mazes [1], board games [2], weapons [5] or space-
ships [13]. Many of these projects use objective-driven op-
timization, targeting navigational properties [1], game bal-
ance [2] or aesthetics [13], with interactive evolution being
equally popular [5, 3], since the appraisal of game content is
often subjective to a user’s mercurial sense of taste.

Currently, commercial PCG ensures feasibility via tightly
designed algorithms which limit the range of created con-
tent; a broader range of content however would increase un-
expectedness and replayability, which is the goal of PCG in
games. Many research projects opt for a larger expressivity
of their algorithms, which necessitates feasibility testing of
generated content. Simulate-and-test PCG approaches [20]
usually discard and re-generate infeasible content [3]. More
sophisticated approaches evolve both infeasible and feasible
game content [12, 10, 19] via FI-2pop GA. Finally, declara-
tive programming uses constraints to define the search space,
ensuring the fast generation of feasible game content [18].
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Figure 1: A visualization of two-population novelty search.
Fig. 1a shows a possible search space, with infeasible space
(I) and a fragmented feasible space (F ); an initial popula-
tion may contain feasible and infeasible individuals (black
dots). With FINS, infeasible individuals move towards the
closest border of feasible space as determined by their dinf :
in this case, they all move towards the same region of feasible
space. With FI2NS, infeasible individuals move away from
each other as they try to increase their ρ: while this may
lead them away from feasible space, they may eventually
discover other islands of feasible space. In both approaches
feasible individuals optimize their novelty by moving away
from each other, which may lead them to infeasible space.

3. TWO-POPULATION
NOVELTY SEARCH

Although many prominent techniques for handling con-
straints with genetic algorithms penalize the fitness scores of
infeasible individuals, applying penalties to novelty search is
not straightforward considering the novelty metric of Equa-
tion (1). It is unclear, for instance, whether a penalty should
be applied to ρ(i) for infeasible i or to dist(i, j) for feasible
i but infeasible j. It is therefore preferable to avoid com-
parisons between infeasible and feasible individuals. The
FI-2pop GA [6] presented in Section 2.1 maintains two pop-
ulations so that infeasible individuals do not compete with
feasible ones for the purposes of selection; feasible parents
can thus be selected using a completely different criterion
(i.e. novelty search) than infeasible ones. Additionally, fea-
sible offspring of infeasible individuals migrate to the feasible
population and increase its diversity, which coincides with
the goals of novelty search among feasible individuals.
This paper presents two variations of this two-population

approach, adapted to the purposes of novelty search.
Feasible-infeasible novelty search (FINS) evolves feasible in-
dividuals, in their separate population, towards maximiz-
ing the novelty score ρ(i) as per Equation (1) while in-
feasible individuals evolve towards minimizing a metric of
their distance from feasibility dinf (see Fig. 1b). In or-
der to test the impact of the dinf heuristic and do away
with objective-driven optimization on both populations, the
feasible-infeasible dual novelty search (FI2NS) performs nov-
elty search on both the feasible and the infeasible population
(see Fig. 1c). For FI2NS novelty search is carried out inde-
pendently in each population, with two separate archives of
feasible and infeasible novel individuals; while both popula-
tions use the same ρ(i) metric, only the closest neighbors in
the same population and archive are considered. Maintain-
ing two populations for either FINS and FI2NS ensures that
distances between feasible and infeasible individuals are not
considered in the calculation of Equation (1).

(a) (b) (c) (d)

Figure 2: Sample levels with 64 tiles, demonstrating fea-
sible and infeasible level layouts. Displayed tiles are pass-
able (light), impassable (dark), bases (circles) and resources
(rhombi). Levels 2a and 2b are feasible, with level 2b (which
has no impassable tiles) being used to seed the initial popu-
lation in certain experiments in Section 5. Level 2c is infeasi-
ble as it has no path between bases. Level 2d is infeasible as
it has less than two bases; in this case, the repair mechanism
is applied to add a base on a random passable tile.

