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Abstract—This paper presents the first stage of research into difficulties and points of importance of this simulated world.
a multi-agent complex environment, called FlatLand” aiming at  The learning mechanisms used are analytically described in
emerging complex and adaptive obstacle-avoidance and target- Section IV. Results obtained as well as comparison of per-

achievement behaviors by use of a variety of learning mecha- .
nisms. The presentation includes a detailed description of the formance, robustness and effort cost between the different

FlatLand simulated world, the learning mechanisms used as learning approaches are presented in Section V. Finally, the
well as an efficient method for comparing the mechanisms’ most important conclusions of thElatLand research are

performance, robustness and required computational effort. outlined in Section VI.
Index Terms— back-propagation, genetic algorithms, machine
learning, multi-agent, simulated worlds. Il. THE FlatLand SIMULATED WORLD
The name FlatLand’ is inspired from E. Abbott's book
I. INTRODUCTION title [1] and its fundamental concept is based on previous

ULTI-AGENT systems is a prominent area of researciéséarch by Yannakakis [2]. The main purpose of this sim-

M Designing agents for such systems could be a repetitifdted world is to be used as a test-bed environment for
and tedious procedure. This task is getting even more difficilfvestigating evolutionary [3] and gradient-based (in a lesser
when the multi-agent environment is fully dynamic and norfl€dree) leaming techniques and furthermore, their ability to
deterministic. When designing controllers for autonomoi@nerge complex and adaptive obstacle-avoidance and target-
simulated agents for such environments, there is little guidarRghievement behaviors. In this section, we present a detailed
on how complex the controller must be for the agent gescription of this simulated world. _
achieve good performance in particular tasks. Furthermoreflatlandis a two-dimensional multi-agent square environ-
when trying to emerge such a performance via a Iearn’i'g”t- The yvorld's dlmens_lons are predefined so that ac_:tlons
mechanism, there is little knowledge about the mechanisni@e Place in a closed frictionless plane. There are two simple
complexity. flglljres'wsuallzec_i inFlatLand (as illustrated in Fig. 1): 1) .

We have developed a novel simulated world call&tat- white circles (radius=5mm) thgt rep_resent the ag_ents - artificial
Land’ for studying genetic and gradient-search optimizatiof’®@tures and 2) dashed straight lines connecting the agent's
techniques. TheélatLand world is a two-dimensional multi- Current position and its target point on the surface.
agent complex environment. The agents livingRlatLand
appear as circular artificial creatures. Our first objective in
developing this world is to create a novel environment for com-
paring and testing various controllers and learning techniques.
The two tasks that our agents are tested in are the competing
strategies of obstacle-avoidance and target-achievement. The
work presented here is focused on the evolution of agents’
artificial controllers in emerging the aforementioned strategies
in an adaptive fashion, using various forms of learning proce-
dures.

This paper is organized as follows. In Section Il we present
a detailed description oflatLand as well as the agents’

controllers employed. In Section Il we discuss about the
Fig. 1. FlatLand world interface (the plane’s dimensions are 80 sn80
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Even though this is an unwanted behavior (from the viewpoint Terget Point

d
of FlatLands obstacle-avoidance goal behavior), it contributes
to the simplicity of the environment. As mentioned before, ‘/
each Human holds a target point on the environment’s surface. d, ! s
This point keeps changing during its life and therefore, as LQ/
soon as a Human achieves its current target (i.e. manages to /Xa? _ @
reach a circle of 5mm around the target point), then a new Al —_— =
target point is selected. The new target point is picked from a /
uniform random distribution in a specified distance of 30cm d,
from the agent’s center. The simulation proceduré&latLand
can be described as follows. Humans are placed randomlygR > Human's input data in polar coordinates= 2)
FlatLand (initial positions) via a uniform distribution. Then,

the following occur at each simulation step:

1) Each Human gathers information from its environmeﬁ'? polar coordinates is based on Reynolds’ work in artificial
(see Subsection 1I-A.1) critters [6]. For the experiments presented in this paper2,

