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Performance, robustness and effort cost comparison
of machine learning mechanisms inFlatLand

Georgios N. Yannakakis,Student Member, IEEE,John Levine, John Hallam
and Markos Papageorgiou,Fellow, IEEE

Abstract— This paper presents the first stage of research into
a multi-agent complex environment, called “FlatLand” aiming at
emerging complex and adaptive obstacle-avoidance and target-
achievement behaviors by use of a variety of learning mecha-
nisms. The presentation includes a detailed description of the
FlatLand simulated world, the learning mechanisms used as
well as an efficient method for comparing the mechanisms’
performance, robustness and required computational effort.

Index Terms— back-propagation, genetic algorithms, machine
learning, multi-agent, simulated worlds.

I. I NTRODUCTION

M ULTI-AGENT systems is a prominent area of research.
Designing agents for such systems could be a repetitive

and tedious procedure. This task is getting even more difficult
when the multi-agent environment is fully dynamic and non-
deterministic. When designing controllers for autonomous
simulated agents for such environments, there is little guidance
on how complex the controller must be for the agent to
achieve good performance in particular tasks. Furthermore,
when trying to emerge such a performance via a learning
mechanism, there is little knowledge about the mechanism’s
complexity.

We have developed a novel simulated world called “Flat-
Land” for studying genetic and gradient-search optimization
techniques. TheFlatLand world is a two-dimensional multi-
agent complex environment. The agents living inFlatLand
appear as circular artificial creatures. Our first objective in
developing this world is to create a novel environment for com-
paring and testing various controllers and learning techniques.
The two tasks that our agents are tested in are the competing
strategies of obstacle-avoidance and target-achievement. The
work presented here is focused on the evolution of agents’
artificial controllers in emerging the aforementioned strategies
in an adaptive fashion, using various forms of learning proce-
dures.

This paper is organized as follows. In Section II we present
a detailed description ofFlatLand as well as the agents’
controllers employed. In Section III we discuss about the
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difficulties and points of importance of this simulated world.
The learning mechanisms used are analytically described in
Section IV. Results obtained as well as comparison of per-
formance, robustness and effort cost between the different
learning approaches are presented in Section V. Finally, the
most important conclusions of theFlatLand research are
outlined in Section VI.

II. T HE FlatLandSIMULATED WORLD

The name “FlatLand” is inspired from E. Abbott’s book
title [1] and its fundamental concept is based on previous
research by Yannakakis [2]. The main purpose of this sim-
ulated world is to be used as a test-bed environment for
investigating evolutionary [3] and gradient-based (in a lesser
degree) learning techniques and furthermore, their ability to
emerge complex and adaptive obstacle-avoidance and target-
achievement behaviors. In this section, we present a detailed
description of this simulated world.

FlatLand is a two-dimensional multi-agent square environ-
ment. The world’s dimensions are predefined so that actions
take place in a closed frictionless plane. There are two simple
figures visualized inFlatLand (as illustrated in Fig. 1): 1)
white circles (radius=5mm) that represent the agents - artificial
creatures and 2) dashed straight lines connecting the agent’s
current position and its target point on the surface.

Fig. 1. FlatLand world interface (the plane’s dimensions are 80 cm× 80
cm in the experiments presented here)

The population used consists of some twenty 2D circular
agents-creatures, called “Humans”. Their motion is controlled
by a neural network. It is worth mentioning that one of
Humans’ properties is their permeability in case of a possible
collision with each other. Therefore, their motion is not
affected when they collide as they pass through each other.
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Even though this is an unwanted behavior (from the viewpoint
of FlatLand’s obstacle-avoidance goal behavior), it contributes
to the simplicity of the environment. As mentioned before,
each Human holds a target point on the environment’s surface.
This point keeps changing during its life and therefore, as
soon as a Human achieves its current target (i.e. manages to
reach a circle of 5mm around the target point), then a new
target point is selected. The new target point is picked from a
uniform random distribution in a specified distance of 30cm
from the agent’s center. The simulation procedure ofFlatLand
can be described as follows. Humans are placed randomly in
FlatLand (initial positions) via a uniform distribution. Then,
the following occur at each simulation step:

1) Each Human gathers information from its environment
(see Subsection II-A.1)

2) It takes a movement decision (see Subsection II-A.2)
3) Total number of collisions and target-achievements as

well as the average speed of the Humans are recorded.
4) New randomly picked target points are given to those

Humans that have achieved their target points.

