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Abstract. The objective of this paper is to study an optimal resource man-
agement problem for some classes of tritrophic systems composed by autotrophic
resources (plants), bottom level consumers (herbivores) and top level con-
sumers (humans). The first class of systems we discuss are linear chains, in
which biomass flows from plants to herbivores, and from herbivores to humans.
In the second class of systems humans are omnivorous and hence compete with
herbivores for plant resources. Finally, in the third class of systems humans
are omnivorous, but the plant resources are partitioned so that humans and
herbivores do not complete for the same ones. The three trophic chains are
expressed as Lotka-Volterra models, which seems to be a suitable choice in
contexts where there is a shortage of food for the consumers. Our model pa-
rameters are taken from the literature on agro-pastoral systems in Sub-Saharan
Africa.

1. Introduction. The scientific literature on natural resource exploitation is dis-
playing a steady growth and a number of new research directions have been explored.
One of the central topics to attract the interest of the community is represented
today by the analysis of the qualities and effects of human interactions with the
environment, which requires to be adequately modeled in many different practical
contexts [23] considering its fundamental implications on ecosystem balancing, so-
cial welfare and economic growth [3]. Trophic systems that include humans were
classified in [11] as a relevant category of ecosystems from the management view-
point and experiments have been conducted to characterize the ecological role of
humans in specific biological communities [4]. The impact of human development
on sustainability is also a central topic in ecological economics studies [28].
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In recent times, control theory has been used to support resource management
decisions. Relevant examples include harvesting [21, 39], fishery management [5,
30, 8], pest control [6, 31]. In many of the references reported above, the reader can
observe a trend towards the synthesis of optimal resource exploitation strategies.
In particular, a number of papers have considered how optimal control theory can
be used to manage trophic chains. For instance, in [22] the optimal harvesting
strategy of a single growing species was addressed. In [32], an infinite-horizon
optimal control problem with discount was proposed, consisting in the maximization
of a combination between the human population level and the associated welfare
status over time. In [10], optimal control theory was applied to stabilization and
synchronization problems in Lotka-Volterra models. Optimal foraging was discussed
in [19] within the context of two-prey–one-predator populations showing adaptive
behaviors. Optimization methods for solving optimal control problems involving
Lotka-Volterra models were investigated in [35] under special restrictions on the time
dependent control functions. In [1] the problem of maximizing the total population
in a Lotka-Volterra tritrophic system was studied and the optimal species separation
was characterized in terms of the model parameters. In [36], optimal control was
applied to a Rosenzweig-MacArthur tritrophic system in order to achieve sustainable
management strategies. These results were extended to stochastic systems in [37].
Reference [2] deals with the optimal management of two species accounting for
various types of functional responses describing predator-prey interactions.

In this paper we consider how optimal resource management policies depend on
special structures of the trophic chain and investigate infinite time horizon optimal
control problems with the objective of characterizing management strategies that
sustain the human population’s biomass and promote welfare. In particular,
• we consider a fully tritrophic system composed by plants, herbivores and hu-

mans. The modeling of the plant resources accounts for the importance of
the primary production for the sustainability of agro-pastoral systems in frag-
ile ecosystems like most of the arid and semi-arid areas where pastoralism in
Africa is present;

• moreover, the diversity of the trophic structure characterizing the agro-pastoral
transition is analyzed. According to [7], in the household economy of the tradi-
tional pastoral system humans act as secondary consumers and only a limited
amount of energy comes from the plants. Under the effects of many ecologi-
cal, economic and social drivers [9, 33] traditional agro-pastoral communities
have changed their habits towards the sedentarization and the integration of
smallholder farm systems into the grassland. The trophic chain sustaining
these communities becomes more complex and diversified. Different man-
agement strategies of the grassland and cropping systems (e.g., pure pasture
or mixed stands, choice of the level of exploitation) lead to different trophic
structures of the ecological system supporting the agro-pastoral community
and are expected to put in place different challenges to the sustainability of
the agro-pastoral system. The analysis we perform deals with stability prop-
erties of these trophic chains and aims at the definition of sustainable level of
exploitation of resources.

A representation of the system under analysis, which takes into account the
trophic interactions between the resources and the human population together with
its welfare status, is reported in Figure 1. Therein ξ1, ξ2, y, z ≥ 0 are the biomasses
of two plant sources, the herbivores and the human population, respectively, and



STABILITY & OPTIMAL CONTROL FOR SOME CLASSES OF TRITROPHIC SYST. 259

Figure 1. The model of the trophic chains under analysis includ-
ing the welfare compartment; arrows represent biomass transfers.

w ≥ 0 is a measure of the level of human welfare. Parameters qy, qz > 0 are
the specific loss rates of organic matter due to excretion, death and respiration
at the upper levels of the trophic chain, represented by herbivores and humans.
Quantity C ≥ 0 is a measure of the specific human biomass consumption rate for
non-vital activities not directly related to trophic processes (e.g., adaptation and
activities related to welfare). This graphical representation puts in evidence that a
fraction of the human’s harvest is devoted to increasing the biomass of the human
population, while the rest is spent to improve the quality of life. Moreover, it is also
assumed that a portion Cz of the human biomass is lost for non-vital activities, as
well.

The main objective of this paper is to analyze this system taking into account
different trophic relationships between humans and their resources, as it will be il-
lustrated in the following. Thus, for plainness we will not include the level of welfare
as a state variable characterizing the system, while a human biomass consumption
that can be interpreted a support to non-vital activities is maintained in the balance
equations, as proposed in [32, 14]. Following these references, the human benefit
achieved through the consumption term Cz is expressed by a utility functionW (C),
which is assumed to fulfill the following assumptions [32]

W ′(C) > 0, W ′′(C) < 0, lim
C→∞

W (C) <∞ (1)

with (′) and (′′) denoting the first and second derivatives with respect to the argu-
ment. According to the latter simplifying assumption, a general structure for the
different classes of tritrophic systems we will consider is provided by the following
set of ODEs, representing two interacting subsystems S̄1 and S̄2:
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S̄1 :



ξ̇1 = r1ξ1

(
1− ξ1

K1

)
− D̄yξ1fyξ1

(
ξ1
ayξ1

)
y − D̄zξ1fzξ1

(
ξ1
azξ1

)
z

ẏ = y
[
θyξ1D̄yξ1fyξ1

(
ξ1
ayξ1

)
− qy

]
− D̄zyfzy

(
y
azy

)
z

ż = z
[∑

i=1,2 θzξiD̄zξifzξi

(
ξi
azξi

)
+ θzyD̄zyfzy

(
y
azy

)
− (qz + C)

]
S̄2 :

{
ξ̇2 = r2ξ2

(
1− ξ2

K2

)
− D̄zξ2fzξ2

(
ξ2
azξ2

)
z

(2)

together with the initial condition

(ξ1(0), y(0), z(0), ξ2(0)) = (ξ01 , y
0, z0, ξ02)

Parameter ri, for i = 1, 2, represents the specific growth rate of the i-th source
and Ki is the carrying capacity. Trophic interactions are modeled by means of
the functional response fi1i2(s), for (i1, i2) ∈ {(y, ξ1), (z, ξ1), (z, y), (z, ξ2)}, which is
assumed to be concave and bounded ([41], p. 87). In the applications, Holling-type
II or Ivlev models are commonly used [16, 15]. The corresponding terms ai1i2 > 0 are
related to the efficiency of the predation process. Parameters θyξ1 , θzξ1 , θzy, θzξ2 ∈
(0, 1] are the biomass conversion factors. Finally, the biomass flow across levels also
depends on quantities D̄yξ1 , D̄zξ1 , D̄zy and D̄zξ2 , which describe the food demands
of consumers per time unit. In general, we assume D̄yξ1 > 0 and D̄zξ1 , D̄zy, D̄zξ2 ≥
0. From the structure of system S̄1 in (2) it can be observed that various types
of trophic chains can be accounted for, including cases in which humans act as
omnivores. Furthermore, the presence of subsystem S̄2 enables us to consider the
effects of the availability of a complementary food source for the top level consumer.
This aspect seems to be relevant both in a modeling perspective and for control
purposes, as emphasized in the recent literature [38, 18, 25, 40, 26, 17].