2) It takes a movement decision (see Subsection II-A.2) as it stresses the minimal amount of information for a Human

3) Total number of collisions and target-achievements &3 Successfully achieve the desired behavior (i.e. Ao 1
well as the average speed of the Humans are recorde'ai.eural controllers are not able to emerge satisfactory obstacle-

4) New randomly picked target points are given to thos%VOidance. strategies). .
) Humans that )rqar\)/e achievgd tkf)eir target pg(’)ints 2) Architecture: There has been research on many different

o feedforward neural network architectures. Our potential target
FlatLands aim is to focus and research over the agenigno, \ve first developetlatLand was to find the simplest
ability to emerge an efficient gnd robust obstacle-aymdan Bural controller capable of emerging the desired behavior.
and target-achievement behavior. Therefore, the design of refore, a two-layered fully connected feedforward neural
simulated agents used in this environment is deliberately kent,. ok has been used for the experiments presented here (as

abstract. Finally, it is worth mentioning that there is no wally, 0 in Fig. 3). The sigmoid function is employed at each
avoidance strategy implemented yet (it constitutes one of QW ron

future research steps).
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A. Neural Controller

Neural networks appear to be the most promising means iy _
of emerging adaptive behaviors in complex multi-agent envi- input output
ronments, as stressed in [4] and [5]. Therefore, a feedforward _
neural controller is employed to manage the agents’ motion o
and is described in this subsection. Apart from the neural con-
troller, an Artificial Potential Field employed for controlling
the agents’ movement is also introduced in Subsection II-B.

1) Input: Using its sensors, each Human inspects the envi-
ronment from its own point of view and decides about its next
action. Both the input information and the neural controller's ~
architectures are analytically presented in this subsection. threshold

The neural controller’s input data and format can be de-
scribed as follows. Each Human receives information from ifd: 3 Two-layer feedforward neural network controller
environment expressed in the neural network’s input array of
dimension D:

o

0y

The connection weights take values from -5 to 5 while the
D—2-41 (1) ne_:ural netwprk's output is a two-dime_nsional vector, os]

with respective values from 0 to 1. This vector represents the
where > defines the number of the closest Humans that ealdiman’s step motion and is converted into polar coordinates
Human takes into account via its sensors. Thus, the input argggording to (2) and (3).

consists of: (a) the polar coordinates, d;) - based on the axis dyn = oy M @)
determined by the current position of the Human and its target _ (o 1 3
point (see Fig. 2) - of the: (i = 1,...,2) closest Humans any = (202 = L)m ®)

and (b) an additional input that defines the distance betweshere:
the Human'’s current position and its target pofdtr). Fig. dyxy: Human's step motion (in cm/time stem)yy y: Human'’s
2 illustrates the Human’s sensoring information as describagn angle from the axis determined by the Human's current
above. position and its target point (in degreed).: Human’s max-

All input values are linearly normalized into [0, 1] beforemum speed; in experiments presented in this papérl
they are entered into the neural controller. The input’s formain/time step.



B. Artificial Potential Field Strategy straightest and fastest possible trajectory to its target, is defi-

Using the same environment, we explored another “speciégtely a “good” strategy in terms dflatLandworld. Therefore,

of agents as well. These agents are called “Animals’ a imals present a “good” (near optimum) behavior in our
their only difference from Humans is in the control of thei?mulated world and furthermore a reference case to compare

locomotion. Instead of a neural network, an Artificial Potentid} ©© any_Humar?s’ behavior. This is the major reason for the

Field (APF), specially designed for this environment, contro|‘§'e of ,th's s’peme's of agents, along with the fagt that data fron’1

the Animals’ motion. The essence of the APF is that poinI e Animals’ motion strategy can be “S?‘d to train the Humans

along the Animal’s path to its target point are considered to fgural network controller (see Subsection IV-A).

attractive forces and obstacles (other Animals) in the environ-

ment are repulsive forces [7]. The overall APF causes a net lIl. HARDNESS OF THE PROBLEM

force to act on the Animal, which guides it along a collision- In this section we provide evidence of the problem’s com-

free, target-achievement path. For illustration, consider tigexity and learning difficulty as well as its importance in the