FlatLand’s aim is to focus and research over the agent’s
ability to emerge an efficient and robust obstacle-avoidance
and target-achievement behavior. Therefore, the design of the
simulated agents used in this environment is deliberately kept
abstract. Finally, it is worth mentioning that there is no wall
avoidance strategy implemented yet (it constitutes one of our
future research steps).

A. Neural Controller

Neural networks appear to be the most promising means
of emerging adaptive behaviors in complex multi-agent envi-
ronments, as stressed in [4] and [5]. Therefore, a feedforward
neural controller is employed to manage the agents’ motion
and is described in this subsection. Apart from the neural con-
troller, an Artificial Potential Field employed for controlling
the agents’ movement is also introduced in Subsection II-B.

1) Input: Using its sensors, each Human inspects the envi-
ronment from its own point of view and decides about its next
action. Both the input information and the neural controller’s
architectures are analytically presented in this subsection.

The neural controller’s input data and format can be de-
scribed as follows. Each Human receives information from its
environment expressed in the neural network’s input array of
dimension D:

D = 2z + 1 (1)

wherez defines the number of the closest Humans that each
Human takes into account via its sensors. Thus, the input array
consists of: (a) the polar coordinates(ai, di) - based on the axis
determined by the current position of the Human and its target
point (see Fig. 2) - of thez (i = 1, . . . , z) closest Humans
and (b) an additional input that defines the distance between
the Human’s current position and its target point(dT). Fig.
2 illustrates the Human’s sensoring information as described
above.

All input values are linearly normalized into [0, 1] before
they are entered into the neural controller. The input’s format

Fig. 2. Human’s input data in polar coordinates(z = 2)

in polar coordinates is based on Reynolds’ work in artificial
critters [6]. For the experiments presented in this paperz = 2,
as it stresses the minimal amount of information for a Human
to successfully achieve the desired behavior (i.e. forz = 1
neural controllers are not able to emerge satisfactory obstacle-
avoidance strategies).

2) Architecture:There has been research on many different
feedforward neural network architectures. Our potential target
when we first developedFlatLand was to find the simplest
neural controller capable of emerging the desired behavior.
Therefore, a two-layered fully connected feedforward neural
network has been used for the experiments presented here (as
shown in Fig. 3). The sigmoid function is employed at each
neuron.

Fig. 3. Two-layer feedforward neural network controller

The connection weights take values from -5 to 5 while the
neural network’s output is a two-dimensional vector[o1, o2]
with respective values from 0 to 1. This vector represents the
Human’s step motion and is converted into polar coordinates
according to (2) and (3).

dNN = o1M (2)

aNN = (2o2 − 1)π (3)

where:
dNN : Human’s step motion (in cm/time step);aNN : Human’s
turn angle from the axis determined by the Human’s current
position and its target point (in degrees);M : Human’s max-
imum speed; in experiments presented in this paper,M=1
cm/time step.
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B. Artificial Potential Field Strategy

Using the same environment, we explored another “species”
of agents as well. These agents are called “Animals” and
their only difference from Humans is in the control of their
locomotion. Instead of a neural network, an Artificial Potential
Field (APF), specially designed for this environment, controls
the Animals’ motion. The essence of the APF is that points
along the Animal’s path to its target point are considered to be
attractive forces and obstacles (other Animals) in the environ-
ment are repulsive forces [7]. The overall APF causes a net
force to act on the Animal, which guides it along a collision-
free, target-achievement path. For illustration, consider the
Animal as a small sphere (of radius R=5mm) that slides down
the surface plotted in Fig. 4. This surface is plotted by each

Fig. 4. APF - Situation of two obstacles - closest Animals(z = 2).