The rest of this paper is organized as follows: in Section 2 we specify the Lotka-
Volterra approximation of system (2), show positiveness and boundedness of the
state trajectories, and identify a positively invariant and attractive set. In Sec-
tion 3 we characterize the non-coexistence equilibrium states and in Section 4 the
coexistence equilibrium states. In Section 5 we examine the stability of the coexis-
tence equilibrium states. In Section 6 we present an optimal control problem and
characterize some relevant associated properties. Section 7 contains some numerical
examples.

2. Trophic chain models. We study a class of models obtained from (2) through
a linear approximation of functions fi1i2(·):

S1 :



ξ̇1 = ξ1

[
r1

(
1− ξ1

K1

)
−Dyξ1y −Dzξ1z

]
ẏ = y

[
θyξ1Dyξ1ξ1 − qy −Dzyz

]
ż = z

[
θzξ1Dzξ1ξ1 + θzξ2Dzξ2ξ2 + θzyDzyy − (qz + C)

]

S2 :

{
ξ̇2 = ξ2

[
r2

(
1− ξ2

K2

)
−Dzξ2z

]
(3)
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where

Di1i2 = D̄i1i2

f ′i1i2(0)

ai1i2
(4)

System (3) is a Lotka-Volterra model; the use of the approximation (4) is feasible
when the biomass of the preyed species is very limited, as it is the case in the
application we are addressing. In this paper, all parameters of model (3) will be
assumed to be assigned constants with the notable exception of C, Dzξ1 , Dzy

and Dzξ2 , which represent the set of control variables whose value along time has
to be chosen in order to maximize an objective functional. As the discussion of our
results on optimal control is postponed to Section 6, until then these quantities are
assumed to be constant over time as well, in order to perform an analysis of the
equilibrium states and the associated stability properties.

For future utility, introduce the following notation, with i = 1, 2:

gyξ1 =
r1

Dyξ1K1
, gzξi =

ri
DzξiKi

and

eyξ1 =
qy

θyξ1Dyξ1K1
, ezξi =

qz + C

θzξiDzξiKi
, ezy =

qz + C

θzyDzyK1

It is assumed that these quantities are well defined each time they are used.
System (3) is a general representation capturing, as special cases, the three

trophic chains we are interested in (see Figure 2), namely
1. linear chain (Sl): we consider only subsystem S1 and assume Dzξ1 , Dzξ2 = 0

and Dzy > 0;
2. food chain with omnivory (So): we consider only subsystem S1 and assume
Dzξ2 = 0, and Dzξ1 , Dzy > 0;

3. food chain with omnivory and source partition (Sp): we consider the compo-
sition of subsystems S1 and S2 and assume Dzξ1 = 0 and Dzy, Dzξ2 > 0.

Figure 2. Types of trophic chains under analysis.
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In our perspective, the different structures described above can serve as a simpli-
fied representation of different practical situations. In particular, the linear chain
represents the humans as consumers of food drawn from an animal source; as such,
it will be referred to as an approximate description of traditional pastoral systems.
The other cases model humans as omnivores, and hence we refer to them as rep-
resentations of an agro-pastoral system. In particular, in the case of Sp a source
partition is introduced in order to better model the situation in which herbivores and
humans access separate vegetable food sources, i.e. forage and crops, respectively.

We now formulate a result about the boundedness of state trajectories in the
positive cone and the existence of an attractive set, referring to system (3) in its
general form:

Theorem 2.1. Define the set

Ω =

{
(ξ1, y, z, ξ2) ∈ R4+

0 :

0 ≤ ξi ≤ Ki, i = 1, 2,

0 ≤ ξ1 +
y

θyξ1
≤ K1 +

r1
qy

K1

4

0 ≤ ξ1 +
y

θyξ1
+

z

θyξ1θzy
+

θzξ2ξ2
θyξ1θzy

≤

K1 +
r1
qy

K1

4
+

1

qz + C

(
r1K1

4
+

θzξ2
θyξ1θzy

r2K2

4

)
+

θzξ2
θyξ1θzy

K2

}
The following properties hold:

1. Ω is positively invariant for system (3);
2. ∀(ξ01 , y0, z0, ξ02) ∈ R4+

0 , limt→∞(ξ1(t), y(t), z(t), ξ2(t)) ∈ Ω.

Proof. See Appendix A.

The notations introduced above and Theorem 2.1 are useful in defining parameter
regimes with non-trivial dynamics. First recall that, from point 2 in Theorem 2.1,
it results lim supt→∞ ξi(t) ≤ Ki, i = 1, 2. Consequently, since we are assuming
that all the model parameters (including the controls) are constant over time, to
avoid trivial dynamics starting from (ξ01 , y

0, z0, ξ02) > 0 we have to rule out the
condition θyξ1Dyξ1K1 − qy < 0, which would imply limt→∞ y(t) = 0 in view of the
second equation in (3). This would also imply limt→∞ z(t) = 0 in the case of Sl.
Furthermore, if θzξ1Dzξ1K1− (qz +C) < 0 in So and θzξ2Dzξ2K2− (qz +C) < 0 in
Sp, then limt→∞ z(t) = 0 also in these cases. In conclusion, from now on we make
the following assumptions

eyξ1 < 1, for Sl

eyξ1 < 1 and ezξ1 < 1, for So

eyξ1 < 1 and ezξ2 < 1, for Sp
(5)

which are necessary in order to avoid trivial dynamics, leading to limt→∞ y(t) = 0
and/or limt→∞ z(t) = 0.

The next three sections are devoted to the existence and stability analysis of
the equilibrium states of system (3) in its special forms. The stability properties
are determined by a local analysis based on the system’s Jacobian, reported in
Appendix B, as well as on Lyapunov functions, in some cases.
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3. Non-coexistence equilibrium states and their stability. Non-coexistence
equilibrium states of system (3) are defined as states where at least one species goes
extinct. We now provide a list of the non-coexistence equilibrium states of systems
Sl, So and Sp:

1. System Sl

El0 =(0, 0, 0)

Elξ1 =(K1, 0, 0)

Elξ1y=K1

(
eyξ1 , gyξ1(1− eyξ1), 0

)
2. System So

Eo0 =(0, 0, 0)

Eoξ1 =(K1, 0, 0)

Eoξ1y=K1

(
eyξ1 , gyξ1(1− eyξ1), 0

)
Eoξ1z=K1

(
ezξ1 , 0, gzξ1(1− ezξ1)

)
3. System Sp

Ep0 =(0, 0, 0, 0)

Epξ1 =(K1, 0, 0, 0)

Epξ2 =(0, 0, 0,K2)

Epξ1ξ2 =(K1, 0, 0,K2)

Epξ1y =K1

(
eyξ1 , gyξ1(1− eyξ1), 0, 0

)
Epzξ2 =K2

(
0, 0, gzξ2(1− ezξ2), ezξ2

)
Epξ1yξ2=K1

(
eyξ1 , gyξ1(1− eyξ1), 0,

K2

K1

)
Epξ1zξ2=K2

(
K1

K2
, 0, gzξ2(1− ezξ2), ezξ2

)
The associated local stability properties are derived in Appendix C and summarized
in Table 1. Observe that the positiveness of many terms appearing in the equilibrium
solutions enumerated above is implied by conditions (5) for non-trivial dynamics.

4. Coexistence equilibrium states. In a coexistence equilibrium state the abun-
dance of all species is greater than zero. In this section we enumerate the coexistence
equilibrium states of systems Sl, So and Sp and give conditions for their uniqueness
and positiveness.

