
Sentient Sketchbook:
Computer-Assisted Game Level Authoring

ABSTRACT
This paper introduces Sentient Sketchbook, a tool which
supports a designer in the creation of game levels. Us-
ing map sketches to alleviate designer effort, the tool auto-
mates playability checks and evaluations and visualizes sig-
nificant gameplay properties. Most importantly, this paper
introduces constrained novelty search via a two-population
paradigm for generating, in real-time, alternatives to the
author’s design and evaluates its potential against current
approaches. The paper concludes with a small-scale user
survey during which industry experts interact with Sentient
Sketchbook to design game levels. Results demonstrate the
tool’s potential and provide directions for its improvement.

1. INTRODUCTION
Over the last twenty years, computer games have grown

from a niche market targeting young adults to an important
player in the global economy [3], engaging millions of people
from different cultural backgrounds. As both the number
and the size of computer games continue to rise, game com-
panies handle increasing demand by expanding their cadre,
compressing development cycles and reusing code or assets.
To limit development time and reduce the cost of content
creation, commercial game engines and procedural content
generation are popular shortcuts among game companies.
Low-level engine features such as physics simulation and
game-independent content such as vegetation are usually
handled by third-party middleware such as Havok Physics
(Havok, 2000) and SpeedTree (IDV, 2002) respectively. For
content more contingent on a game’s theme, mechanics and
quests, most commercial game engines such as the Unreal
Development Kit (Epic Games, 2009) assist in the fast and
intuitive creation of game levels and scripts via game editors
which automate mundane tasks such as pathfinding.

This paper presents a tool, named Sentient Sketchbook,
which supports the design of map sketches via an intuitive
interface, via real-time feedback regarding the map’s playa-
bility or balance, and via the suggestion of alternative map

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Foundations of Digital Games 2013 Chania, Greece
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

designs. The tool assists the level designer as it automat-
ically tests maps for playability constraints, calculates and
displays navigable paths, evaluates the map on gameplay
properties and adds details to the coarse map sketch. Ad-
ditionally, the tool aims to enhance the designer’s creativity
through the suggestion of map alternatives generated by ge-
netic search, which is novel as it enhances the constrained
optimization capabilities of novelty search via the feasible-
infeasible two-population paradigm. We assume that design-
ers are driven by certain objectives pertaining to strategic
gameplay (such as game pace and player balance) in their
attempt to design a game level. However, it is likely that
(some) designers are not following design patterns encapsu-
lated by the set of objectives proposed — we argue that, in
such cases, the principles of novelty search could be useful
in providing alternative suggestions. These hypotheses will
be tested with the presented version of Sentient Sketchbook.

The Sentient Sketchbook tool addresses certain limita-
tions of mixed-initiative design by relying on simple map
sketches to counter user fatigue and designer biases reported
in the literature [9]. This paper extends previous work [14]
which presented objective functions for evaluating strategy
game levels and explored their optimization behavior. This
paper focuses on the user interactions afforded by the tool
and on the automatic generation of maps via feasible-infeasible
novelty search. The former is evaluated via a small-scale
survey with industry experts and the latter is evaluated via
controlled experiments with no human interaction.

2. RELATED WORK
The Sentient Sketchbook tool combines computer-assisted

design with the suggestion of alternative game levels gener-
ated procedurally via novelty search. A short overview of
related work in these domains is presented below.

Computer-Assisted Design
Since its early stages of development, the computer was ex-
pected to assist in solving engineering problems by being
involved in the creative design process and by automating te-
dious tasks. Computer-assisted design tools have often been
identified by their dual role as “the designer’s slave” [15] —
performing simulations, analysis and constraint satisfaction
tests — and as advisors when certain requirements are not
met. As computers are becoming efficient at performing the
former role, more researchers focus on the latter: Lubart [12]
identifies that computers can assist in “idea generation and
realization” via different roles: a) as a nanny, by facilitating
a user to jot down and store abstract ideas, b) as a penpal, by

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OAR@UM

https://core.ac.uk/display/157728171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

spurring collaboration between multiple human designers, c)
as a coach, by recommending sources of inspiration and d)
as a colleague. The colleague role, which Lubart argues is
the most ambitious, should contribute equally to the design
discourse but could also incite creativity via “semi-random
search mechanisms to generate novel, unconventional ideas”.

In commercial games and game-like applications, computer-
assisted design speeds up the development process in the
form of game editors. Game editors use an intuitive graphic
interface, allowing designers with little programming experi-
ence to script behaviors and create content, usually as part of
a game level. Many of these tools ship with the final game,
allowing end-users to generate content which increases re-
playability and fan loyalty. Modding via the provided game
editors has often transcended the original game’s concept
and mechanics, leading to new game titles such as Counter-
Strike (Valve, 2000) or new subgenres such as Multiplayer
Online Battle Arenas. Over the years, game editors have
become very sophisticated, driven by a desire to support
the modding community or to reuse code across products.
As an example, the Unreal Development Kit supports land-
scape sculpting, asset organization, scaling rendering accu-
racies and code-free visual scripting. On the other hand,
game-specific editors such as the Creation Kit of Skyrim
(Bethesda Softworks, 2011) allow less customization but of-
fer game-tailored easy-to-use automations such as leveled
item lists, navigation path generation and quest scripting.