Animal in every simulation step and represents the function:

F (x, y) =
M

2

√
(x− xT)2 + (y − yT)2 (4a)

+ δ

z∑

i=1

e
−
h
(∆xi

4R )2
+(∆yi

4R )2i
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where:

∆xi = x− xi

∆yi = y − yi

and:
F (x, y): potential field value for the cartesian Animal’s coor-
dinatesx, y; [xT, yT]: coordinates of Animal’s target point;
[xi, yi]: coordinates of Animal’s i closest obstacle’s (other
Animal’s) center;δ: parameter that defines the height of the
exponential “mountain-like” function presented at (4b).

It is obvious that the surface plotted by each Animal alters
at every time step as a result ofFlatLand’s dynamics (moving
obstacles - other Animals). The Animals’ motion therefore
consists of a fixed non-linear strategy that does not evolve and
is determined by the two-dimensional discontinuously time-
varying potential field represented by (4). While, in theory,
the APF solution may be prone to getting stuck through
local minima, in practice, in the dynamicFlatLand world the
probability of such cases to occur is significantly low and
therefore, it can be ignored.

Any motion strategy that guides an agent to quickly achieve
its target, avoiding any possible collisions and keeping the

straightest and fastest possible trajectory to its target, is defi-
nitely a “good” strategy in terms ofFlatLandworld. Therefore,
Animals present a “good” (near optimum) behavior in our
simulated world and furthermore a reference case to compare
it to any Humans’ behavior. This is the major reason for the
use of this species of agents, along with the fact that data from
the Animals’ motion strategy can be used to train the Humans’
neural network controller (see Subsection IV-A).

III. H ARDNESS OF THE PROBLEM

In this section we provide evidence of the problem’s com-
plexity and learning difficulty as well as its importance in the
multi-agent systems research area. In fact,FlatLand is a hard
environment for an agent to learn to live in because of its
following distinct features:

• Fully dynamical multi-agent. Humans are moving con-
tinuously. Each Human faces a number of moving ob-
stacles (i.e. potentially 19 other Humans) in a specific
squared environment whereby it has noa priori knowl-
edge about their motion. Prediction of motion can be
emerged by complicating the sensor system of each Hu-
man (i.e. addition of speed vectors of moving obstacles).

• Partial information . One of the major difficulties of the
problem is that Humans communicate just by “seeing”
(i.e. spatial polar coordination) each other (see Fig. 2).
This kind of communication regarding these kind of
tasks (i.e. obstacle-avoidance and target-achievement) is
very common in the animals world (e.g. predator-prey
behaviors) as well as in human beings (e.g. crowded
streets).

• Discontinuous time-varying information The Human’s
input information suffers from discontinuity because of
frequent alterations of thez closest Humans that takes
into account via its sensors. Hence, the values of the polar
coordinatesai,di (i = 1, . . . , z) alter in a discontinuous
fashion.

• Supervised training. If we try to train Humans under the
near-optimum APF (Animals) strategy, we have to face
problems such as missing information (data) for many
cases. These are cases that Animals would never get into
(e.g. case ofdi ≤ 2R) but trained Humans do.

• Very few collision examples. One of the difficulties of
the FlatLand world is the small value of collisions per
time step. Even in the worst obstacle-avoidance behav-
iors we experienced, 20 Humans collide approximately
about 3000 times in104 simulation steps. Hence, each
Human collides less than 1.5% of its lifetime on average.
Therefore, it is both hard and computationally expensive
to emerge an obstacle-avoidance strategy by rewarding
good examples of this strategy.

FlatLand’s basic concept and features make the proposed test-
bed quite interesting for the multi-agent artificial life research
area.

• Emerged cooperation. FlatLand is a simulated world
that we expect to emerge cooperative behaviors without
any information exchange apart from spatial coordination
(see above). Therefore, cooperation is emerged from 1)
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the way Humans move and 2) the way they interact with
their environment (see Section V).

• Strong creature-environment interaction. There is a
strong interaction and relation between the simulated
creatures-agents and their environment. In other words,
any living creature inFlatLand faces an environment of
a two-dimensional space that includes a number of other
creatures. Creatures in FlatLand are part of their own
environment. Furthermore,FlatLand’s main feature, as
an environment, is its own living creatures. This feature
defines an important point in the Artificial Life research
of two-dimensional multi-agent simulated worlds.

