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Abstract. How can a human and an algorithm productively collaborate on gener-
ating game content? In this paper, we try to answer this question in the context of
generating balanced and interesting low-resolution sketches for game levels. We
introduce six important criteria for successful strategy game maps, and present
map sketches optimized for one or more of these criteria via a constrained evolu-
tionary algorithm. The sketch-based map representation and the computationally
lightweight evaluation methods are geared towards the integration of the evolu-
tionary algorithm within a mixed-initiative tool, allowing for the co-creation of
game content by a human and an artificial designer.

1 Introduction

The games industry has often used procedurally generated content to increase the un-
expectedness of a game, and thus its replayability value. As games increase in scale, it
is becoming common practice for game designers to use procedural content generation
tools during development time in order to limit costs and time requirements. In order
to assist such design work, computer-assisted design tools should be able to automate
the mechanizable parts of content creation (such as ensuring playability and evaluating
game balance) and to optimize, on their own, specific gameplay features deemed signif-
icant by the designer. Not only would such a tool increase a designer’s creative output,
it should be able to incite human creativity through the dialogue between the artificial
and the human designer.

This paper presents steps towards actualizing such a tool, using maps for strategy
games as its test domain. Six important measures of quality for strategy game maps are
introduced, inspired by game design patterns [1] popular within strategy games and by
previous experiments on map evolution [2]. These criteria are optimized via evolution-
ary algorithms and their impact on map generation is evaluated. The map generation
component is integrated within a mixed-initiative design tool which allows for the co-
creation of strategy maps with designers. With the proposed tool we try to overcome
some of the limitations of mixed-initiative design as we rely on simple map sketches to
counter user fatigue and designer biases reported in the literature [3].

2 Related Work

While procedural content generation has been used in some games since the eighties,
recent trends have seen an increasing use of PCG tools such as SpeedTree3 during de-
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velopment time, to partly automate design work. PCG tools have to balance between
expressivity and controllability, with methods capable of producing a wide range of
content usually being very hard for designers to work with. Academic interest on more
controllable PCG methods is only a few years old [4], but search-based processes [5]
such as genetic algorithms are becoming a popular solution to this problem [6–9].

Maps have often been generated algorithmically in games such as Civilization (Mi-
croProse, 1991) and SimCity (Maxis, 1989); such games usually rely on tightly designed
processes to construct playable maps. Within academia, strategy game maps have also
been optimized via stochastic search [10, 2] or answer-set solvers [11]; while designers
can decide on the objectives or constraints of the generated content prior to the gen-
erative process, these projects are hardly interactive. In the authors’ previous work, a
mixed-initiative tool attempted to address the issues of authorial control and capturing
human preferences [3]. The tool failed to achieve its stated goals, primarily due to the
requirement of hand-crafting a large-scale initial map, which introduced designer bias
and fatigue. In order to counter such limitations, this paper reduces the resolution of the
human-authored sketches and allows more user control over the optimized features.

3 Methodology

The tool presented in this paper allows a human or an artificial designer to create low-
resolution map sketches. These sketches contain the necessary elements for a simple
strategy game, and can be optimized via a genetic algorithm on a number of selected
fitness dimensions pertaining to balanced strategic gameplay.

The maps used in this experiment are abstractions of levels used in successful strat-
egy games such as Starcraft (Blizzard, 1998). A map is presented to the user as a sketch
consisting of a small number of tiles (see Fig. 1a). Tiles can be passable (light) or
impassable (dark), and passable tiles can contain player bases (circles) or resources
(rhombi). The map layout assumes that each player starts at a base and gathers resources
to produce units; units move through passable tiles to attack the opponent’s base.

3.1 Map Design Tool

A graphical interface has been developed to allow a user to manually edit a map sketch
(see Fig. 1a). While the sketch is being edited, its scores in several fitness dimensions
(see Section 3.2 below) are updated and displayed to the user; the user can also select
one or more fitness labels and generate an optimal map on the selected fitness dimen-
sions. At any point, the designer can switch to the final map view (see Fig. 1b), display-
ing the complete map on which the strategy game can be played. Currently the final
map is constructed via random processes and cellular automata to create an organic-
looking map which however retains all the properties (chokepoints, passable paths) of
the low-resolution sketch. Manual editing, evaluation and evolution (see Section 3.2)
are all done on the sketch level, making computations such as pathfinding easier and
reducing the required human effort.