Animal as a small sphere (of radius R=5mm) that slides downulti-agent systems research area. In f&taflLandis a hard

the surface plotted in Fig. 4. This surface is plotted by eagmvironment for an agent to learn to live in because of its
following distinct features:

o Fully dynamical multi-agent. Humans are moving con-
tinuously. Each Human faces a number of moving ob-
stacles (i.e. potentially 19 other Humans) in a specific
squared environment whereby it has agriori knowl-
edge about their motion. Prediction of motion can be
emerged by complicating the sensor system of each Hu-
man (i.e. addition of speed vectors of moving obstacles).

« Partial information . One of the major difficulties of the
problem is that Humans communicate just by “seeing”
(i.e. spatial polar coordination) each other (see Fig. 2).
This kind of communication regarding these kind of

Fig. 4. APF - Situation of two obstacles - closest Animgds= 2). tasks (i.e. obstacle-avoidance and target-achievement) is

very common in the animals world (e.g. predator-prey

Animal in every simulation step and represents the function:  behaviors) as well as in human beings (e.g. crowded

M streets).
F(z,y) = 7\/(3: —x7)?+ (y—y1)? (4a) « Discontinuous time-varying information The Human’s
. o2 Ay input information suffers from discontinuity because of
+ 526*[(475’) +(5%)’] (4b) frequent alterations of the closest Humans that takes
=1 into account via its sensors. Hence, the values of the polar
coordinatesy;,d; (i =1,...,z) alter in a discontinuous
where: fashion.
Az, = ¢ — o Supervised training. If we try to train Humans under the
Ay — A near-optimum APF (Animals) strategy, we have to face
Yi=Yy—=Yi problems such as missing information (data) for many
and: cases. These are cases that Animals would never get into

F(z,y): potential field value for the cartesian Animal’s coor-  (€-g. case ofl; < 2R) but trained Humans do.
dinatesz, y; [xr,yr]: coordinates of Animal's target point; * Very few collision e_xamples One of the d|ff|c_:u_lt|es of
[z, y:]: coordinates of Animal's i closest obstacle’s (other ~the FlatLand world is the small value of collisions per
Animal’s) center;s: parameter that defines the height of the ~ ime step. Even in the worst obstacle-avoidance behav-
exponential “mountain-like” function presented at (4b). iors we experienced, fo Humans collide approximately
It is obvious that the surface plotted by each Animal alters ~@Pout 3000 times in0® simulation steps. Hence, each
at every time step as a resultBlatLands dynamics (moving Human colllld_es less than 1.5% of its I|f9t|me on average.
obstacles - other Animals). The Animals’ motion therefore 1 nerefore, itis both hard and computationally expensive
consists of a fixed non-linear strategy that does not evolve and [© €Merge an obstacle-avoidance strategy by rewarding
is determined by the two-dimensional discontinuously time- 900d examples of this strategy.
varying potential field represented by (4). While, in theory;latLands basic concept and features make the proposed test-
the APF solution may be prone to getting stuck througped quite interesting for the multi-agent artificial life research
local minima, in practice, in the dynamidatLand world the area.
probability of such cases to occur is significantly low and « Emerged cooperation FlatLand is a simulated world
therefore, it can be ignored. that we expect to emerge cooperative behaviors without
Any motion strategy that guides an agent to quickly achieve any information exchange apart from spatial coordination
its target, avoiding any possible collisions and keeping the (see above). Therefore, cooperation is emerged from 1)



