
332 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

The 2010 Mario AI Championship:
Level Generation Track

Noor Shaker, Julian Togelius, Georgios N. Yannakakis, Member, IEEE, Ben Weber, Tomoyuki Shimizu,
Tomonori Hashiyama, Member, IEEE, Nathan Sorenson, Philippe Pasquier, Peter Mawhorter, Glen Takahashi,

Gillian Smith, Student Member, IEEE, and Robin Baumgarten

Abstract—The Level Generation Competition, part of the IEEE
Computational Intelligence Society (CIS)-sponsored 2010 Mario
AI Championship, was to our knowledge the world’s first proce-
dural content generation competition. Competitors participated
by submitting level generators—software that generates new
levels for a version of Super Mario Bros tailored to individual
players’ playing style. This paper presents the rules of the com-
petition, the software used, the scoring procedure, the submitted
level generators, and the results of the competition. We also
discuss what can be learned from this competition, both about
organizing procedural content generation competitions and about
automatically generating levels for platform games. The paper is
coauthored by the organizers of the competition (the first three
authors) and the competitors.

Index Terms—Computational and artificial intelligence, com-
putational intelligence, computer science education, evolu-
tionary computation, hybrid intelligent systems, neural networks
education.

I. INTRODUCTION

I N the last few years, a number of game AI competitions
have been run in association with major international con-

ferences, several of them sponsored by the IEEE Computational
Intelligence Society (CIS). These competitions are based either
on classical board games (such as Othello and Go) or video
games (such as Pac-Man, Super Mario Bros, and Unreal Tour-
nament). In most of these competitions, competitors submit con-
trollers that interface to the game through an application pro-

Manuscript received October 25, 2010; revised March 10, 2011 and June 02,
2011; accepted August 14, 2011. Date of publication August 30, 2011; date of
current version December 14, 2011. This work was supported in part by the
European Union FP7 ICT project SIREN (Project 258453) and by the Danish
Research Agency project AGameComIn (Project 274-09-0083).
N. Shaker, J. Togelius, and G. N. Yannakakis are with the Center for Com-

puter Games Research, IT University of Copenhagen, Copenhagen 2300, Den-
mark (e-mail: nosh@itu.dk; juto@itu.dk; yannakakis@itu.dk).
B.Weber, P. Mawhorter, G. Takahashi, and G. Smith are with the Department

of Computer Science, University of California at Santa Cruz, Santa Cruz, CA
95064 USA (e-mail: bwebersoe.ucsc.edu; pmawhort@soe.ucsc.edu; glen.taka-
hashi@gmail.com; gsmith@soe.ucsc.edu).
T. Shimizu was with the University of Electro-Communications, Tokyo 182-

8585, Japan. He is now with Fuji Xerox Co., Ltd., Tokyo 107-0052, Japan
(e-mail: tomoyuki@media.is.uec.ac.jp).
T. Hashiyama is with the University of Electro-Communications, Tokyo 182-

8585, Japan (e-mail: hashiyama@is.uec.ac.jp).
N. Sorenson and P. Pasquier are with Simon Frasier University, Burnaby, BC

V5A 1S6 Canada (e-mail: nds6@sfu.ca; pasquier@sfu.ca).
R. Baumgarten is with Imperial College, London SW7 2AZ, U.K. (e-mail:

robin.baumgarten06@doc.ic.ac.uk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2011.2166267

gramming interface (API) built by the organizers of the compe-
tition. The competition is won by the person or team that sub-
mitted the controller that played the game best, either on its own
(for single-player games such as Pac-Man) or against others
(in adversarial games such as Go). One interesting variation on
this formula is the 2k BotPrize, where the submitted entries are
not supposed to play the game as well as possible, but in an as
human-like manner as possible [1]. Several of these competi-
tions have spurred valuable research contributions as reported
in [2] and [3] (among others).
However, nonplayer character (NPC) behavior is not the only

use for computational intelligence (CI) and artificial intelligence
(AI) in games. In fact, according to some game developers [4],
it might not even be the area where new advances in AI are
needed the most. Another very interesting area, in which there
is growing interest both from the CI and AI research communi-
ties and from game developers, is procedural content generation
(PCG).
PCG refers to any method which creates game content al-

gorithmically, with or without the involvement of a human
designer. There are several reasons one might want to create
game content automatically: saving development costs, saving
storage or main memory (e.g., in creating “infinite” games), or
adapting the game to players and augmenting human creativity.
The field has a fairly long history [see, for example, the early
1980s games Rogue (AI Design 1983) and Elite (Acornsoft
1984)], but only recently have approaches from artificial and
computational intelligence begun to be explored in the con-
text of creating central game elements such as levels, maps,
items, and rules. In particular, “search-based” approaches to
PCG, building on evolutionary algorithms or other stochastic
search/optimization algorithms, have recently been the subject
of some interest in the computational intelligence and games
community [5]–[7]; recent overviews of such techniques can
be found in [8] and [9], along with a taxonomy of PCG in
general. The coupling of player experience and PCG under a
common framework named “experience-driven PGC” is intro-
duced in [10].
A key concern for many commercial game developers is the

spiraling cost of creating high-quality content (levels, maps,
tracks, missions, characters, weapons, vehicles, artwork, etc.)
for games. As the graphics and other technical capabilities of
game hardware have increased exponentially, so have the de-
mands on game content. However, the most common use of
PCG in commercial games today is offline creation of trees and

1943-068X/$26.00 © 2011 IEEE

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 333

vegetation.1 Even though there are a few examples of level gen-
eration in commercial games, e.g., Rogue and games inspired
by it such as Diablo (Blizzard 1996), PCG algorithms are still
rarely used for the creation of central game elements, or for
online creation of game content during gameplay. This is be-
cause available PCG techniques are not seen, by many game
developers, as efficiently and reliably producing content of suf-
ficient quality to be used in such roles. Therefore, given the need
for making content creation faster and more reliable, the devel-
opment of better PCG techniques is an important research di-
rection for industrially relevant game AI research and beyond.
As there are many different types of game content that could
potentially be generated (levels, maps, weapons, rules, stories,
etc.), and several different roles that could be imagined for PCG
within a game, different content generation problems are ex-
pected to require different approaches [11].
Apart from being fast, reliable, and producing high-quality

content, another desirable characteristic of PCG algorithms in
many contexts is that they are controllable. A controllable PCG
algorithm can take parameters that describe desired features of
the generated content, and produce content that complies to
these specifications. Such features can be defined on different
levels of abstraction, from the geometric aspects (e.g., the length
of a race track or the ruggedness of a landscape) to gameplay as-
pects (e.g., how hard a level would be to clear for a particular
player). This is useful when content is produced collaboratively
by human designers and algorithms, so that the human designer
can request content with particular features suitable for further
human editing or content that fits into already human-authored
content [12]–[14]. It is also important when using PCG to au-
tomatically adapt a game to the human player (e.g., producing
more challenging levels for better players or more fun levels
for particular player types) [5], [10], [15], [16]. Such person-
alization becomes increasingly important as the game-playing
population gets more diverse [17], [18].
With the importance of research on effective and controllable

PCG in mind, we created the level generation track within the
Mario AI Championship to spur and benchmark development of
PCG algorithms. To the best of our knowledge, this is the first
PCG competition within an academic research community, and
the first competition about adaptive or controllable PCG.
Competitors participated in the competition by submitting

controllable content generation algorithms, which would create
game content intended to maximize enjoyment for individual
players. In order to ensure the relevance of the competition,
we set ourselves the goal of addressing an important content
generation problem with considerable generality, within a com-
plex and well-known game context. We then evaluate the gen-
erated content in a fair and accurate manner. This goal was ad-
dressed by using Infinite Mario Bros (Persson 2008), an all-Java
clone of the classic platform game Super Mario Bros (Nintendo
1985). For that game the content type is specified to be com-
plete levels which yields a particularly complex content gener-
ation task with room for diverse strategies. The submitted level
generators were evaluated by letting human players play levels

1See http://www.speedtree.com

generated to suit their particular playing style, and ranking them
in order of enjoyment.
Our hope is that this competition will spur research in

methods of creating levels for platform games, and also in
modeling players of such games and adapting levels to indi-
vidual players. The competition is also expected to advance
the study on computational gameplay aesthetics, playing ex-
perience modeling, and experience-driven PGC [10]. Many
concerns relevant to designing platform game levels recur in
the design of levels and maps for other games, for example,
rhythm and variation may be as important in, e.g., first-person
shooter (FPS) levels and role-playing game (RPG) dungeons
as in platform games, and it is likely that principles for gen-
erating levels that include these features carry over to other
game genres. Appropriate challenge balancing is an important
concern in the design of almost all game content.
The paper is structured as follows. First, a brief introduc-

tion is given to Infinite Mario Bros and the Mario AI Champi-
onship, a series of AI competitions built around this game. This
is followed by a description of the level generation track (part
of the Championship), including the Java interface between the
game and the generators, the rules of the competition, and the
scoring procedure. The section after this describes the level gen-
erators that were submitted to the competition. To ensure that the
descriptions of the generators are both accurate and allow for
meaningful comparison, the subsection about each level gen-
erator is written by the authors of the corresponding generator.
However, all authors were asked to answer a specific set of ques-
tions about their level generator within their text. After the pre-
sentation of the submitted generators, the results of the compe-
tition are presented. Moreover, a concluding section discusses
what we can learn from this competition, both in terms of gen-
erating levels for platform games and in terms of organizing a
PCG competition.