IV. L EARNING MECHANISMS

As mentioned in Section I, the main purpose of theFlat-
Land test-bed environment is to be used for investigation
of evolutionary and gradient-based learning techniques and
furthermore, their ability to emerge complex and adaptive
obstacle-avoidance and target-achievement behaviors. In this
section we present the learning mechanisms used. The main
approach (presented in Subsection IV-B) is evaluating Hu-
mans from their own actions in theFlatLand environment
(generational genetic algorithm) whereas the alternative back-
propagation approach (presented in Subsection IV-A) consists
of supervised learning attempting to train Humans on Animals’
behavior.

A. Back-Propagation

The data set used for the supervised back-propagation
(BP) training of the neural controllers consists of inputs
and actions of an Animal. Hence, the use of this alternative
supervised learning approach is based on Humans’ evaluation
by promoting any behavior that mimics the Animals’ strategy
(data set). This near-optimum Animal path is taken from
a simulation of 80 Animals in theFlatLand environment.
Crowded FlatLand environments (e.g. 80 agents) produce
more obstacle-avoidance cases, than normal population (e.g.
20 agents) environments. Therefore, the data set taken from
an Animal path in this environment contains more obstacle-
avoidance examples in it. Furthermore, because of the fact that
obstacle-avoidance is harder than target-achievement behavior
for an agent to emerge, such data sets define good samples for
training. The size of the training data set is 666 (i.e. this being
2/3 of a data set that was originally partitioned into training
and testing portions) for the experiments presented here.

We are using the Levenberg-Marquardt algorithm [8] to
train neural controllers. This algorithm appears to be the
fastest method for training moderate-sized feedforward neural
networks.

The algorithm is terminated when either it converges to a
good mean square error(mse) value (e.g. for the experiments
presented here, good training performance of the network is
achieved whenmse = 0.0018) or a predefined large number
of epochs (e.g. 1000 epochs) is achieved.

B. Genetic Algorithm

As previously stressed, our aim is to emerge complex behav-
iors by evaluating Humans from their own actions inFlatLand.
One of the difficulties we encounter in this approach is that
there is noa priori fitness function for evaluating a genome.
Hence, a simple generational genetic algorithm (GA) was
implemented, which uses an “endogenous” evaluation function
that emerges from the Humans’ actions in the environment
and promotes good collision-avoidance and target-achievement
behaviors. Humans that learn to behave in this fashion, are fit
enough to be considered as good solutions of the problem.

The neural networks that determine the behavior of the
Humans are themselves evolved. In the work presented here,
the evolving process is limited to the connection weights of the
neural network. Evolving architectures and transfer functions
are some of the ideas for future work.

The evolutionary procedure used can be described as fol-
lows. Each Human has a genome that encodes the connection
weights of its neural network. A population of 20 (we keep
this number low because of the increasing computational cost)
neural networks (Humans) is initialized randomly while initial
real values that lie within [-5, 5] for their connection weights
are picked randomly from a uniform distribution. Then, at each
time step:

1) Every Human in the population is cloned 20 times. These
20 clones are placed in theFlatLand environment and
tested for an evaluation period (e.g. 200 simulation steps).
The outcome of this test is to ascertain the total number
of collisionsC and target achievementsT .

2) Each Human is evaluated via the following function:

fi =
max

{
1− Ci

Cu
, 0

}
+ min

{
Ti

Tu
, 1

}

2
(5)

where:
fi: evaluation function of the i Human;Ci: total number
of collisions of the i Human’s 20 clones;Cu: total
number of collisions’ upper bound;Ti: total number of
target achievements of the i Human’s 20 clones;Tu: total
number of target achievements’ upper bound.

3) A pure elitism selection method is used where only
the 2 best fit solutions determine the members of the
intermediate population and therefore, are able to breed.

4) Each of the two parents clones 9 offspring.
5) Mutation occurs in each gene-connection weight of each

offspring’s genome with a small probability (e.g. 0.01).
A uniform random distribution is used again to define
the mutated value of the connection weight.

The algorithm is terminated when either a good fit Human
(fi ≥ 0.99) is found or a large number of time steps (e.g.
2000) is achieved.