the way Humans move and 2) the way they interact witB. Genetic Algorithm

their environment (see Section V). _ As previously stressed, our aim is to emerge complex behav-
- Strong creature-environment interaction. There is @ jors py evaluating Humans from their own actionsFiatLand
strong interaction and relation between the simulateghe of the difficulties we encounter in this approach is that
creatures-agents and their environment. In other wordgere is noa priori fithess function for evaluating a genome.
any I|V|pg cregture inFlatLand faces an environment of Hence, a simple generational genetic algorithm (GA) was
a two-dimensional space that includes a number of oth@fjemented, which uses an “endogenous” evaluation function
creatures. Creatures in FlatLand are part of their OWRat emerges from the Humans’ actions in the environment
environment. FurthermoreflatLands main feature, as anq promotes good collision-avoidance and target-achievement
an environment, is its own living creatures. This featurgenaviors. Humans that learn to behave in this fashion, are fit
defines an important pqint in the' Artificial Life researchenough to be considered as good solutions of the problem.
of two-dimensional multi-agent simulated worlds. The neural networks that determine the behavior of the
Humans are themselves evolved. In the work presented here,
the evolving process is limited to the connection weights of the
IV. L EARNING MECHANISMS neural network. Evolving architectures and transfer functions
are some of the ideas for future work.
_ k _ ~~_ The evolutionary procedure used can be described as fol-
Land tes.t-bed enwronmelnt Is to be useq for mvgsngathgws_ Each Human has a genome that encodes the connection
of evolutionary gnd gr_ad|ent—based learning techniques ,a\%ights of its neural network. A population of 20 (we keep
furthermore, their ability to emerge complex and adaptigis ymber low because of the increasing computational cost)
obstacle-avoidance and target-achievement behaviors. In {3, a1 networks (Humans) is initialized randomly while initial
section we present the learning mechanisms used. The MAIy \51yes that lie within [-5, 5] for their connection weights

approach (pres.ented in S_ubse_ction IV-B) s evqluating Hire picked randomly from a uniform distribution. Then, at each
mans from their own actions in thElatLand environment step:

(generational genetic algorithm) whereas the alternative back- . L .
propagation approach (presented in Subsection IV-A) consis ) Egeélyo:':énzpem Itzc?e[()jopnu'tar:le(ljgtll_zglc(j)giarzoontrlrzgi?;r:jese
of supervised learning attempting to train Humans on Animals’ placed n : .

tested for an evaluation period (e.g. 200 simulation steps).

behavior. The outcome of this test is to ascertain the total number
of collisionsC' and target achievements
2) Each Human is evaluated via the following function:

As mentioned in Section |, the main purpose of Hat-

A. Back-Propagation

C; . T;

The data set used for the supervised back-propagation fi = mm{l Cu’o} +mm{Tu’1}
(BP) training of the neural controllers consists of inputs 2
and actions of an Animal. Hence, the use of this alternative where:
supervised learning approach is based on Humans’ evaluation f;: evaluation function of the i Humarg;: total number
by promoting any behavior that mimics the Animals’ strategy ~ of collisions of the i Human's 20 clones?,: total
(data set). This near-optimum Animal path is taken from  number of collisions’ upper bound;: total number of
a simulation of 80 Animals in thd-latLand environment. target achievements of the i Human’s 20 cloriEs;total
Crowded FlatLand environments (e.g. 80 agents) produce number of target achievements’ upper bound.
more obstacle-avoidance cases, than normal population (e.8) A pure elitism selection method is used where only
20 agents) environments. Therefore, the data set taken from the 2 best fit solutions determine the members of the
an Animal path in this environment contains more obstacle- intermediate population and therefore, are able to breed.
avoidance examples in it. Furthermore, because of the fact thd) Each of the two parents clones 9 offspring.
obstacle-avoidance is harder than target-achievement behaviby Mutation occurs in each gene-connection weight of each
for an agent to emerge, such data sets define good samples for offspring’s genome with a small probability (e.g. 0.01).
training. The size of the training data set is 666 (i.e. this being A uniform random distribution is used again to define
2/3 of a data set that was originally partitioned into training  the mutated value of the connection weight.
and testing portions) for the experiments presented here. The algorithm is terminated when either a good fit Human

We are using the Levenberg-Marquardt algorithm [8] tof, > 0.99) is found or a large number of time steps (e.g.
train neural controllers. This algorithm appears to be tiE00) is achieved.
fastest method for training moderate-sized feedforward neuralAs mentioned before, a suitable evaluation function for the
networks. generational GA approach promotes good obstacle-avoidance