The coexistence equilibrium states associated to model (3) are solutions to the
algebraic system of equations

A
[
ξ1 y z ξ2

]T
+ b = 0
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ν = l o p

Eν0
unstable unstable unstable

LAS on (0, y, z) LAS on (0, y, z) LAS on (0, y, z, 0)

Eνξ1
unstable unstable unstable

LAS on (ξ1, 0, z) LAS on (ξ1, 0, 0) LAS on (ξ1, 0, z, 0)

Eνξ2 - - unstable
LAS on (0, y, 0, ξ2)

Eνξ1y
LAS when LAS when unstable

Dzy <
qz+C

θzyK1gyξ1 (1−eyξ1 )
Dzy <

qz+C
θzyK1gyξ1 (1−eyξ1 )

(
1− eyξ1

ezξ1

)
LAS on (ξ1, y, z, 0)

Eνξ1z - LAS when -
Dzy >

qy
K1gzξ1 (1−ezξ1 )

(
ezξ1
eyξ1
− 1
)

Eνξ1ξ2 - - unstable
LAS on (ξ1, 0, 0, ξ2)

Eνzξ2 - - unstable
LAS on (0, y, z, ξ2)

Eνξ1yξ2 - - unstable
LAS on (ξ1, y, 0, ξ2)

Eνξ1zξ2 - - LAS when
Dzy >

qy
K2gzξ2 (1−ezξ2 )

1−eyξ1
eyξ1

Table 1. Stability properties of the non-coexistence equilibrium
states (LAS=locally asymptotically stable).

where

A =


− r1
K1

−Dyξ1 −Dzξ1 0

θyξ1Dyξ1 0 −Dzy 0
θzξ1Dzξ1 θzyDzy 0 θzξ2Dzξ2

0 0 −Dzξ2 − r2
K2

 , b =


r1
−qy
−(qz + C)
r2


We have det(A) = ∆1 + ∆2 + ∆3, with

∆1 = θyξ1θzξ2D
2
yξ1D

2
zξ2

∆2 =
r2
K2

(θyξ1θzy − θzξ1)Dyξ1Dzξ1Dzy

∆3 = θzy
r1r2
K1K2

D2
zy

Term ∆1 is zero for both Sl and So, while term ∆2 is zero for both Sl and Sp. It
follows that the coexistence equilibrium is unconditionally unique for Sl and Sp,
while for So uniqueness requires the assumption ∆2 + ∆3 6= 0. The coexistence
equilibrium values of the state variables will be denoted by ξ∗1 , y∗, z∗ and ξ∗2 ,
assuming that they are uniquely defined.

1. System Sl
The coexistence equilibrium for system Sl is

Elξ1yz = K1

(
1− ezy

gyξ1
, ezy,

qy
DzyK1

(
1

eyξ1

(
1− ezy

gyξ1

)
− 1

))
The equilibrium Elξ1yz is positive when 1− ezy

gyξ1
− eyξ1 > 0, i.e.

Dzy >
qz + C

θzyK1gyξ1(1− eyξ1)



STABILITY & OPTIMAL CONTROL FOR SOME CLASSES OF TRITROPHIC SYST. 265

Observe that Elξ1y is unstable when this condition holds, see Table 1.
2. System So

The following coexistence equilibrium can be found in this case:

Eoξ1yz =

(
ξ∗1 ,

ezy
ezξ1

(−ξ∗1 +K1ezξ1) ,
qy

Dzyeyξ1K1
(ξ∗1 −K1eyξ1)

)
where

ξ∗1 =
K1

Ao

(
1− ezy

gyξ1
+

qy
gzξ1K1Dzy

)
, Ao = 1− ezy

gyξ1ezξ1
+

qy
gzξ1Dzyeyξ1K1

The considered equilibrium is unique if Ao 6= 0, which is equivalent to ∆2 +
∆3 6= 0. Now assume Ao > 0. For the positiveness of y∗ and z∗ respectively,
we need to impose the following conditions:

− ξ∗1 +K1ezξ1 > 0 ⇔ Dzy <
qy

K1gzξ1(1− ezξ1)

(
ezξ1
eyξ1

− 1

)
(6)

ξ∗1 −K1eyξ1 > 0 ⇔ Dzy >
qz + C

θzyK1gyξ1(1− eyξ1)

(
1− eyξ1

ezξ1

)
(7)

Observe that (7) also implies the positiveness of ξ∗1 . Furthermore, the two
conditions (6) and (7) imply the instability of Eoξ1z and E

o
ξ1y

, respectively. Vice
versa, when Ao < 0 we obtain the reverse, which means that the coexistence
equilibrium is positive iff Eoξ1z and Eoξ1y are LAS.

3. System Sp
The following unique coexistence equilibrium can be found for Sp:

Epξ1yzξ2 =

(
ξ∗1 ,

1

θzyDzy

qz + C

K2ezξ2
(−ξ∗2 + ezξ2K2),

1

Dzy

qy
K1eyξ1

(ξ∗1 − eyξ1K1), ξ∗2

)
where ξ∗1 and ξ∗2 are the solution of the following algebraic system:[

1 −Bp
Ap 1

] [
ξ∗1
ξ∗2

]
=

[
K1 −BpK2ezξ2
K2 +ApK1eyξ1

]
where Ap =

qy
gzξ2DzyK1eyξ1

, Bp = 1
gyξ1

K1

K2

ezy
ezξ2

.
Observe that such a system admits a unique solution under our assumptions.
Furthermore, the positiveness of ξ∗1 is unconditional, while ξ∗2 is positive iff

K2gzξ2Dzyeyξ1gyξ1 + qy (1 + gyξ1(eyξ1 − 1)) > 0

Finally, for the positiveness of y∗ and z∗ the following conditions need to be
fulfilled, respectively:

−ξ∗2 + ezξ2K2 > 0 ⇔ Dzy <
qy (1 + gyξ1(1− eyξ1))

(1− ezξ2)K2gzξ2eyξ1gyξ1
ξ∗1 − eyξ1K1 > 0 ⇔ K1(1− eyξ1) +BpK2(1− ezξ2) > 0

5. Stability properties of the coexistence equilibrium states. In this sub-
section we give a characterization of the (global) stability properties of the coexis-
tence equilibrium states for systems Sl, So and Sp. In defining a solution globally
asymptotically stable (GAS) we only consider the asymptotic behavior of trajecto-
ries originating in the strictly positive orthant. As a preliminary remark we mention
that, differently from the cases of Sl and Sp, the stability analysis of So is compli-
cated by the presence of two paths connecting the same source to the top consumer
and partitioning the corresponding biomass flow.
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In order to study the stability properties of system (3), we introduce the following
Lyapunov function:

V (ξ1, y, z, ξ2) =cξ1

(
ξ1 − ξ∗1 − ξ∗1 ln

(
ξ1
ξ∗1

))
+ cy

(
y − y∗ − y∗ ln

(
y

y∗

))
+ cz

(
z − z∗ − z∗ ln

( z
z∗

))
+ cξ2

(
ξ2 − ξ∗2 − ξ∗2 ln

(
ξ2
ξ∗2

))
where cξ1 , cy, cz and cξ2 are arbitrary positive constants. The derivative of the
considered Lyapunov function along the trajectories of system (3) is given by

V̇ =
∂V

∂ξ1

∂ξ1
∂t

+
∂V

∂y

∂y

∂t
+
∂V

∂z

∂z

∂t
+
∂V

∂ξ2

∂ξ2
∂t

=cξ1

(
1− ξ∗1

ξ1

)
ξ1

[
r1

(
1− ξ1

K1

)
−Dyξ1y −Dzξ1z

]
+ cy

(
1− y∗

y

)
y [θyξ1Dyξ1ξ1 − qz −Dzyz]

+ cz

(
1− z∗

z

)
z [θzξ1Dzξ1ξ1 + θzξ2Dzξ2ξ2 + θzyDzyy − (qz + C)]

+ cξ2

(
1− ξ∗2

ξ2

)
ξ2

[
r2

(
1− ξ2

K2

)
−Dzξ2z

]
=cξ1 (ξ1 − ξ∗1)

[
− r1
K1

(ξ1 − ξ∗1)−Dyξ1(y − y∗)−Dzξ1(z − z∗)
]

+ cy(y − y∗) [θyξ1Dyξ1(ξ1 − ξ∗1)−Dzy(z − z∗)]
+ cz (z − z∗) [θzξ1Dzξ1(ξ1 − ξ∗1) + θzξ2Dzξ2(ξ2 − ξ∗2) + θzyDzy(y − y∗)]

+ cξ2 (ξ2 − ξ∗2)

[
− r2
K2

(ξ2 − ξ∗2)−Dzξ2(z − z∗)
]

For i = 1, 2 and (i1, i2) ∈ {(y, ξ1), (z, ξ1), (z, y), (z, ξ2)}, let mξi =
cξiri
Ki

and mi1i2 =
1
2 (−ci2 + ci1θi1i2)Di1i2 . Now, for symmetric matrices, denote by symbol (?) each of
its symmetric blocks. Then, the latter equation can be rewritten as

V̇ = XTMX (8)

where X = [ξ1 − ξ∗1 , y − y∗, z − z∗, ξ2 − ξ∗2 ]T and

M =

[
M1 M2

? M3

]
with

M1 =

 −mξ1 myξ1 mzξ1

? 0 mzy

? ? 0

 , M2 =

 0
0

mzξ2

 , M3 = [−mξ2 ]

We are now in a position to analyze the global asymptotic stability of the coex-
istence equilibrium states associated to each type of system.