In the FI-2pop GA paradigm, the number of offspring for
each population is equal to the current population’s size.
However, previous experiments have indicated that an off-
spring boost on the feasible population was beneficial for
enhancing optimization of feasible individuals. When the
feasible population is smaller than the infeasible population,
the offspring boost mechanism forces members of the feasi-
ble population to create a number of offspring equal to 50%
of the total size of the two populations. The number of off-
spring in the infeasible population is reduced accordingly to
keep the total population size steady. To showcase its effec-
tiveness, experiments in Sections 5 include FINS and FI2NS
approaches with and without the offspring boost.

4. GAME LEVEL GENERATION
A game level is a prime example where constraints are im-

portant for content generation. A Rogue-like dungeon must
allow players to reach the exit from the entrance, a plat-
former level must have platforms at a height accessible to a
jumping avatar, and a strategy game must allow players to
reach their enemies. While game levels may have objectives
such as fairness or challenge, failing such objectives renders
the game unentertaining but not unplayable. Only the min-
imal criteria of playability will be considered in this paper.

The game levels optimized in this paper constitute map
sketches, which are low-resolution abstractions of strategy
game maps. The concept of map sketches is introduced
in [10] where they are used as building blocks of a mixed-
initiative tool; stochastic processes such as cellular automata
can convert these sketches into large-scale maps appropriate
for commercial strategy games such as Starcraft (Blizzard,
1998). Each level has a small number of tiles: tiles can be
passable, impassable, resources or bases (see Fig. 2). A level
is directly encoded in its genotype; each tile on the map
is represented in the genotype as an integer indicating tile
type. The level layout assumes that each player starts at
a base and collects resources in order to build units; units
travel through passable tiles in order to attack enemy bases.

A feasible map must have a number of bases and resources
within a range specified by the designer, while passable paths
must connect all bases and all resources. To alleviate some of
these constraints, a repair mechanism transforms maps with
excess or missing bases and resources into feasible: while re-
pairing, excess bases and resources are replaced with pass-
able tiles, while missing bases and resources are inserted on



random passable tiles. With constraints on the number of
bases and resources satisfied via the repair mechanism, the
distance from feasibility for FINS approaches is:

dinf =
1

2

2ub

b(b− 1)
+

1

2

ur

rb
(2)

where b and r are the number of bases and resources respec-
tively, while ub and ur are the number of unconnected base
pairs and base-resource pairs respectively.
The distance metric dist(i, j) in Eq. (1) is the ratio of

mismatched tiles at the same coordinates between maps i
and j to the total number of map tiles.

5. EXPERIMENTS
The performance of the proposed methods of constrained

novelty search will be assessed on a set of experiments, using
the generation of strategy game levels as the case study. This
paper compares different novelty search methods; a com-
parison of FINS and MCNS with objective-driven GAs (in-
cluding FI-2pop GA) is included in [11]. The experiments’
parameters, results and discussion will be covered below.

5.1 Parameters and Experimental Setup
The experiments presented below compare the proposed

two-population novelty search methods of FINS and FI2NS
with single-population novelty search methods, namely tra-
ditional novelty search (NS) and minimal criteria novelty
search (MCNS). The benefits of boosting the offspring of
the feasible population are shown by comparing FINS and
FI2NS, which don’t use the offspring boost, with FINSob and
FI2NSob which do. All approaches in this paper calculate
ρ(i) from the average distance of the 20 closest individuals
(k = 20), while the 5 highest scoring individuals in the pop-
ulation are inserted to the archive of novel individuals per
generation (l = 5). These k and l parameters theoretically
benefit the smaller feasible populations of FINS and FI2NS
more than MCNS and NS. Different k and l configurations
do not seem to affect the general performance of any ap-
proach according to preliminary experiments, although for
very small k values all approaches perform poorly.
The introduction of two-population novelty search meth-

ods aims to address two important shortcomings of MCNS in
constrained novelty search: a) the fact that MCNS performs
random search when no feasible individuals exist in the pop-
ulation, which hinders the discovery of a feasible individual
in tightly constrained problems, and b) the fact that MCNS
kills individuals rendered infeasible during novelty search,
reducing the population’s diversity and the algorithm’s ef-
ficiency at optimizing it. The performance metrics used in
this paper to evaluate the algorithms’ optimization behavior
are therefore: a) the number of feasible individuals in the
population, focusing on the discovery of the first feasible in-
dividual and b) the diversity of feasible individuals, which
is quantified as the average dist(i, j) of all pairs of feasible
individuals i and j in the population.
A number of different experiments test the optimization

behavior of the different novelty search approaches:

• R, where offspring are primarily generated via the two-
point crossover of two parents. There is a small chance
of mutation (1%) for every offspring of two parents.