(a) Sketching interface while the user gener-
ates a rough level sketch.

(b) The sketch in Fig. 1a rendered as a com-
plete map, generated with cellular automata.

Fig. 1: The User Interface for the mixed-initiative level generation tool.

3.2 Evolutionary Optimization

Each map is encoded as an array of integers: each integer represents a tile’s type (pass-
able, impassable, base or resource). These parameters are adjusted via constrained op-
timization — ensuring the playability of feasible maps — carried out by a feasible-
infeasible two-population genetic algorithm [12] (FI-2pop GA). FI-2pop GA evolves
two populations, one with feasible maps and the other with infeasible maps. Each pop-
ulation selects parents among its own members, but feasible offspring of infeasible par-
ents are moved to the feasible population and vice versa. This interbreeding increases
the occurrence of feasible individuals and boosts the feasible population’s diversity.

Both populations evolve via fitness-proportionate roulette-wheel selection of par-
ents; parents are recombined using two-point crossover. Mutation can occur on an off-
spring of two parents (1% chance), or on a single parent (5% chance) in order to cre-
ate a single-parent offspring. During mutation, 2 to 6 tiles may be transformed: a tile
may be swapped with its adjacent (15% chance), an impassable tile can be transformed
into passable and vice versa (5% chance) or a passable tile can be transformed into a
resource (1% chance). The small number of tiles transformed with each mutation in-
creases the locality (in terms of map structure) of the stochastic search; preliminary
tests have shown that when this mutation strategy is combined with the relatively high
chance of mutation chosen, the population does not suffer from premature convergence.

The fitnesses used to evolve the feasible population are presented below, while the
infeasible fitness is presented at the end of this section.

Feasible Fitnesses: A feasible map sketch is evaluated on six fitness dimensions (see
(3) to (8) below) which are inspired by game design patterns [1] suitable for strategic
gameplay and geared towards game pace and player balance in terms of starting condi-
tions. Game pace is affected by the area control afforded by a player’s starting location
— including control of strategic resources — and by the challenge for enemies to dis-
cover this location via exploration. If a player has an easily controllable, resource-rich
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Fig. 2: Visualization of resource safety, safe areas and exploration on a test map (Fig. 2a)
with impassable tiles (dark), resources (rhombi), base 1 at the map’s top and base 2 at
the bottom. Resources at the map’s top are much closer to base 1 than to base 2, and
therefore have large st,1 values (connected in Fig. 2b). The bottom-most resource has an
equal distance between the two bases, therefore it is contested (st,1≈st,2≈0). Figure 2c
shows the areas around the two bases with safety values over Cs (A1 at the top, A2

at the bottom). By applying flood fill from base 1 until base 2 is covered (Fig. 2d) and
from base 2 until base 1 is covered (Fig. 2e), we calculate E1→2 and E2→1 respectively.

area around their base and their base is difficult to reach by enemies, then defensive
play is favored and game pace is slow. If a base is within the enemy’s reach, and re-
sources are in contested and difficult to control areas, then fast-paced aggressive play is
favored. On the other hand, player balance is a universal design pattern for any multi-
player game [1], and is captured in this paper as the symmetry in affordances for game
pacing among players. The concepts of safety, fairness and path overlap presented in
this paper have been covered in previous work [2], but they are evaluated differently:
while the safety metric in (1) is similar, base safety and exploration are only loosely
captured in [2] by base space and base distance, respectively; more emphasis is also
placed on balance, with three fitnesses rather than the single resource fairness of [2].