II. INFINITE MARIO BROS

InfiniteMario Bros (Markus Persson 2008) is a public domain
clone of Nintendo’s classic platform game Super Mario Bros
(1985). The original Infinite Mario Bros is playable on the web,
where Java source code is also available.2

The gameplay in Super Mario Bros consists in moving the
player-controlled character, Mario, through 2-D levels, which
are viewed sideways. Mario can walk and run to the right and
left, jump, and (depending on which state he is in) shoot fire-
balls. Gravity acts on Mario, making it necessary to jump over
holes to get past them.Mario can be in one of three states: Small,
Big (can crush some objects by jumping into them from below),
and Fire (can shoot fireballs).
The main goal of each level is to get to the end of the level,

which means traversing it from left to right. Auxiliary goals in-
clude collecting as many as possible of the coins that are scat-
tered around the level, finishing the level as fast as possible,
and collecting the highest score, which in part depends on the
number of collected coins and killed enemies.

2http://www.mojang.com/notch/mario/

334 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

Complicating matters is the presence of holes and moving
enemies. If Mario falls down a hole, he loses a life. If he touches
an enemy, he gets hurt; this means losing a life if he is currently
in the Small state. Otherwise, his state degrades from Fire to
Big or from Big to Small. However, if he jumps and lands on
an enemy, different things could happen. Most enemies (e.g.,
goombas, cannon balls) die from this treatment; others (e.g.,
piranha plants) are not vulnerable to this and proceed to hurt
Mario; finally, turtles withdraw into their shells if jumped on,
and these shells can then be picked up by Mario and thrown at
other enemies to kill them.
Certain items are scattered around the levels, either out in the

open, or hidden inside blocks of brick and only appearing when
Mario jumps at these blocks from below so that he smashes
his head into them. Available items include coins, mushrooms
which make Mario grow Big, and flowers which make Mario
turn into the Fire state if he is already Big.
No textual description can fully convey the gameplay of a

particular game. Only some of the main rules and elements of
Super Mario Bros are explained above; the original game is one
of the world’s best selling games, and still very playable more
than two decades after its release in the mid-1980s. Its game
design has been enormously influential and inspired countless
other games.
The original Super Mario Bros game does not introduce any

new game mechanics after the first level, and only a few new
level elements (enemies and other obstacles). There is also very
little in the way of story. Instead, the player’s interest is kept
through rearranging the same well-known elements throughout
several dozens of levels, which nevertheless differ significantly
in character and difficulty. This testifies to the great importance
of level design in this game (andmany others in the same genre),
and to the richness of the standard Super Mario Bros vocabulary
for level design.

III. THE MARIO AI CHAMPIONSHIP

The Mario AI Championship was set up as a series of linked
competitions based on Infinite Mario Bros. In 2009, the first it-
eration of the Championship (then called the Mario AI Com-
petition) was run as a competition focusing on AI for playing
Infinite Mario Bros as well as possible. A writeup of the organ-
ization and results of this competition can be found in [3].
The 2010 Mario AI Championship was a direct successor of

this competition, but with a wider scope. It consisted of three
competition tracks (the Gameplay Track, the Learning Track,
and the Level Generation Track) that were run in association
with three international conferences (EvoStar, IEEE Congress
on Evolutionary Computation, and IEEE Conference on Com-
putational Intelligence and Games). While the championship
was open to participants from all over the world, the cash prizes
(sponsored by the IEEE CIS) could only be awarded to com-
petitors that were physically present at the relevant competition
event.

IV. THE LEVEL GENERATION TRACK

While the Gameplay and Learning tracks, which will be dis-
cussed at length in a separate paper, focused on controllers that

could play Infinite Mario Bros as well as possible, the Level
Generation track focused on software that could design levels
for human players. For this track, special software was designed
that allowed the game to connect with the submitted level gen-
erators, and that partly automated the scoring procedure. The
competition also required inventing a scoring system, as well as
laying down general rules for what was and was not allowed.

A. Rules

The competition was open to individuals or teams from all
over the world without any limitations, e.g., in terms of aca-
demic affiliation. (In practice, all competing teams in the Level
Generation Track included at least one graduate student, but this
is incidental; the other tracks of the championship had several
entrants without academic affiliation.)While the highest scoring
competitor would be the overall winner of the competition and
receive the certificate, in case no representative of the winning
team was present at the competition event, the IEEE CIS-spon-
sored prize money would be awarded to the highest scoring
competitor who was actually present. The competition event
was heldAugust 19, 2010 in Copenhagen (during the IEEECon-
ference on Computational Intelligence and Games), and final
entries had to be submitted by a deadline a week before that
date. The final submissions were expected to already fulfill the
technical requirements, but technical assistance was available
from the organizers up until the deadline.
The main technical requirement was that the software should

be able to interface to an unmodified version of the Java frame-
work built by the organizers around the Infinite Mario Bros
game. It was not a requirement that the submissions be written
in Java, though no particular assistance was given for non-Java
development. Another key requirement was that the call to the
level generation routine should return within one minute on
a standard MacBook from 2009—in other words, that a level
should always be generated in under a minute.
In what was probably the most controversial rule, which was

later relaxed, the organizers decided to impose certain arbitrary
and unpredictable requirements on the generated levels. The in-
terface was extended so that in addition to data about how the
human judge played the test level, the required number of coin
blocks, turtles, and gaps in the ground was passed to the level
generator (the final numbers were not revealed to the competi-
tors until the competition event). Originally, it was intended
that any level generator which generated levels with numbers
of gaps, turtles, and coin blocks that differed from those spec-
ified would be disqualified. The motivation for this rule was to
prevent competitors from bypassing the purpose of the competi-
tion by entering “level generators” that only generated a single,
human-designed (and presumably well-designed) level at each
method call, or one that simply generated minor variations on
a single level. However, some competitors complained that the
rule overly restricted the level generators, and after some delib-
eration the organizers decided to not disqualify any level gen-
erator that was deemed to generate sufficiently dissimilar levels
each time.
All important information regarding the Mario AI Champi-

onship, including rules, and software was posted on a dedicated

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 335

website.3 Prospective participants and other interested parties
were encouraged to join a Google Group devoted to the com-
petition.4 All technical questions were supposed to be posted
and answered publicly within the group, so that the archive of
the group could function as a searchable repository of technical
knowledge regarding the championship.

B. Scoring Procedure

The rationale behind the scoring was that the level gener-
ator which generated levels that were preferred by most players
should win. As mentioned earlier, the primary aim of the com-
petition was the generation of personalized Super Mario Bros
levels for particular players. For this purpose, we used human
judges as Mario players to assess the quality of each submitted
competitor; everyone who was present at the competition event
was encouraged to participate in the judging. Each human judge
was given a test level to play, and his or her performance on
that level was recorded and passed on to the level generators.
The judge then played two generated levels from two competing
generators, and ranked them according to how much fun they
were to play.
A two-alternative forced-choice questionnaire was used ac-

cording to which each judge expressed a pairwise preference of
fun after completing the two levels (i.e., “which game of the two
was more fun to play”). (The concept of “fun” was deliberately
not defined further, so as not to bias judges more than what is un-
avoidable.) The adoption of this experimental procedure was in-
spired by earlier attempts to capture player experience via pair-
wise preference self-reports which were introduced by the com-
petition organizers (see [19]–[21] among others). For all compe-
tition entries to be treated fairly, all generators had to be played
an equal number of times by the judges and compared against
all other generators submitted. On that basis, the required min-
imum number of judges was 15 given that there were six com-
petitors (i.e., all possible combinations of two games out of six
competitors). To control for order of play effects, each pair was
played by the same judge in both orders.
To make sure that each pair of competitors were judged at

least once in both orders we set up an online structured query
language (SQL) database that initially contained all possible
pairs marked as “unplayed.” Whenever a game session started,
the software connected to the database and asked for an un-
played pair to load. Once the two level generators in the pair
had been chosen from the database, the levels were generated
according to the judge’s gameplay behavioral statistics and the
judge was set to play the generated two levels in both orders.
The level generators had access to player metrics such as num-
bers of player jumps and coins collected (see Section IV-C for
more details about those data).
When the two games and the questionnaire were completed,

the judge’s preferences and gameplay statistics were stored to
the database and the pair was marked as “played.” The experi-
ment was reset if there were no more pairs available in the data-
base to play (all pairs were marked as “played”).