Procedural Game Content Generation
The game industry has often relied on the procedural gener-
ation of game content during playtime to enhance the unex-
pectedness of the player’s experience and increase the game’s
replayability value. From early games such as Rogue (M.
Toy and G. Wichman, 1980) and Elite (Acornsoft, 1984)
to contemporary titles such as Torchlight 2 (Runic, 2012)
and Civilization V (Firaxis, 2010), gameworld and level cre-
ation has been the principal application of procedural con-
tent generation (PCG); other applications include the cre-
ation of enemies as in Darkspore (Maxis, 2011) and weapons
as in Borderlands (Gearbox, 2009). Although academic in-
terest in PCG is relatively new [21], the majority of PCG re-
searchers challenge the mostly random generative algorithms
used in the game industry. Whether generating platformer
levels [18], mazes [1], board games [2], racing tracks [19],
weapons [4] or spaceships [11], most projects within academia
attempt to control the algorithms’ stochastic processes via
constraints [10], objective functions [20] and predicted or
reported player experience [22].

Novelty Search and Constrained Optimization
Genetic algorithms traditionally optimize a population of in-
dividuals by selecting the fittest according to a fitness func-
tion [5]. The solutions discovered by a genetic algorithm
are sensitive to the design of the fitness function, especially
if this function is ill-defined, difficult to quantify, or sub-
jective. Novelty search [8] is a recent approach to genetic
search, replacing optimization towards a quantifiable objec-
tive with optimization towards the population’s diversity; it
argues that by stimulating exploration of the search space,
unforeseen high-quality solutions can be discovered. To bet-
ter control exploration, the notion of minimal criteria nov-
elty search was introduced in [7], where solutions which do
not satisfy certain criteria are assigned a fitness of 0, severely

Figure 1: The Sentient Sketchbook tool during a design ses-
sion. To the left is the sketch editor, far to the right are the
automatically generated map suggestions; between these el-
ements is the tile palette, the map display menu and an
overview of map’s fitness dimensions and metrics.

limiting their chances of reproducing. In constrained evolu-
tionary optimization, it is argued that infeasible solutions,
especially those on the border of feasibility, contain valu-
able information which can guide search towards the discov-
ery of feasible individuals [16, 13]. The feasible-infeasible
two-population (FI-2pop) paradigm [6] optimizes infeasible
individuals, stored in a different population than feasible
ones, towards the border of feasibility in order to increase
their likelihood of generating feasible offspring. While PCG
projects use FI-2pop to optimize the population of feasible
individuals according to an objective function [18, 10, 14],
this paper contends that novelty search can be applied to the
feasible population, generating diverse solutions which sat-
isfy the subjective, unpredictable desires of the tool’s users.

3. SENTIENT SKETCHBOOK
Sentient Sketchbook is a tool which allows a designer to

create low-resolution map sketches. In this experiment the
map sketches are abstractions of levels used in successful
strategy games such as Starcraft (Blizzard, 1998), although
other types of games can easily be represented in a similar
sketch format. A map sketch consists of a small number of
tiles (see Figure 1); tiles can be passable, impassable, player
bases or resources. The map layout assumes that each player
starts at a base and gathers resources to produce units which
move through passable tiles to attack the opponent’s base.

Sentient Sketchbook assists the design process as it tests
maps for playability constraints, evaluates the map on game-
play properties, supports informative map displays and adds
details to the coarse map sketch; these functionalities are
presented in Section 3.1. Additionally, the tool aims to in-
cite human creativity by generating map suggestions for the
user; the generative algorithms are presented in Section 3.2.

3.1 Map Editor
A graphical interface has been developed to allow a user

to manually edit a map sketch (see Figure 1). The map
editor allows the designer to place tiles on the map; while
the designer edits the map, the tool tests it for playability.
A map is playable (or feasible) if all resources and bases are
reachable from any other base or resource.

Playable maps are evaluated on quantifiable measures of
quality regarding game pace and player balance. Game pace
is affected by the location of a player’s base: slow, defensive
play is afforded if the base has many nearby resources, is
surrounded by a large easily controllable area, and cannot
be easily reached by other players. Player balance is tested
on the same affordances across players. These fitness dimen-
sions are presented below; more details on their inspiration
and their mathematical formulation can be found in [14]:

Resource safety which evaluates how close every resource
on the map is to any player base. Safe resources are
close to only one base, while unsafe (contested) re-
sources are at similar distances from two or more bases.

Safe area which evaluates how much area close to all player
bases is considered safe; tiles around a player’s base are
safe if they are close only to that base.