In order to evaluate area control and exploration, two heuristics for safety and explo-
ration are used in the calculation of the fitnesses in (3)–(8). The safety metric (st,i) in
(1) evaluates a tile t according to its safety with respect to a player base i; the closer the
tile is to base i compared to any other base, the larger its safety value. The exploration
metric (Ei) evaluates the effort required to discover all other player bases from base i;
it uses a simple flood fill algorithm to simulate random exploration of the map, which
ends once one base is discovered and runs again for every other base. It is calculated as
per (2), and has high values for distant bases and if open areas exist between bases.

st,i = min
1≤j≤NB

j ̸=i

{
max

{
0,

dt,j − dt,i
dt,j + dt,i

}}
(1)

Ei =
1

NB − 1

NB∑
j=1
j ̸=i

Ei→j

wmhm −NI
(2)

where NB is the number of bases; dt,i is the distance from tile t to base i (using A*
pathfinding); wm and hm is the map’s width and height, respectively; NI is the number



of impassable tiles and Ei→j is the map coverage when a four-direction flood fill is
applied starting from base i and stopping once base j has been found (see Fig. 2).

The resource safety fitness (fres) in (3) uses the safety metric from (1) to calculate
the safety of the map’s resources. Low scores in this fitness correspond to maps with
resources in contested areas, equally accessible to two or more player bases. The base
safety fitness (fsaf ) in (4) calculates the safe areas around every player’s base. Low
scores in this fitness correspond to maps with insecure bases, since many areas around
them are easily accessible by at least one enemy base. The exploration fitness (fexp) in
(5) uses the exploration metric from (2) to simulate the difficulty in finding other bases
from each player’s base.

fres =
1

NR

NR∑
j=1

max
1≤i≤NB

{
stj ,i} (3)

fsaf =
1

wmhm −NI

NB∑
i=1

Ai (4)

fexp =
1

NB

NB∑
i=1

Ei (5)

stj ,i is the safety metric of resource j (located at tile tj) to base i; Ai is the map coverage
of safe tiles for base i and Ei is the exploration metric for base i. A tile t is safe for base
i if its st,i < Cs; the constant Cs = 0.35 throughout this paper, as it amounts to a good
ratio of contested areas in most maps (see Fig. 2c).

Fitnesses in (3)–(5) do not differentiate between players; for instance, high scores in
fres can correspond to a map where all resources are safe for only one base. Since com-
petitive strategy games favor equivalent starting conditions for each player, the fitnesses
in (6)–(8) are evaluated with regards to player balance. Thus, resource balance (bres),
base safety balance (bsaf ), and exploration balance (bexp) are calculated as follows:

bres = 1− 1

NRNB(NB − 1)

NR∑
k=1

NB∑
i=1

NB∑
j=1
j ̸=i

|stk,i − stk,j | (6)

bsaf = 1− 1

NB(NB − 1)

NB∑
i=1

NB∑
j=1
j ̸=i

|Ai −Aj |
max{Ai, Aj}

(7)

bexp = 1− 1

NB(NB − 1)

NB∑
i=1

NB∑
j=1
j ̸=i

|Ei − Ej |
max{Ei, Ej}

(8)

Infeasible Fitness: Infeasible maps fail to satisfy playability constraints (having un-
reachable bases or resources) or designer specifications regarding the number of map
features. In order to increase the chances of infeasible parents creating feasible off-
spring, the infeasible population must shift its members towards the border with feasi-
bility [13]. The infeasible population optimizes its members according to the infeasible
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Fig. 3: Optimization of the populations’
maximum fitness scores when evolving
strategy maps on a single fitness. Error bars
represent standard deviation across 20 runs.

(a) fres (b) fsaf (c) fexp

(d) bres (e) bsaf (f) bexp

Fig. 4: Best final individuals among 20
evolutionary runs, optimized for a sin-
gle fitness dimension displayed in each
map’s caption.

fitness (finf ) in (9), which aims to minimize the distance from feasibility. This distance
from feasibility has four components, equal to the number of constraints for feasible
maps: a) fidelity with designer-specified number of bases, b) fidelity with designer-
specified number of resources, c) passable paths between bases and d) passable paths
between resources and bases.

finf = 1−
[
1

4
|NB −NB,d|+

1

4
|NR −NR,d|+

1

4

2db
NB(NB − 1)

+
1

4

dr
NRNB

]
(9)

where NB,d and NR,d is the designer-specified allowed number of bases and resources,
respectively, and db and dr is the number of base pairs and base-resource pairs that are
not connected, respectively.