3http://www.marioai.org
4http://groups.google.com/mariocompetition

C. Software and Interface

An interface was designed to pass information between the
game and the level generator. In the main loop, the level gener-
ator was called by the competition software with information on
the human player’s playing style and expected to return a com-
plete level, expressed as a 2-D array of level elements.
Gameplay metrics were collected and statistical features were

extracted from these data. Features included number of jumps,
time spent running, time spent moving left, number of oppo-
nents of each type killed, and many others; for a complete list of
the data collected, see [16]. The selection of features was based
on the organizers’ understanding of what differentiates players
in this particular game, and were all features that could be ex-
tracted with a minimum of processing from the game engine.
These data about the player’s behavior were available to each
competitor at the end of each level.
The resulting software is a single threaded Java application

that can run on any major hardware architecture and operating
system, with the methods that the generators need to implement
specified in Java interface files. Level generators had to imple-
ment the LevelInterface which specifies how the level is con-
structed and how different type of elements are scattered around
the level:

public byte[][] getMap();
public SpriteTemplate[][] getSpriteTemplates()

The size of the level was constrained to be the same for all
competitors: 320 15 level cells. Different levels can be gen-
erated by placing different types of elements in each cell of the
level map. The type of elements that can be placed in each cell
may vary from basic level elements like a block, a ground, a
specific background, and a coin to different enemy types like a
goomba, a turtle, a cannon, and a flower. The total number of
elements that can be used is 29.
Generators implement the LevelGenerator interface—that is

used to communicate with the simulator—and are bound to re-
spond to the GenerateLevel method call with a new level:

public LevelInterface generateLevel
(GamePlay playerMetrics);

The GamePlay interface provides information about the
player experience and might be useful to construct a per-
sonalized level. An example of five statistical features (as
captured by the GamePlay interface) that contain information
about level design parameters and gameplay characteristics is
as follows:

//total number of enemies
public int totalEnemies;
//total number of empty blocks
public int totalEmptyBlocks;
//total number of coins
public int totalCoins;
//number of Green Turtle Mario killed
public int GreenTurtlesKilled;
//total time spent running to the left
public int timeRunningLeft;
//number of empty blocks destroyed
public int emptyBlocksDestroyed;

336 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

Fig. 1. Passes applied by Ben Weber’s ProMP generator: (1) ground, (2) hills, (3) pipes, (4) enemies, (5) blocks, and (6) coins.

Keeping with the tradition from previous IEEE CIS-spon-
sored competitions, the competition software was open source
and full source code was published on the competition web
page.

V. THE COMPETITORS

In this section, the five level generators that took part in the
competition are presented. Each section is written by the au-
thor(s) of the level generator. In order to facilitate comparison
of the level generators, and make sure that information about
key features was present, a certain structure was imposed on
these descriptions. The competitors were asked to answer the
following questions about their generator, if possible in the in-
dicated order.
1) What is the main idea behind, and general architecture of,
the level generator?

2) Were any CI/AI techniques used for offline training? If so,
which?

3) Does the level generator adapt to the recorded playing style
of the human player? If so, how?

4) How much of the generated levels are actually designed
by a human designer? Conversely, what level of creative
control would a human designer have when using the gen-
erator?

5) What are the main strengths and weaknesses of the level
generator?

6) Could the underlying principles be generalized to work for
other games, or other types of content?

A. Ben Weber: Probabilistic Multipass Generator

1) Idea and Architecture: The probabilistic multipass
(ProMP) generator creates a base level and then iterates
through it several times, each pass placing a new component

type. The generation process consists of six passes, where
each pass places a different component type by traversing
the level from left to right. At each generation step, a set of
events specific to the current pass can occur based on weighted
probabilities. For example, during the initial pass events can
occur that change the ground height, begin a gap, or end a gap.
Events are selected using a uniform probability distribution. In
total, the system includes 14 event types with author-specified
weights. An overview of the level generation process is shown
in Fig. 1.
The system enforces two types of constraints. Playability con-

straints are used to constrain the range of values that can be se-
lected by the generator, such as limiting the maximum height
of pipes to ensure that players can traverse the levels. Competi-
tion constraints are enforced by limiting the number of objects
placed each pass. For example, if a generated level contains the
maximum number of gaps, the probability for new gap place-
ment is set to zero.
2) Offline Training: No offline training is performed.
3) Creative Control: The authorial control provided by the

ProMP generator is limited to parameter selection. The author
can manipulate weights of specific events in order to change
the frequency of gaps, enemies, and hills. However, creating
noticeably different levels requires modifying the algorithm.
4) Adaptation: The initial ProMP algorithm did not adapt

based on the player log. Since the competition, the algorithm
has been modified to adapt event probabilities based on the skill
of a player. Level completion causes an increase in the enemy
and gap placement probabilities, while deaths cause a decrease
in these probabilities.
5) Strengths andWeaknesses: While the generator is capable

of building levels in real time, it outputs levels of limited vari-
ation. One of the main disadvantages of the ProMP algorithm

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 337

Fig. 2. This figure shows the overall architecture of the Tomoyuki Shimizu and
Tomonori Hashiyama’s level generator. The Parts collector runs offline using in-
teractive evolutionary computation. The Skill and preference estimator derive
players’ characteristics. Based on the outputs of these modules, the parts con-
nector arranges the corresponding parts sequentially.

is that scaling up the range of the generator is nonintuitive, be-
cause adding new event types or additional passes may break
previously playable levels.
6) Generalizability: The ProMP algorithm was designed

specifically for platformer level generation and has limited ap-
plication outside this domain. However, the concept of creating
a base level and then applying procedural decoration [22] may
translate well to other genres.

B. Tomoyuki Shimizu and Tomonori Hashiyama

1) Idea and Architecture: The main idea behind our level
generator is to make players experience flow, according to the
theory of Csikszentmihalyi [23]. A key element of the theory of
flow implies a linear relationship between challenge and skill as
an important factor of enjoyment. To realize this relationship,
we have implemented and combined three separate modules: 1)
the skill and preference estimator, 2) the parts collector, and 3)
the parts connector (see Fig. 2).
2) Offline Training: Players’ skills and preferences are eval-

uated by the skill and preference estimatorwith GamePlay logs.
Based on the player’s log from a test level, this module carries
out the inference using heuristic rules given by the designers
a priori. The premises of these rules include parameters such
as number of deaths, time spent running, numbers of enemies
killed by stomping, time spent in each mode, and numbers of
mode switches. Players’ skills are classified into five degrees
from 4 (excellent) to 0 (below average). Players’ preferences
are represented as three values, each corresponding to a distinct
playing behavior: 1) CoinCollector, 2) BlockDestroyer, and 3)
EnemyKiller. Each preference is represented by a real number
between 0 and 100, which denotes the percentages of: 1) coins

collected, 2) blocks destroyed, and 3) enemies killed by the
player in the test level.
The parts collector is a tool for the designers to collect the

appropriate parts corresponding to a set of sprites and environ-
ments through interactive evolutionary computation (IEC) [24].
This module works offline. Parts are generated randomly at ini-
tialization, and their difficulty and features are evaluated by the
designer (collector). The difficulty of these parts is classified
into five degrees. Features of these parts are classified into three
categories depending on their number of 1) coins, 2) blocks, and
3) enemies. Five degrees of difficulty and three categories of
features correspond to those of players’ skills and players’ pref-
erences, respectively. The parts used in this competition were
evolved by us in advance and saved into the parts pool.
The parts connector is a module which generates a level as

serial connection of evolved parts. Some parts which match best
to the player’s skill and preferences as derived from the skill and
preference estimator are selected as candidates. This module
connects these candidates from left to right horizontally.
3) Adaptation: Our level generator estimates players’ skills

and preferences through a skill and preference estimator. Those
parts which match the player’s skill and preference best are se-
lected and connected with a level by the parts connector.
At first, this module selects some candidate parts whose diffi-

culty matches the player’s skill. These parts are then examined
for whether they match the player’s preference. The selected
parts are connected sequentially by the level, growing it from
left to right. This selection–connection procedure is repeated
until the length of generated level meets the requirement of the
competition.
4) Creative Control: The designer can control the generator

in at least two important ways. The estimation of players’ skills
and preferences is done through human-authored rules, based on
our domain knowledge. Also, the parts are evolved using IEC,
and their difficulty and features evaluated by human designers.
5) Strengths and Weaknesses: Our approach has two main

advantages. 1) We generate levels that correspond to players’
skills and preferences. 2) Designers can affect the composition
of levels directly through IEC. No formula needs to be derived
for the fitness function of the evolutionary algorithm, because
the level parts are evaluated by the designers themselves.
The main weakness of our approach is that the variety of

levels depends on the evolved parts. If there is not enough va-
riety in the parts pool, the generated levels may be monotonous.
The variety of levels also depends on that of the evolutionary
mechanism used in IEC. IEC relies on interaction with humans;
it becomes a bottleneck for evolution, because of the (human)
time required for evaluation.
6) Generalizability: Our approach is capable of applying to

various types of game content. The approach simply consists of
two main modules: 1) collecting parts of game content through
IEC, and 2) connecting these parts. Moreover, the propriety of
rules for players’ skills and preferences estimation could im-
prove by tuning rules [25].