Exploration which simulates how difficult every base is to
find starting from all enemy bases. Exploration is sim-
ulated via a flood fill algorithm, which stops when an
enemy base is discovered; the filled area is compared
with the number of passable tiles on the map.

Resource safety balance which has high scores if all re-
sources are equally safe (or unsafe) for all bases.

Safe area balance which has high scores if all bases have
a similar number of safe tiles in their vicinity.

Exploration balance which has high scores if all bases are
equally difficult to find from every enemy base.

These fitness dimensions are re-evaluated with every user
interaction on the map and are displayed visually as progress
bars. If a map has less than two bases or unreachable bases,
all fitness dimensions display “N/A” to indicate infeasibility;
if resources are missing or unreachable, only the resource
safety and resource safety fairness dimensions display“N/A”.

In addition to these fitness dimensions, a number of other
metrics are collected and displayed via the map editor, mostly
pertaining to map navigation. The displayed metrics include
the number of bases and resources on the map, the shortest
paths’ length between bases, the percentage of used space1

and the number of chokepoints, dead ends and open areas2.
The editor allows the designer to switch between different

map displays, which visualize navigational information and
other properties (see Figure 2). At any time, the designer
can switch to the final map view which displays the complete
map on which a strategy game can be played (see Figure 3).
The visualizations of the final map show how map sketches
can be interpreted in different ways and how they can be
applied to other game genres. These final maps (excluding
Dungeon) are constructed via random processes and cellular
automata to create an organic-looking map which retains all
the properties (chokepoints, paths) of the coarse map sketch.
Manual editing, evaluation and evolution are all done on the
sketch level, making computations such as pathfinding easier
and reducing the human effort required to design a complete
map.

1Used Space consists of passable tiles which are on a shortest
path between any two bases or any base and any resource.
2Chokepoints are tiles with two neighboring (passable) tiles,
dead ends are tiles with one neighboring tile and open areas
are tiles with the maximum number of neighboring tiles.

(a) Default (b) Navmesh (c) Resource
safety

(d) Safe areas (e) Unused space (f) Segments

Figure 2: Different map displays on a small two-player map
sketch: Default displays passable tiles (light brown), im-
passable tiles (dark brown), resources (cyan) and player
bases (white). Navmesh displays the passable pathways on
the map and the location of choke points (red), dead ends
(black) and open areas (yellow); Resource safety displays
the safety value of each resource (in shades of green) and
connects bases to their safe resources. Safe areas shows the
tiles close to each base (here in red and blue) which are con-
sidered safe. Unused space shows all shortest paths between
bases and resources, and highlights leftover unused space
(orange). Segments shows the passable areas (in different
colors) which are surrounded solely by chokepoints.

3.2 Map Suggestions
In order for the tool to stimulate the user’s creativity

rather than to simply support it, it needs to provide new
and unexpected alternatives to the user’s current design.
Through these suggestions, the tool intends to challenge the
user’s current design focus and provide unforeseen alterna-
tives to achieving the designer’s goals. The map suggestions
are updated while the user edits the map, using the cur-
rent map’s appearance as their starting point. Currently
map suggestions are generated via genetic algorithms (GAs)
performing constrained optimization to maximize either the
maps’ scores in the fitness dimensions described in Section
3.1 or to maximize the maps’ novelty compared to the de-
signer’s current sketch. Six genetic algorithms, running on
separate threads, use the feasible-infeasible two-population
paradigm [6] (FI-2pop GA) to optimize maps in a single fit-
ness dimension each; the best evolved individual of each GA
is included in the map suggestions. A seventh genetic al-
gorithm uses the FI-2pop paradigm but evolves the feasible
population via novelty search; the six most different evolved
maps in this GA are also included in the map suggestions.
Every GA runs for 10 generations, and optimizes a total of
10 individuals which initially consist of mutations of the au-
thored map sketch. The 12 map suggestions (six evolved via
objective-based search and six evolved via novelty search)
are displayed, as thumbnails, on the edge of the tool’s win-
dow; maps identical with the user’s map or with each other
are omitted. The user can at any time select a map sug-
gestion and replace their current sketch with it. While a
suggestion is selected, its scores in the fitness dimensions

(a) Default (b) Heightmap

(c) Waterways (d) Dungeon

Figure 3: Visualizations of the final map, which offers a
higher-detail view of the map sketch in Figure 2. The Default
visualization adds detail to resource tiles and impassable
tiles, while Heightmap elaborates the impassable regions of
Default. Waterways treats impassable tiles and chokepoints
as water and replaces chokepoints with bridges, while Dun-
geon divides the passable segments and dead ends into rooms
and treats chokepoints as corridors.

and its other metrics are displayed along with the current
sketches’ fitness scores and metrics respectively. There is a
visual indication (via different colors) whether the suggested
map increases or decreases the current map’s score in that
fitness dimension or metric. This extra feedback mechanism
is expected to reduce the designer’s cognitive load of closely
inspecting each of the 12 map suggestions.