• M , where offspring are generated exclusively via mu-
tation. Mutation is guaranteed to retain the number

of bases and resources from parent to offspring and the
repair mechanism is only used to create an initial pop-
ulation of maps with appropriate bases and resources.

• R500 and M500, where the total population size is 500
(unlike the other experiments where the total popula-
tion size is 100). The impact of a larger population
is expected to influence the likelihood of discovering
feasible individuals and may benefit NS and FI2NS
approaches, which have a small number of feasible in-
dividuals compared to the number of infeasible ones.
Experiments in R500 use recombination as per R and
M500 exclusively use mutation as per M .

• Rs and Ms, where the initial population consists en-
tirely of feasible individuals, which have the designer-
specified number of bases and resources but no impass-
able tiles, thus guaranteeing connectivity (see Fig. 2b).
As MCNS underperforms on highly constrained spaces,
it is suggested in [8] that MCNS is initially seeded with
feasible individuals; this experiment will test this hy-
pothesis and evaluate the impact of a feasible initial
population. Experiments in Rs use recombination as
per R and Ms exclusively use mutation as per M .

All experiments use fitness-proportionate roulette wheel se-
lection of parents. The same parent may be selected more
than once and thus generate multiple offspring, which is nec-
essary when the number of offspring is different than the
number of parents (i.e. when applying the offspring boost).
In each population the fittest individual is transferred to the
next generation. Elitism doesn’t seem valuable to novelty
search, since the fittest individual in one generation is likely
to have a low fitness in the next generation due to its pres-
ence in the archive of novel individuals. However, the “min-
imal” elitism used ensures the presence of at least one feasi-
ble individual in each generation for two-population novelty
search approaches. Mutation in all experiments transforms
a number of map tiles (between 5% and 20% of all tiles),
either swapping them with adjacent tiles or converting an
impassable tile into passable and vice versa; either tile trans-
formation has an equal chance of occurring. This mutation
scheme results in small changes in the map and is not likely
to cause feasible individuals to become infeasible. Exclud-
ing R500 and M500, the total population size is 100 which
includes feasible and infeasible individuals. A population
size of 100 individuals, even if separated into feasible and
infeasible populations, is in tune with the k, l parameters
used for novelty search, while the larger population used in
R500 and M500 will also test the impact of k, l parameters.

5.2 Benchmarks and Results
The performance of different novelty search approaches

for generating feasible game levels is evaluated in two map
setups: a small map of 64 tiles, with 2 bases and 4 to 10 re-
sources, and a large map of 256 tiles, with 2 to 10 bases and
4 to 30 resources. These map setups vary in their difficulty
at discovering feasible individuals; testing 106 randomly ini-
tialized maps, 3 ·104 were feasible for small maps while only
13 were feasible for large maps. Small maps have few tiles
which must be connected (bases, resources), and combined
with their small size are more likely to be feasible. Large
maps can potentially have a large number of tiles which
must be connected, and impassable tiles are more likely to
block paths due to the maps’ large size.



(a) R (b) R500 (c) Rs (d) M (e) M500 (f) Ms

Figure 3: Size of the feasible population when optimizing small maps, for experiments indicated in each figure’s caption.
Values are averaged across 20 independent runs, with error bars depicting standard error among runs.

(a) R (b) R500 (c) Rs (d) M (e) M500 (f) Ms

Figure 4: Average diversity of the feasible population when optimizing small maps, for experiments indicated in each figure’s
caption. Values are averaged across 20 independent runs, with error bars depicting standard error among runs.