C. Nathan Sorenson and Philippe Pasquier

1) Idea and Architecture: Our system combines an evolu-
tionary algorithm and a constraint satisfaction solver to generate

338 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

levels in a top–down manner. It is a generic approach which is
able to create levels for a variety of games, and Mario is one of
its primary applications. As opposed to bottom-up techniques
characterized by low-level production rules that can be inflex-
ible and difficult to debug, our system is ultimately driven by a
high-level fitness function that specifies desirable design goals
independent of any particular generative procedures. This fit-
ness function, which we use to guide the evolution of a pop-
ulation of potential level designs, is based on the observation
that certain configurations of challenge are vital to a player’s
experience of fun [26], [27]. Specifically, levels which present
the player with alternating periods of high and low difficulty,
known as rhythm groups [28], are often considered examples of
good design.
The fitness function used for the competition is a modified

form of one previously discussed [29], and is used to esti-
mate the entertainment value of a given level. Essentially, the
function infers the location of a number of rhythm groups,
according to threshold parameters which identify periods of
low challenge. Each of these rhythm groups is then assessed
to ensure it presents an appropriate amount of difficulty to the
player. The underlying model is described in (1), where is
a heuristic estimation of the challenge of rhythm group , and
represents the ideal amount of challenge a player can expe-

rience while still having fun. This formulation rewards levels
that have a large number of rhythm groups with appropriate
degrees of difficulty. Because rhythm groups boundaries are
located at periods of low difficulty, levels that alternate between
challenging and relaxing segments will be rated the highest and
be favored for selection by the genetic algorithm

(1)

A challenge presented by the evolutionary approach is that
the crossover and mutation operations often yield infeasible off-
spring which contain gaps that are too wide to leap across or
walls too high to jump over. A constraint satisfaction subsystem
is used to repair these unplayable designs, and is detailed in pre-
vious work [30]. This subsystem is also used to enforce the con-
test regulations that dictate the specific number of various de-
sign elements that must be present in a valid level.
2) Offline Training: Offline training is used to find values

for the constant terms in the fitness function. Our approach at-
tempts to find parameter values which assign high values to well
designed levels, and low values to poorly designed levels. A
number of actual levels from the original SuperMario Bros form
the set of positive examples and a number of levels randomly
generated with no regard for player enjoyment form the neg-
ative set. The optimal parameter settings are those which best
discriminate between the two sets.
3) Adaptation: Currently, the generative process is guided

only by the fitness function, which results in challenge config-
urations that resemble those of the original Super Mario Bros
game. However, adaptive design could certainly be considered
in future work. By adjusting the model parameters based on
player feedback, levels could be generated that have different

challenge configurations. An example of this would be gener-
ating easier levels by reducing the value of if the player is
found to be failing more than expected.
4) Creative Control: One of the advantages of a top–down

generative approach is that it provides a human designer with a
small number of high-level parameters to manipulate. The sim-
plest way to influence the design of a level is through the ma-
nipulation of the model parameters. By varying the value of
over time, one can create levels with a specific difficulty pro-
file. For example, one could strategically inflate to produce
levels that have a particularly difficult portion at the halfway
point, with another challenging section near the end. Another
approach to influence the generated levels is to anchor any man-
ually created elements of a design. The evolutionary algorithm
is then not permitted to alter these human-created portions of
the level. Because the fitness function is applied to levels as a
whole, this procedure results in the algorithm selecting for de-
signs that best incorporate these fixed elements into a cohesive
experience. In other words, if a designer creates a very chal-
lenging segment of a level by hand, the algorithm will naturally
create easier segments on either side of this section.
5) Strengths and Weaknesses: An advantage to the evolu-

tionary approach is the ability to influence the designs at a high
level by manipulating the fitness function. However, genetic al-
gorithms and constraint solvers are both computationally inten-
sive, and, therefore, only offline generation of levels is practical;
it is not yet possible to generate a level on the fly as a player
is playing. Search time is not prohibitive, however: if the orig-
inal population of level designs is seeded with existing well-de-
signed levels, new viable designs can be found quickly, even
within the one minute time limit dictated by the contest.
6) Generalizability: The system’s top–down design is moti-

vated by the goal of devising a general approach to level gen-
eration which is not bound to a single, specific game. For ex-
ample, the genetic encoding of the levels is not only applicable
to Mario, but can describe any spatial arrangement of compo-
nents; thus, it is suited to describing many different types of
game levels. More importantly, the fitness function is defined
only in terms of the configuration of challenge over time, and
is likely applicable to any game where this dynamic is funda-
mental to player enjoyment, such as action or arcade games.
We are currently exploring the possibility of using our system to
create levels for top–down adventure games such as The Legend
of Zelda (Nintendo 1986). Though this has proven to be a much
more difficult task, our initial results are promising.

D. Peter Mawhorter: Occupancy-Regulated Extension

1) Idea and Architecture: The occupancy-regulated exten-
sion (ORE) algorithm [31] builds a level by fitting together
small hand-authored pieces. Each piece (called a “chunk”) is
annotated with anchor points, which represent positions that the
player might occupy relative to that chunk during gameplay.
These anchor points are used to align chunks as they are being
placed, and once used, each anchor point will not be reused
(unless all anchor points get used up). The chunks, which
come from a hand-authored library, are annotated with various
properties, and generation is customized by defining rules for
probabilistic chunk selection that depend on these properties

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 339

Fig. 3. A screenshot from a particularly complex level generated by Peter
Mawhorter’s level generator.

(in this way, the algorithm bears some similarity to case-based
reasoning [32]). Once the level is constructed using chunks,
there is a final postprocessing step that enforces some global
constraints and maintains a specified distribution of enemies
and powerups. An example of generator output is shown in
Fig. 3.
2) Offline Techniques: The ORE algorithm does not use any

AI techniques to optimize offline parameters, instead relying on
a human to build a chunk library and define both the properties
of each chunk and the biases with which chunks are selected
during generation. However, future work on automatic extrac-
tion of chunks from existing levels would change this, adding in-
telligent techniques for chunk extraction and labeling, and more
fully automating the level-design process.
3) Adaption: For the purposes of the competition, and to

demonstrate the customizability of the basic ORE algorithm,
some basic adaption techniques were implemented. From the
given data, a very rough player model is constructed, focusing
mostly on how often the player used the run button (more
often being taken to imply higher skill) and how often and
how the player died. This player model is then used to alter
generated levels, both by altering the default rules for chunk
selection (such as by making chunks with a particular label
less common) and by altering the distributions of enemies and
powerups maintained by the postprocessing step. The adaption
parameters were hand-tuned; more robust methods would use
some form of optimization, although getting enough data to
do so might be time consuming. Of course, because ORE is
iterative, it should also be possible to use it for dynamic diffi-
culty adjustment. There would be some additional challenges
to overcome (such as finding a way to run the postprocessing
online), but dynamic difficulty adjustment has been shown to be
a promising application of procedural content generation [33].
4) Creative Control: Because the chunk library is hand-au-

thored, the human designer has quite a bit of control over the
types of levels generated, albeit in an awkward manner. Since
in this case the chunk library author is the system designer, it is
easy to use knowledge of the specifics of the system to author
chunks that would result in certain kinds of output (e.g., adding

chunks to make levels that had more height variance, for ex-
ample). The ability to tune the chunk library to achieve desired
results does depend on a thorough understanding of the algo-
rithm, however, and so in general, chunk authoring is not an
interface that provides much leverage on level design. On the
other hand, the ORE algorithm is almost purely incremental, so
it is in theory possible to hand-author part of a level and have
ORE generate the rest. Given the right interface, and combined
with library manipulations, this would offer a rich interface for
mixed-initiative level design, which is a topic that has already
received some study [13].
5) Strengths and Weaknesses: The main strengths of the

ORE algorithm lie in the variety and unpredictability of pos-
sible output (it is a generator that regularly surprises even its
author) and in the possibilities for customization. Combinations
of low-level chunks result in emergent structures that can be
quite complex, which means that even after playing many
levels generated from the same chunk library, one will still
encounter surprising new constructs. The ability to manipulate
the chunk library and the fact that the algorithm is iterative
mean that ORE has lots of potential for customization to
different purposes. Unfortunately, the iterative model means
that certain constraints (including playability constraints) are
difficult to implement. In this respect, ORE is unlike many
other generators [16], [29], [34], which take advantage of more
constrained generation to achieve a particular goal.
6) Generalizability: As written, ORE could generalize to an-

other grid-based game quite easily, and in theory any spatial
(and even some nonspatial) content could be generated using it.
As long as there are concepts of anchor points and chunks, ORE
can generate content in a space. The strength of the algorithm
depends on the specifics of the anchors and chunks, however.
ORE works well in Super Mario Bros in part because using po-
tential positions as anchor points naturally results in coherent
levels.

