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Solar fuel generation through electrochemical CO2 conversion offers an attractive avenue to store the energy
of sunlight in the form of chemical bonds, with the simultaneous remediation of a greenhouse gas. While
impressive progress has been achieved in developing novel nanostructured catalysts and understanding the
mechanistic details of this process, limited knowledge has been gathered on continuous-flow electrochemi-
cal reactors for CO2 electroreduction. This is indeed surprising considering that this might be the only way
to scale-up this fledgling technology for future industrial application. In this review article, we discuss the
parameters that influence the performance of flow CO2 electrolyzers. This analysis spans the overall design
of the electrochemical cell (microfluidic or membrane-based), the employed materials (catalyst, support,
etc.), and the operational conditions (electrolyte, pressure, temperature, etc.). We highlight R&D avenues
offering particularly promising development opportunities together with the intrinsic limitations of the dif-
ferent approaches. By collecting the most relevant characterization methods (together with the relevant
descriptive parameters), we also present an assessment framework for benchmarking CO2 electrolyzers.
Finally, we give a brief outlook on photoelectrochemical reactors where solar energy input is directly utilized.
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Fig. 1. Global market of the most important CO2-utilization products.
1. Introduction

TaggedPFinding adequate solutions for a diversified and sustainable
energy supply is undoubtedly one of the grand challenges of our
society today [1]. It is imperative that renewable energy sources and
solar/wind energy in particular, are increasingly used to improve the
security of energy supplies and also ameliorate the environmental
impact from carbon-based energy production and consumption.
While solar and wind electricity generation already enjoy an impor-
tant, and impressively increasing role in the global (and especially
European) energy mix, storage is still an issue because of the inter-
mittency of most renewable energy sources [2]. At the same time,
the steeply rising level of carbon dioxide (CO2) in the atmosphere
calls for conceptually new approaches to capture and utilize this
greenhouse gas. A solar fuels-based economy tackles the above par-
allel challenges admirably well, although many challenges remain
before widespread use of such energy carriers (e.g., H2, methanol,
ethanol, and methane) sees the light of day.

TaggedPCO2 is a greenhouse gas; therefore using renewable energy to
convert CO2 to transportation fuels and commodity chemicals is a
value-added approach to simultaneous generation of products and
environmental remediation of carbon emissions. The large amounts
of chemicals produced worldwide (Fig. 1) that can be potentially
derived from the hydrogenation of CO2, highlights further the
importance of this strategy. Several industrial entities are inter-
ested in such technologies, ranging from energy/utilities companies
through cement producing and processing firms to oil and gas
companies.

TaggedPThere are numerous routes for converting CO2 to transportation
fuels and other chemicals. The following three major pathways
delineate how sunlight can be used to generate such products (e.g.,
CH4 or CH3OH) from CO2 (Fig. 1) [2�7].

TaggedPPhotochemical (PC) or photosynthetic methods: Directly use sun-
light to photochemically convert CO2 to fuels using molecular- or
suspended semiconductor (SC) photocatalysts [8�10].

TaggedPElectrochemical (EC) approaches: Here sunlight is first converted
to electricity by a photovoltaic solar cell (PV) and CO2 is then
reduced electrochemically [11,12].

TaggedPPhotoelectrochemical (PEC) route: Photogenerated electrons are
utilized to reduce CO2 either directly at a SC/electrolyte interface or
indirectly employing a redox mediator [13].

TaggedPWith the recent rapid drop in the cost of Si solar cells, the price of
solar electricity has decreased to a level that in over 20 countries
translates to grid parity. A recent study concluded that on a 20‒25
year term it is not likely that any solar energy utilization pathways
other than Si solar photovoltaic panels will have an industrially-
relevant role [14]. Another techno-economic analysis suggested that
PV+EC conversion setups may attain »14% solar to H2 efficiency
(20% PV, 70% EC) in an economically feasible manner as the electric-
ity price drops (which is clearly the case for both solar and wind
power) [4]. These factors suggest that CO2 conversion, at least on a
short to intermediate term, will be driven in an EC configuration
(note also the availability of other renewable electricity sources,
such as wind). On a longer term basis, the PEC strategy also cannot
be ruled out and in fact, further extensive research work is highly
encouraged [4].
TaggedPElectrochemical (EC) and photoelectrochemical (PEC) conversion
of CO2 are multi-electron in nature (up to 8 e‒ for conversion to
methane) with considerable kinetic barriers to electron transfer. It
therefore requires the use of carefully designed electrode surfaces to
accelerate electron transfer rates to levels that make practical sense.
In this vein, much has been written about the electrochemical, solid-
state physics, theoretical, catalytic, and general materials science
aspects of EC/PEC CO2 reduction [15�17]. During the past 5 years,
however, an accelerated progress has occurred, reflected in the num-
ber of published research articles and the citations they attracted
(Fig. 2). Most of this work has focused on the development of new
catalysts [18] and the enhancement of product selectivity [11,19].
Excitingly, we appear to be at the very cusp of a new era of electro-
chemical CO2 conversion studies, which hopefully will lead to effi-
cient CO2 electrolyzers on a practical scale.

TaggedPAt this juncture, however, it has to be noted that CO2 reduction is
a lot more complex than water splitting, simply because many dif-
ferent products can be formed via proton-coupled multi-electron
transfer [20]. To drive this process in an economically attractive
way, it is important to produce (i) any product as selectively as pos-
sible; (ii) products of economic value; and (iii) products that are
easy to separate. A recently-performed techno-economic analysis on
the process suggested that the picture is even murkier, because co-
producing a low value product (such as methanol or ethylene)
together with a high value product (such as formic acid or carbon-
monoxide) can be a better strategy than producing them alone. In
fact, the optimal scenario would be to co-produce two products that
are in different phases (i.e., one in the liquid phase and the other in
the gas phase) as the separation process becomes straightforward in
this case [21].

TaggedPIn addition, since the redox potential for proton to H2 transfor-
mation is very close to the redox potential of the desired CO2 reduc-
tion processes, there is always a competition between these two
processes. Furthermore, although thermodynamic considerations
would allow reduction of CO2 at moderately negative potentials,
electrochemical reduction of CO2 is kinetically daunting with high
overpotentials needed for its conversion to hydrocarbons and alco-
hols. Finally, in a simple batch reactor, the maximum achievable rate



Fig. 2. Results of a literature survey on electrochemical and photoelectrochemical CO2 reduction. A: number of papers published, B: the citations gathered by these papers,
C: papers claimed to use a flow-setup (this is a subset of Fig. 2A).
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TaggedPfor the reaction is often limited by the low solubility (»30mM) of
CO2 in water. Using a simple semi-infinite diffusion model, the limit-
ing current density attainable at this concentration is approximately
IL=60mA cm‒2 under vigorous stirring [22]. Importantly, the solubil-
ity of CO2 strongly depends on the temperature, the solution pH, and
the ionic strength as well, which should be taken into account when
comparing data measured in different solutions [23].

TaggedPTo increase the CO2 conversion rate to a level of practical signifi-
cance, EC CO2 reduction must be performed in a continuous-flow
setup to overcome mass-transport limitations. We note that there is
a striking difference here compared to water splitting, where ample
amounts of water molecules (55.5 M!) are available for the reaction.
Interestingly, despite some successful pioneering studies [24], very
little attention has been devoted to EC CO2 reduction in continuous
flow mode. Only a minor fraction (»5%) of the articles (see Fig. 2C)
report on studies performed under such flow conditions. In fact, this
trend can also be very problematic in the sense that conclusions
drawn from batch experiments cannot be directly translated to flow
situations (unlike for water splitting).

TaggedPThere are a few reviews on electrochemical cell designs for CO2

reduction: namely microfluidic reactors [25,26] and polymer elec-
trolyte membrane (PEM) electrolyzers [27]. Solid-oxide electrolyz-
ers, while an important category, fall outside the purview of the
present study, because of their vastly different operational principles
and conditions (high temperature, single CO product, etc.) [28]. In a
continuous flow CO2 electrolyzer, multiple parameters have to be
simultaneously tailored to possibly achieve an economically viable
process [21]. In two recent articles careful modeling on the effect of
the various operational parameters (pH, concentration, tempera-
ture) was carried out, mostly through studying the CO2/carbonate
family equilibrium [29,30]. In this review, we focus on real opera-
tional cells: materials aspects, device-related features, together with
operational parameters are the three main categories forming the
crux of this article. We compare various reports in the literature, to
identify the role of the individual parameters, and to set guidelines
for future studies. We also incorporate the lessons learned from the
fuel cell and water electrolyzer communities, while highlighting also
the most important differences.

TaggedPThe prematurity of the field is also reflected in the lack of precise
definition of electrochemical flow cells. A simple literature search
for “flow-electrochemical cell” or “continuous-flow electrolyzer” can
easily mislead the reader. For example, some studies in which the
liquid phase is continuously purged with systematically varied flux
of CO2 during the measurement are claimed to be on “flow” systems.
Although very important conclusions can be drawn from these stud-
ies on the effect of the different reaction parameters (e.g., gas flow-
rate, electrode composition, pH), these setups significantly differ
from those � constituting the core of this study � in which a fresh
solution/gas phase is fed to the electrodes continuously as detailed
later [31]. Similarly, while in some cases both the catholyte and the
TaggedPanolyte is continuously pumped (and thus refreshed), in other
instances only one of them. It is also common that the circumstances
of the measurements are not precisely defined, and therefore it is
very difficult to determine whether the experiments were per-
formed in a real flow electrolyzer or not.