The progress of the number and diversity of feasible in-
dividuals for small maps is shown in Figures 3 and 4 re-
spectively, while Table 1 lists the final number of feasible
individuals and their average diversity of feasible individ-
uals after 100 generations. Large maps are unlikely to be
feasible if initiated randomly; since the first feasible indi-
vidual is discovered on different generations between runs,
the progress of the number and diversity of feasible individ-
uals can’t be displayed as a figure; Table 2 lists for each
approach the number of runs with feasible individuals and
the generation where the first feasible individual occurred,
along with the number and diversity of feasible individuals
after 100 generations. Significance throughout this paper is
α = 5%, measured via standard t-tests; since comparisons
are made among 6 methods of constrained optimization, the
Bonferroni correction is applied.
The different experimental setups have a clear impact on

the number and diversity of feasible individuals. Experi-
ments using recombination generally have a lower diversity
than those using mutation, due to the tile-based similarity
used as a distance metric and the direct mapping between
genotype and phenotype. A map created via crossover in-
herits parts of the map from either parent, resulting in low
distance between the offspring and either parent as well as
between all offspring of the same parent. On the other hand,
a map generated via mutation inherits parts of the map from
a single parent, while the random mutation means that off-
spring of the same parent may still be dissimilar from each
other. Observing the diversity in Rs and Ms experiments,
the lack of impassable tiles in the initial feasible popula-
tion results in low diversity values. Since impassable tiles
can only be added via mutation, Ms increases the diversity
of feasible maps much faster than Rs — although the di-

versity for Ms experiments is generally lower than for M .
On the other hand, impassable tiles added via mutation are
more likely to create disconnected paths between bases or
resources, leading to fewer feasible individuals for M , M500

and Ms than for R, R500 and Rs respectively. Finally, a
larger population (comparing R500 with R and M500 with
M) is clearly beneficial for all approaches as it results in
higher diversity values in both small and large maps; more-
over, feasible individuals are discovered earlier and more of-
ten with the larger population when evolving large maps.

5.3 Performance of each approach
Observing the results of the different experiments on small

and large maps, some conclusions can be drawn regarding
the overall performance of each approach.

Unconstrained novelty search doesn’t distinguish between
feasible and infeasible individuals; it is as likely to select
a feasible as an infeasible parent for generating offspring,
which results in few feasible individuals in all experiments.
In large maps where the infeasible space is much larger than
the feasible space, NS primarily explores infeasible space and
usually discovers feasible individuals late in the evolutionary
process. Even when a feasible individual is found, there is
no mechanism to ensure that it will persist in the next gen-
eration; especially in experiments which use recombination,
most feasible individuals are rendered infeasible in the next
generation after they are discovered. NS often has no fea-
sible individuals in large maps even at the end of evolution
(excluding Rs), which explains their low diversity. While in
small maps feasible individuals are still few, their number
is sufficient to actually maintain a high diversity; NS, along
with FI2NS, consistently has the highest diversity across ex-
periments for small maps.



Metric Approach R R500 Rs M M500 Ms

NS 16.0 (1.8) 84.7* (4.4) 25.7 (2.2) 11.8 (1.0) 54.9 (2.0) 11.2 (1.3)
Final number MCNS 97.4* (0.3) 485.1* (0.9) 97.1* (0.4) 79.9* (0.9) 417.0* (3.3) 84.1* (1.1)
of feasible FI2NS 20.9 (1.7) 117.2* (3.7) 35.0 (2.5) 12.6 (0.9) 58.9 (1.5) 14.3 (1.2)
individuals FI2NSob 48.7 (0.9) 241 (2.2) 48.3 (0.6) 37.6 (1.0) 190.8 (2.2) 41.2 (1.2)

(p) FINS 40.0 (2.6) 188* (8.0) 45.5 (1.7) 19.0* (1.3) 95.1* (3.2) 23.8* (1.2)
FINSob 51.5 (1.0) 250.1 (2.7) 52.3 (1.4) 41.3 (1.2) 196.8 (1.9) 42.8 (1.5)
NS 0.52 (0.01) 0.60* (0.00) 0.52 (0.00) 0.60 (0.00) 0.63 (0.00) 0.55 (0.00)

Final average MCNS 0.40 (0.01) 0.51* (0.00) 0.42* (0.00) 0.57* (0.00) 0.59* (0.00) 0.55 (0.00)
feasible FI2NS 0.52 (0.00) 0.59* (0.00) 0.52 (0.00) 0.60 (0.00) 0.63 (0.00) 0.55 (0.00)
diversity FI2NSob 0.52 (0.00) 0.59* (0.00) 0.52 (0.00) 0.60 (0.00) 0.63 (0.00) 0.55 (0.00)

(d̄) FINS 0.43 (0.01) 0.54* (0.00) 0.47 (0.01) 0.59 (0.00) 0.62* (0.00) 0.55 (0.00)
FINSob 0.47* (0.00) 0.56* (0.00) 0.49 (0.00) 0.61 (0.00) 0.63 (0.00) 0.55 (0.00)

Table 1: The final number of feasible individuals (p) and their average diversity (d̄) for the different novelty search approaches
used on experimental setups with small maps; values are averaged across 20 independent runs, with the standard error included
in parentheses. An asterisk denotes values which are significantly different from all other methods in the same experiment.