4 Experiments

Several experiments were conducted to test the efficiency of the genetic algorithm used
to optimize the rough map sketches of the mixed-initiative tool. These experiments were
conducted without any user interaction or human-authored sketches, and assess the al-
gorithm’s ability to optimize one or more fitness dimensions. All experiments presented
below run for 100 generations, on a population of 100 individuals including both feasi-
ble and infeasible genes; the number of individuals is large enough for the simultaneous
optimization of two populations while allowing for sufficiently fast evolutionary runs
as demanded by a responsive mixed-initiative tool. Evolving maps have 64 tiles (with
equal width and height of 8 tiles), 2 bases and anywhere between 4 and 10 resources.

4.1 Optimizing a single fitness dimension

Using a single fitness dimension as the objective function, the genetic algorithm aims
to optimize a single gameplay feature; the generated maps are, thus, expected to be



one-sided and lack the necessary features for competitive strategy play. Figure 3 shows
the evolutionary progress of the maximum fitness in the population; displayed values
are averaged from 20 independent runs, with the standard deviation shown as error
bars. The highest scoring final individual among the 20 runs for each fitness dimen-
sion is shown in Fig. 4. Results indicate that optimal fitness scores for balance (bres,
bsaf , bexp) are easily attainable, since high-scoring individuals exist even in the random
initial populations and evolution quickly finds optimal solutions for these fitness dimen-
sions within few generations. Observing the maps in Fig. 4, optimal maps in bres have
symmetrical resources between players; resources are often far from player bases, so
that differences between their distances from each base remain relatively small. Opti-
mal maps in bsaf have bases near each other and safe areas are small but equal between
the bases. Optimal maps in bexp often have bases near each other (even adjacent), and
finding the other base is equally effortless for either player. Among the other dimen-
sions, fres is the most difficult to optimize, mainly because of how the safety metric is
calculated: based on (1), st,i cannot reach its optimal value (1.0), but approaches it if
dt,j≫dt,i for all bases j ̸=i. Granted that the small size of the maps cannot allow such
disparities between distances, it is expected that even in the best circumstances st,i and
thus fres will be considerably lower than 1.0. Similarly, fsaf cannot reach optimal val-
ues since there will be at least one tile in the map at equal distance from both bases
(and thus not safe). The best maps in fres have resources adjacent to bases, while the
bases are far from each other. The best maps in fsaf have numerous impassable regions
between bases; in Fig. 4b, one base is hidden behind impassable tiles while the other
base has safe access to the rest of the map. The best maps in fexp have bases far from
each other, with impassable regions between them to make navigation more difficult.

4.2 Optimizing multiple fitness dimensions

Experiments in Section 4.1 showed that maps optimized for a single dimension usu-
ally have interesting traits, but lack the necessary features needed for competitive play.
Combining multiple fitness dimensions into a weighted sum and using it as the objec-
tive function for the genetic algorithm is expected to generate better designed maps.
Experiments in this section will assess the combined optimization of two or more fit-
ness dimensions. For space considerations, the following representative fitness function
combinations are explored in this paper:

– Fres =
1
2fres +

1
2bres

– Fsaf = 1
2fsaf + 1

2bsaf
– Fexp = 1

2fexp +
1
2bexp

– Fall−f = 1
3fres +

1
3fsaf + 1

3fexp
– Fall−b =

1
3bres +

1
3bsaf + 1

3bexp
– Fall =

1
6fres +

1
6fsaf + 1

6fexp +
1
6bres +

1
6bsaf + 1

6bexp

Figure 5 shows the evolutionary progress of the contributing fitness scores for the
fittest individuals in the different fitness combinations; displayed values are averaged
from 20 independent runs, with the standard deviation values depicted as error bars.
The highest scoring final individual among the 20 runs for each fitness combination is
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Fig. 5: Optimization of the contributing fitness dimensions in the fittest individuals in
the population, when evolving strategy maps for multiple fitness dimensions. Error bars
represent standard deviation across 20 runs.