TaggedPFinally, in our opinion, there is a strong need for setting the
proper measurement protocol for assessing the properties of contin-
uous flow EC cells for CO2 reduction and for specifying a set of
parameters for benchmarking purposes. Such an exercise is particu-
larly relevant because researchers from diverse specialties (e.g., het-
erogeneous/homogeneous catalysis, fuel cells, water splitting, etc.)
and even disciplines (chemistry, physics, and engineering) have con-
gregated in the EC CO2 reduction arena. These disparate communi-
ties often use very different terminologies. Hark back to the history
of the fuel cells and water electrolyzer communities where it took
decades to establish generally-accepted testing protocols and bench-
marking parameters. In the interim period, literally hundreds/
thousands of reports accumulated in the literature describing results
that could not be reliably intercompared with one another.
2. Reactor designs

TaggedPWhether we consider technology scale-up or reliable rapid
screening of materials in the laboratory, continuous-flow reactors
have multiple benefits compared to their batch counterparts. Among
others, these include increased mass transfer and improved mixing
of different phases, better temperature and heat transfer control,
and more precise influence on reaction mixture residence time
in the reactor [32]. When moving from batch-type experiments to
continuous-flow cells, the architecture and design of the reactor
(electrochemical cell) must be first clearly defined. Note that this
includes: the type of electrolyte used (liquid/gas), reactor material-
reaction mixture compatibility, whether it can be pressurized or not,
the applicable temperature and flow rate, and the possibility of using
a reference electrode.

TaggedPSchematic drawings of the most frequently studied cell configu-
rations are presented in Fig. 3. Before discussing each of them indi-
vidually, we would like to emphasize the importance of the number
of electrodes employed in the setup. Many designs only involve two
electrodes (a working and a counter electrode); thus only current or
voltage (not potential) control is possible in these cases. There is a
considerable number of electrolyzer setups where a reference elec-
trode is also integrated into the cell, close to the working electrode
surface, to ensure the possibility of potential control. A four-
electrode setup is also possible (with two reference electrodes), if
the water oxidation step is complicated, and thus the monitoring
of both half-cells becomes important. Potential control is especially
important in electrolyzers in which the catalysts (e.g., copper oxides
[20]) change their chemical composition (or surface properties)



Fig. 3. Sketch and operating principle of the most frequently studied cell configurations in continuous-flow EC CO2 reduction. (A): general design used to derive: a classical micro-
fluidic setup (E), and three different configurations containing a polyelectrolyte membrane (B�D). (GDL: gas diffusion layer) F: Solid-oxide electrolyzer.
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TaggedPduring operation (i.e., aging). This often results in a change in the
product distribution with time, as discussed in what follows.

TaggedPFig. 3A shows the most universal architecture, from which all
other setups can be derived. This parent configuration consists of
two flow channels, one for the anolyte and another for the catholyte,
separated by an ion-exchange membrane. The cathode electrocata-
lyst is immobilized on a gas diffusion layer (GDL), which is in contact
with the flowing catholyte from one side, while CO2 gas is directly
fed on the other side [33]. This arrangement overcomes most of the
problems associated with the other setups, namely: (i) current limi-
tation due to the low concentration of CO2 at the electrode; (ii) H+

crossover from the anode and the consequent acidification of the
catholyte; (iii) difficulty of inserting a reference electrode; (iv) diffu-
sion of liquid-phase products to the anode, where they are oxidized
(product crossover). Although no such instrument is commercially
available on the industrial scale at the moment, most components of
this setup (i.e., GDLs and catalysts) are available and ready for scale-
up already. We note here that it seems to be very challenging to
build large stacks based on this concept mostly because of the pres-
sure sensitivity of this structure [34]. We expect therefore that the
parallel operation of these instruments (the scale-out concept) will
constitute the main track of industrialization in this case � at least
in the near future. The other experimental devices (Fig. 3B�E) can be
derived by “removing” different elements of this general setup, thus
TaggedPsimplifying the overall architecture. By applying a single, undivided
channel for flow of the common electrolyte, we get a typical micro-
fluidic reactor (Fig. 3E). In this setup, the electrodes are separated by
a thin spacer (usually well below 1mm in thickness) and no mem-
brane is included [35�39]. The reference electrode can be inserted
in the electrolyte flow stream and the excess protons formed on the
anode are drained from the cathode vicinity by electrolyte flow
(although not as effectively as in the case of separated electrolyte
channels).

TaggedPA popular class of devices feature separation of the two electro-
des by an ion-exchange membrane (typically NafionTM, but see also
Section 3.5. for others) (Fig. 3B�D). Usually the electrodes are
pressed together and no flow channels are formed between them
(zero gap cells). The electrolyte/gas is fed to the electrodes (mostly
gas diffusion electrodes (GDEs), formed by immobilizing the catalyst
on a GDL), and remains in the cell until reaching the exit point. The
greatest advantage of these setups, compared to the microfluidic
arrangements, is that it is relatively easy to pressurize the reactant
and product flows. Furthermore, based on the similarity of these
devices to PEM water electrolyzers, the scale-up of these setups to
the industrial scale and construction of large sized stacks seems to
be more straightforward.

TaggedPVariants of these setups differ in the type of electrolytes used. The
reactants fed to the cathode and anode compartment can be (i) both



B. Endro��di et al. / Progress in Energy and Combustion Science 62 (2017) 133�154 137
TaggedPin liquid phase (Fig. 3B) [40]; (ii) CO2 gas on the cathode and liquid
phase anolyte (Fig. 3C) [41,42]; (iii) humidified gases on both elec-
trodes (Fig. 3D) [43,44]. Although this may look like a minor differ-
ence at first sight, the reactant type has an important and complex
effect on cell performance. When feeding pure CO2 to the cathode,
the reactant concentration remains very high on the catalyst, and
therefore high reaction rate (current) can be achieved. In this case
however, trustworthy measurement of the individual electrode
potentials is far from trivial, although several promising attempts
were made with all-gas fuel cells [45�48]. Previous studies have
shown that the product distribution changes parallel to continuous
ageing of certain catalysts during long-term operation [49,50]. The
lack of a reference electrode complicates this situation even more,
since in this case the change in the cell voltage/current stems from
either anode or cathode degradation (or both), whose effects cannot
be separated.

TaggedPThe main drawback of these membrane-separated zero-gap devi-
ces paradoxically is the same as their main advantage, namely the
proximity of the two electrodes to one another. This decreases the
cell resistance and consequently, the IR-drop to a minimum level,
but on the other hand, ion exchange leads to acidification of the
catholyte and therefore to increased production of H2 (instead of
reduction of CO2). Including a buffer layer between the electrodes
can circumvent this effect, but at the same time, leads to increased
cell resistance [51]. Although most studies on PEM CO2 electrolyzers
focus on the use of cation exchange membranes, anion exchange
membranes may also bear considerable scope in CO2 conversion. In
such arrangements, OH¡ ions are transported through the mem-
brane, which results in a different product distribution compared to
cation exchange membrane containing systems [52]. A new anion-
exchange membrane based electrolyzer was recently developed
for both CO2 conversion and water splitting [53]. The reactors, using
the new anion exchange membrane based on polymers containing
imidazolium and pyridinium groups, exhibited high durability
at industrially relevant current densities (100mA cm¡2 for CO for-
mation) [53]. Detailed discussion on the role of the ion-exchange
membrane is given in Section 3.5.

TaggedPIt is very important to underline that for industrial applications,
large-sized, multiple-stack electrolyzers are required. The current
status of this field is very far from this level, since aside from a few
examples, all studies were carried out on 1�10 cm2 sized electrodes
[54,55]. Consequently, a grand challenge for future research and
development is to construct experimental setups that can be readily
translated to real industrial technologies.

TaggedPThe operational principle of solid oxide electrolyzers is shown in
Fig. 3F. Detailed discussion however, is omitted because of their
completely different properties compared to both their microfluidic
and PEM counterparts [28].

3. Materials

TaggedPAs outlined in the previous section, various device architectures
can be used for the continuous-flow electroreduction of CO2. There
are certain components, however, which are common to all electro-
lyzer designs, and they are discussed in what follows (also see
Table 1 for an overview).

3.1. Electrocatalysts

TaggedPAs it dictates both the kinetics and thermodynamics of the
electrolysis process, the electrocatalyst is the heart of such devices.
The most extensively scrutinized cathode catalysts and their most
important features are summarized in Table 1. When comparing
and contrasting these to the catalysts employed in batch experi-
ments we can conclude that (i) the catalyst candidates that proved
to be promising in batch setups show similar, or even, higher
TaggedPelectrochemical activity in the corresponding flow setup; (ii) the
formed products are very similar for both batch and flow experi-
ments; (iii) the reported potential values differ significantly in many
cases. The most intensively studied electrocatalysts are Sn, on which
formate is produced almost exclusively; Ag with preferred CO for-
mation; and Cu, on which a wide variety of products is formed,
depending on the experimental circumstances. Several catalysts (e.
g., metal alloys) that were promising in batch experiments however,
are still waiting to be tested in flow cells. An example of new genera-
tion catalysts is metal organic frameworks (MOFs), which were very
recently studied in flow-reactors [56]. Much less effort has been
devoted to the anode catalyst, where mostly IrOx and Pt was
employed to facilitate water oxidation (O2 evolution) [57]. In the
outlook section, we present some possible future R&D avenues,
where the anode electrocatalyst gets higher importance.