E. Glen Takahashi and Gillian Smith:
The Hopper Level Generator

1) Idea and Architecture: Hopper was designed to create
levels that imitate the style of Super Mario World levels. These
levels are customized according to the style of player and their
skill at playing, both of which are inferred from player metrics.
Hopper uses a rule-based approach to place level terrain,

enemies, coins, and coin blocks on a tile-by-tile basis. Levels
are built from left to right, with probabilities governing which
tile will be placed next. These probabilities are manually tuned
according to the inferred player types and difficulty described
below, and control the variance in terrain height, occurrence
and width of gaps, and frequency of enemy placement. For
example, an “easy” level will have a low probability of gap
placement, and a level generated for a speed run play style
will be flatter than one created for a player who jumps a lot.
Obstacle placement is also influenced by the number of times
a player died on the particular obstacle: for example, even in
a medium difficulty level, there is a lower probability of gaps
appearing if the player has previously died by falling down a
gap. In order to ensure a reasonable distribution of gaps and

340 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

Fig. 4. Examples of the hidden coin zone (top left), fire zone (top right), shell zone (bottom left), and super jump zone (bottom right), as used in Glen Takahashi
and Gillian Smith’s level generator.

enemies, the probability of placing these increases with the
distance from the last such feature.
2) Offline Training: No offline training was performed.
3) Adaptation: Based on metrics from the initial test level,

players are classified in two ways: by the type of behavior they
exhibit, and their skill level. These classifications drive the
level generation process by influencing generation parameters.
Hopper infers three different special styles of player behavior:
a speed run style, an enemy-kill style, and a discovery style. A
player is categorized as a “speed runner” if they take very little
time to complete a level and do not engage in collecting coins
or killing enemies. The enemy-kill style is applied to players
who spend a lot of time killing enemies. Players are placed
into the discovery style category if they collect a large number
of coins, powerups, and coin boxes. These categories are not
mutually exclusive; i.e., it is possible for a player to have
none of these traits, or more than one of them. There are three
discrete difficulty levels—easy, medium, and hard—which are
determined by the number of times the player died in the test
level, and how long it took the player to complete it. Player
styles, difficulty levels, and the thresholds used to calculate
them are based on informal observation of a number of players
with differing skill levels.
4) Creative Control: This base level generation algorithm

creates approximately 85% of a given level. The remainder is
taken up with “special zones” that are built from human-au-
thored patterns. The four special zone patterns are: fire zone,
shell zone, super jump, and hidden coin area. A given level may
contain a small number of each type of zone, depending on the
inferred player behavior and difficulty level. Each zone has a
varying length. Fire and shell zones are more likely to appear
for players who spend a lot of their time killing enemies, the

super jump zone appears for speed run players, and the hidden
coins appear for discovery style players. Fig. 4 shows an ex-
ample of each zone.
5) Strengths and Weaknesses: Hopper is capable of creating

a wide variety of levels for different player types; however, only
the first level it creates is given to the player. Future incarnations
of this generator will incorporate a generate-and-test structure
similar to that found in an author’s prior rule-based level gener-
ator [34]. Generate-and-test allows a designer to exert additional
control over created levels by specifying global qualities of the
level that they wish to see; it would also be possible to choose
levels that are similar to others that the player has enjoyed.
The incorporation of special zones gives a designer direct in-

fluence over the generator. These patterns and the probabilities
for their appearance are quite simple to specify. They reflect a
desire expressed by some 2-D platformer designers [35] for pro-
cedural level generation to support designers by building a level
around preauthored sections.
Hopper’s parameters for adaptation are currently tuned based

on informal testing with friends and colleagues. A formal study
of different player behavior in platformer levels would improve
Hopper’s adaptation and be a useful contribution to the field.
Incorporating a model of the difficulty of certain combinations
of geometry [33] is also a potential way to improve adaptation.
More information from player metrics would be helpful in cate-
gorizing player behavior; for example, time-stamped player be-
havior would allow us to determine the purpose of a jump, or
understand if the player confidently killed enemies or mademul-
tiple attempts before being successful.
6) Generalizability: Hopper’s level generation technique is

not particularly extensible to other genres; while rule-based ap-
proaches in general have shown promise in content generation

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 341

Fig. 5. Linear discriminant analysis of 11 players with five sessions each, pro-
jected onto the first two dimensions. Data used by Robin Baumgarten’s level
generator.

[36], [37], they require a great deal of domain specific informa-
tion to be built into the rules. However, the general approach of
creating levels based on a formal understanding of play styles
and associated behavior is an interesting future direction for re-
search in procedural level generation.

F. Robin Baumgarten: LDA-Based Level Generator

1) Idea and Architecture: This level generator uses linear
discriminant analysis (LDA) to analyze the data provided after
the initial play-through of a player. The new data vector is pro-
jected into an LDA space created by playing data gathered in a
prior survey. This LDA representation provides us with a single
value that we interpret as skill and use to create a level based on
handcrafted level chunks with varying difficulty.
Discriminant analysis is used in statistics and machine

learning to characterize or separate classes of objects based
on a set of measurable features and class information of these
objects. LDA utilizes a linear combination of these features to
separate the groups of objects. This combination can be used
as a linear classifier or for dimensionality reduction. LDA has
previously been used to estimate feature weights for heuristics
in an Othello game tree [38], and to automatically analyze
logged game data to identify the most significant metrics for
player classification in Pac-Man [39].
2) Offline Training: In our case, we first gathered data in a

small survey, which comprised the playing data of 11 players
playing five different levels each. The levels were randomly
generated (but the same across players) and had an increasing
difficulty. For data analysis, we use LDA to both perform a di-
mensionality reduction and extract information about player be-
havior from the resulting transformed space, which is shown in
Fig. 5. We treat each set of five sessions of a player as one class.
The weights of the features in the first dimensions of the LDA

transformed space indicate the most important features that de-
termine the behavior of a player and how it differs from other

players. A positive side effect of this method is that unimportant
or highly correlated features are eliminated automatically.
3) Adaptation: As the LDA space automatically highlights

variables that were especially helpful in separating players from
each other, we can use the first few dimensions of the feature
vectors in LDA space to guide the level generator in order to
tailor a level suitable to the player.
In our initial survey, we found that the first LDA dimension

(LD1 from now on) gave us a fairly accurate indication of player
skill; as players we (subjectively and manually) judged as good
(bad) players had a high (low) LD1 value. Thus, in this initial
version of our algorithm, we only used the LD1 value of each
player to guide level generation.
4) Creative Control: Our level generator builds levels by

concatenating chunks of predesigned level parts, each with a
length of slightly more than one screen (25 blocks). The human
designer manually annotates the expected difficulty of each
chunk, allowing a selection based on the LD1 skill level. The
proportion of easy, medium, and hard chunks is directly based
on the estimated skill level, with a slight randomization and
repetition avoidance to increase level diversity.
Thus, in this first version of the level generator, the human

designer still plays a big role in creating individual parts of the
level and annotating their difficulty.
5) Strengths and Weaknesses: The process of judging the

skill of a player has been fully automated with the help of LDA
using existing playing data of other players, with the possible
exception of interpreting the first dimension of the LDA space
as the skill level. However, our previous work indicates that a
combination of the first two or three dimensions should give an
accurate representation of player behavior.
Weaknesses of our current implementation are the depen-

dency on a human designer to create the building blocks of our
level, and annotating their difficulty. Furthermore, there was a
programming error in the generator that was submitted to the
contest, which disabled the proper selection of level chunks and
always led to the selection of the most difficult piece first, which
led to a low ranking in the competition. This issue has been fixed
for following studies.
The described version of the level generator leaves a lot of

room for further automatization, especially in selecting appro-
priate dimensions of the LDA space for level generation, and
annotating the difficulty of level chunks, where our A playing
bot could be used (described in [3]).
6) Generalizability: The approach of using LDA to generate

a semiautomatic classification of players can easily be gener-
alized to at least some other games, as we have shown with
our Pac-Man study [39]. It could conceivably be generalized
further.