shown in Fig. 6. Results indicate that, for Fres, Fsaf and Fexp, optimization is domi-
nated by the fitness dimension of balance, which is optimized quickly and largely de-
termines the selection of parents; since fres and fsaf are slower to optimize, they do
not achieve as high scores as when optimized individually. Their best maps in Fig. 6
are, however, of good quality: Fres has an equal number of resources adjacent to each
base, while Fsaf has a single chokepoint in the map, with areas on either side of the
chokepoint being of equal size; finally, Fexp has bases far away from each other, hidden
behind large impassable regions. On the more complex fitness combinations, Fall−b

easily finds optimal maps in all the contributing fitnesses; Fall−f , on the other hand,
does not achieve as high scores as when each dimension is optimized on its own, but
it does not seem to be dominated by any dimension. Finally, the optimization of Fall

unsurprisingly shows difficulties in reaching high fitness scores in all contributing fit-
nesses; fitness dimensions of balance dominate fres, fsaf and fexp, which are harder to
optimize and show higher sensitivity with respect to their convergence (as depicted by
their large standard deviation values). The best maps for Fall−f have all the features of
the contributing fitness dimensions, but are very unbalanced. The best maps for Fall−b

have bases adjacent to each other, since that is often optimal both for bexp and bsaf ;
such maps are not generally playable in a strategy game. Despite the slow and asym-
metrical optimization of Fall, its best maps are probably the most appropriate for use in
a strategy game. Even better maps may be possible with other combinations of criteria,
such as minimizing fsaf and fres to create maps suited for aggressive gameplay.



(a) Fres (b) Fsaf (c) Fexp (d) Fall−f (e) Fall−b (f) Fall

Fig. 6: Best final individuals among 20 evolutionary runs, optimized for a combination
of two or more fitness dimensions displayed in each map’s caption.

5 Conclusion

This paper presented the concept of map sketches which are appropriate for a mixed-
initiative tool allowing for the collaborative creation of maps for strategy games. With
this tool, a computer can evaluate the human-authored map in real-time, and the user
can request improved maps in several fitness dimensions. Since maps are represented
as low-resolution sketches, computational time for map evaluation and optimization
is minimized, while designer fatigue and fixation are also expected to be reduced.
Experiments conducted on random initial populations, with sufficient time to evolve,
demonstrated that small two-player maps of high quality can be easily optimized by
the genetic algorithm on one or more fitness dimensions. While the combination of
more fitness dimensions into a weighted sum limited the efficiency of optimization
somewhat, the evolved maps are more appropriate for use in strategy games than those
optimized on a single fitness dimension. Aggregating multiple objectives into a single
fitness has its caveats, although the fitness dimensions combined in this paper are not
particularly conflicting. While multi-objective evolutionary algorithms such as those
used in [2] could potentially lead to better results, such algorithms are generally more
computationally demanding and thus inappropriate for the fast feedback mechanisms
of a mixed-initiative tool. Preliminary tests show that, while slower to evolve, the same
processes can optimize, to a high quality, larger maps with more bases and resources.

Future work includes using the evolutionary methods described in this paper to
optimize a user-created map via the map editor. The experiments presented in this pa-
per were strictly offline, starting from large random populations and without any time
constraint. Online evolution while a user edits the map may have its own challenges,
particularly since the general form of the user-created map must be retained. Addition-
ally, while the fitness scores are fast to calculate, they are built on design decisions that
may not be accurate enough: for instance, exploration is measured via flood fill (which
is not how players explore maps in strategy games), while the safety metric underesti-
mates the impact of chokepoints. Future work should refine the existing fitnesses and
possibly add new ones; however, the more fitnesses are added, the more difficult their
simultaneous optimization will become. Finally, while the user may enjoy controlling
which fitness dimension is being optimized, it may also become cumbersome and unin-
tuitive to guess which combination of fitness dimensions are needed for the designer’s
purposes. This can be addressed by indirectly modelling the designer’s intentions based
on their history of content authoring and content selection through choice-based inter-



active evolution, which has been used in previous work to automatically adapt models
of aesthetic preferences [14].
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