As mentioned before, a suitable evaluation function for the
generational GA approach promotes good obstacle-avoidance
and target-achievement behaviors in an “endogenous” way.
Furthermore, by using (5), we promote Humans (their 20
clones) that do not crash and achieve a determined number of
targets (Tu) during an evaluation period (e.g. 200 simulation
steps). By this evaluation, we mainly promote twenty clones
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of the same Human (solution) capable of cooperating in order
to successfully achieve the aforementioned desired behavior.
Due to this, we are able to emerge very interesting cooperative
behaviors within the same solution (see Section V).

V. RESULTS

In this section we present and compare results obtained from
the two learning mechanisms (BP, GA) applied inFlatLand
as presented in Section IV.

A. Performance Measurement

We introduce an efficient method for testing and comparing
different learning mechanisms’ ability to emerge successful
controllers. For each learning mechanism used, we pick up
the best (in terms of the optimization function used) neural
controller (Human). Then, we record the total number of both
collisionsC and target achievementsT of a population of 20
copies of this agent in a specific number of simulation steps
(e.g.104) by placing these agents inFlatLandand running the
simulation.

Since the initialization phase picks random numbers for
initial positions and target points of the agents, it constitutes an
important factor for any result. Therefore, we repeat the same
procedure for ten simulation (i.e. evaluation) runs (we believe
that this number of evaluation runs is adequate to illustrate
a clear picture of the behavior) of different initial conditions
and we compute the average numbers of total collisionsE {C}
and target achievementsE {T}. We used104 simulation steps
for measuring and evaluating any behavior (collisions, target
achievements) since we believe it is a long enough period for
evaluating a behavior of a population of agents in an efficient
way. Results of this kind can be obtained from Table I.

In order to classify the efficiency of each learning mecha-
nism used, we need a performance measurement. This mea-
surement can be obtained from:

P =
max

{
1− E{C}

CT A
, 0

}
+ min

{
E{T}

TA
, 1

}

2
(6)

where:
P : performance function;CTA: total number of collisions of
20 “Target Achievers” (i.e. agents that move directly towards
their target points with constant speed -aNN = 0o, dNN = 0.5
cm/time step) in104 simulation steps (CTA = 2000, see Table
I); TA: total number of target achievements of 20 Animals in
104 simulation steps (TA = 3200, see Table I).

The maximum value of (6) is 1.0 and it is obtained only
when the agents do not collide at all (E {C} = 0) and
achieve as many target points as the Animals do (TA) or more.
Additionally, the upper bound for the total number of collisions
is the number that the Target Achievers (TAs) produce (CTA)
because they just move directly towards their target points and
therefore, present the worst collision-avoidance behavior from
our viewpoint. Hence, (6) produces a clear picture of how
far the performance of each learning mechanism is from the
optimal performance of Animals (P = 1.0).

B. Performance Comparison

Table I illustrates results from both learning mechanisms
used (BP, GA). The neural controller employed is a 5-hidden
neuron feedforward neural network. This controller emerges
the best behavior (in terms of performance), among many
feedforward neural controllers, for both learning mechanisms
applied. Additionally, this is the only feedforward neural
architecture presented here due to space considerations. Re-
sults presented in Table I represent the best (in terms of
performance) obtained results for each learning mechanism.

TABLE I

BEST PERFORMANCECOMPARISON TABLE - AVERAGE VALUES ARE

OBTAINED FROM 10 EVALUATION RUNS (104 SIMULATION STEPSEACH)

OF A 20-AGENT ENVIRONMENT

Agents E {C} E {T} E {V } P

Random 198620 7 0.46 0.0010

TAs 2000 3348 0.50 0.5

BP 663 3121 0.51 0.8219

GA 268 3179 0.9 0.9297

Animals 0 3200 0.5 1.0

In Table I we introduce the best obtained performance of
a species of agents called “Random” (P = 0.0010). These
agents are randomly initialized Humans and the variance of
their performance over the 10 evaluation runss2 equals to
12.03·10−7. The Random agents along with the Target Achiev-
ers and the Animals are presented in Table I for comparison
to any emergent Humans’ behavior.