In order to optimize the map suggestions via evolution,
each map is encoded as an array of integers: each integer rep-
resents a tile’s type (passable, impassable, base or resource).
All maps are tested for feasibility constraints: feasible maps
must have an appropriate number of bases and resources and
all resources and bases must be reachable from any other
base or resource. The map’s parameters are adjusted via a
FI-2pop GA which evolves two populations, one with feasi-
ble maps and the other with infeasible maps. The infeasible
population optimizes its members towards minimizing the
distance from feasibility, which in this case is the number of
unreachable bases and resources and the number of excess
(or missing) bases or resources. As the infeasible popula-
tion converges to the border of feasibility, the likelihood of
discovering new feasible individuals increases. Feasible off-
spring of infeasible parents are transferred to the feasible
population, boosting its diversity (and vice versa for infeasi-
ble offspring). The feasible population can be optimized to
maximize different objective functions or to perform novelty
search. Optimizing feasible individuals to maximize the fit-
ness dimensions presented in Section 3.1 has been explored
in [14]; the novelty in this paper is the evolution of the fea-
sible population via novelty search. Following the novelty
search paradigm [8], evolution optimizes feasible maps to-
wards maximizing a function ρ corresponding to the average
distance of the k most similar maps in the population and
in an archive of novel maps. The archive stores the l highest
scoring individuals in the population (in terms of ρ) and is

reset at the start of every run of the evolutionary algorithm.
Throughout this study, k = 20 and l = 5. The fitness score
ρ(i) for individual i is calculated as:

ρ(i) =
1

k

k∑
j=1

dist(i, µj) (1)

where µj is the j-th-nearest neighbor of i (within the feasible
population and in the archive of novel individuals). Distance
dist(i, j) between maps i and j is calculated as the number
of tiles which are not of the same type (passable, impassable,
base or resource) for both maps at the same location.

Both feasible and infeasible populations evolve via fitness-
proportionate roulette-wheel selection of parents; parents
are recombined via two-point crossover. Mutation may oc-
cur on parents (5% chance) or offspring (1% chance); during
mutation, either the map is rotated by 180o (10% chance)
or a portion of the map’s tiles (between 5% and 20%) are
altered (swapped with a neighboring tile, transformed from
impassable to passable or from passable to any other tile
type). This aggressive mutation scheme is appropriate for
the short evolutionary runs of map suggestions.

4. EXPERIMENTS
The Sentient Sketchbook tool introduces constrained nov-

elty search via the FI-2pop paradigm, and uses Feasible-
Infeasible Novelty Search (FINS) to generate map sugges-
tions while a user edits the map. Before the generated map
suggestions can be evaluated by human designers, the opti-
mization behavior of FINS must be evaluated in a number of
controlled experiments and compared against minimal cri-
teria novelty search (MCNS) which has been used for the
constrained optimization of novelty [7]. The experiments
presented in this section use a random initial population of
100 individuals (including feasible and infeasible) and run for
100 generations; while such parameters cannot be afforded
by the real-time suggestion generator included in Sentient
Sketchbook, the algorithms should exhibit the same — if
more robust — optimization behavior. Both novelty search
approaches are compared with objective-driven constrained
optimization using a standard GA and FI-2pop GA; both
MCNS and the standard GA assign a fitness score of 0 to
infeasible maps. The argument for allowing infeasible indi-
viduals to survive and reproduce in a separate population
is twofold: a) while no feasible individuals exist, infeasible
parents move closer to the border of feasibility and the dis-
covery of feasible individuals is much more likely than with
random search, and b) infeasible parents can eventually gen-
erate unforeseen feasible offspring, increasing diversity in the
feasible population. The performance metrics are therefore:
a) the number of feasible individuals and b) the diversity
of the feasible population, measured as the average tile dif-
ference between all pairs of feasible maps in the population.
The experiments test the optimization of a small map where
constraints can be easily satisfied, and that of a large map
where the discovery of feasible individuals is unlikely.

The first experiment tests the optimization progress of a
map sketch of 8 by 8 tiles, where 2 player bases and 4 to 10
resources must be present; due to the small map size and
few bases, it is likely that such maps are feasible even when
generated randomly. Figure 4 displays the progress of the
feasible population’s diversity and size for MCNS, FINS,
standard GA and FI-2pop GA; the standard GA and FI-

0 20 40 60 80 100
Generations

25

50

75

100

Fe
a
si

b
le

 I
n
d
iv

id
u
a
ls

Standard GA

FI-2pop GA

MCNS

FINS

(a) Feasible individuals

0 20 40 60 80 100
Generations

16

32

48

64

Fe
a
si

b
le

 D
iv

e
rs

it
y

Standard GA

FI-2pop GA

MCNS

FINS

(b) Feasible avg. diversity

Figure 4: The progress of the number of feasible individu-
als and their average diversity when small, simple maps are
optimized via different constrained optimization methods.
Displayed values are averaged across 20 independent runs,
and error bars denote the standard error.