G. Taxonomic Classification of Competition Entries

According to the taxonomical classification in [8], Ben
Weber’s, Robin Baumgarten’s, Peter Mawhorter’s and Glen
Takahashi and Gillian Smith’s level generators can all be classi-
fied as constructive generators, as they construct their levels in
one or a fixed number of sweeps, without backtracking. Nathan
Sorenson and Phillipe Pasquier’s level generator is search
based, as it uses a search/optimization algorithm (in this case a

342 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

TABLE I
THE RESULT OF THE LEVEL GENERATION TRACK FOR THE 2010 MARIO AI

CHAMPIONSHIP, TURING TEST TRACK

genetic algorithm) to search a space of possible content (levels)
in order. Tomoyuki Shimizu and Tomonori Hashiyama’s level
generator is a combination, which performs a search-based
generation of level segments (using an interactive fitness func-
tion) offline, whereas the online generation of complete levels
is constructive.
Only three of the level generators attempted any kind of adap-

tation to the playing style and/or inferred preferences of the
judge. Shimizu and Hashiyama’s and Takahashi and Smith’s
generators adapt the levels using theory-driven player models,
i.e., the algorithms sort players into categories (e.g., CoinCol-
lector, speed run style) based on thresholds explicitly specified
by the human designers. Baumgarten’s generator, on the other
hand, uses a data-driven player model where the classification
is based on data collected from a number of players.

VI. RESULTS

Following the scoring procedure presented in Section IV-B,
we needed to have at least 15 participants for a fair competi-
tion result (with 15 participants we guarantee that each pair of
competitor submissions is played at least once in both orders).
Since we encouraged everyone present at the competition event
to participate as a judge, we ended up having more than 15
participants but fewer than 30. Thus, for the sake of fairness,
the winner was decided by taking into consideration the first
complete set with all pairs played by the first 15 judges only.
The results presented in Table I are also taken from the first 15
participants.
The numbers presented in the score column in Table I refer to

the number of times the particular generator scores higher than
another generator when played in a pair. The maximum value
of the score is 10: the competitor is preferred to any other of
the five competitors in both orders. As can be seen from the
table, the winner of the competition was Ben Weber with a dif-
ference of only one vote from Tomoyuki Shimizu and Tomonori
Hashiyama who came in second, with the other competitors rel-
atively evenly spread out in the score table.

A. Level Features and Pairwise Preferences

During the competition, all levels that were generated by
the generators were stored on the competition server together

Fig. 6. Average values of eight statistical features that have been extracted from
all generated levels of each competitor.

with the reported preferences of the players. This has given us
an opportunity to extract statistical features from the levels,
and attempt to correlate these with player reported prefer-
ences. Note that, in the first implementation of the competition
server–client system (used in the CIG 2010 competition), data
related to player actions were not collected. Thus, any attempt
to relate level features generated with player characteristics and
furthermore with reported fun preferences is not possible at
this stage. On that basis, reported pairwise preferences cannot
be linked to individual players’ playing styles (as done in [19]
among others) but only associated to level attributes. Any
model learned from these data will therefore be a generic model
that does not take the differences between players into account.
Fig. 6 presents a comparison between the average values of

eight key statistical features that have been extracted from the
data of all competitors: numbers of coins, rocks, powerups, en-
emies and gaps, the average gap width, as well as the spatial di-
versity of gaps (gap H) and enemy placements (enemy H) which
is measured by the entropy of the number of gaps and enemies,
respectively, appearing in a number of 10 equally spaced seg-
ments of the level (see [16] for more details on the calculation
of entropy). All feature values are uniformly normalized to the
range using max–min normalization. As clearly seen from
Fig. 6, the winner’s entry (Weber) generates, on average, more
gaps than most competitors and the most enemies placed in a
rather unpredictable manner. The aforementioned characteris-
tics contribute to more challenging levels which might be one of
the criteria that this level generator was preferred more than any
other entry. The levels generated by Shimizu and Hashiyama’s
generator reached second place in the competition with level
features that are inverse to those of Weber: the levels have, on
average, fewer coins, enemies, and gaps while enemies are more
evenly distributed across the level. Results from these two very
different levels indicate that the relationship between level char-
acteristics and fun is most likely not a simple linear function.
They also reflect upon the highly subjective notion of level aes-
thetics and gameplay attributes.

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 343

TABLE II
CORRELATION COEFFICIENT VALUES BETWEEN EIGHT KEY STATISTICAL
FEATURES EXTRACTED FROM GENERATED LEVELS AND FUN PAIRWISE

PREFERENCES. SIGNIFICANT VALUES APPEAR IN BOLD
—SIGNIFICANCE EQUALS 5% IN THIS PAPER

At the bottom of the score board, the entry of Baumgarten
generates way too many rocks and gaps which result in highly
challenging levels that were not preferred by most judges. It is
also worth noticing that Takahashi and Smith’s entry (which
received two votes) generates, on average, challenging levels
with very wide gaps which are placed in a rather unpredictable
manner. The levels generated by Mawhorter’s entry are charac-
terized by many coins while the entry of Sorenson and Pasquier
seems to generate the most powerups among all competitors.
These level features appear to be valued by some judges and
brought these entries in the middle of the score board.
Table II presents a correlation analysis between the judges’s

expressed fun preferences and the eight key level features ex-
amined earlier. Correlation coefficients are obtained through

, following the statistical analysis proce-
dure for pairwise preference data introduced in [19], where
is the total number of game pairs (is 15 in this paper) and

, if the judge preferred the game with the larger value of
the examined feature and , if the judge chose the other
game in the game pair . The -values of are obtained via
the binomial distribution. A high positive correlation value in-
dicates that levels with a high value of the examined level fea-
ture are in general preferred over levels with lower values of
that feature. On the contrary, features which are highly but neg-
atively correlated to fun preferences characterize levels which
are not preferred. A correlation value close to zero suggests that
there is no apparent linear relationship between the examined
feature and fun preferences. From the significant correlations of
Table II it can be inferred that levels with fewer coins and rocks,
smaller gaps, and even distribution of enemies are, in general,
preferred (or generate more fun). There appears to be a relation-
ship between level fun preference and game challenge show-
cased through these statistical effects: the lower the challenge
in a level the higher the preference for that level. The clear rela-
tionship of the two can only be obtained if the sample size of the
judges is larger and, in addition to fun preferences, the judges
are asked to report the level that generated the most challenging
gameplay. Previous work on the relationship between reported
fun and reported challenge in Super Mario Bros has demon-
strated that they are highly and positively correlated [16] (in
contrast to what is observed here), at least for a more restricted
class of levels.
The correlation values obtained suggest that the relationship

between content characteristics and game preference is most

likely nonlinear (as also found in [16]) since the linear rela-
tionships are far from being exact—i.e., the correlation values
are significant but not close to 1 or 1. Moreover, studies have
shown that player behavioral characteristics are key towards
the prediction of player preferences (see [16] among others)
which further implies that level personalization would most
likely yield more successful generators.
In order to further validate the results of the competition with

more participants/judges, we are currently performing an addi-
tional round of data collection online. A Java applet has been
created and placed on a web page,5 which has been advertised
over social networks, mailing lists and blogs.

VII. DISCUSSION

This section discusses what we can learn from this round of
the Level Generation Track (which was also the first academic
PCG competition and the first competition about adaptive or
controllable PCG), both about organizing a PCG competition
and about generating levels for platform games.

A. Organizing a PCG Competition

Compared to other game AI competitions the PCG competi-
tion attracted a reasonably large set of competitors, representing
a considerable diversity geographically and, in particular, in
terms of algorithmic approaches to the particular content gen-
eration problem. All of the entries submitted contain novel
elements, most of the approaches are sophisticated, and some
of them are connected to the competitors’ ongoing research
programs. The number and quality of submissions indicate a
fairly strong interest in the field of procedural content genera-
tion, forming a subcommunity devoted to PCG that lies within
the broader game AI and computational intelligence and games
communities. Therefore, it seems very plausible that given
a simple enough interface and an interesting enough content
generation problem, future PCG competitions will attract good
attention.
In organizing this competition, the organizers drew on ex-

perience of organizing several previous game AI-related com-
petitions, as well as a set of “best practices” that have been
accumulated within the computational intelligence and games
community over the past few years. One core principle is that
the competition should be as open as possible in every sense,
both in terms of source code, rules, procedures, and participa-
tion. Another key principle is that the software interface should
be so simple that a prospective competitor is able to download
the software and hack together a simple entry in five minutes.
Limitations in terms of operating systems and programming lan-
guages should be avoided wherever possible. It has also become
customary to provide a cash prize in the range of a few hundred
dollars, along with a certificate, to the winner. We believe that
these principles have served us well.
This is not to say that the current competition has been

without its fair share of problems, actual as well as potential.
It was until the last moment unknown how many members
of the audience would be willing and able to participate in
the judging, and it would in general be desirable to have a