TaggedPThe amount of the electrocatalyst in these devices varies in a rel-
atively broad range, from 0.2 to 10mg cm‒2. The most commonly
applied catalyst loading however, is around 1mg cm¡2, indepen-
dently of the catalyst used. This latter fact is indeed very surprising,
since the molar mass, density, and specific surface area of the differ-
ent catalysts can differ severely. This may cause several orders of
magnitude difference in the number of electrocatalyst atoms, and
more specifically in that of the surface atoms, which can interact
with the CO2 molecules. To get a meaningful comparison on the elec-
trocatalytic properties of different catalysts, one must therefore
always normalize the measured current values in terms of either the
electrochemically active surface area, or with the number of surface
atoms, but not with respect to the geometric surface area or elec-
trode mass. This is even more important in the case of thick porous
electrodes, where the current density can be influenced by electrode
thickness, without affecting the electrode kinetics.

TaggedPAt this juncture, however we note that researchers need to make
sure that all measurements were taken in the kinetically-controlled
regime and not the mass transfer-limited regime, before they com-
pare reaction rates across different catalytic systems. Different strat-
egies can be employed to determine mass transfer limitations, for
example obtaining breakthrough curves (current density vs. catalyst
loading) [78]. An example is shown in Fig. 4, where LSV curves are
shown for Sn-based GDEs with different Sn-loading. As seen in
Fig. 4A, after a certain Sn-content, the mass-transport limited
regime is reached. This trend is directly visualized in Fig. 4B,
where the partial current density related to CO2 reduction is plotted
vs. the catalyst loading (note the constant FE values, confirming that
the chemical process is identical).

TaggedPIt should also be noted that although attempts were made to
directly compare the results of batch experiments with those mea-
sured in flow setups, such a comparison is not straightforward
because of several reasons [33]. The continuously refreshed solution,
reaching the electrode surface leads to striking differences as it has a
massive influence on the (i) mass-transport (diffusion layer thick-
ness); (ii) local pH effects; (iii) product accumulation in the close
vicinity of the cathode; (iv) residence time of CO2 molecules at the
electrode surface. When applying (humidified) CO2 gas as “catho-
lyte,” its effective concentration on the surface is obviously higher
than in the case of aqueous solutions, which leads to higher current
densities at the same “potential”. Here we refer to our earlier point,
namely that defining and measuring electrode potential in such
arrangements is also problematic.

3.2. Effects of catalyst size and morphology

TaggedPParticle size effects [79] have not been extensively studied in flow
cells; however, there are some nice examples on copper nanopar-
ticles and thin films (3‒21 nm thick) [80]. First it was shown that
nanoparticulate Cu (n-Cu) behaves differently than Cu foils (Fig. 5A).
In addition, from the film thickness dependent methanation Faradaic



Table 1
Materials properties of champion continuous-flow CO2 electrolyzers.

Catalyst Catalyst size Electrocatalyst
loading

Electrode support Electrode
thickness

Current density
(mA cm¡2)

Main Products
(FE)

Ref.

Ag <100 nm 0.75mg cm‒2 Sigracet 35 BC 325mm 100 CO (80‒95) [58]
Ag � � GDE (Silflon, Gaskatel) n/a 100 CO (30‒90) [59]
Ag <100 nm 2mg cm‒2 Sigracet 35 BC 325mm 340 CO (95+) [39]
Ag <100 nm 0.2mg cm‒2

(+0.8mg cm‒2 MWCNT)
Sigracet 35 BC 325mm 350 CO (95) [38]

Ag- complex � 1mg cm‒2 Sigracet 35 BC 325mm 95 CO (90) [36]
Ag � n/a GDE (Silflon, Gaskatel) n/a 275 CO (80) [60]
Ag 10 nm on TiO2

nanoparticles
1mg cm‒2 Sigracet 35BC 325mm 100 CO (90) [61]

Au Foil � � � 2.8 CO (92) [62]
Au av. 60 nm � Porous membrane � 3�30 CO (38) [63]

Cu 2‒4mm, 8‒15mm 2mg cm‒2,
10mg cm‒2

Nafion-117 180mm 15 C2H4 (12‒13) [64]

Cu Plate � � 1mm 20 CH4 (40) [19]
Cu n/a n/a Toray TGP-H-120 370mm 11 CH4 (5) [52]
Cu 10‒50 nm 1mg cm‒2 Sigracet 35 BC 325mm 150 CO (57) [33]
CuO/Cu 20‒40 nm 1mg cm‒2 Sigracet 35 BC 325mm 11 CO (»20),

formate (»20)
[65]

Cu2O/Cu n/a 2mg cm‒2 Toray TGP-H-120 370mm 5.4 CH4 (32) [66]
Cu2O or Cu2O/ZnO Cu2O< 5mm, ZnO< 45mm 1mg cm‒2 Toray TGP-H-60 190mm 10 MeOH (42) [67]
CuO/Cu2O Nanorod arrays � Cu foil n/a 20 EtOH (»50) [68]

Sn 2.39mm shot and
0.252mm granules

n/a Sn sheet n/a 310 Formate (63‒91) [54]

Sn 0.3mm (granules) n/a Sn sheet 3mm 300 Formate (60‒90) [55]
Sn Nanopowder 2‒5mg cm‒2 E-TEK “S”-type GDE n/a 100 Formate (89) [35]
Sn Sn-loaded brass mesh 1.5mg cm¡2 GDL: conductive carbon

black+PTFE (3:7)
ca. 0.2mm 17.6 Formate (79) [69]

Sn/Cu � � 30 # or 60 # copper mesh 610 (30 #) and
380 (60 #)mm

130 Formate (86) [70]

Sn/Cu Nanoparticles � 30 # copper mesh 600mm 100 Formate (13‒86) [71]
SnO2 Nanoparticles 0.87mg cm�2 GDE (acetylene black:PTFE

65:35)
n/a 30 (3 V)

120 (6 V)
Formate (74�84) [72]

Pb 2‒5mm 0.5mg cm‒2 Toray 170 n/a 46 Formate (65) [73]
Pb � 5mg cm‒2 Polytetrafluoroethylene -

carbon paper
n/a 143‒345 Formate (95)

[37,74]
Fe, Cu, Co, Pt, Fe-Co,

Fe-Cu, Fe-Co-Cu
Nanoparticles 0.5mg cm‒2 CNT/Sigracet 24 BC 235mm 20 � [75]

In � � Cu mesh n/a � Formate (67) [76]
Pt 3‒5 nm 0.4‒0.6mg cm‒2 E-TEK carbon cloth n/a 20 >C5 [77]
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TaggedPefficiency and gravimetric methanation current experiments, it was
demonstrated that thin evaporated films behaved like the n-Cu/C
electrodes while thick evaporated films behaved like copper foils
(Fig. 5B). In this study, it was also suggested that n-Cu was ideal for
preparing GDLs with lowered polarization losses, thus maximizing
the energy efficiency of the electrolyzer [80].

TaggedPIn another study, Cu electrodes with different morphologies were
prepared [81]. The first important observation was that higher active
surface area resulted in an improved total FE compared to the
smooth Cu plate. As for the product selectivity: (i) electroplated Cu
Fig. 4. Current density vs. catalyst loading curves for a Sn/C gas d
TaggedP(on Cu foil) favored the production of formate; (ii) electrofaceting of
the Cu foil moved the selectivity towards CH4 formation; (iii) deposi-
tion of Cu onto carbon cloth resulted in the formation of C2H4 [81].
The effect of tin loading and particle size were studied in a filter-
press cell for CO2 reduction [82]. Tin particles of different sizes
(150 nm, 10mm, and 150mm) were studied, and certain size effects
were reported with an optimal behavior for the smallest particles.
Again, meaningful normalization is a mandatory exercise in such
studies, to deconvolute the simple surface area effect from other,
chemical underpinnings.
iffusion electrode. Adapted with permission from ref. [78].



Fig. 5. The effect of Cu film thickness on the Faradaic efficiency and specific current density of CH4 formation in a continuous-flow electrolyzer. Reproduced with permission from
ref. [80].
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3.3. Role of the catalyst support

TaggedPTo achieve current densities of practical relevance, it is vital to
increase the electroactive surface area of the electrocatalyst. More-
over, in the case of flow electrolyzers, one must also consider that
the electrolyte flow continuously removes the products (or inter-
mediates) from the electrode surface, leading to relatively short
remanence time. This severely influences both the Faradaic effi-
ciency and product distribution. Therefore, the CO2 containing elec-
trolyte must be forced to travel through a long path, while it
remains in contact with the electrocatalyst for a sufficiently long
time period. This can be achieved by immobilizing the catalyst on a
GDL, which is a porous substrate with large surface area. The GDL
has a dual function in the cell by allowing transport of materials
between the catalyst and the flow channel while also maintaining
proper electronic communication between the current collector and
the electrocatalyst. The most frequently (almost exclusively) applied
GDLs are porous carbon supports, formed from carbon fibers or
pressed carbon particles. These carbon cloths and carbon papers are
Fig. 6. Schematic composition of a gas diffusion electrode (GDE) and the
TaggedPfrequently used supports in fuel cells and water electrolyzers on the
cathode side. Interestingly, although several attempts were made to
employ different metal foils or meshes as catalyst supports in CO2

flow electrolysis cells, the use of different carbonaceous substrates
is reported in almost all the recent studies. As a specific example,
we mention the comparison of two continuous-flow electrolyzers,
where an In metal foil electrode was compared with In nanoparticles
(100�300 nm) immobilized on a carbon GDL. Seven-fold higher par-
tial current densities towards HCOOH formation were detected in
the latter case, compared to the simple indium foil [83].