The algorithm is terminated when either it converges toand target-achievement behaviors in an “endogenous” way.
good mean square errmse) value (e.g. for the experimentsFurthermore, by using (5), we promote Humans (their 20
presented here, good training performance of the networkci®nes) that do not crash and achieve a determined number of
achieved whennse = 0.0018) or a predefined large numbertargets {’,) during an evaluation period (e.g. 200 simulation
of epochs (e.g. 1000 epochs) is achieved. steps). By this evaluation, we mainly promote twenty clones

®)



of the same Human (solution) capable of cooperating in ord®@r Performance Comparison
to successfully achieve the aforementioned desired behaviorrgpie | illustrates results from both learning mechanisms

Due to this, we are able to emerge very interesting cooperatjy§g (BP, GA). The neural controller employed is a 5-hidden

behaviors within the same solution (see Section V). neuron feedforward neural network. This controller emerges
the best behavior (in terms of performance), among many
V. RESULTS feedforward neural controllers, for both learning mechanisms

applied. Additionally, this is the only feedforward neural

In this section we present and compare results obtained frofitecture presented here due to space considerations. Re-
the two learning mechanisms (BP, GA) appliedRlatLand  gts presented in Table | represent the best (in terms of

as presented in Section [V. performance) obtained results for each learning mechanism.

TABLE |
BEST PERFORMANCE COMPARISON TABLE - AVERAGE VALUES ARE
We introduce an efficient method for testing and comparin@sTAINED FROM 10 EVALUATION RUNS (10* SIMULATION STEPSEACH)

A. Performance Measurement

different learning mechanisms’ ability to emerge successful OF A 20-AGENT ENVIRONMENT
controllers. For each learning mechanism used, we pick up

the best (in terms of the optimization function used) neural Agents || E{C} [ E{T} | E{v} | P
controller (Human). Then, we record the total number of both Random || 198620 7 0.46 | 0.0010
collisions C' and target achievemenfs of a population of 20 TAs 2000 | 3348 0.50 0.5
copies of this agent in a specific number of simulation steps BP 663 3121 0.51 | 0.8219
(e.g.10%) by placing these agents FatLand and running the GA 268 3179 0.9 | 0.9297
simulation. Animals 0 3200 0.5 1.0

Since the initialization phase picks random numbers for
initial positions and target points of the agents, it constitutes an|, Taple | we introduce the best obtained performance of

important factor for any result. Therefore, we repeat the Saespecies of agents called “Randon® & 0.0010). These
procedure for ten simulation (i.e. evaluation) runs (we be"e‘é%ents are randomly initialized Humans and the variance of
that this number of evaluation runs is adequate to illustrajg.i, performance over the 10 evaluation rusfsequals to

a clear picture of the behavior) of different initial conditions 5 43.10-7. The Random agents along with the Target Achiev-
and we compute the average numbers of total colliSIBRE’} g1 and the Animals are presented in Table | for comparison
and target achievements{T'}. We usedl0* simulation steps any emergent Humans' behavior.

for measuring and evaluating any behavior (collisions, targety; is obvious that the GA approachP(= 0.9297, s2 =
achievements) since we believe it is a long enough period fpy - . 10-) gets closer to the desired behavior (i.e. Animals)
evaluating a behavior of a population of agents in an efficiepi,, gp P = 0.8219, s2 = 31.8-10~) or any other “species”
way. Results of this kind can be obtained from Table I. 4t agents. This high-performance behavior is achieved because
.In order to classify the efficiency of each learning m?Ch%e GA approach - in contrast with the BP approach that
nism used, we need a performfamce measurement. This Mggsmpts to mimic the Animal’s behavior - emerges Humans
surement can be obtained from: that manage to keep a big distance with each other in order to
avoid collisions. Furthermore, they move with an almost max-

mazx {1 - EC{TCA}Q} -+ min {%Z}, 1} imum speed (i.eV = 0.9) to achieve as many target points
P = 9 ©) as possible. These results lead to the important conclusion
where: that simple evolutionary learning mechanisms can produce

much better behaviors than the ones produced from exhausting

P: performance functionC'r 4: total number of collisions of dssupervised learning approachesikatLand