5http://noorshaker.com/participate_in_experiments.htm

344 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

larger number of votes cast in order to increase the statistical
validity of the scores. One of the key limitations of the existing
survey protocol is that all entries need to be played against
each other; ideally multiple times from different judges. That
generates a large number of judges—which is combinatorial
with respect to the number of entries—required to sufficiently
assess the entries. This problem can be solved, in part, with
a fair sampling of the pairs and an adaptive protocol which
is adjusted according to the number of judges existent in the
competition room. It is also questionable how representative
of the general game-playing population an audience of game
AI researchers is. As already mentioned, an Internet-based
survey is currently running, where the software is included on
a public web page and judges are solicited through mailing lists
and social networking sites; this approach would undoubtedly
come with its own set of limitations, such as preventing the
competitors from gaming the system by voting multiple times
themselves.
Additional minor problems include the short time period

given for the presentation of the competition; the competitors
agree that it would have been very useful to have on-spot
presentations of their submissions as well. Moreover, one of the
entries included a trivial but severe bug which was only discov-
ered during the scoring, and which was arguably responsible
for the very low score of that entry. The competition software
repeatedly locked up on several of the judges’ laptops during
level generation for as yet unknown reasons.
A potential problem which was briefly discussed in

Section IV-A is that someone could submit a “level gener-
ator” that essentially outputs the same human-designed level
each time and, if that level is good enough, it could win the
competition. As we have abandoned the idea of forcing addi-
tional constraints on the level generators for fear of restricting
them too much, such a case would probably have to be decided
by the organizers of the competition based on some fairly fuzzy
guidelines. The deeper problem is the distinction between a
level and a level generator and it is not clear. It should rather
be thought of as a continuum with intermediate forms possible,
e.g., a fixed level design that varies the number and distribution
of enemies according to the player’s skill level. (Bear in mind
that several of the submitted level generators included complete
human-designed level chunks of different sizes.)
A possible solution to the above problem would be to let the

judge play not one but several levels generated by the same level
generator with the same player profile as parameters. In such a
setting, a generator that always outputs the same level would
probably come across as boring. This solution would also en-
sure that the judges rate the actual design capacity of the gen-
erator rather than just the novelty value of a single generated
level. If this is done, the player metrics might be updated as the
player plays, allowing the generators to continuously adapt to a
player’s changing playing style. It would require that each judge
spends more time on judging, which might lead to a shortage of
willing judges, but given the considerable advantages it seems
like a good idea that the next level generation competition lets
judges play several levels from each generator.
There are certainly aspects of the questionnaire protocol

used that could be improved on the next iteration of the compe-

tition. A four-alternative forced-choice questionnaire scheme
[40] could be adopted to improve the quality of self-reported
preferences. Such a questionnaire scheme would include two
more options for equal preferences (i.e., “both levels were
equally fun” and “neither level was fun”) and thereby eliminate
experimental data noise caused by judges who do not have a
clear preference for one of the two levels.
In the future, we might consider including hand-authored

levels (e.g., original Super Mario Bros levels) among the gener-
ated levels; a litmus test for whether the (personalized or other)
level generators are really successful would be whether they
were generally preferred over professionally hand-authored
levels. We would also like to try to answer not only the “which”
question about fun levels, but also the “why” question; asking
judges why they prefer a particular level over another would
be interesting, but would require significant human effort in
interpreting the data. Another method would be to ask not
only which level was more fun, but also which was more
challenging, interesting, etc., similar to the questionnaires used
in [16].
Another takeaway from previous CIG competitions is that

competitions usually benefit from repetition. When basically
the same competition is run a second or third time, competitors
get a chance to perfect their entries and learn from each other,
meaning that much better entries are submitted. Refining indi-
vidual entries also means that techniques that are more appro-
priate for the problem stand out from initially interesting ideas
that fail to deliver on their promise. In other words, the scientific
value of a competition in general increases with the number of
times it is run.

B. Generating Levels for Platform Games

The main point to note about the competition results is that
the simplest solution won. Ben Weber’s ProMP level generator
does not search and backtrack while constructing the level, does
not include any human-designed level chunks, and does not in
any way adapt to the judge’s playing style. Above all, it does
not attempt any form of large-scale level structure, pacing or
anything similar, but simply places individual level elements in
a context-free manner.
It would be premature to conclude that the aforementioned

features (adaptation, human-designed chunks, search in level
space and macrostructure), which were attempted by the other
generators, cannot in principle add to the quality of generated
levels. Rather, we believe that imperfect implementation and a
lack of fine-tuning were responsible for the relative failure of
the more complex level generators. It is clear that the entrants
need more time to perfect their entries, and possibly recombine
ideas from different approaches. In addition, player behavioral
information could assist the generation of more personalized,
and thereby preferred, levels (as in [41]). While level genera-
tion studies in Super Mario Bros indicate features that are re-
sponsible for a level’s high aesthetical value [16] we are still
far from identifying the complete set of features—which could
be represented computationally—that would yield a highly en-
gaging platform game. Earlier findings suggest that this fea-
ture set needs to be individualized for each player behavioral

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 345

type [16]. In other words, the competition needs to run again to
give the competitors further opportunities to improve their level
generators.
While Ben Weber’s level generator did not generate any

macrostructure, it can be argued that it generates more
microstructure than several of the other level generators. Indi-
vidual images of levels generated by Ben Weber’s generator
tend to be densely filled with items, creatures, and landscape
features and frequently give the false appearance of macrostruc-
ture, such as there being multiple paths through the level. This
suggests that the current evaluation mechanism incentivizes
judges to make judgements on level quality early or based only
on local features.
On a positive note, all the entries produced levels that were, at

least once, judged to be more entertaining than some level gen-
erated by another entry. Also, the score difference between the
winner and the runner-up was very small, despite the level gen-
erators being very dissimilar. This suggests that widely differing
approaches can successfully be used to generate fun levels for
Super Mario Bros. This particular content generation problem
is still very much an open problem.
We have also attempted to see how much of the preference

for certain levels over others, and therefore the quality of level
generators, can be explained by simple extracted features using
linear correlations. The analysis showed that there are partic-
ular key level attributes, such as the number of coins and rocks
as well as the average gap width and the even placement of en-
emies, that affect the fun preference of judges. These features
are all negatively correlated; more items and more irregularly
distributed items are associated with less fun. The most succinct
summary of the statistical analysis would be that the less clutter,
the more fun level.
At the same time, the correlations are far from strong enough

to explain all of the expressed preferences, suggesting that the
relationship between level features and quality is too complex to
be captured by linear correlations. We also know from previous
research that level preferences are highly subjective. It is likely
that an analysis of more extracted features, including playing
style metrics, from a larger set of levels played by a larger set
of judges could help us understand the complex interplay of the
different aspects of level design better.

REFERENCES
[1] P. Hingston, “A new design for a turing test for bots,” in Proc. IEEE

Conf. Comput. Intell. Games, 2010, pp. 345–350.
[2] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta,

M. V. Butz, T. D. Lönneker, L. Cardamone, D. Perez, Y. Saez, M.
Preuss, and J. Quadflieg, “The 2009 simulated car racing champi-
onship,” IEEE Trans. Comput. Intell. AI Games, vol. 2, no. 2, pp.
131–147, Jun. 2010.

[3] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario
AI competition,” in Proc. IEEE Congr. Evol. Comput., 2010, DOI:
10.1109/CEC.2010.5586133.

[4] A. J. Champandard, AI Game Development. Berkeley, CA: New
Riders Publishing, 2004.

[5] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic per-
sonalised content creation for racing games,” in Proc. IEEE Symp.
Comput. Intell. Games, 2007, pp. 252–259.

[6] E. Hastings, R. Guha, and K. O. Stanley, “Evolving content in the
galactic arms race video game,” in Proc. IEEE Symp. Comput. Intell.
Games, 2009, pp. 241–248.

[7] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Faculty Inf. Technol., Queensland Univ.
Technol., Brisbane, Qld., Australia, 2008.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne,
“Search-based procedural content generation,” in Proceedings of
EvoApplications, ser. Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2010, vol. 2024, pp. 141–150.

[9] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne,
“Search-based procedural content generation: A taxonomy and
survey,” IEEE Trans. Comput. Intell. AI Games, vol. 3, no. 3, pp.
172–186, Sep. 2011.

[10] G. N. Yannakakis and J. Togelius, “Experience-driven procedural
content generation,” IEEE Trans. Affective Comput., vol. 2, no. 3, pp.
147–161, Jul.-Sep. 2011.

[11] C. Remo, “MIGS: Far Cry 2’s Guay on the Importance of Pro-
cedural Content,” Gamasutra, Nov. 2008 [Online]. Available:
http://www.gamasutra.com/php-bin/news_index.php?story=21165

[12] J. Doran and I. Parberry, “Controlled procedural terrain generation
using software agents,” IEEE Trans. Comput. Intell. AI Games, vol.
2, no. 2, pp. 111–119, Jun. 2010.

[13] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proc. Int. Conf. Found. Digit. Games, 2010, DOI:
10.1145/1822348.1822376.

[14] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “In-
tegrating procedural generation and manual editing of virtual
worlds,” in Proc. ACM Found. Digit. Games, Jun. 2010, DOI:
10.1145/1814256.1814258.