TaggedPFig. 6 summarizes the typical components of a GDE, which
includes the GDL, the microporous layer, and the catalyst (possibly
together with an ionomer) [78]. The importance of the tri-phasic
solid/liquid/gas interface is also highlighted. The effect of GDE struc-
ture (e.g., thickness, porosity, and density) on the electrocatalytic
properties was extensively studied in fuel cells and water electrolyz-
ers; much less attention has been dedicated to these parameters in
the case of flow CO2 electrolyzers so far. As an exception, optimiza-
tion of the gas diffusion electrodes consisting of a carbon fiber
three-phase interface. Reproduced with permission from ref. [78].
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TaggedPsubstrate, a microporous layer, and a catalyst layer was performed
very recently [84]. The optimized electrode exhibited a higher partial
current density for CO production than Sigracet 35BC, a commer-
cially available GDE. Overall, we are convinced that there is a signifi-
cant opportunity for the rational design of GDEs for further
improvement of such devices.

TaggedPAnother very important aspect in the case of flow electrolyzers
working with liquid electrolytes is the hydrophobic/hydrophilic
properties of the GDL. In the case of fuel cells, an important role of
the hydrophobic GDL is the removal of excess water. The case is
however different for flow CO2 electrolyzers: the solution must be
kept in contact with the catalyst surface for a sufficiently long time.
Proper wetting of the top of the carbon support therefore is a prereq-
uisite, but too much hydrophilicity should also be avoided, because
H2 evolution would be favored in that case. Different ionomers are
employed to circumvent the above contradiction, which in turn also
contributes to the fixation of the catalyst on the surface of the gas
diffusion electrodes (Fig. 6). We also note that controlling the inter-
facial chemistry between the components of the electrode assembly
is of prime importance to ensure high performance and stability at
the same time.

3.4. Catalyst immobilization

TaggedPThe technique employed for the catalyst immobilization has a
decisive influence on the performance of flow electrolysis setups.
The most often used techniques include two steps: first the
Fig. 7. The effect of the immobilization method on the Faradaic efficiency and specific curre
Reproduced with permission from ref. [58].
TaggedPelectrocatalyst is prepared and subsequently, it is transferred to the
GDL (or other substrate) or more frequently to the membrane to
form the so-called membrane electrode assembly (MEA), via a physi-
cal method. We note here that no “standard” catalyst immobilization
method exists, but paint- and air-brush techniques are the most
common ones. As demonstrated in a recent study, the immobiliza-
tion technique influences both the measured current values and the
product distribution (Fig. 7) [58]. In addition, according to our own
experience, the catalyst deposition method affects the stability of
the cell as well: channel formation and degradation can be observed
if the catalyst is not evenly dispersed, rooted in the uneven distribu-
tion of the current flow (see also Fig. 7 for catalyst distribution
details).

TaggedPIn situ deposition methods, in which the catalyst is directly
formed on the substrate, constitute the other large, but less fre-
quently applied class of immobilization techniques. Electrochemical
deposition of different catalysts, exploiting the conductive nature of
the carbonaceous GDLs is a particularly promising avenue to form
such architectures. The catalyst/GDL structure is thus formed in a
single step, and intimate electrical and physical contact between the
electrocatalyst and the carbon substrate is ensured. Further, after
careful pretreatment of the GDL layer (to tune its hydrophobic/
hydrophilic character) not only the top of the GDL is decorated with
catalyst (nano)particles, but the inner regions as well. This can lead
to increased current values because of the enlarged electrochemi-
cally active surface area. A recent study presented the electrodeposi-
tion of Sn on carbon fibers thus forming a GDE as a promising
nt density of CO and H2 formation in a continuous flow electrolyzer with Ag/C cathode.
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TaggedPexample [85]. Note however that this approach requires careful opti-
mization of the synthesis circumstances for each catalyst/GDL pair,
and is therefore not compatible with rapid screening needs.

TaggedPOne further aspect to consider when immobilizing a catalyst is
the use of any binder material (e.g., NafionTM dispersion). Adding an
ionomer to the dispersion of the catalyst before transferring it to the
membrane/GDE, influences the subsequently formed catalyst layer.
It has a substantial effect on (i) the electroactive surface area of the
immobilized catalyst (three dimensional reaction zone) (ii) the ionic
(proton) conductivity of the catalyst layer (iii) the hydrophilic/
hydrophobic property of the catalyst layer (iv) the interaction (elec-
trical) between the catalyst layer and the membrane. The effect of
the relative ionomer content was extensively studied for PEM fuel-
cells [86�89]. These works revealed that the cell performance can
be enhanced by adding small amount (typically 10�20wt.%) of the
ionomer into the catalyst layer. This results in a large decrease in
the ohmic and transport resistance of the layer and extends the
active surface area where the electrochemical reaction occurs.
Fig. 8. Illustration of PEM electrolyzers with a cation (a) or anion (b) exc
TaggedPAs for the electroreduction of CO2, the same effect was demon-
strated by forming catalyst layers of Sn nanoparticles (100 nm in
size) with the same catalyst loading, but by systematically varying
the ionomer content [78]. Similarly to the case of the PEM fuel-cells,
an initial increase in both the current and the FE was witnessed with
the increasing ionomer content, followed by a sharp decrease in the
cell performance when the Nafion content was further increased.

3.5. The role of ion-exchange membranes

TaggedPIn those setups that contain an ion-exchange membrane (see
Fig. 3), its properties also affect the performance of the cell. The
chemical structure, thickness, and the wetting properties all have
substantial influence, although their precise contribution have not
been fully explored yet. While the clear majority of the studies
employ cation exchange membranes, and specifically NafionTM, as
the ion-exchange membrane (see some other examples in Fig. 8),
there is a considerable scope in tailoring physical-chemical
hange membrane. (c) Structures of the most common membranes.
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TaggedPproperties of the membrane towards CO2 electroreduction (or even
towards specific product formation) [66,90]. Chemical modification
of well-known polymers with new organic mediators may open up a
new avenue in the future [91,92]. Finally, in addition to chemical fac-
tors, durability and pressure handling are two equally important
physical attributes to consider.

TaggedPFour different membranes (NafionTM, SPEEK, alkali-doped PVA,
and Amberlyst/SPEEK) were compared in a continuous-flow cell
using Pt/C anode and Cu/C cathode for CO2 reduction [52]. Both the
measured current density as well as the relative amounts of the
products showed a notable variation as a function of the chemical
properties of the membrane. This distinction was rationalized pre-
dominantly by the vastly different ionic conductivity of the mem-
branes [52]. In another recent study several chemically different
membranes were compared, and an ionic-liquid inspired polymer
(anion exchanging SustainionTM) was introduced, providing both
high efficiency and stability [93]. For those applications where H2

formation is to be avoided (e.g., space utilization, see also the Out-
look section) the use of anion exchange membranes may help by
suppressing proton reduction. This trend was demonstrated when
an anion- and cation exchange membranes were compared using a
Ag-cathode [94]. Most recently, bipolar membranes have offered
enhanced water splitting via steady-state pH gradients and product
separation, and these novel materials may be worth exploiting for
CO2 reduction studies as well [95,96]. Finally, we note that product
crossover is an important factor to be considered for these mem-
branes from the early development stage.

3.6. The role of the current collectors, bipolar plates, and cell body

TaggedPThe mechanical stability of an electrolyzer is ensured by the cell
body, the current collectors (end-plates), and the bipolar plates. As
the cell body is a passive element in the setup, the most important
requirements to fulfill are chemical inertness and mechanically sta-
bility, hence it must not change its shape or dimensions during the
electrolysis. This is particularly relevant when the cell operates at
high pressure and/or high temperature conditions. The cell body is
therefore most frequently made of stainless steel, and its two parts
are pressed and held together by several steel screws.

TaggedPWhen considering the industrial application of continuous-flow
CO2 electrolyzers, we must distinguish between the microfluidic and
the PEM arrangements (see again Fig. 3). While for the first group
the scale-out strategy (and therefore the parallel operation of large
surface area setups) seems to be favored, the scale-up strategy
seems to be the best way of industrial application of PEM CO2 elec-
trolyzers � very similarly to PEM water electrolyzer and PEM fuel-
cells. In this case, several electrocatalyst layers and membranes
(MEAs) are coupled in series, separated by bipolar plates, functioning
Fig. 9. Stack components of typical fuel cell. Re
TaggedPas anode on one side and cathode on the other side (see a typical
PEM fuel cell setup in Fig. 9 as an example). The function of these
bipolar plates and end-plates is complex: (i) they form the electro-
des which are in contact with the catalyst layers, (ii) as the reactants
are fed to the catalyst layer through the channels formed in these
plates, they are responsible for the reactants supply to the cell active
area, and for the proper outlet of the products. Furthermore, they
play a significant role in the water and heat management of the cell
(most importantly in the case of PEM setups, fed with humidified
gases) [98]. To serve this purpose, flow-channels are formed on these
plates to increase the surface area, and to help the transport pro-
cesses [97]. As it was shown for PEM fuel-cells, the different flow-
field designs (e.g., straight flow channels, single- or multiple serpen-
tine channels, etc.) have both pros and cons, and therefore this pat-
tern must be always optimized towards the targeted application in
the employed setup. The use of current collectors with flow-patterns
in continuous-flow CO2 electrolyzers needs extensive investigations
and use of different flow-patterns might contribute to the scale-up
and industrialization of this process.
4. Operation

TaggedPAll factors governing the performance on a sub-reactor level were
summarized in the previous sections. Now we turn the focus to the
operation of the complete electrochemical cell, and review parame-
ters that affect the EC CO2 reduction reaction in the continuous-flow
mode. Note that the effects of the discussed parameters are not inde-
pendent of each other. In fact, their influences are rather complex
and convoluted; therefore it is often difficult to carry out studies
where only one parameter is varied. Table 2 lists selected examples
of continuous-flow CO2 electroreduction studies from the literature,
where the effect of the most important factors is highlighted.