MCNS has the largest number of feasible individuals
across all experiments, since infeasible individuals are as-
signed a low fitness and are swiftly killed and replaced by fea-
sible individuals — provided feasible individuals are present.
When feasible individuals are not present, as is the case for
most experiments with large maps (excluding Rs and Ms),
MCNS performs random search since all infeasible individ-
uals have the same fitness. When using recombination, the
detrimental effects of random search are shown in the small
number of runs where a feasible individual was discovered;
when using mutation, however, MCNS does not perform
much different than other approaches such as NS and FI2NS.
Regarding the diversity of feasible solutions, MCNS under-
performs compared to all other approaches in small maps
(excluding Ms), although it sometimes manages a higher
diversity than other approaches for large maps.
Like unconstrained novelty search, FI2NS suffers from a

small number of feasible individuals; in most experiments
FI2NS has a marginally larger feasible population than NS.
In large maps, FI2NS suffers from the extensive exploration
of infeasible space; the “minimal” elitism used, however, en-
sures that once a feasible individual is discovered, at least
one copy of it will persist in the feasible population. This
makes FI2NS somewhat more robust than NS for large maps,
although the diversity of its feasible individuals is usually
very low. Use of the offspring boost helps maintain a sizable
population, which is vital for large maps; FI2NSob manages
to achieve high diversity values for large maps, comparable
to those of other approaches such as FINS and FINSob. In
small maps, the impact of the larger feasible population of
FI2NSob does not seem to impact diversity, as the average
diversity of feasible individuals is on par with those of FI2NS
and NS despite the fewer feasible individuals of the latter.
Searching the infeasible space according to a measure of

distance from feasibility gives FINS an advantage compared
to other approaches in cases where discovery of feasible indi-
viduals is unlikely; FINS and FINSob discover feasible large
maps in earlier stages of evolution and more consistently
(based on the standard error in the first generation of fea-
sibility). For large maps, this allows more extensive nov-
elty search on the feasible population for more generations,
which results in high diversity values. In less constrained
search spaces, such as those of small maps, FINS discovers
more feasible individuals than FI2NS and NS since infeasi-

ble individuals closer to the border with feasibility are more
likely to become feasible. Similarly, individuals evolving in
the infeasible population before becoming feasible are un-
likely to be very similar with those already in the feasible
population; in small maps, this results in a larger diversity
of feasible individuals compared to MCNS, although for ex-
periments using recombination this diversity is significantly
lower than that of FI2NS and NS. The offspring boost is
beneficial in increasing the number of feasible individuals
and their diversity; this is pronounced in small maps for
R and R500 experiments and in large maps for R and M
experiments. In experiments with large maps which exclu-
sively use mutation, FINSob results in much larger feasible
populations than FINS (which has surprisingly few feasible
individuals at the end of evolution) without a significant
effect on the diversity of the feasible population.

6. DISCUSSION
This paper evaluated the performance of different meth-

ods of novelty search in constrained problems. Results indi-
cate that FI2NS (especially if used with the offspring boost
mechanism) can create a diverse set of feasible individuals
in domains with easily satisfiable constraints. On the other
hand, traditional novelty search can create equally diverse
sets as FI2NS, but suffers from a small number of feasible in-
dividuals which becomes problematic in highly constrained
spaces. MCNS achieves by far the highest number of feasi-
ble individuals which however can’t be as diverse as other
methods; even its most diverse individuals have a lower di-
versity than those in other approaches. Additionally, MCNS
underperforms when no feasible individuals exist in the pop-
ulation. FINS is ideal for highly constrained spaces, as it
discovers and diversifies feasible individuals more efficiently
than other methods. As with objective-driven constrained
optimization, each of the presented methods has its own
benefits and drawbacks and choosing one over the other will
depend on the task’s intended outcomes, the parameters and
genetic operators used and the topology of the feasible space.