2pop GA optimize the fitness dimension of resource safety,
although their performance (in terms of the metrics being
evaluated) is similar for all fitness dimensions. The opti-
mization behavior of FI-2Pop GA in terms of the fitness
dimensions used in Sentient Sketchbook is explored in [14].

Observing the number of feasible individuals for all ap-
proaches in Figure 4a, it is immediately obvious that single-
population approaches (MCNS and standard GA) swiftly
generate a large number of feasible individuals (almost 100%
of the population). Since the feasible space is relatively
large, the occurrence of feasible individuals in the (random)
initial population is very likely. Infeasible individuals have
a fitness of 0 for MCNS and standard GA and are swiftly
killed in favor of fitter feasible ones; on the other hand, FI-
2pop GA and FINS retain the most promising infeasible
individuals and therefore the number of feasible individuals
is relatively small. For FINS and FI-2pop GA the number
of feasible individuals grows slowly as infeasible individuals
converge to the border of feasibility, increasing migration
from the infeasible to the feasible population. Novelty search
is more likely to create an infeasible offspring from feasible
parents, since it encourages exploration of the search space
which may lead back to infeasible solutions; this increases
migration from the feasible population to the infeasible and
explains the lower number of feasible individuals for FINS.

Observing the diversity of the feasible population for all
approaches in Figure 4b, it is expected that the diversity
of feasible individuals drops swiftly for objective-driven ap-
proaches (FI-2pop GA and standard GA), as the popula-
tion converges to a few highly fit solutions. Unsurprisingly,
novelty search approaches maintain or increase their feasi-
ble individuals’ diversity, as they optimize towards the same
heuristic for distance used in the diversity metric. FINS
maintains a higher diversity than MCNS, which can be at-
tributed to the constant migration of novel feasible individu-
als from the infeasible population. This is most pronounced
in early stages of evolution, when both FINS and FI-2pop
GA have higher diversity values than their single-population
counterparts due to infeasible individuals becoming feasible.

The second experiment tests the optimization progress of
a map sketch of 16 by 16 tiles, where 8 player bases and 12
to 30 resources must be present; the numerous bases and re-

0 20 40 60 80 100
Generations

25

50

75

100

Fe
a
si

b
le

 I
n
d
iv

id
u
a
ls

Standard GA

FI-2pop GA

MCNS

FINS

(a) Feasible individuals

0 20 40 60 80 100
Generations

64

128

192

256

Fe
a
si

b
le

 D
iv

e
rs

it
y

Standard GA

FI-2pop GA

MCNS

FINS

(b) Feasible avg. diversity

Figure 5: The progress of the number of feasible individ-
uals and their average diversity when large, complex maps
are optimized via different constrained optimization meth-
ods. Displayed values are averaged across 20 independent
runs, and error bars denote the standard error. Note that
for Standard GA, values refer to the single run on which a
feasible individual was discovered.

Method Runs First Generation

MCNS 0 -
Standard GA 1 44 (0.0)
FI2pop GA 20 10.9 (2.1)
FINS 20 11.15 (1.6)

Table 1: The number of runs (out of 20) in which a feasible
individual was discovered when optimizing large, complex
maps, and the first generation in which this discovery oc-
curred. The first generation is averaged across runs in which
an individual was found, and the first generations’ standard
error is shown in parentheses.

sources are much more likely to be unreachable in this large
map, and feasible individuals are less likely to be discovered
via random search. Figure 5 displays the progress of the fea-
sible population’s diversity and size for MCNS, FINS, stan-
dard GA and FI-2pop GA — the latter two optimizing the
dimension of resource safety. No feasible individuals were
present in the initial population on any run and for any ap-
proach. For MCNS and standard GA, all members of the ini-
tial population have a fitness of 0 and the resulting random
search makes discovery of a feasible individual both unlikely
and unpredictable. Table 1 displays the number of runs that
any feasible individual was discovered, and the average gen-
eration on which it occurred. Since both FI-2pop approaches
(FINS and FI-2pop GA) perform an objective-driven opti-
mization of the infeasible population towards the border of
feasibility, random search is avoided and a feasible individ-
ual is consistently discovered in all runs within a few gen-
erations. Once a feasible individual is found within single-
population approaches, the entire population converges to
it and the number of feasible individuals remains high. For
FI-2pop approaches, the fact that feasible parents are very
likely to generate infeasible offspring results in few feasible
individuals, even after extensive optimization. For FINS,
migration from the feasible to the infeasible population is
more pronounced, and feasible individuals rarely amount to
more than 25% of the total population. As with the smaller
map in the first experiment, FINS attains a higher diversity

(a) (b) (c)

(d) (e) (f)

Figure 6: A sample of the final maps created by five par-
ticipants interacting with Sentient Sketchbook; the range of
map sizes and visualizations is shown.