4.1. Feedstock

TaggedPThe first question related to the input flow turns back to the reac-
tor design (see also Fig. 3). It seems that in most studies there is a
parallel feed of liquid electrolyte and CO2 gas; however, there are
reports with liquid or gas feed only. Here the reader must be very
careful, because certain articles claim solution+gas flow, although
when examined closely, only liquid flow (which was previously sat-
urated with CO2) was deployed. It is also worth noting that all those
studies where notably high currents were reported employed both
gas and solution feed. While the gas feed was almost always pure
CO2 (see discussion later on pressure effects and an exception where
Ar/CO2 mixtures were studied [85]), the composition of the liquid
electrolyte varied massively throughout the studies (Table 2). This
produced with permission from ref. [97].



Table 2
The role of operational conditions in the continuous-flow electroreduction of CO2. The sorting factor was the achieved current density.

Setup Electroactive
material

Electrolyte type Electrolyte composition Temperature Pressure Current density
(mA cm¡2)

Main Products
(FE)

Time Ref.

Microfluidic Ag Solution + CO2 gas KCl, KOH, KHCO3, EMIM Cl,
Choline Cl

RT Ambient 440 CO (95+) n/a [39]

Microfluidic Ag Solution + CO2 gas 1M KOH RT Ambient 350 CO (95) 7min [38]
Microfluidic Pb Solution + CO2 gas 0.5M K2SO4 (0.5M H2SO4) RT Ambient 345 Formate (95) 500min [37]
PEM Sn Solution + CO2 gas 0.5M KHCO3+2M KCl 314 K 600 kPa 310 Formate (61) 100min [54]
PEM Sn Solution + CO2 gas 0.5M KHCO3+2M KCl RT Ambient 300 Formate (70) 4 h [55]
Microfluidic Ag Solution 1M KOH RT Ambient 280 CO (90) 4 h [84]
PEM Ag Solution + CO2 gas 0.5M K2SO4 or 0.5M

K2SO4:1.0M KHCO3

333 K, 363 K 24.6 atm 350/275 CO (80) 70min [60]

Microfluidic Ag Solution + CO2 gas 1M KOH RT Ambient 250 CO (90) n/a [101]
PEM Sn Solution 0.1M KHCO3 RT Ambient 250 Formate (80�90) 5 h [102]
PEM Ag Solution + CO2 gas 0.5M K2SO4 333 K 20 atm 225 CO (90) 90min [103]
PEM La1.8Sr0.2CuO4 Solution + CO2 gas 0.5M KOH � Ambient 180 EtOH (30) 3.5 h [104]
PEM Cu Solution + CO2 gas 1M KOH RT Ambient 150 CO (57) 4 h [33]
Microfluidic Pb Solution + CO2 gas 0.5M K2SO4 (0.5M H2SO4) RT Ambient 143 Formate (95) n/a [74]
PEM Sn Solution + CO2 gas 0.5M KHCO3+0.5M KCl RT 120 kPa 130 Formate (86) 10min [54]
PEM Ag CO2 gas � RT Ambient 100 CO 250 h [53]
Microfluidic Ag Solution + CO2 gas 1M KCl RT Ambient 100 CO (80�95) n/a [58]
Microfluidic Sn Solution + CO2 gas 0.5M KHCO3 RT Ambient 100 Formate (89) n/a [35]
PEM Ag Solution+CO2 gas 0.8M K2SO4 343 K Ambient 100 CO (30�90) 4 h [59]
PEM Sn/Cu Solution+CO2 gas 0.45M KHCO3 RT 115 kPa 100 Formate (13�86) 3 h [71]
Microfluidic Ag Solution+CO2 gas 1M KOH RT Ambient 100 CO (90) n/a [61]
PEM Sn CO2 sat. Solution CO2 sat. 0.5M NaOH

+1M NaClO4

RT Ambient 97 Formate (58) 10min [105]

Microfluidic Ag Solution+CO2 gas 1M KOH RT Ambient 95 CO (90) n/a [36]
PEM Sn Solution+CO2 gas 0.45M KHCO3+0.5M KCl RT Ambient 90 Formate (70) 90min [82]
Microfluidic pyrolyzed

CN/CNT
Solution+CO2 gas 1M KCl RT Ambient 90 CO (98) n/a [106]

PEM Ag Solution 1M Li+/Na+/K+/Cs+

/Cl¡/ Br¡/I¡/OH¡
RT Ambient 80 CO (60�95) n/a [100]

PEM Ag Solution+CO2 gas 0.5M KHCO3 RT Ambient 80 CO (30�80) 285min [107]
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TaggedPvariation is quite surprising, considering the prominent role the
electrolyte may play in the electrochemical process [39].

TaggedPThe role of the electrolyte, by varying both concentration and
chemical makeup, was investigated using a Ag-based gas diffusion
electrode as cathode [39]. It was found that anions play a signifi-
cant role in the process, as reflected in the onset potential for CO
formation shifting in the order OH‒

<HCO3
‒
< Cl‒ (Fig. 10A and B).

This trend was explained by the interplay of several factors such as
pH, conductivity, and, more importantly, specific adsorption of cer-
tain anions on the electrode surface. Similar conclusions were
drawn for a Sn-based electrolyzer, where OH‒, HCO3

‒, Cl‒, and
HSO4

‒ anions were studied [99]. The effect of electrolyte anions
and cations was further elucidated, by investigating four cations
(Na+, K+, Rb+, Cs+) and four anions (i.e., Cl¡, Br¡, I¡, OH¡) [100]. A
major size dependence was observed for the cations, namely an
increased CO2 reduction (and decreased H2 evolution) activity was
detected when larger cations were present in the solution. This
trend was rationalized by the better hydration of smaller cations
which thus are less likely to adsorb on an electrode surface. The
larger cations were thought to adsorb on the cathode repelling H+

ions from the cathode and stabilizing the “CO2
¡” intermediate on

the electrode surface [100].
TaggedPAs for the effect of electrolyte concentration, a monotonic

increase in the current density (as well as the energy efficiency)
with increasing electrolyte concentration was noted (Fig. 10C and
D). Electrochemical impedance spectroscopy (EIS) showed that
both the charge transfer resistance (Rct) and the cell resistance
(Rcell) decreased with increasing KOH concentration [39]. The effect
of catholyte concentration (varied in the range: from 0.1mol dm‒3

to 2.0mol dm‒3) on product (formate) selectivity was also studied
using a tinned copper mesh electrode [54]. An optimal intermedi-
ate KHCO3 concentration (0.45mol dm‒3) was found, and rational-
ized in terms of the competing effects of surface speciation, ionic
conductivity, and CO2 solubility. We note here that CO2-saturated
TaggedPKOH and KHCO3 solutions are very similar in nature, only the spe-
cies distribution and the pH being different. As seen in Table 2.
there are examples for the addition of an inert electrolyte (e.g., KCl
or NaClO4) to such solutions, further improving the electrical
(ionic) conductivity without severely affecting the other parame-
ters mentioned above [54,55,82,100]. As a general conclusion, we
can state that higher electrolyte concentration leads to higher cur-
rent densities, unless there is a specific adsorptive interaction with
the electrode surface.

TaggedPIonic liquids are an emerging class of solvents in CO2 electrore-
duction [108]. These materials are special in many aspects, for exam-
ple they can even stabilize the formed reaction intermediates in CO2

reduction. Synthetic chemistry allows considerable latitude for tai-
loring the molecular structure of these liquids, and thereby enhance
CO2 solubility via specific chemical interactions [53,108,109]. The
chemistry learned for ionic liquids might be exploited as either sur-
face modifiers or ionomers in membrane electrode assemblies
(MEAs) discussed below.

TaggedPThe effect of solution pH is also rather complex and the conclu-
sions cannot be generalized for different electrocatalysts and tar-
geted reduction products. In general, at lower pH values, the
formation of H2 is more favored. However, to form hydrogenated
CO2 reduction products (e.g., formate and methanol), a lower pH is
beneficial, while higher pH is suitable for CO formation. The pH
effect was studied in a microfluidic reactor, employing a Sn cathode
and a Pt black anode [35]. Experiments were carried out at three
different pH values, and the cell voltage, the electrode potentials,
and the efficiencies (energy and Faradaic) were monitored (Fig. 11).
The pH is seen to exert a more prominent effect on the cathode
process. At lower pH, the formation of formic acid was favored,
both in terms of higher current density and selectivity [35]. This
study also calls attention to the importance of having two reference
electrodes in the cell, enabling the monitoring of both half-cell
processes separately.



Fig. 10. The effect of electrolyte nature and concentration on the CO2 reduction current density and energy efficiency in a continuous-flow electrochemical cell. Adapted with per-
mission from ref. [39].
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TaggedPMore recently, a dual electrolyte microfluidic reactor was
designed, and the effect of using anolyte and catholyte of different
pH was systematically studied. A set of electrocatalysts was investi-
gated, and it was concluded that catholyte pH=2 and anolyte pH=14
resulted in an optimal cell performance. Furthermore, a three-fold
increase was witnessed in the overall performance, compared to the
single neutral (pH =7) electrolyte arrangement [37].

4.2. Liquid/gas flow rate

TaggedPWith the aim of converting large amounts of CO2, the question
occurs instantly: how does the flow rate of the liquid/gas input
influence the current density and the Faradaic efficiency (and thus
the overall CO2 conversion process)? Considering the importance
Fig. 11. The effect of pH on the performance of a microfluidic continuous-flow electrol
TaggedPof this parameter, it is very surprising that there is no precise defi-
nition to meaningfully present the CO2 flux in the electrolyzer. In
almost all the cases, the unit of standard cubic centimeters per
minute (sccm) was employed to characterize the gas flow, which
equals cm3/min at standard temperature and pressure. While this
unit sufficiently describes the overall gas flow, it gives only very
limited information on the actual flux of CO2 reaching the electro-
catalyst surface in the electrolyzer. Consequently, it is very diffi-
cult to compare studies performed in different laboratories on
electrolyzers of different size. It seems to be a useful exercise to
normalize the flow rate with the electrochemically-active surface
area of the electrode, and/or to the free volume of the cathode
compartment of the electrolyzer, thus obtaining the actual flux of
CO2 (see below). In addition, the fact that more often than not,
yzer, employing Sn cathode and Pt anode. Adapted with permission from ref. [35].