It should be noted that while novelty search does away
with objective functions, the quality of solutions is still af-
fected by the distance heuristic used to evaluate the dif-
ference between two phenotypes. In this case study, game
levels are compared on a tile-by-tile basis; however, if a map
is the reflection of another on a Cartesian axis, then the two



Metric Approach R R500 Rs M M500 Ms

NS 14 20 20 20 20 20
Runs with MCNS 3 13 20 20 20 20
feasible FI2NS 14 20 20 20 20 20

individuals FI2NSob 11 20 20 20 20 20
(n) FINS 20 20 20 20 20 20

FINSob 20 20 20 20 20 20
NS 63.6 (6.6) 31.7 (3.5) 0.0 (0.0) 20.8 (2.6) 5.2 (0.4) 0.0 (0.0)

First MCNS 56.7 (2.3) 48.2 (5.8) 0.0 (0.0) 20.0 (3.2) 5.2 (0.6) 0.0 (0.0)
generation FI2NS 54.4 (4.9) 40.2 (4.0) 0.0 (0.0) 19.2 (2.4) 8.5 (1.0) 0.0 (0.0)
of feasibility FI2NSob 57.8 (6.2) 26.8 (3.7) 0.0 (0.0) 17.0 (2.1) 7.5 (0.6) 0.0 (0.0)

(g) FINS 8.6 (0.9) 4.5 (0.5) 0.0 (0.0) 8.4 (0.8) 5.2 (0.6) 0.0 (0.0)
FINSob 8.5 (1.0) 4.2 (0.4) 0.0 (0.0) 7.3 (0.7) 5.2 (0.4) 0.0 (0.0)
NS 0.3* (0.2) 0.6* (0.2) 21.3 (2.3) 0.2* (0.1) 0.6* (0.2) 0.8* (0.2)

Final number MCNS 97.7* (0.7) 473.6* (5.1) 96.3* (0.5) 33.7* (1.5) 185.5* (6.0) 69.4* (1.8)
of feasible FI2NS 1.1* (0.1) 1.5* (0.2) 31.8 (2.7) 1.2* (0.1) 1.4* (0.1) 2.6* (0.5)
individuals FI2NSob 44.2* (0.8) 219.5* (1.9) 15.4 (0.9) 15.4 (0.9) 80.4* (2.0) 36.3 (1.3)

(p) FINS 29.1* (2.3) 130.2* (4.2) 40.3 (2.0) 3.1* (0.3) 9.1* (0.8) 6.9* (0.9)
FINSob 48.9* (0.9) 244.9* (1.6) 50.3 (0.8) 17.2 (0.8) 92.4* (2.7) 34.1 (1.7)
NS 0.04 (0.04) 0.32 (0.11) 0.42 (0.00) 0.00 (0.00) 0.12 (0.08) 0.05* (0.03)

Final average MCNS 0.15 (0.04) 0.28 (0.01) 0.34* (0.00) 0.54 (0.00) 0.59* (0.00) 0.50 (0.00)
feasible FI2NS 0.00 (0.00) 0.11 (0.05) 0.42 (0.00) 0.04 (0.03) 0.20 (0.06) 0.25* (0.05)
diversity FI2NSob 0.28 (0.05) 0.49 (0.01) 0.43 (0.00) 0.51 (0.01) 0.60 (0.00) 0.50 (0.00)

(d̄) FINS 0.26 (0.02) 0.46* (0.00) 0.38 (0.00) 0.47 (0.05) 0.60 (0.00) 0.47 (0.03)
FINSob 0.36 (0.00) 0.47 (0.00) 0.38 (0.00) 0.54 (0.01) 0.60 (0.00) 0.50 (0.00)

Table 2: Performance metrics for different novelty search approaches used on large maps: number of runs (out of 20) where a
feasible individual was discovered (n) and the first generation in which it occurred (g), as well as the final number of feasible
individuals (p) and their average diversity (d̄) of each experiment. Values (except n) are averaged across those runs where
a feasible individual was found, with the standard error included in parentheses; for g, p, and d̄, an asterisk denotes values
which are significantly different from all other methods in the same experiment.