1. System Sl
We have to evaluate the corresponding components of V̇ in (8) in the state
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space (ξ1, y, z). Matrix M1 reduces to the following form M l
1:

M l
1 =

 −mξ1 myξ1 0
? 0 mzy

? ? 0


It is easy to show that cξ1 , cy, cz > 0 can be chosen so that myξ1 = mzy = 0.
Thus, the resulting derivative of the Lyapunov function along the trajectories
of Sl is equal to

V̇ = −mξ1(ξ1 − ξ∗1)2

This quantity is zero iff ξ1 = ξ∗1 . The following implications hold:

ξ1 = ξ∗1 ⇒ ξ̇1 = 0⇒ y =
r1
Dyξ1

(
1− ξ∗1

K1

)
= y∗ ⇒ ẏ = 0

⇒ z =
1

Dzy
(θyξ1Dyξ1ξ

∗
1 − qy) = z∗ ⇒ ż = 0

so that the associated invariant set is (ξ∗1 , y
∗, z∗). Thus, Elξ1yz is GAS.

2. System So
Matrix M1 reduces to the following form:

Mo
1 =

 −mξ1 myξ1 mzξ1

? 0 mzy

? ? 0


In order to prove that V̇ < 0 we impose that the cross-product terms are zero,
i.e. myξ1 = mzξ1 = mzy = 0. It is always possible to define cξ1 , cy, cz > 0
solving the problem when the following condition holds:

θzξ1 = θzyθyξ1

This assumption ensures that the cross-product terms appearing in the Lya-
punov function’s derivative are zero. The efficiency gap θzξ1 − θzyθyξ1 plays
a fundamental role in determining the stability properties So. To better em-
phasize this point, it is possible to perform a local stability analysis of the
coexistence equilibrium of So, which results in the following characteristic
polynomial:

Poξ1yz =− λ3 − r1
ξ∗1
K1

λ2 − (θyξ1D
2
yξ1ξ

∗
1y
∗ + θzξ1D

2
zξ1ξ

∗
1z
∗ + θzyD

2
zyy
∗z∗)λ

+

(
(θzξ1 − θzyθyξ1)Dyξ1Dzξ1Dzyξ

∗
1y
∗z∗ − r1

ξ∗1
K1

θzyD
2
zyy
∗z∗
)
λ

Using the Routh-Hurwitz theorem, we conclude that the following condition
implies that the coexistence equilibrium is LAS:

θzξ1 − θzyθyξ1 <
2r1θzyDzy

K1Dyξ1Dzξ1

3. System Sp
We refer to the following matrix Mp, obtained from M as a particular case:

Mp =


−mξ1 myξ1 0 0
? 0 mzy 0
? ? 0 mzξ2

? ? ? −mξ2


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It is easy to show that cξ1 , cy, cz, cξ2 > 0 can be chosen so that myξ1 =
mzy = mzξ2 = 0. The resulting derivative of the Lyapunov function along the
trajectories of Sp is

V̇ = −mξ1(ξ1 − ξ∗1)2 −mξ2(ξ2 − ξ∗2)2

This quantity is zero iff ξ1 = ξ∗1 and ξ2 = ξ∗2 . The following implications hold:{
ξ1 = ξ∗1
ξ2 = ξ∗2

⇒
{
ξ̇1 = 0

ξ̇2 = 0
⇒

 0 = r1

(
1− ξ∗1

K1

)
−Dyξ1y

0 = r2

(
1− ξ∗2

K2

)
−Dzξ2z

⇒
{
y = y∗

z = z∗
⇒
{
ẏ = 0
ż = 0

Thus the associated invariant set reduces to (ξ∗1 , y
∗, z∗, ξ∗2) and we conclude

that Epξ1yzξ2 is GAS.

6. Optimal control. In this section we introduce an optimal control problem as-
sociated to system (3). The objective of our control strategies will be to maximize
a suitable societal objective functional in order to enhance the human population
level z and the utility function W (C), defined according to the assumptions (1). In
our setup, from now on quantities C, Dzξ1 , Dzξ2 and Dzy are considered control
variables whose value along time has to be assigned so to maximize the following
societal objective function [32, 14]:

max
C,Dzξ1 ,Dzy,Dzξ2

∫ ∞
0

e−δtz(t)W (C(t))dt

subject to the system of ODEs (3) and

Dzξ1 ∈ [0, Dub
zξ1 ], Dzy ∈ [0, Dub

zy ], Dzξ2 ∈ [0, Dub
zξ2 ]

(9)

In this formulation, e−δt is the discount term, with δ > 0 fixed [42], and the positive
constants Dub

zξ1
, Dub

zy and Dub
zξ2

express technical/technological limitations encoun-
tered in the human food catching process and are assumed to be constant in time.
Observe that the effective number of control variables involved in the management
of the trophic system, as well as the dimension of the ODE system itself, depends
on the specific food chain under consideration. In particular, the control variables
C and Dzy are common to all cases, while each of the chains So and Sp includes an
additional control variable, either Dzξ1 or Dzξ2 . Therefore, all the trophic chains
we are considering have a so-called top-down structure from the control point of
view, i.e. the control variables are associated to the regulation of the behavior of
the top level consumer.

In order to tackle the optimal control problem (9), we apply the Pontryagin
maximum principle. To do so, we reformulate problem (9) as the maximization of
the Hamiltonian

H = e−δtzW (C) + λTF (10)
where λ = [λ1 λ2 λ3 λ4]T is the costate vector and F = [Fξ1 Fy Fz Fξ2 ]T collects
the right-hand sides of the equations in system (3). Now let X = [ξ1, y, z, ξ2]T ,
U = [C, Dzξ1 , Dzξ2 , Dzy]T and define the following Hamiltonian system associated
to the optimal control problem under analysis:{

Ẋ = ∂H
∂λ = F

λ̇ =
[
−∂H∂X

]T
= AHλ+BH
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where

AH =

[
AH11 AH12
AH21 AH22

]
, BH =

[
BH1
BH2

]
and

AH11 =

 −Fξ1
ξ1

+ r1
ξ1
K1

−θyξ1Dyξ1y −θzξ1Dzξ1z
Dyξ1ξ1 −Fy

y
−θzyDzyz

Dzξ1ξ1 Dzyy −Fz
z

 AH12 =

 0
0

Dzξ2ξ2


AH21 =

[
0 0 −θzξ2Dzξ2z

]
AH22 =

[
−Fξ2

ξ2
+ r2

ξ2
K2

]
BH1 =

 0
0

−e−δtW (C)

 BH2 = [0]

Clearly, this system is defined in structure and size by the specific type of trophic
chain we are considering. We report next the necessary conditions for an optimal
solution according to the Pontryagin maximum principle, assuming that such an
optimum exists:

0 =
∂H

∂ui
, ∀i (11)

0 = lim
t→∞

λi(t), ∀i (12)

where ui is the i-th component of vector U .
Observe that, when the dynamical solution of the optimal control problem (9)

is considered, singularity is found with respect to the control variables Dzξ1 , Dzy

and Dzξ2 . This can be easily observed by writing the current-value Hamiltonian Hc

associated to (10) as follows:

Hc = α(λ, ξ1, y, z, ξ2) [Dzξ1 Dzy Dzξ2 ]
T

+ (zW (C)− λ3zC) + β(λ, ξ1, y, z, ξ2)

where
α(λ, ξ1, y, z, ξ2) = [(−λ1 + λ3θzξ1)ξ1z (−λ2 + λ3θzy)yz (−λ4 + λ3θzξ2)ξ2z]

β(λ, ξ1, y, z, ξ2) =λ1ξ1

[
r1

(
1− ξ1

K1

)
−Dyξ1y

]
+ λ2y [θyξ1Dyξ1ξ1 − qy]

− λ3zqz + λ4ξ2

[
r2

(
1− ξ2

K2

)]
It results that, if an optimal solution is such that some components of α(λ, ξ1, y, z, ξ2)
are zero for t ∈ [t1, t2], t1 < t2, the state trajectory has a singular arc. When
this does not happen, the time evolution of the optimal control variables Dzξ1 , Dzy

andDzξ2 is bang-bang, i.e. Dzξ1 ∈ {0, Dub
zξ1
}, Dzy ∈ {0, Dub

zy}, andDzξ2 ∈ {0, Dub
zξ2
}.

From now on in this paper, we focus on giving a characterization of the optimal
static control policies for Sl, So and Sp, consisting in the constant controls associ-
ated to the optimal final steady-states for the dynamic optimal control problem (9).
To this end, we also neglect the upper bounds Dub

zξ1
, Dub

zξ2
and Dub

zy on the control
variables. In studying the optimal static control policies, we refer to the asymptotic
behavior of the optimal state trajectories encountered in (9). As emphasized in [12],
this kind of analysis can be very informative and enable us to evaluate the sensi-
tivity of the optimal limit points of the state trajectories to relevant parameters of
the optimization problem, such as the discount rate δ.
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1. System Sl
The adjoint system reduces to

λ̇l = AH11λ
l +BH1 (13)

where λl = [λl1, λ
l
2, λ

l
3]T ; recall that, in this case, Dzξ1 = 0 by assumption.

In order to compute the optimal static solution, we first manipulate sys-
tem (13), obtaining the following ODE in λl2 by elimination:

λ
l(3)
2 + αl21λ̈

l
2 + αl22λ̇

l
2 + αl23λ

l
2 + βl2e

−δtW (C) = 0 (14)

with

αl21 = −r1
ξ1
K1

αl22 = θyξ1D
2
yξ1ξ1y + θzyD

2
zyyz

αl23 = −r1
ξ1
K1

θzyD
2
zyyz

βl2 = θzyDzyz

(
δ + r1

ξ1
K1

)
The associated complete solution is of the form

λl2 = M l
21e

µ21t +M l
22e

µ22t +M l
23e

µ23t +N l
2e
−δtW (C)

where M l
21, M l

22 and M l
23 are arbitrary constants,

N l
2 =

βl2
δ3 − αl21δ2 + αl22δ − αl23

and coefficients µ2i, i = 1, 2, 3 are solutions of the auxiliary equation for (14),
namely

µ3 + αl21µ
2 + αl22µ+ αl23 = 0

By studying the latter equation it is possible to conclude that, in order to
have limt→∞ λl2 = 0, as requested in (12) for optimality, we must impose
M l

21 = M l
22 = M l

23 = 0.
We can proceed similarly for λl3, obtaining the following ODE by elimina-

tion:
λ
l(3)
3 + αl31λ̈

l
3 + αl32λ̇

l
3 + αl33λ

l
3 + βl3e

−δtW (C) = 0 (15)
with

αl3i = αl2i, i = 1, 2, 3

βl3 = δ2 + r1
ξ1
K1

δ + θyξ1D
2
yξ1ξ1y

The complete solution, in this case, has the form

λl3 = M l
31e

µ31t +M l
32e

µ32t +M l
33e

µ33t +N l
3e
−δtW (C)

where M l
31, M l

32 and M l
33 are arbitrary constants,

N l
3 =

βl3
δ3 − αl31δ2 + αl32δ − αl33

and coefficients µ3i, i = 1, 2, 3 solve the auxiliary equation for (15), which is

µ3 + αl31µ
2 + αl32µ+ αl33 = 0



STABILITY & OPTIMAL CONTROL FOR SOME CLASSES OF TRITROPHIC SYST. 271

Similarly to the previous case, it is possible to verify that the optimality
condition limt→∞ λl3 = 0 is fulfilled if and only if M l

31 = M l
32 = M l

33 = 0.
Thanks to the calculations reported above, we can now deal with the op-

timality condition (11). Since we are considering optimal coexistence equilib-
rium states and thus y, z > 0 by assumption, it results{ ∂H

∂C = (−λl3 + e−δtW ′(C))z = 0
∂H
∂Dzy

=
(
−λl2 + λl3θzy

)
yz = 0

⇔
{
λl2 = θzye

−δtW ′(C)
λl3 = e−δtW ′(C)

Substituting λl2 and λl3 therein according to the expressions found above, we
obtain the following algebraic optimality conditions in the variables C, Dzy,
ξ1, y and z: 

N l
2W (C) = θzyW

′(C)
N l

3W (C) = W ′(C)

r1

(
1− ξ1

K1

)
−Dyξ1y = 0

θyξ1Dyξ1ξ1 − qy −Dzyz = 0
θzyDzyy − (qz + C) = 0

(16)

2. System So
The adjoint system in this case is

λ̇o = AH11λ
o +BH1 (17)

where λo = [λo1, λ
o
2, λ

o
3]T and, differently from the previous case, Dzξ1 > 0

by assumption.
Operating on (17) by elimination, we obtain the following ODE in λoj ,

j = 1, 2, 3:

λ
o(3)
j + αoj1λ̈

o
j + αoj2λ̇

o
j + αoj3λ

o
j + βoj e

−δtW (C) = 0 (18)

with

αoj1 = −r1
ξ1
K1

αoj2 = θyξ1D
2
yξ1ξ1y + θzξ1D

2
zξ1ξ1z + θzyD

2
zyyz

αoj3 = −r1
ξ1
K1

θzyD
2
zyyz + (θzξ1 − θzyθyξ1)Dyξ1Dzξ1Dzyξ1yz

βo1 = θzξ1Dzξ1zδ + θyξ1θzyDyξ1Dzyyz

βo2 = θzyDzyzδ + r1
ξ1
K1

θzyDzyz − θzξ1Dyξ1Dzξ1ξ1z

βo3 = δ2 + r1
ξ1
K1

δ + θyξ1D
2
yξ1ξ1y

The associated complete solution is of the form

λoj =

3∑
i=1

(
Mo
jie

µjit
)

+No
j e
−δtW (C)

where Mo
ji, i = 1, . . . , 3, j = 1, 2, 3 are arbitrary constants, while

No
j =

βoj
δ3 − αoj1δ2 + αoj2δ − αoj3
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and coefficients µji, i = 1, . . . , 4, j = 1, 3 are solutions of the auxiliary equa-
tion for (18), namely

µ3 + αoj1µ
2 + αoj2µ+ αoj3 = 0

By some computation it results that, in order to have limt→∞ λoj = 0, as
requested in (12) for optimality, we impose Mo

ji = 0, i = 1, . . . , 4, j = 1, 2, 3.
Thanks to the calculations reported above, we can now deal with the op-

timality condition (11). Since we are considering optimal coexistence equilib-
rium states and thus y, z > 0 by assumption, it results


∂H
∂C = (−λo3 + e−δtW ′(C))z = 0
∂H

∂Dzξ1
= (−λo1 + λo3θzξ1) ξ1z = 0

∂H
∂Dzy

= (−λo2 + λo3θzy) yz = 0

⇔

 λo1 = θzξ1e
−δtW ′(C)

λo2 = θzye
−δtW ′(C)

λo3 = e−δtW ′(C)

Substituting λo1, λo2 and λo3 therein according to the expressions found above,
we obtain the following algebraic optimality conditions in the variables C,
Dzξ1 , Dzy, ξ1, y and z:



No
1W (C) = θzξ1W

′(C)
No

2W (C) = θzyW
′(C)

No
3W (C) = W ′(C)

r1

(
1− ξ1

K1

)
−Dyξ1y −Dzξ1z = 0

θyξ1Dyξ1ξ1 − qy −Dzyz = 0
θzξ1Dzξ1ξ1 + θzyDzyy − (qz + C) = 0

3. System Sp
The adjoint system in this case is

λ̇p = AHλp +BH (19)

where λp = [λp1, λ
p
2, λ

p
3, λ

p
4]T and, in AH , Dzξ1 = 0 by assumption.