in the feasible population than objective-driven approaches.
While different from the Sentient Sketchbook generator

for their larger, randomly initialized populations and more
generations, the controlled experiments presented in this
section showcase several desirable properties of FINS which
make it more appropriate than MCNS for the generation
of map suggestions. As demonstrated by the experiment
with large maps, FINS and all FI-2pop GAs are better at
discovering feasible individuals in cases where the feasible
space is small. Since FINS consistently finds feasible indi-
viduals within few generations, it complies to the real-time
requirements of the map suggestion generator. On the other
hand, the experiment with smaller maps demonstrated that
FINS can achieve a higher diversity in the population than
MCNS, especially in early stages of evolution. Given the
short evolutionary sprint for generating map suggestions,
FINS is preferable to MCNS for generating diverse maps —
although in problems with easily satisfied constraints MCNS
creates more feasible maps, which may also be desirable.

5. USER SURVEY
The Sentient Sketchbook tool assists human designers in

level creation via real-time map evaluation and playability
checks, via a number of map displays and via generated
suggestions. In order to evaluate its usability, a small-scale
user survey was conducted with 5 expert users consisting of
independent game developers, game programmers and level
designers. The tool was sent via e-mail to the participants,
who were asked to interact with it as they saw fit on their
spare time; feedback and interaction data was returned via
e-mail. Each participant had several map design sessions;
in each session a user creates a complete map starting from
a blank canvas. Data is collected from 24 design sessions,
with each participant contributing a minimum of 4 sessions.

A sample of the final maps created by users are displayed
in Figure 6. Users could choose between small maps (8 by 8
tiles), medium maps (12 by 12 tiles) and large maps (16 by
16 tiles). Participants favored medium-sized maps in 42%
of design sessions; remaining 29% of maps were small, and
29% large. Most maps had 2 bases (50%) or 4 bases (25%);

(a) (b) (c) (d) (e)

Figure 7: A sample of user maps before (top) and after
(bottom) a suggestion was selected, showcasing different in-
stances where suggestions were deemed useful.

all small maps had 2 bases. Unlike bases, resources vary —
from 2 to 12 on Small maps, 6 to 27 on Medium maps and
6 to 40 on Large maps. Regarding map appearance, par-
ticipants predominantly favored symmetrical features, with
bases placed at the corners of the map as in Figure 6d or
following symmetries on non-Cartesian axes as in Figure 6b.

The number of user actions taken (placing tiles, clear-
ing the map or applying suggestions) in each design session
range from 13 to 168 (58 on average). Observing the changes
in fitness scores after each action, it appears that safe area
and resource safety balance are consistent with design pat-
terns as user actions lead to increased scores in these fitness
dimensions. Using the difference between positive and neg-
ative changes over the total number of fitness changes as the
test statistic, obtained values (0.41 and 0.24, respectively)
are significant, with p < 10−6 for both fitness dimensions.

Across all design sessions, map suggestions were selected
22 times to replace the user’s sketch; although that averages
to 0.92 suggestions selected per session, no map suggestions
were selected in 9 sessions. Users offered a number of reasons
why suggestions were not always useful. The simplest reason
is that for some design sessions the user had a specific map in
mind even before starting the tool; in such cases the design
process did not include much map inspection or interaction
with the suggestions. A related reason concerns cases where
the number of bases differed between the user’s map and
the map suggestions; since adding or removing bases (and
therefore players) would need a thorough re-evaluation of the
designer’s current ideas, such suggestions were not preferred.
A final reason was the “organic” appearance of generated
maps; while users favor straight lines for impassable regions
(see Figure 6f) or completely symmetrical map bases, the
generated maps rarely possess such neatly arranged features.

Users often selected one map suggestion per session (for
12 sessions). However, in two sessions map suggestions were
selected 4 times; since the two sessions belong to different
users, it is worthwhile to investigate the reasons behind this
behavior. In one session, the user created an elaborate map
(see Figure 7a), and then sequentially applied a map sugges-
tion and saved the new map, thus creating four variations of
their original map as a cheap shortcut for generating more
content. In the other session, the user created a very simple
symmetrical map (see Figure 7b) with all resources on two
map edges, and successively used the map suggestions to add
impassable regions and randomize tile placement. In other
sessions with selected suggestions, a number of different us-

Objective of map suggestion Times selected

Resource safety 3
Safe area 3
Exploration 5
Resource safety balance 2
Safe area balance 2
Exploration balance 1
Novelty search 6

Total 22

Table 2: The objectives for which map suggestions were
optimized, among suggestions selected by the five users.

age patterns were identified. In 3 sessions, map suggestions
were selected early in the design process to quickly generate
a map “draft” which was then edited by the designer (see
Figure 7c); such design sessions were short, since the sug-
gestion was already playable and did not need significant
changes. In 10 sessions, map suggestions were applied as
one of the last steps before saving the final map; this last
step either aimed at breaking the simple authored patterns
and create more organic maps (see Figure 7d) or to increase
the score in one or more fitness dimensions (see Figure 7e).