Fig. 12. Effect of CO2 flow rate on the performance of a batch electrolyzer, but under continuous CO2 purge. The applied potential was E =¡0.4 versus RHE in (b). Reproduced with
permission from ref. [31].

Fig. 13. Comparison of the product formation rate and FE for two different electrodes
at three different surface area normalized flow rates. Reproduced with permission
from ref. [50].
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TaggedPpure CO2 (or solutions with different CO2 concentrations) is fed to
the cathode, implies that the flow rate should be also normalized
with respect to the CO2 content. This exercise was nicely per-
formed in a recent study on Sn-GDE electrodes, where the Ar/CO2

ratio was systematically varied, while the flow rate was kept con-
stant [85].

TaggedPIn a very recent study, copper hollow fiber electrodes were
employed as both the gas diffusion layer and cathode electrocata-
lyst; and the effect of CO2 flow rate on the cell performance was
studied [31]. As presented in Fig. 12, there is a considerable effect on
both the overall current density and the FE for CO generation. The
enhancement in FE towards CO as a function of CO2 flow rate is con-
sistent with a concurrent increase in current density, suggesting that
the FE of CO strongly depends on the efficiency of mass transfer of
CO2 to the electrode surface. After reaching a certain flow rate, the
achieved steady behavior suggests that most active catalyst sites are
involved in the reaction and the kinetically controlled regime was
reached [31]. The importance of CO2 transport in nanostructured
electrodes was also demonstrated for electrodeposited Cu nano-
foams, where a thickness-dependent selectivity was observed for
the formation of formic acid and CO (vis-a-vis hydrogen evolution)
[110].

TaggedPA similar trend was reported for a dual microfluidic reactor,
where after reaching a certain threshold, further increase of the flow
rate had no effect on cell performance [37]. Over this flow rate, mass
transfer rate of CO2 through the GDE becomes the bottleneck. A
higher porosity and smaller thickness of the GDL may help to
improve the performance, however, its coherent structure has to be
maintained to sustain its mechanical stability and its electronic com-
munication with the current collector.

TaggedPBesides the achievable current density, product distribution can
also be tailored by the flow rate. For example, the effect of flow rate
on the H2/CO ratio was studied in a hybrid PEM/microfluidic reactor,
having a Ag cathode and Ru anode [59]. It was demonstrated that by
controlling the current density and the CO2 flow, it was possible to
tailor the H2:CO product ratio between 1:4 and 9:1. Not surprisingly,
by limiting the amount of CO2 reaching the electrode surface, an
increase in the H2:CO ratio was seen. At the same time, this increase
in the ratio was not accompanied by any change in the cell voltage
or cathode potential [59]. Importantly, after a short induction period,
the product ratio was maintained for a relatively long time (5 h).
These data suggest that there is considerable scope for tailoring the
product ratio, for syngas formation, simply by optimizing the flow
rate. Notably, such output can be directly utilized in different chemi-
cal processes, for example in the Fischer�Tropsch synthesis.

TaggedPFinally, we highlight a study where considerable attempt was
made to normalize the flow rate, although with the geometrical sur-
face area. Experiments were carried out at three different electrolyte
flow (Q) / electrode area (A) ratios and both the amount of the
TaggedPformed products, as well as their distribution varied [50]. Even more
interestingly, a Cu electrocatalyst with two different morphologies
(Cu plate and Cu2O derived Cu on carbon support) were compared,
and different behavior was seen (Fig. 13). This may be rooted, at least
partially, in the different electrochemically-active surface area in the
two cases, further highlighting the importance of the suggested nor-
malization protocol (see Section 5).

4.3. Temperature and pressure

TaggedPAs seen in Table 2, there are only few examples where the pres-
sure and temperature were varied from ambient values. The num-
ber of systematic studies is even smaller [59,60,103,111], but it
seems that higher operating temperatures correlate with higher
currents (Fig. 14). This effect however is also complex, because
higher temperature leads to lower CO2 solubility (causing also a
change in the pH), but higher diffusion coefficient and reactivity
[29]. In these studies the temperature had little effect on the selec-
tivity [103], but this is likely to vary a lot depending on the electro-
catalyst. Over a certain temperature, current increase is associated
with a decrease in FE of CO2 conversion, and thus increased H2 evo-
lution [60]. Our own, currently ongoing work suggests that lower
temperatures (e.g., 3 °C) promote ethylene formation over methane
for copper-based cathodes in a GDL-configuration. Considering the
complex effects of temperature, many more studies are needed in
this direction with in situ monitoring of the temperature in the
electrolyzer, which is not trivial.



Fig. 14. The effect of temperature on the operation of two CO2 electrolyzers with Ag (a) and Cu felt (b) cathode. Reproduced with permission from refs. [59,111].
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TaggedPThe effect of pressure is even less studied although increased
pressure: (i) increases the solubility of CO2 according to Henry's law;
(ii) enables work at higher temperatures; (iii) makes it easier to
store, or to react the products (e.g., syngas) further to value-added
products. The pressure was gradually increased in a combined PEM
+microfluidic reactor setup (see Fig. 3A) from atmospheric to
20 atm. A five-fold increase in FE towards CO evolution was seen
both at room temperature and at 60 °C (Fig. 15) [60].

4.4. Effect of the applied potential/voltage

TaggedPThe potential/current dependent product distribution has been
extensively studied in batch reactors. Much less is known about con-
tinuous-flow setups, but a comprehensive study using a PEM elec-
trolyzer (Cu cathode, Pt anode) was able to detect as many as 16
reaction products (Fig. 16). At low overpotentials, only hydrogen,
CO, and formate were observed, with the dominance of hydrogen
formation at very low overpotentials. As the overpotential increased,
cumulative FE of CO2 reduction products increased versus H2 forma-
tion. First hydrocarbons (methane and ethane) were formed, while
at even higher voltages, C2�C3 products were produced [19].

TaggedPThe effect of the applied potential is less complex in those cases
where only one product (e.g., formate, CO) is formed [38,112,113].
Note however that H2 evolution is a competing reaction even in
these instances. As the external driving force (potential/voltage) is
increased, this latter becomes more and more prominent, leading to
a volcano-type plot for the Faradaic efficiency of the product with
the applied potential. One hand, this is disadvantageous, since the
production rate of the intended product cannot be increased while
maintaining a high energy-efficiency. On the other hand, this gives
the opportunity to form specific product mixtures. For example,
using a silver containing GDE cathode, the H2/CO ratio was tuned to
form readily processable syngas simply by varying the applied cur-
rent density (and hence the potential) [59].

4.5. Timescale of the experiments

TaggedPAs seen in Table 2, the timeframe of the electrolysis experiments
span a few minutes to a few hours. Interestingly, in many cases, no
Fig. 15. The effect of pressure on the FE value for a combined PEM +microfluidic CO2

electrolyzer with a Ag GDE cathode. Reproduced with permission from ref. [60].
TaggedPstationary electrolysis was performed, and the current values were
gathered from linear sweep voltammetry (LSV) experiments. There
are only a few studies where the product distribution was reported
as a function of time. This information would be crucially important
in assessing the stability of the electrocatalyst and the entire elec-
trolyzer assembly. For example, the H2/CO ratio was monitored
during a galvanostatic experiment (Fig. 17), using a silver GDE. The
monotonic increase in the H2 evolution ratio (and the decrease of
FEco) was rationalized by alteration of the electrode, in particular
increased wetting of the GDL [103]. A recent study, employing a
solid catholyte and an anion-exchange membrane showed stable
selectivity and cell voltage over 250 hours of operation at
100mA cm¡2 [53].
Fig. 16. Effect of applied voltage on the product distribution in a continuous-flow CO2

electrolyzer with a Cu cathode. Adapted with permission from ref. [19].



Fig. 17. Alteration of the product selectivity with time in a pressurized PEM electro-
lyzer with a silver cathode. Reproduced with permission from ref. [103].
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5. How to benchmark a CO2 electrolyzer correctly?

TaggedPAs data-mining turns into a major component of every research
project, it is now more important than ever to report experimental
data (and the drawn conclusions) in a manner where comparisons
from laboratory to laboratory can be easily made. According to les-
sons learned from allied R&D fields (most importantly fuel cells and
electrochemical water electrolysis), setting up a proper benchmark-
ing protocol leads to a more coherent knowledge of these systems,
and consequently to an accelerated development of these fields
Table 3
Proposed benchmarking protocol for continuous-flow CO2 electrolyzers.

Characterization method Requirements

Physical and chemical characterization methods 
(XRD, XPS, TEM, SEM, EDS, Contact angle, 

and surface area measurements, etc.)

Multiple scale analysis has to be pe
for the electrocatalyst and the 

Cyclic voltammetry and linear sweep 
voltammetry of the individual electrodes. 

Measurement of Tafel-plots

No Faraday process shall occur d
reference electrode is needed. Both
the two electrodes, and before opera

cell. IR-compensation shall be c

Electrochemical impedance spectroscopy Multiple voltage values shall b

Linear sweep voltammetry 

Multiple scan rates. Several subsequ
the stationary behaviour is reached. C

measurements with and without C
carried out, with solutions of the

 Stationary electrolysis 
(chronoamperometry/chronopotentiometry) 

coupled with product analysis

Online analyis of both gas and li
products. Measure on multiple cur

values (at least 5).