Similarly to the previous cases, in order to compute the optimal static
solution we manipulate system (19) by elimination. In this way, we obtain
the following ODE in λpj , with j = 2, 3, 4:

λ
p(4)
j + αpj1λ

p(3)
j + αpj2λ̈

p
j + αpj3λ̇

p
j + αpj4λ

p
j + βpj e

−δtW (C) = 0 (20)
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with

αpj1 = −
(
r1
ξ1
K1

+ r2
ξ2
K2

)
αpj2 = θyξ1D

2
yξ1ξ1y + θzyD

2
zyyz + θzξ2D

2
zξ2ξ2z + r1

ξ1
K1

r2
ξ2
K2

αpj3 = −r1
ξ1
K1

z
(
θzyD

2
zyy + θzξ2D

2
zξ2ξ2

)
− r2

ξ2
K2

y
(
θyξ1D

2
yξ1ξ1 + θzyD

2
zyz
)

αpj4 =

(
θyξ1D

2
yξ1θzξ2D

2
zξ2 +

r1
K1

r2
K2

θzyD
2
zy

)
ξ1ξ2yz

βp2 = −θzyDzyz

(
δ2 +

(
r1
ξ1
K1

+ r2
ξ2
K2

)
δ − r1

ξ1
K1

r2
ξ2
K2

)
βp3 = −δ3 −

(
r1
ξ1
K1

+ r2
ξ2
K2

)
δ2 −

(
r1
ξ1
K1

r2
ξ2
K2

+ θyξ1D
2
yξ1ξ1y

)
δ

−θyξ1D2
yξ1ξ1yr2

ξ2
K2

βp4 = −θzξ2Dzξ2z

(
δ2 + r1

ξ1
K1

δ + θyξ1D
2
yξ1ξ1y

)
The associated complete solution is of the form

λpj =

4∑
i=1

(
Mp
jie

µjit
)

+Np
j e
−δtW (C)

where Mp
ji, i = 1, . . . , 4, j = 2, 3, 4 are arbitrary constants, while

Np
j =

βpj
−δ4 + αpj1δ

3 − αpj2δ2 + αpj3δ − α
p
j4

and coefficients µji, i = 1, . . . , 4 are solutions of the auxiliary equation for (20),
namely

µ4 + αpj1µ
3 + αpj2µ

2 + αpj3µ+ αpj4 = 0

By some computation it results that, in order to have limt→∞ λpj = 0, as
requested in (12) for optimality, we must haveMp

2i = 0, i = 1, . . . , 4, j = 2, 3, 4.
It is now possible to address the optimality condition (11). Since we are

considering optimal coexistence equilibrium states and thus y, z > 0 by as-
sumption, it results

∂H
∂C = (−λp3 + e−δtW ′(C))z = 0
∂H
∂Dzy

= (−λp2 + λp3θzy) yz = 0
∂H

∂Dzξ2
= (−λp4 + λp3θzξ2) yξ2 = 0

⇔

 λp2 = θzye
−δtW ′(C)

λp3 = e−δtW ′(C)
λp4 = θzξ2e

−δtW ′(C)

Substituting λp2, λ
p
3 and λp4 therein according to the expressions found above,

we obtain the following algebraic optimality conditions in the variables C,
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Dzy, Dzξ2 , ξ1, y, z and ξ2:

Np
2W (C) = θzyW

′(C)
Np

3W (C) = W ′(C)
Np

4W (C) = θzξ2W
′(C)

r1

(
1− ξ1

K1

)
−Dyξ1y = 0

θyξ1Dyξ1ξ1 − qy −Dzyz = 0
θzyDzyy + θzξ2Dzξ2ξ2 − (qz + C) = 0

r2

(
1− ξ2

K2

)
−Dzξ2z = 0

(21)

7. Numerical examples. This section presents some numerical studies related
to the optimal control problem discussed in the previous section. Specifically, we
assume W (C) = C

aC+C , where aC > 0 is a constant, and focus on the optimal static
solutions of systems Sl and Sp as functions of δ. Our simulations are based on a
parameter set derived from the literature and reported in the following table:
par. value definition ref.
r1 0.005 (day)−1 specific growth rate of pasture biomass [29, 24]
K1 0.12 Kg/m2 carrying capacity of pasture [29, 24]
r2 0.004 (day)−1 specific growth rate of crop biomass [27]
K2 0.1 Kg/m2 carrying capacity of crop [27]
qy 0.000788 (day)−1 herbivore biomass loss rate [13]
qz 0.0000505 (day)−1 human biomass loss rate [34]
Dyξ1 0.19 m2/(day ·Kg) demand related parameter [20]
θyξ1 0.1 herbivore conversion efficiency [a]
θzξ2 0.01 human conversion efficiency for crop [b]
θzy 0.19 human conversion efficiency for herb. [a]
aC 0.1 (day)−1 coefficient appearing in function W (C) (assump.)

Table 2. Model parameters ([a]: Prof. A. Caroli, University of
Brescia, Italy, personal communication; [b]: derived from H.I. ×
qzξ1 , assuming H.I. (harvest index) = 0.1).

Observe that this parameter set fulfills the condition related to eyξ1 for non-triviality
in (5) (observe that this is the only non-triviality condition purely dependent on
data and not on controls), since it results eyξ1 ≈ 0.35 < 1.

We begin by considering Sl. By solving the algebraic system (16) parametrically
with respect to δ, we obtain the results reported in Figure 3. Some interesting dis-
cussion can be made based on these solutions. To this end, recall that present utility
prevails over long-run profits in determining the value of the societal objective func-
tion, when the value of δ increases. Inversely, for low values of the parameter the
human population level and consumption are limited in order to preserve trophic
resources useful for human consumption. This is confirmed by our numerical analy-
sis: consumption C increases with δ and is supported by the simultaneous increase
of Dzy. The high level of exploitation of the herbivore biomass by humans for high
values of δ reduces the relative static optimal equilibrium value.

As a second step, we study the case of Sp and solve the algebraic system (21)
as a function of parameter δ. The outcomes of this procedure are displayed in
Figure 4. In particular, observe the ability of this system’s configuration to allow
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Figure 3. System Sl: optimal steady states and control inputs as
functions of δ.

higher values of z with respect to the case of Sl discussed above, thanks to the
support now provided by the second plant source.

8. Concluding remarks. In this paper we examined three Lotka-Volterra
tritrophic chains: a linear chain Sl, a trophic chain with omnivory So and a trophic
chain with omnivory and source partition Sp. We identified the equilibrium solu-
tions of each system and also analyzed the related stability properties. In the case of
systems Sl and Sp, we showed GAS using a standard Lyapunov method. In study-
ing the stability of So, we discussed the special role played by θzξ1 − θzyθyξ1 , which
represents the efficiency gap between the two trophic channels humans exploit to
draw biomass from the food source.

We also formulated an optimal control problem to determine the rates at which
humans consume biomass from the lower levels of the trophic chain and the rate
at which humans lose biomass to gain utility, in order to enhance a combination of
utility and human biomass over an infinite time horizon.

Using data from Sub-Saharan Africa, we gave some numerical characterizations
about how stationary optimal solutions vary with respect to parameter δ. It is
interesting to observe how these relationships depend qualitatively on the model’s
structure. Specifically, comparing the case of Sp with Sl, we appreciated the effect
of a second plant food source on the ability to maintain higher human biomass levels
with respect to parameter δ.
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Figure 4. System Sp: optimal steady states and control inputs
as functions of δ.
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Appendices.