The type of map suggestions selected by users are shown
in Table 2. Despite the fact that novelty search generated as
many suggestions as all the objective-driven GAs together,
its suggestions are selected less frequently than those gen-
erated to optimize specific objectives. Novelty search was
preferred by users requesting large changes in the map, usu-
ally in early stages of the design process when user-created
maps were still uninteresting; e.g. Figures 7b, 7c and 7d fea-
ture suggestions generated via novelty search. In late stages
of the design process, when the authored maps were almost
final, suggestions were used to fine-tune the map and were
selected based on their improvements to the fitness dimen-
sions. Surprisingly, suggestions targeting balance were not
chosen often; a likely reason is that user-created maps were
often optimal in most balance dimensions because of the
strict map symmetries of human designs. Suggestions which
increased the Exploration score, on the other hand, were
more preferable as they create long, winding paths which
would require significant effort to create manually.

Overall, the expert users’ reception of Sentient Sketch-
book was positive. Participants stated that the different
map sketch displays were useful, especially Navmesh, Base
Safety and Resource Safety, while the final map visualiza-
tions (especially the Dungeon) allowed them to envision level
designs outside the realm of strategy games. Participants
also stated that most of the parameters they evaluate strat-
egy maps on are somehow represented in the included met-
rics, fitness dimensions and map displays. While one partic-
ipant initially commented on the suggestions’ apparent lack
of visual structure and symmetry, they noted that after a
while “the tool starts pushing you to places you didn’t re-
ally consider” such as“working with some high level abstract
ideas for the maps [...] instead of doing something symmetri-
cal and intricate”. Several suggestions for improvement were
also provided, such as speeding up the generation of sugges-
tions for large maps, giving users the option to“lock”certain
features such as the number of bases in the map suggestions
and improving the detection of chokepoints.

6. DISCUSSION
The experimental results for the feasible-infeasible novelty

search paradigm show that it is faster to discover feasible
individuals in cases where feasibility is not easily achieved.
Based on the small survey with industry experts, the rapid
generation of map suggestions was identified as an impor-
tant feature; since participants in the survey preferred larger
maps with a small feasible space, FI-2pop GA and FINS
are ideal for finding feasible individuals quickly. Addition-
ally, the survey demonstrated that maps optimized for nov-
elty were selected when human designers needed inspiration;
on the other hand, suggestions optimized for specific objec-
tives were also popular when refining an elaborate human-
authored map. Based on these results, it is clear that both
objective-driven evolution via FI-2pop GA and novelty search
via FINS are valuable for generating map suggestions.

The usability of Sentient Sketchbook as a computer-assisted
level design tool was tested with five industry experts; based
on their feedback, the option of alternating map displays
both on the sketch and on the final map was useful. Ad-
ditionally, the interface was deemed simple and intuitive,
while the metrics and fitness dimensions reduce the effort of
calculating path distances visually. Designer feedback from
this small survey will help to refine some aspects of the tool,
such as to introduce more useful map displays and improve
how chokepoints are detected.

Future work for Sentient Sketchbook should aim to im-
prove the quality of generated map suggestions. An interface
option allowing the user to “lock” certain map metrics could
transform such “locked” values into additional constraints.
Moreover, users expressed the need for more visually con-
sistent maps, favoring patterns like symmetry, straight lines
and placement of bases on map edges. Such patterns can
be detected on the human-authored map by e.g. an artifi-
cial neural network (ANN) where the inputs include all map
tiles; the output of a trained ANN can replace the objective
function for the feasible population. Finally, the map gen-
erator could use the data from design sessions to simulate
humans’ design processes, such as optimizing base placement
first before starting to optimize impassable tile placement.

In its current form, the Sentient Sketchbook tool is more
appropriate for generating maps for strategy games; the base
and resource tiles and the fitness dimensions used assume
strategic gameplay and can be used for authoring maps for
different game genres only if creatively reinterpreted. For in-
stance, First Person Shooter maps can be generated via the
Dungeon visualization, treating player bases as the team’s
spawn location and resources as weapons (with powerful
weapons placed in unsafe areas). Future work should al-
low maps for different game genres to be created, either by
removing the current fitness dimensions or by allowing the
designer to create their own types of tiles and even their own
objectives. Alternatively, a specific game can be targeted by
the map sketches; this affords better context for the designer
who can now envision a full playthrough of a game. Addi-
tionally, the level can be playtested, and collected gameplay
data can inform future design iterations.