maps are identical for all gameplay purposes but are likely
to have a large tile-based distance. The tile-based distance
heuristic used also saturates the results of the feasible popu-
lation’s diversity — maps generated via mutation alone are
more diverse in terms of the distance heuristic used, but ar-
guably less useful as they are more prone to being infeasible.
Novelty search is intended, in this line of research, to cre-
ate interesting and engaging content for computer games; it
would therefore be worthwhile to compare the methods in
this paper on the usefulness or“interestingness”of the gener-
ated content rather than on their visual similarity. However,
designing a more domain-specific distance heuristic (for in-
stance, including independence to reflections or integrating
features such as distance between bases) is not straightfor-
ward and may introduce additional bias to the search.
This paper focuses on constraint handling via novelty

search and does not elaborate on other techniques that limit
constraints or speed up constrained optimization. Such tech-
niques may involve repairing infeasible individuals directly:
an example of this technique is used to repair evolved game
levels with excess or missing bases or resources. This re-
pair mechanism automatically satisfies designer constraints
on the number of bases or resources and reduces the size of
the optimization problem; however, the stochasticity of the
implemented repair mechanism reduces the locality of the
genetic search. Additionally, experiments using recombina-
tion and mutation demonstrate that expert knowledge in
the design of genetic operators appropriate to the problem
can lead to a better optimization behavior. Similarly, the
erratic discovery of feasible individuals can be alleviated by

seeding the initial population with known feasible solutions.
While the experiments presented cover the majority of these
techniques, a larger number of experiments across represen-
tations and use cases should further evaluate the impact of
smaller or larger population sizes, tailored genetic operators
and novelty search parameters, different repair mechanisms
and alternative methods of boosting feasible offspring.

While this paper tests constrained novelty search in the
domain of game content generation, the presented methods
can be used for any evolutionary optimization problem with
clear and unavoidable constraints. The methods presented
in this paper are tested on their diversity, as experiments ex-
clusively compare novelty search methods; it is therefore as-
sumed that the hypothesis that divergent search is preferable
to objective search holds. As novelty search and MCNS have
often proven more successful at reaching objectives than ob-
jective search, it is worthwhile to compare two-population
novelty search methods against objective-driven genetic al-
gorithms. Experiments reported in [11] compare FINS and
MCNS with FI-2pop GA and a traditional GA in terms of
diversity, although it may be worthwhile to test the perfor-
mance of FINS and FI2NS in terns of a fitness function in
constrained test problems such as those used in [7]. Addi-
tionally, the constrained nature of most industrial engineer-
ing problems such as those presented in [16] makes them
ideal candidates for constrained novelty search.

7. CONCLUSION
This paper introduced two alternatives to current novelty

search methods which are able to handle constraints. These



approaches evolve two populations simultaneously, a feasible
population to maximize novelty and an infeasible population
either to minimize the distance from feasibility (FINS) or to
maximize novelty (FI2NS). Comparing the behavior of these
approaches in terms of discovering and diversifying feasible
game content, results indicate that FINS is able to discover
feasible solutions faster in cases where such solutions are
rare. FI2NS is likely to evolve more diverse content, but un-
derperforms in highly constrained search spaces as it strug-
gles to discover and maintain a sizable feasible population
unless the offspring boost mechanism is used. Traditional
novelty search creates diverse sets of feasible individuals,
but explores primarily infeasible space and finds even fewer
feasible solutions than FI2NS. On the other hand, Minimal
Criteria Novelty Search maintains a much larger number of
feasible individuals than other approaches, which are how-
ever less diverse in most cases. Finally, boosting the number
of offspring in the feasible population to match the size of the
infeasible population is shown to be beneficial in increasing
both the number and the diversity of feasible individuals in
FINS and FI2NS. Both FINS and FI2NS seem particularly
useful for the procedural generation of game content which
requires its generated artifacts to be diverse yet functional,
since the personal tastes of different players are difficult to
capture via objectives. Depending on the computational re-
quirements of the content generators, such as offline while
the game loads or online while the game is played, the higher
diversity of FI2NS or the speedy discovery of feasible content
of FINS may be preferable.
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