Long term stationary electrolysis 
(chronoamperometry/chronopotentiometry) 

coupled with product analysis

Online analyis of both gas and li
products after selected time p

Electrochemical impedance spectroscopy Multiple voltage values shall b

Cyclic voltammetry and linear sweep 
voltammetry of the individual electrodes. 

Measurement of Tafel-plots

The same measurements as before o
inside and outside the ce

Physical and chemical characterization methods 
(XRD, XPS, TEM, SEM, EDS, Contact angle, 

and surface area measurements,  etc.)
The same measurements as befor

Paramaters related to the operation of the electrolyz

Parameters describing the cell setup
TaggedP[114�118]. Such a protocol should include characterization of both
the electrochemical cell-forming components separately as well as
the complete cell itself, via a set of systematic studies. We suggest
the following benchmarking experiments to be carried out and a list
of figures-of-merit to report, as a framework for testing a new elec-
trolyzer setup. Table 3 briefly summarizes these items, and each of
them is further elaborated in what follows.

TaggedPReporting the exact details of the cell is of prime importance. This
should cover the dimensions of the cell components, their physical
and chemical properties (e.g., membrane and GDL type and thick-
ness, chemical composition, pretreatment method), and the degree
of compression. We reiterate our earlier point, that without this
information, the flow rate of the electrolyte (or the gas)—which is
usually provided in units such as sccm or ml/min—gives only very
limited information on the retention time of CO2 in the cell. The flow
rate of the electrolyte therefore should be always normalized by
either the free volume of the half-cell or with respect to the electro-
chemically-active surface area of the electrode (or both).

5.1. Pre-operational characterization

TaggedPThe electrocatalyst is the core component of any electrochemical
setup, therefore its comprehensive physical and chemical characteri-
zation must be the first step of every experimental work. These
 

Data to report

rformed both 
support.

 Chemical composition,
size distribution, shape, dominant crystal 

orientation, surface properties

uring CV, 
 separately for 
tion inside the 
arried out

Electrochemically active surface area, onset 
potential value at a given current density.

e used. Rs, Rct, C

ent scans, till 
omparison of 
O2 shall be 
 same pH.

LSV curves, current density normalized to 
both geometric and electrochemically active 
surface area. Onset potential value at a given 

current density.

quid phase 
rent/voltage 

Faradaic efficiencies for ALL products, 
including H2 (for all current/voltage values).

quid phase 
eriods.

Faradaic efficiencies for ALL products, 
including H2 (for all current/voltage values) 

with respect to the elapsed time.

e used. Rs, Rct, C

peration both 
ll Electrochemically active surface area

e operation
 Chemical composition,

size distribution, shape, dominant crystal 
orientation, surface properties

Operation

POST operation

er

PRE operation

Cell configuration and size, properties and dimensions of the 
individual components (e.g., membrane and GDL thickness), 

catalyst loading

pH, temperature, pressure, electrolyte concentration, surface 
area/free volume normalized flow rate

Data to report
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TaggedPstudies must involve physical, chemical, and surface characteriza-
tion via different spectroscopic techniques (FT-IR, Raman Spectros-
copy), electron microscopy (TEM, SEM), elemental composition
analyses (EDX, XRF), surface composition and functional groups
analysis (XPS) and crystal phase determination (XRD). Similar char-
acterization of the supporting layer (GDL) must be also performed,
supplemented with the characterization of its pore structure (e.g.,
N2 adsorption/desorption).

TaggedPAlthough the catalyst morphology is one of the most important
factors after the chemical composition, often little information could
be found in the different articles. We recommend multi-level analy-
sis to be performed before and after immobilizing the catalyst on the
substrate, revealing crystallite size, crystallinity of the material,
degree of aggregation, and surface properties of the particles. The
geometric surface area of the immobilized catalyst can be estimated
from the recorded microscopic images, but it must be kept in mind
that the electrochemically-active surface area can immensely differ
from this value. Therefore this latter parameter has to be calculated
from EIS measurements, or by simply recording cyclic voltammo-
grams in a potential window where no Faradaic process interferes
[119]. For certain electrocatalysts, the use of model redox active
compounds can also be useful.

TaggedPThe activity of an electrocatalyst is most usually characterized by
recording linear sweep or cyclic voltammograms. As these are non-
stationary measurements (even at low polarization rates), the values
of derived kinetic parameters from these, must be treated with cau-
tion. Recording of polarization curves provides complementary data.
In this case, the stationary potential is recorded at different current
densities (spanning several orders of magnitude), and then plotted
versus the logarithm of the current densities to afford Tafel plots
(Fig. 18). The linear region of the curve is fitted to give the Tafel-
slope, which � together with the onset potential of the process � is
the most important parameter describing the electrocatalyst.

TaggedPBy performing LSV measurements for the single electrodes in a
classical three-electrode electrochemical cell and in the assembled
electrolyzer under otherwise identical circumstances (electrolyte
concentration, pH, temperature etc.), the effect of the cell construc-
tion method (hot pressing, mechanical fixation, etc.) on the catalyst
properties can be studied directly. EIS measurements are very useful
at this early stage of investigating the cell, as they can reveal any
additional resistances (Rs, Rct), arising from failure of the cell assem-
bly and leading to severe losses due to IR-drops in the system. Note,
that during electrolysis, as a current (I) is driven between the work-
ing and the counter electrode, a potential drop (IR) develops in the
setup; originating from the resistance of the cell constituents, the
electrolyte, and the membrane. In a three-electrode electrochemical
setup, the potential of the working electrode is measured against a
stable reference electrode. Although these electrodes are placed
very close to each other, some portion of this potential drop is
still present between them, which is caused by the so called
Fig. 18. Tafel plot of different Ag electrocatalysts in a 0.1M KHCO3 solution purged
with CO2. Reproduced with permission from ref. [120].
TaggedPuncompensated resistance (Ru).The IRu-drop is dictated by the cell
geometry and is dependent on the applied current and its presence
leads to distortion of the electrochemical measurements [78]. To
secure reliable data on the catalyst activity, the measured potentials
must be always corrected for the value of this uncompensated
potential drop. For this purpose, the uncompensated resistance has
to be measured, which is typically done by either EIS or by the cur-
rent-interruption technique [121,122]. Overall, the discrepancy
between actual and applied voltage requires the use of IR compensa-
tion to get reproducible data that is comparable between different
laboratories for the various cells, especially those operating at high
current densities.

5.2. In operando characterization

TaggedPThe most important part of these studies is the investigation of
the assembled flow cell during operation. To study the kinetics of
CO2 reduction in the given setup, LSV measurements should be car-
ried out at multiple scan rates. Note that measurements at the first
sweep rate must be repeated until steady-state electrochemical
behavior is reached. Information gathered from the first cycles can
often be misleading, because the measured current can originate
from multiple sources, including the reduction of the electrode sup-
port or the electrocatalyst itself—as it was observed for the case of
Cu2O derived Cu catalysts [20]. The LSV curves must be always nor-
malized to the geometric surface area and/or to the electrochemi-
cally active surface area of the cathode. Comparison of such data
to results measured with chemically-equivalent, but different sized
catalyst particles can help to understand different size effects
beyond the trivial increased surface area/volume ratio. Here we refer
to the discussion on the importance of having one or more reference
electrodes in the cell (see Fig. 3).

TaggedPThe estimation of the onset potential of a process is always a dif-
ficult question. Some researchers derive this value graphically from
the LSV curves, while others give the potential value at which the
current reaches a certain threshold value. Consequently, the com-
parison of these data is difficult and often misleading. To avoid con-
fusion, we suggest 1 and 10mA cm‒2 as a benchmarking current
density (note the similarities with solar powered water oxidation
and H2 evolution) [118]. The LSV measurements serve as a decent
guide for choosing the proper potential/current region, where CO2

reduction studies have practical relevance. Subsequently performed
stationary measurements, either at constant current or constant
potential/voltage give real insights into the performance of a given
setup. These time-dependent experiments must be coupled with in
situ product analysis, both for the liquid and the gas phases, since
these are better tools for determining the onset voltage (potential)
than just using LSV curves.

TaggedPDesigning a proper product-detection setup, however is not
straightforward, because there is no single analytical method which
can characterize both quantitatively and qualitatively all reduction
products generated from CO2. First, for the analysis of the gas and
liquid phase products, we generally need different analysis tools. An
online sampling system should be connected to a gas chromatograph
(for gas phase analyses) and sealed to avoid any leakage. We high-
light a recent development, the barrier ionization discharge (BID)
detector, which is universal with greater sensitivity than both the
thermal conductivity- (TCD), and flame ionization detectors (FID).
Consequently, there is no need for two different detectors to mea-
sure H2 gas and the CO2 derived products [123].

TaggedPAnalysis of the liquid phase is a little more complicated, because
the electrolyte ions must be either removed for the most sensitive
GC�MS analysis, or higher sample concentrations are needed for
NMR analysis. The performance of the NMR analysis, however, can
be improved by special cell design with high surface area working
electrode and very low electrolyte volume [124]. Differential
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TaggedPelectrochemical mass spectrometry (DEMS) is an effective tool for
the real-time detection of electrochemical reduction products, how-
ever, the interpretation of the results can be complicated for a reac-
tion which gives a mixture of different products [125]. For example,
DEMS cannot be used for detection of CO, because CO2 gives the
same ionization fragments. The quantitative detection of formic
acid, because of its deprotonation, is challenging by GC and DEMS
as well. The amount of formate can be reliably quantified by ion
chromatography. By this technique, however, other solution com-
pounds (e.g. different alcohols) cannot be analyzed [126]. It is
therefore of utmost importance to follow the reaction with differ-
ent instrumental techniques, and to account for all the charge
passed during the electrolysis.