[15] N. Shaker, J. Togelius, and G. N. Yannakakis, “Towards automatic per-
sonalized content generation for platform games,” in Proc. AAAI Conf.
Artif. Intell. Interactive Digit. Entertain., Oct. 2010.

[16] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-
perience for content creation,” IEEE Trans. Comput. Intell. AI Games,
vol. 2, no. 1, pp. 54–67, Mar. 2010.

[17] T. L. Taylor, Play Between Worlds. Cambridge, MA: MIT Press,
2006.

[18] J. Juul, A Casual Revolution. Cambridge, MA: MIT Press, 2009.
[19] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment

in computer games,” Appl. Artif. Intell., vol. 21, pp. 933–971, 2007.
[20] G. N. Yannakakis, H. P. Martínez, and A. Jhala, “Towards affective

camera control in games,”User Model. User-Adapted Interaction, vol.
20, no. 4, pp. 313–340, 2010.

[21] G. N. Yannakakis and J. Hallam, “Real-time game adaptation for op-
timizing player satisfaction,” IEEE Trans. Comput. Intell. AI Games,
vol. 1, no. 2, pp. 121–133, Jun. 2009.

[22] J. Whitehead, “Toward procedural decorative ornamentation in
games,” in Proc. Workshop Procedural Content Generat. Games,
2010, DOI: 10.1145/1814256.1814265.

[23] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
New York: Harper Perennial, 1991.

[24] H. Takagi, “Interactive evolutionary computation: Fusion of the capac-
ities of EC optimization and human evaluation,” Proc. IEEE, vol. 89,
no. 9, pp. 1275–1296, Sep. 2001.

[25] J. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, May./Jun.
1993.

[26] J. Juul, “Fear of failing? the many meanings of difficulty in video
games,” in The Video Game Theory Reader 2. New York: Routledge,
2009, pp. 237–252.

[27] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-
tals. Cambridge, MA: MIT Press, Oct. 2003.

[28] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of
2D platformer levels,” in Proc. ACM SIGGRAPH Symp. Video Games,
2008, pp. 75–80.

[29] N. Sorenson and P. Pasquier, “The evolution of fun: Automatic level
design through challenge modeling,” in Proc. 1st Int. Conf. Comput.
Creativity, Lisbon, Portugal, 2010, pp. 258–267.

[30] N. Sorenson and P. Pasquier, “Towards a generic framework for au-
tomated video game level creation,” in Proceedings of the European
Conference on Applications of Evolutionary Computation (EvoAppli-
cations), ser. Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2010, vol. 6024, pp. 130–139.

[31] P. Mawhorter and M. Mateas, “Procedural level generation using
occupancy-regulated extension,” in Proc. IEEE Conf. Comput. Intell.
Games, 2010, pp. 351–358.

346 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

[32] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI Commun., vol.
7, no. 1, pp. 39–59, 1994.

[33] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: Dy-
namic difficulty adjustment through level generation,” in Proc.
Workshop Procedural Content Generat. Games, 2010, DOI:
10.1145/1814256.1814267.

[34] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2D platformers,” in Proc. 4th Int. Conf. Found.
Digit. Games, 2009, pp. 175–182.

[35] A. Neuse, Personal Communication to Gillian Smith.May 2010.
[36] A. Smith, M. Romero, Z. Pousman, and M. Mateas, “Tableau machine:

A creative alien presence,” in Proc. AAAI Spring Symp. Creative Intell.
Syst., Mar. 2008.

[37] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Pro-
cedural modeling of buildings,” in Proc. ACM SIGGRAPH, 2006, pp.
614–623.

[38] M. Buro, “Statistical feature combination for the evaluation of game
positions,” J. Artif. Intell. Res., vol. 3, no. 1, pp. 373–382, 1995.

[39] R. Baumgarten, “Towards automatic player behaviour characterisation
using multiclass linear discriminant analysis,” in Proc. AISB Symp., AI
Games, 2010.

[40] G. N. Yannakakis, “How to model and augment player satisfaction:
A review,” in Proc. 1st Workshop Child Comput. Interaction, Chania,
Crete, Oct. 2008.

[41] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-
perience in Super Mario Bros,” in Proc. IEEE Symp. Comput. Intell.
Games, Milan, Italy, Sep. 2009, pp. 132–139.

Noor Shaker received the five-year B.A. degree
in IT engineering from Damascus University,
Damascus, Syria, in 2007 and the M.Sc. degree in
artificial intelligence from Katholieke Universiteit
Leuven, Leuven, Belgium, in 2009. Currently,
she is working towards the Ph.D. degree at the IT
University of Copenhagen, Copenhagen, Denmark.
Her research interests include player modeling,

procedural content generation, affective computing,
and player behavior imitation.

Julian Togelius received the B.A. degree in phi-
losophy from Lund University, Lund, Sweden, in
2002, the M.Sc. degree in evolutionary and adaptive
systems from University of Sussex, Sussex, U.K.,
in 2003, and the Ph.D. degree in computer science
from University of Essex, Essex, U.K., in 2007.
He is an Assistant Professor at the IT University

of Copenhagen, Copenhagen, Denmark. Today, he
does game adaptivity, procedural content generation,
player modeling, reinforcement learning in games,
etc.

Georgios N. Yannakakis (S’04–M’05) received the
M.Sc. degree in financial engineering from the Tech-
nical University of Crete, Crete, Greece, in 2001 and
the Ph.D. degree in informatics from the University
of Edinburgh, Edinburgh, U.K., in 2005
He is an Associate Professor at the IT University

of Copenhagen, Copenhagen, Denmark. His research
interests include user modeling, neuroevolution,
computational intelligence in computer games, cog-
nitive modeling and affective computing, emergent
cooperation, and artificial life.

Ben Weber is currently working towards the Ph.D.
degree in computer science withM.Mateas in the Ex-
pressive Intelligence Studio, University of California
Santa Cruz, Santa Cruz.
His research focuses on the application of plan-

ning, machine learning, and case-based reasoning to
game AI.

Tomoyuki Shimizu received the B.Eng. and M.Eng.
degrees from The University of Electro-Communica-
tions, Tokyo, Japan, in 2009 and 2011, respectively.
He has been working with Fuji Xerox co., Ltd.,

Tokyo, Japan, since 2011. His research inter-
ests include computational intelligence for game
applications.

Tomonori Hashiyama (M’96) received the B.Eng.,
M.Eng., and Dr.Eng. degrees in information elec-
tronics from Nagoya University, Nagoya, Japan, in
1991, 1993, and 1996, respectively.
He joined Nagoya University in 1996 and Nagoya

City University in 2000. Since 2007, he has been with
The University of Electro-Communications, Tokyo,
Japan. His research interests include computational
intelligence for human–computer interactions.

Nathan Sorenson received the M.S. degree in inter-
active arts and technology from the School of Inter-
active Arts and Technology, Simon Fraser University,
Burnaby, BC, Canada, in 2011.
With his background in mathematics and com-

puter science, he researches the application of
computational intelligence to problems that typically
demand human creativity. His thesis focused on
formal models of fun in video games and automated
level design.

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 347

Philippe Pasquier received the B.Sc. degree from
the Université catholique de Louvain (UCL), Lou-
vain-la-Neuve, Belgium, in 1998, the M.Sc. degree
from Nantes Science University, Nantes, France, in
1999, and the Ph.D. degree from Laval University,
Quebec City, QC, Canada, in 2005, all in computer
science.
He is an Assistant Professor at the School of Inter-

active Arts and Technology, Simon Fraser University,
Burnaby, BC, Canada. His scientific research focuses
on the development of models and tools for endowing

machines with autonomous, intelligent or creative behavior. His contributions
vary from theoretical research in artificial agent theories to applied research in
computational creativity and generative processes.

Peter Mawhorter received the B.S. degree in
computer science from Harvey Mudd College,
Claremont, CA, in 2008. He is currently working
towards the Ph.D. degree studying games and AI
with M. Mateas at the University of California Santa
Cruz, Santa Cruz, focusing on procedural generation
and storytelling.

Glen Takahashi is currently working towards the
B.S. degree in computer science at the University of
California—Los Angeles, Los Angeles.
He also works at an education company where he

writes programs to aid in the tutoring of children.

Gillian Smith (S’10) received the B.S. degree in
computer science from the University of Virginia,
Charlottesville, in 2006 and the M.S. degree in com-
puter science from the University of California Santa
Cruz, Santa Cruz, in 2009, where she is currently
working towards the Ph.D. degree in computer
science.
Her research interests include procedural content

generation and mixed-initiative design tools.

Robin Baumgarten received the M.Sc. degree in ad-
vanced computing from Imperial College, London,
U.K., in 2007, where he is currently working towards
the Ph.D. degree within the Computational Creativity
Group, supervised by S. Colton.
His research interests are applying AI methods

to game design and automatically adapting video
games.