20 “Target Achievers” (i.e. agents that move directly towar
their target points with constant speedyy = 0°,dyy = 0.5 ]
cmitime step) inl0* simulation steps@r4 = 2000, see Table C. Robustness Comparison
[); T4: total number of target achievements of 20 Animals in As previously stressed, the 5-hidden neuron feedforward
10* simulation stepsX{4 = 3200, see Table ). neural controller produces the best behavior (in terms of the
The maximum value of (6) is 1.0 and it is obtained onlperformance functionP) for both learning mechanisms em-
when the agents do not collide at alE{C} = 0) and ployed. Hence, due to space considerations, results presented
achieve as many target points as the Animalsg) ©r more. in this subsection are obtained from experiments of only this
Additionally, the upper bound for the total number of collisionfeedforward neural architecture’s application.
is the number that the Target Achievers (TAs) produCe A) In order to test the robustness of the solutions given and to
because they just move directly towards their target points acalculate the effort cost of each approach, we are applying
therefore, present the worst collision-avoidance behavior fraime following procedure. For each approach a) we repeat
our viewpoint. Hence, (6) produces a clear picture of hothe learning attempt (run) ten times (each time, a different
far the performance of each learning mechanism is from th@ndom initialization of the connection weights’ values is
optimal performance of AnimalsH = 1.0). given); b) the method presented in Subsection V-A is used to



measure the performance of each run; c) the number of runsResults from the effort cost comparison via the beta-
that present higher performance than a specific performarttistribution statistical method for three different values of
threshold value (i.eP > Pipreshoia) determine the successesPy, eshoiq are presented in Table Il. Thus, for eaBh, eshord

of the approach for this performance threshold. The higheslue the number of successes) @nd failures () of each

the performance threshold value, the more demanding thgproach is presented (as illustrated in Fig. 5). The unit
procedure and robust the solutions. Fig. 5 illustrates tlsemputing cost per rum) is the average CPU time of the
number of successes of both learning mechanisms (BP, G&jh runs (every experiment presented here run under the same

for ten different values of’i;,eshold- 1GHz processor). Finally, the mean effort cost is calculated
with 25+L 0,
100 _Oé . . .
The important conclusion that arises from Table Il is that the
K BP approach is computationally preferred for low performance
o values (i.e.Pireshora < 0.75) from the GA approach. On the

other hand, the GA learning mechanism’s mean effort cost is
much lower than the respective effort cost of the BP approach
for demanding high-performance solutions (iR}, csnota >
0.75).

Finally, it is worth mentioning that the BP approach results
presented in this paper are the best (in terms of performance)
obtained from a variety of different training data sets as well
as training improvement techniques (e.g. data preprocessing).

Successes

0 L L L L L L
05 0.55 0.6 0.65 0.7 0.75 0.8 085 0’9 085
Performance

. o VI. CONCLUSION
Fig. 5. Number of successes out of 10 runs for specific performance values ) ]
We introduced both a hard and important problem for the

The generational GA is more efficient and robust approaftiti-agent dynamic simulated world research area. We saw

than BP for every performance function threshold (see Fifat @ simple GA approach can emerge high-performance

whereas BP approach’s best performance is below 0.85. It58nd world is concerned. Additionally, in comparison with
worth mentioning that fo,,,.csnea = 0.75, GA succeeds in the supervised learmning BP approach, the GA approach is
9 out of 10 times while BP succeeds only 2 times. Finallfoth computationally preferred and more efficient for high-
for 0.85 < Pureshora < 0.95 there cannot be any effort costPerformance behaviors. Supervised learing BP approaches
comparison between the learning mechanisms because dail/to compete evolutionary learning techniques because of

the GA approach is capable of emerging behaviors of their strong training data set dependence and the complex
high performance. dynamics of the problem.
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