Appendix A. Proof of Theorem 2.1. The two properties stated in the theorem
are demonstrated separately.

Part 1. Positive invariance. If (ξ01 , y
0, z0, ξ02) ∈ Ω, then

Step 1: for i = 1, 2, 0 ≤ ξi(t) ≤ Ki, ∀t ≥ 0.
This property is a direct consequence of a standard comparison theorem and is
easily demonstrated referring to the differential inequality ξ̇i ≤ riξi(1 − ξi

Ki
) char-

acterizing the time evolution of the state variables ξi, for i = 1, 2 and applying the
Gronwall’s inequality.
Step 2: 0 ≤ ξ1(t) + y(t)

θyξ1
≤ K1 + r1

qy
K1

4 , ∀t ≥ 0.
The following inequalities hold:
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ξ̇1 +
ẏ

θyξ1
≤ −qy

(
ξ1 +

y

θyξ1

)
+ qyξ1 + r1ξ1

(
1− ξ1

K1

)
≤ −qy

(
ξ1 +

y

θyξ1

)
+ qyK1 + r1

K1

4

As a consequence, by Gronwall’s inequality, ∀t ≥ 0 we have

ξ1(t) +
y(t)

θyξ1
≤
(
K1 +

r1
qy

K1

4

)
− e−qyt

[(
K1 +

r1
qy

K1

4

)
−
(
ξ01 +

y0

θyξ1

)]
≤ K1 +

r1
qy

K1

4

Step 3: 0 ≤ ξ1+ y
θyξ1

+ z
θyξ1θzy

+
θzξ2ξ2
θyξ1θzy

≤ K1+ r1
qy
K1

4 + 1
qz+C

(
r1K1

4 +
θzξ2r2
θyξ1θzy

K2

4

)
+

θzξ2
θyξ1θzy

K2, ∀t ≥ 0.
The following inequality holds in this case:

ξ̇1 +
ẏ

θyξ1
+

ż

θyξ1θzy
+

θzξ2 ξ̇2
θyξ1θzy

≤

− (qz + C)

(
ξ1 +

y

θyξ1
+

z

θyξ1θzy
+

θzξ2ξ2
θyξ1θzy

)
+ (qz + C)

(
K1 +

r1
qy

K1

4
+

θzξ2
θyξ1θzy

K2

)
+
r1K1

4
+

θzξ2r2
θyξ1θzy

K2

4

and the conclusion follows by the same procedure as above.

Part 2. Attractivity.
Step 1: lim supt→+∞ ξi(t) ≤ Ki, i = 1, 2.
Also in this case, this property is a direct consequence of a standard method ana-
logue to the one used in Step 1 of Part 1, having observed that the solution of the
initial-value problem

ξ̇i = riξi

(
1− ξi

Ki

)
, ξ0i ≥ 0

satisfies lim supt→+∞ ξi(t) = Ki if ξi > 0 and lim supt→+∞ ξi(t) = 0 if ξi = 0, for
i = 1, 2.
Step 2: lim supt→+∞ ξ1(t) + y(t)

θyξ1
≤ K1 + r1

qy
K1

4 .
For any given ε > 0, ∃T1 > 0 such that ξ1(t) ≤ K1 + ε

2 for all t ≥ T1, as a
consequence of Step 1. Furthermore, by the same rationale as in Step 2 of Part 1,
we have

ξ1(t) +
y(t)

θyξ1
≤(

K1 +
r1
qy

K1

4
+
ε

2

)
− e−qy(t−T1)

[(
K1 +

r1
qy

K1

4
+
ε

2

)
−
(
ξ1(T1) +

y(T1)

θyξ1

)]
Now let T2 ≥ T1 be such that, ∀t ≥ T2,

e−qyt
[(
K1 +

r1
qy

K1

4
+
ε

2

)
−
(
ξ1(T1) +

y(T1)

θyξ1

)]
≤ ε

2
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Then

ξ1(t) +
y(t)

θyξ1
≤ K1 +

r1
qy

K1

4
+ ε, ∀t ≥ T2

Since ε > 0 can be chosen arbitrarily small, the proof is complete.
Step 3: lim supt→+∞ ξ1 + y

θyξ1
+ z

θyξ1θzy
+

θzξ2ξ2
θyξ1θzy

≤ K1 + r1
qy
K1

4

+ 1
qz+C

(
r1K1

4 +
θzξ2

θyξ1θzy
K2

4

)
+

θzξ2
θyξ1θzy

K2. Also in this case, the proof is easily done
applying by the same rationale as in Step 2.

Appendix B. Jacobian matrix. The Jacobian matrix associated to system (3)
is:

J =


J11 −Dyξ1ξ1 −Dzξ1ξ1 0

θyξ1Dyξ1y J22 −Dzyy 0
θzξ1Dzξ1z θzyDzyz J33 θzξ2Dzξ2z

0 0 −Dzξ2ξ2 J44

 (22)

where

J11 = r1 − 2r1
ξ1
K1
−Dyξ1y −Dzξ1z

J22 = θyξ1Dyξ1ξ1 − qy −Dzyz

J33 =

2∑
i=1

θzξiDzξiξi + θzyDzyy − (qz + C)

J44 = r2 − 2r2
ξ2
K2
−Dzξ2z

Appendix C. Local stability of the non-coexistence equilibrium states.

C.1. Non-coexistence equilibrium states of Sl. In order to evaluate the local
stability properties of the equilibrium states associated to Sl, we test the associated
Jacobian, obtained from the first three rows/columns of J in (22) by imposing
Dzξ1 , Dzξ2 = 0.

1. El
0

J(El0) = diag(r1,−qy,−(qz + C))

Since by assumption r1 > 0, El0 is unstable. The locally asymptotically stable
(LAS) subspace is (0, y, z).

2. El
ξ1

J(Elξ1) is upper-triangular with

diag(J(Elξ1)) =

(
−r1, qy

1− eyξ1
eyξ1

, −(qz + C)

)
Thus, Elξ1 is unstable by the non-triviality assumptions (5). The LAS subspace
is (ξ1, 0, z).

3. El
ξ1y

J(Elξ1y) =


−r1eyξ1 − r1

gyξ1
eyξ1 0

qygyξ1
1−eyξ1
eyξ1

0 −(qz + C)
gyξ1
θzy

1−eyξ1
ezy

0 0 (qz + C)
(
gyξ1

1−eyξ1
ezy

− 1
)

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The associated characteristic polynomial is P lξ1y = P l(1)ξ1y
P l(2)ξ1y

, where

P l(1)ξ1y
=− λ+ J33(Elξ1y)

P l(2)ξ1y
=λ2 − J11(Elξ1y)λ− J12(Elξ1y)J21(Elξ1y)

Since all coefficients in the second degree polynomial P l(2)ξ1y
have the same sign,

its roots are negative. Thus, Elξ1y is LAS iff the root of P l(1)ξ1y
is negative, which

is equivalent to

Dzy <
qz + C

θzyK1gyξ1(1− eyξ1)
(23)

C.2. Non-coexistence equilibrium states of So. The Jacobian to be used for
evaluating the local stability properties of the considered equilibrium states, in this
case, is obtained considering the first three rows/columns of J in (22) and imposing
Dzξ2 = 0.

1. Eo
0

J(Eo0) = J(El0)

Thus, Eo0 is unstable. The LAS subspace is (0, y, z).
2. Eo

ξ1

J(Eoξ1) is upper-triangular with

diag(J(Eoξ1)) =

(
−r1, qy

1− eyξ1
eyξ1

, (qz + C)
1− ezξ1
ezξ1

)
Thus, Eoξ1 is unstable by the non-triviality assumptions (5). The LAS subspace
is (ξ1, 0, 0).