In the context of Lubart’s classification of roles which en-
hance idea generation [12], Sentient Sketchbook is at times a
“nanny” by assisting the quick authoring of game levels and
by overseeing their playability, and as a “colleague” by pro-
viding playable and often useful suggestions. A future addi-
tion to the tool should explore the role of “penpal”, connect-

ing the user to a larger group of designers and encouraging
the exchange of ideas. This collaboration can be achieved
via an online, persistent database of map designs which can
be viewed, edited and resubmitted by any user. The collab-
orative creation of content has shown potential in projects
such as PicBreeder [17], enhancing creativity and limiting
user fatigue by crowdsourcing design choices.

7. CONCLUSION
This paper presented the Sentient Sketchbook tool which

allows a designer to create game levels via a computer-assisted
sketching interface. The tool supports the designer by au-
tomating map evaluations, visualizing them on-screen and
proposing alternative designs. The creation of map sugges-
tions combines the Feasible-Infeasible two-population paradigm
with novelty search, and is shown to be more robust than
state-of-the-art constrained novelty search in cases where
discovery of feasible individuals is difficult. A user survey
with industry experts demonstrated the tool’s potential, at-
tested to the different instances where map suggestions can
prove useful and provided important feedback which will
guide future additions to Sentient Sketchbook.

8. ACKNOWLEDGEMENTS
We would like to thank the participants of the user survey

for their valuable feedback.

9. REFERENCES
[1] D. Ashlock, C. Lee, and C. McGuinness. Search-based

procedural generation of maze-like levels. IEEE
Transactions on Computational Intelligence and AI in
Games, 3(3):260–273, 2011.

[2] C. Browne and F. Maire. Evolutionary game design.
IEEE Transactions on Computational Intelligence and
AI in Games, 2(1):1–16, 2010.

[3] Entertainment Software Association. Essential facts
about the computer and video game industry, 2012.
Retrieved December 12, 2012 from
http://www.theesa.com/facts/pdfs/ESA EF 2012.pdf.

[4] E. J. Hastings, R. K. Guha, and K. O. Stanley.
Evolving content in the galactic arms race video game.
In Proceedings of IEEE Conference on Computational
Intelligence and Games, pages 241–248, 2009.

[5] J. H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence. MIT
Press, 1992.

[6] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H.
Wood. On a feasible-infeasible two-population
(fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch.
European Journal of Operational Research,
190(2):310–327, 2008.

[7] J. Lehman and K. O. Stanley. Revising the
evolutionary computation abstraction: Minimal
criteria novelty search. In Proceedings of the Genetic
and Evolutionary Computation Conference, 2010.

[8] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone.
Evolutionary Computation, 19(2):189–223, 2011.

[9] A. Liapis, G. Yannakakis, and J. Togelius. Limitations
of choice-based interactive evolution for game level
design. In Proceedings of Artificial Intelligence and
Interactive Digital Entertainment Conference, 2012.

[10] A. Liapis, G. N. Yannakakis, and J. Togelius.
Neuroevolutionary constrained optimization for
content creation. In Proceedings of IEEE Conference
on Computational Intelligence and Games, pages
71–78, 2011.

[11] A. Liapis, G. N. Yannakakis, and J. Togelius.
Adapting models of visual aesthetics for personalized
content creation. IEEE Transactions on
Computational Intelligence and AI in Games,
4(3):213–228, 2012.

[12] T. Lubart. How can computers be partners in the
creative process: classification and commentary on the
special issue. International Journal of
Human-Computer Studies, 63(4-5):365–369, 2005.

[13] Z. Michalewicz. Do not kill unfeasible individuals. In
Proceedings of the Fourth Intelligent Information
Systems Workshop, pages 110–123, 1995.

[14] Omitted for the purposes of the double-blind review.

[15] J. F. Reintjes. Numerical control: making a new
technology. Oxford University Press, Inc., 1991.

[16] M. Schoenauer and Z. Michalewicz. Evolutionary
computation at the edge of feasibility. In Proceedings
of the 4th Parallel Problem Solving from Nature, pages
245–254, 1996.

[17] J. Secretan, N. Beato, D. B. D’Ambrosio,
A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik,
and K. O. Stanley. Picbreeder: A case study in
collaborative evolutionary exploration of design space.
Evolutionary Computation, 19(3):373–403, Sept. 2011.

[18] N. Sorenson, P. Pasquier, and S. DiPaola. A generic
approach to challenge modeling for the procedural
creation of video game levels. IEEE Transactions on
Computational Intelligence and AI in Games,
3(3):229–244, 2011.

[19] J. Togelius, R. De Nardi, and S. Lucas. Towards
automatic personalised content creation for racing
games. In Proceedings of IEEE Symposium on
Computational Intelligence and Games, pages
252–259. IEEE, 2007.

[20] J. Togelius, G. Yannakakis, K. Stanley, and
C. Browne. Search-based procedural content
generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in
Games, (99), 2011.

[21] G. N. Yannakakis. Game AI revisited. In Proceedings
of ACM Computing Frontiers Conference, 2012.

[22] G. N. Yannakakis and J. Togelius. Experience-driven
procedural content generation. IEEE Transactions on
Affective Computing, 99, 2011.