It is obvious that the GA approach (P = 0.9297, s2 =
12.5 · 10−5) gets closer to the desired behavior (i.e. Animals)
than BP (P = 0.8219, s2 = 31.8·10−5) or any other “species”
of agents. This high-performance behavior is achieved because
the GA approach - in contrast with the BP approach that
attempts to mimic the Animal’s behavior - emerges Humans
that manage to keep a big distance with each other in order to
avoid collisions. Furthermore, they move with an almost max-
imum speed (i.e.V = 0.9) to achieve as many target points
as possible. These results lead to the important conclusion
that simple evolutionary learning mechanisms can produce
much better behaviors than the ones produced from exhausting
supervised learning approaches inFlatLand.

C. Robustness Comparison

As previously stressed, the 5-hidden neuron feedforward
neural controller produces the best behavior (in terms of the
performance functionP ) for both learning mechanisms em-
ployed. Hence, due to space considerations, results presented
in this subsection are obtained from experiments of only this
feedforward neural architecture’s application.

In order to test the robustness of the solutions given and to
calculate the effort cost of each approach, we are applying
the following procedure. For each approach a) we repeat
the learning attempt (run) ten times (each time, a different
random initialization of the connection weights’ values is
given); b) the method presented in Subsection V-A is used to
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measure the performance of each run; c) the number of runs
that present higher performance than a specific performance
threshold value (i.e.P > Pthreshold) determine the successes
of the approach for this performance threshold. The higher
the performance threshold value, the more demanding the
procedure and robust the solutions. Fig. 5 illustrates the
number of successes of both learning mechanisms (BP, GA)
for ten different values ofPthreshold.
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Fig. 5. Number of successes out of 10 runs for specific performance values

The generational GA is more efficient and robust approach
than BP for every performance function threshold (see Fig.
5). It even emerges controllers (1 success) withP ≥ 0.9
whereas BP approach’s best performance is below 0.85. It is
worth mentioning that forPthreshold = 0.75, GA succeeds in
9 out of 10 times while BP succeeds only 2 times. Finally,
for 0.85 ≤ Pthreshold < 0.95 there cannot be any effort cost
comparison between the learning mechanisms because only
the GA approach is capable of emerging behaviors of that
high performance.

D. Mean Effort Cost Comparison

Since the GA approach is proven to be more robust learning
mechanism than the BP approach, the next step is to compare
these mechanisms via their mean effort cost. Hence, we pick
decent high values ofPthreshold (i.e. Pthreshold ≥ 0.75) and
proceed with a beta-distribution approximation of the mean ef-
fort cost [9] for both approaches. Due to space considerations,
we do not present the detailed description of this standard
statistical method here.

TABLE II

MEAN EFFORT COST COMPARISON TABLE

Approach CPU time1 Pthreshold α β Mean Effort Cost1

BP 93.58 0.7 5 5 205.87

0.75 2 8 514.69

0.8 1 9 1029.38

GA 374.45 0.7 9 1 457.65

0.75 9 1 457.65

0.8 8 2 514.86

1in seconds

Results from the effort cost comparison via the beta-
distribution statistical method for three different values of
Pthreshold are presented in Table II. Thus, for eachPthreshold

value the number of successes (α) and failures (β) of each
approach is presented (as illustrated in Fig. 5). The unit
computing cost per runQ is the average CPU time of the
ten runs (every experiment presented here run under the same
1GHz processor). Finally, the mean effort cost is calculated
with α+β+1

α Q.
The important conclusion that arises from Table II is that the

BP approach is computationally preferred for low performance
values (i.e.Pthreshold < 0.75) from the GA approach. On the
other hand, the GA learning mechanism’s mean effort cost is
much lower than the respective effort cost of the BP approach
for demanding high-performance solutions (i.e.Pthreshold ≥
0.75).

Finally, it is worth mentioning that the BP approach results
presented in this paper are the best (in terms of performance)
obtained from a variety of different training data sets as well
as training improvement techniques (e.g. data preprocessing).

VI. CONCLUSION

We introduced both a hard and important problem for the
multi-agent dynamic simulated world research area. We saw
that a simple GA approach can emerge high-performance
and robust behaviors as far as the hardness of theFlat-
Land world is concerned. Additionally, in comparison with
the supervised learning BP approach, the GA approach is
both computationally preferred and more efficient for high-
performance behaviors. Supervised learning BP approaches
fail to compete evolutionary learning techniques because of
their strong training data set dependence and the complex
dynamics of the problem.
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