3. Eo
ξ1y

J(Eoξ1y) =


−r1eyξ1 − r1

gyξ1
eyξ1 − r1

gzξ1
eyξ1

qygyξ1
1−eyξ1
eyξ1

0 −(qz + C)
gyξ1
θzy

1−eyξ1
ezy

0 0 (qz + C)
(
gyξ1

1−eyξ1
ezy

− 1 +
eyξ1
ezξ1

)


By the same rationale as in the case of Elξ1y, we can write the associated
characteristic polynomial as the product Poξ1y = Po(1)ξ1y

Po(2)ξ1y
, where

Po(1)ξ1y
=− λ+ J33(Eoξ1y)

Po(2)ξ1y
=λ2 − J11(Eoξ1y)λ− J12(Eoξ1y)J21(Eoξ1y) = P l(2)ξ1y

Consequently, from the definition of Po(1)ξ1y
, the following condition is necessary

and sufficient for the considered equilibrium to be LAS:

Dzy <
qz + C

θzyK1gyξ1(1− eyξ1)

(
1− eyξ1

ezξ1

)
4. Eo

ξ1z

J(Eoξ1z) =
−r1ezξ1 − r1

gyξ1
ezξ1 − r1

gzξ1
ezξ1

0 qy

(
ezξ1
eyξ1
− 1
)
− (qz + C)

gzξ1
θzy

1−ezξ1
ezy

0

(qz + C)gzξ1
1−ezξ1
ezξ1

(qz + C)gzξ1
1−ezξ1
ezy

0


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In this case, the associated characteristic polynomial is Poξ1z = Po(1)ξ1z
Po(2)ξ1z

,
where

Po(1)ξ1z
=− λ+ J22(Eoξ1z)

Po(2)ξ1z
=λ2 − J11(Eoξ1z)λ− J13(Eoξ1z)J31(Eoξ1z)

Since all terms in Po(2)ξ1z
have the same sign, its roots are negative. Thus, in

order to guarantee that Eoξ1z is LAS, we have the impose that the root of Po(1)ξ1z

is negative, which is true iff

Dzy >
qy

K1gzξ1(1− ezξ1)

(
ezξ1
eyξ1

− 1

)
C.3. Non-coexistence equilibrium states of Sp. In this case, the Jacobian is
obtained from the general Jacobian matrix (22) by assuming Dzξ1 = 0.

1. Ep
0

J(Ep0 ) = diag(r1,−qy,−(qz + C), r2)

Since r1, r2 > 0, Ep0 is unstable. The LAS subspace is (0, y, z, 0).
2. Ep

ξ1

J(Epξ1) is upper-triangular with

diag(J(Epξ1)) =

(
−r1, qy

1− eyξ
eyξ1

, −(qz + C), r2

)
Thus, Epξ1 is unstable. The LAS subspace is (ξ1, 0, z, 0).

3. Ep
ξ2

J(Epξ2) is lower-triangular with

diag(J(Epξ2)) =

(
r1, −qy, (qz + C)

1− ezξ2
ezξ2

, −r2
)

Thus, Epξ2 is unstable. The LAS subspace is (0, y, 0, ξ2).
4. Ep

ξ1ξ2

The eigenvalues of the Jacobian matrix J(Epξ1ξ2) coincide with its diagonal
entries, which are

diag(J(Epξ1ξ2)) =

(
−r1, qy

1− eyξ1
eyξ1

, (qz + C)
1− ezξ2
ezξ2

, −r2
)

It results that this equilibrium is unstable. The LAS subspace is (ξ1, 0, 0, ξ2).
5. Ep

ξ1y

J(Epξ1y) =


−r1eyξ1 − r1

gyξ1
eyξ1 0 0

qygyξ1
1−eyξ1
eyξ1

0 −(qz + C)
gyξ1
θzy

1−eyξ1
ezy

0

0 0 (qz + C)
(
gyξ1

1−eyξ1
ezy

− 1
)

0

0 0 0 r2


The associated characteristic polynomial is Ppξ1y = Pp(1)ξ1y

Pp(2)ξ1y
Pp(3)ξ1y

, where

Pp(1)ξ1y
=λ2 − J11(Epξ1y)λ− J12(Epξ1y)J21(Epξ1y)

Pp(2)ξ1y
=− λ+ J33(Epξ1y)

Pp(3)ξ1y
=− λ+ J44(Epξ1y)
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The root of Pp(3)ξ1y
is positive. Thus, the considered equilibrium is unstable.

Moreover, Pp(1)ξ1y
has negative roots, while Pp(2)ξ1y

has negative roots iff con-
dition (23) holds. Thus, the LAS subspace is (ξ1, y, z, 0) if (23) holds and
(ξ1, y, 0, 0) otherwise.

6. Ep
zξ2

J(Epzξ2) =


r1 0 0 0

0 −qy − (qz + C)
K2gzξ2
K1θzy

1−ezξ2
ezy

0 0

0 (qz + C)K2

K1
gzξ2

1−ezξ2
ezy

0 θzξ2r2(1− ezξ2)

0 0 − r2
gzξ2

ezξ2 −r2ezξ2


The associated characteristic polynomial is Ppzξ2 = Pp(1)zξ2

Pp(2)zξ2
Pp(3)zξ2

, where

Pp(1)zξ2
=− λ+ J11(Epzξ2)

Pp(2)zξ2
=− λ+ J22(Epzξ2)

Pp(3)zξ2
=λ2 − J44(Epzξ2)λ− J34(Epzξ2)J43(Epzξ2)

The root of Pp(1)ξ1y
is positive. Thus, the considered equilibrium is unstable.

Moreover, Pp(2)ξ1y
and Pp(3)ξ1y

have negative roots, which implies that the LAS
subspace of this equilibrium is (0, y, z, ξ2).

7. Ep
ξ1yξ2

J(Epξ1yξ2) =


−r1eyξ1 − r1

gyξ1
eyξ1 0 0

qygyξ1
1−eyξ1
eyξ1

0 −(qz + C)
gyξ1
θzy

1−eyξ1
ezy

0

0 0 (qz + C)
(

1
ezξ2
− 1 + gyξ1

1−eyξ1
ezy

)
0

0 0 − r2
gzξ2

−r2


The associated characteristic polynomial is Ppξ1yξ2 = Pp(1)ξ1yξ2

Pp(2)ξ1yξ2
Pp(3)ξ1yξ2

, where

Pp(1)ξ1yξ2
=λ2 − J11(Epzξ2)λ− J12(Epzξ2)J21(Epzξ2)

Pp(2)ξ1yξ2
=− λ+ J33(Epzξ2)

Pp(3)ξ1yξ2
=− λ+ J44(Epzξ2)

The roots of Pp(1)ξ1yξ2
and Pp(3)ξ1yξ2

are negative, while the root of Pp(2)ξ1yξ2
is negative

iff

Dzy <
qz + C

gyξ1(1− eyξ1)θzyK1

(
1− 1

ezξ2

)
Since 1 − 1

ezξ2
< 0 and Dzy > 0 by definition, the latter condition is never

verified and the equilibrium is unstable. The LAS subspace is (ξ1, y, 0, ξ2).
8. Ep

ξ1zξ2

J(Epξ1zξ2) =
−r1 − r1

gyξ1
0 0

0 qy
1−eyξ1
eyξ1

− (qz + C)
K2gzξ2
K1θzy

1−ezξ2
ezy

0 0

0 (qz + C)K2

K1
gzξ2

1−ezξ2
ezy

0 (qz + C)gzξ2
1−ezξ2
ezξ2

0 0 − r2
gzξ2

ezξ2 −r2ezξ2


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The associated characteristic polynomial is Ppξ1zξ2 = Pp(1)ξ1zξ2
Pp(2)ξ1zξ2

Pp(3)ξ1zξ2
, where

Pp(1)ξ1zξ2
=− λ+ J11(Epξ1zξ2)

Pp(2)ξ1zξ2
=− λ+ J22(Epξ1zξ2)

Pp(3)ξ1zξ2
=λ2 − J44(Epξ1zξ2)λ− J34(Epξ1zξ2)J43(Epξ1zξ2)

The roots of Pp(1)ξ1zξ2
and Pp(3)ξ1zξ2

are negative, while the root of Pp(2)ξ1zξ2
is negative

iff

Dzy >
qy

K2gzξ2(1− ezξ2)

1− eyξ1
eyξ1
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