TaggedPIt is recommended to clearly state in every manuscript: (i) detec-
tion limit for the employed analytical instrument and (ii) the partial
current density for the observed product at the onset voltage. We
emphasize that because of the frequent use of carbon-based catalyst
supports, studies with 13C labeled CO2 should be performed to clarify
the origin of the carbon-containing products. Finally, we note that
the selected analytical methods have to be compatible with the elec-
trolyzer setup, possibly limiting the application of certain (otherwise
promising) techniques.

TaggedPThe Faradaic efficiency (FE) for all the formed compounds as well
as the overall FE has to be reported. Note that FE as defined is strictly
the ratio of the charge consumed on a given process and the passed
total charge. Some authors—without analyzing the liquid or the gas
phase products—mistakenly and misleadingly refer to the ratio of
the given product amount and the detected total amount of all the
products as the Faradaic efficiency. Similarly, H2 is also a product
(although not CO2-derived), therefore must be taken into account
for these calculations.

TaggedPThe operation of the electrolyzer must be also characterized on a
longer timescale. Therefore, the above listed measurements—or at
least those which were promising in the sense of current density
and product distribution —has to be conducted for several days,
while the product distribution is traced after regular time periods.
Keep in mind that water electrolyzer cells, working on very similar
principles and built from almost identical materials have a reported
lifetime in the range of 10,000 h [127], and similarly long lifetimes
are required for CO2 electrolyzers in practical applications.

5.3. Post-operational characterization

TaggedPAfter the long-term operation, degradation of the electrochemi-
cal cell must be investigated at every level, by repeating the same
measurements as before operation, in the reversed order. Thus, an
EIS measurement of the cell can reveal corrosion of the cell constitu-
ents, while change in the onset potential (derived from LSV meas-
urements) can indicate chemical change of the catalyst. After
disassembling the cell, the catalysts must be characterized sepa-
rately with the formerly used experimental techniques, revealing
changes in the catalyst particle size, aggregation, composition, and
in the structure of the membrane or the GDL, etc. [128].

5.4. Most important metrics to report

TaggedPTalking about the efficiency of the cell, one must distinguish
among current-, electrical-, and energy efficiency. The current effi-
ciency (or Faradaic efficiency, eFaradaic) of the process is a direct rela-
tion between the number of electrons consumed in a given
electrode process and the total amount of the charge passed during
the electrolysis. Energy efficiency of a given cell is somewhat more
complex concept, as it is not only influenced by the thermodynamics
and kinetics of the electrode processes, but electrical parameters of
the cell as well. The measurement conditions and heat exchange effi-
cacy during the process may also be important parameters. These
TaggedPcan be defined in different ways, and therefore are a common source
of confusion [129].

TaggedPThe most commonly applied, and most straightforward defini-
tion is the voltage efficiency of the cell, which gives a good approxi-
mation on its operation. This is calculated as the ratio of the
thermodynamic voltage needed to drive the given electrochemical
process (given by the redox potential of the half-reactions) and the
total voltage applied to the electrolysis cell (Vcell). Beyond the ther-
modynamic requirements of the reaction, this latter value is dic-
tated by different energy losses, related to the catalysts (anodic and
cathodic overpotential, hi), to mass-transport, and to the cell itself
(IR-drop). Fig. 19 summarizes the most common mechanisms,
which lead to an increased cell voltage. Note that the shape of the
curves may also be useful for diagnostic purposes when an electro-
lyzer fails. In addition, these factors can be separated by the above
described benchmarking protocol, thus uncovering future develop-
ment avenues [130].

TaggedPThe above-mentioned efficiency units alone, however, are of
low industrial relevance. To give an exact measure on its operation,
the energy efficiency of the cell must be calculated during long-
term operation. The energy efficiency is most commonly calculated
as the product of the voltage- and Faradaic-efficiencies [15]. This is
only true, however, if only one single product is formed. If this is
not the case (i.e., multiple products are formed in parallel), the
individual redox potentials (e.g., E°CO2/CH4) have to be taken into
consideration Eq. (2).

Vcell ¼ E0anode � E0cathode þ
X
i

hi þ IRcell ð1Þ

ɛenergy ¼
P

i E0anode;i � E0cathode;i
� �

� ɛFaradaic;i

Vcell
ð2Þ

TaggedPThe energy efficiency can be also defined as the energy content
(Econtent) of the given product over the electrical energy consumed
during electrolysis, where t is the time of electrolysis to form unity
amount of the product. The chemical energy of the produced mole-
cules can be expressed by their Gibbs free energy per mole (DG0). In
some articles, the heat of combustion, or enthalpy, has been used to
represent the energy content:

ɛenergy ¼ Econtent
Einput

¼ Econtent
Vcell � Icell � t

ð3Þ

6. Photoelectrochemical reduction of CO2 in continuous-flow

TaggedPAs a possible alternative on a longer horizon, we would like
to briefly mention a few examples of continuous flow
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TaggedPphotoelectrochemical (PEC) cells, demonstrated in CO2 conversion.
Historically, PEC solar fuel generation was predominantly focused
on water splitting (H2 evolution), and much less attention was paid
to CO2 reduction, mainly because of kinetic constraints [131]. In
direct PEC CO2 reduction, upon excitation of an electron from the
valence band to the conduction band (by UV or visible light irradia-
tion) of a p-type semiconductor (SC) the separated photoelectrons
are driven to the surface of the SC and react with CO2 (or a redox
mediator/co-catalyst present either on the surface or in the solu-
tion). The CO2-reducing ability of the photo-electrocatalyst is dic-
tated by the position of the conduction band (CB) edge: it has to be
at a more negative potential than the targeted CO2 reduction reac-
tion. In such a procedure, it is possible to reduce CO2 at less negative
potential relative to the thermodynamic potential (vs. electrochemi-
cal reduction). The indirect PEC approach is also possible, where an
n-type semiconductor photoanode is employed, and CO2 reduction
takes place at the cathode in the dark [132]. By employing either PEC
approach, the necessary energy input (cell voltage) can be decreased
by the photopotential, which is dictated by the CB edge of the SC
photocathode and the redox potential of the CO2 reduction process
(or the VB edge of the photoanode and the water oxidation potential,
for the indirect approach).

TaggedPTo enhance the current densities to a level which makes practical
significance, however, photoelectrodes with large specific surface
area are needed. This necessitates the use of nanostructured photo-
electrodes, which is a surprisingly unexplored area, in fact, the long-
standing theory of PEC builds on thick electrode films (with film
thickness of over several micrometers) [133]. To efficiently drive
CO2 reduction reactions, these carriers need to reach the photo-
electrodes interfaces at the electrolyte and at the back contact.
Therefore it will be very important to understand the effect of nano-
structuring on carrier generation and collection, surface recombina-
tion, and on the size of space charge layers [134].

TaggedPThere are only a few examples in the literature, which at least
demonstrate the concept of continuous-flow PEC CO2 conversion. In
a recent proof-of-concept study, hybrid CuO/Cu2O nanorod arrays
were incorporated as the photocathode in a new continuous-flow
design [68]. The performance of the photocathode was compared to
a conventional two-compartment batch type PEC cell. The primary
products were alcohols, with a yield which was »6 times higher
than the batch design, and significantly enough, also showed longer-
chain alcohol products up to C2‒C3 (ethanol and isopropanol). The
high surface area-to-volume ratio resulting from the narrow
Fig. 20. Schematic illustration of the indirect PEC approach wit
TaggedPreaction channels resulted in an enhance photocurrent density and
Faradaic efficiency.

TaggedPEven more recently, NASA researchers reported a PEC conversion
device, operated at room temperature and ambient pressure with
only ultraviolet radiation [135]. They used a nanocomposite elec-
trode which combines a photocatalyst and an electrocatalyst, capa-
ble of reducing gaseous CO2 to methane without the need of
external electricity input. Considering the typical solar flux, the
achievable current densities are typically lower for these cells
(»10mA cm¡2) compared to the electrolyzers presented earlier. In
addition, long term stability is an addition hurdle to face, therefore
stability tests are even more important in these instances. In other
instances, the indirect approach was employed, where the oxidation
half reaction took place on a photoexcited n-type semiconductor
(specifically, TiO2). As shown in Fig. 20, the overall cell design is very
similar to the conventional PEM electrolyzers, except that the anode
is irradiated [132,136]. The principal benefit of this setup is that all
the knowledge gathered for the cathode reaction (CO2 conversion)
can be implemented, while the solar energy input is harnessed.

TaggedPIn the case of PEC cells, the photon to product conversion effi-
ciency is defined as the output power, namely, the product of volt-
age, partial current densities, and Faradaic efficiency for the
formation of different products, divided by the denominator,
namely, the solar energy input from sunlight:

hPEC ¼ jphoto � P
i Vredox;i � Vbias
� � � ɛFaradaic;i

Plight
ð4Þ

where jphoto is the photocurrent density (mA cm¡2) normalized to
the illuminated electrode area, Vredox is the thermodynamic potential
of the given process, Vbias is the applied voltage, eFaradaic,i are the
partial Faradaic efficiencies for the different products, and Plight is
the power of the incident illumination [137,138].

TaggedPAlternatively, Eq. (5) uses the chemical energy of the products
formed divided by the solar energy input from sunlight incident on
the electrode. In this expression, the nominator is directly related to
the formation rate of a given product, establishing a direct relation
to product analysis during the measurements. Note that this defini-
tion is similar to that conventionally used for solar to hydrogen
(STH) conversion [139], and is only applicable if no external bias is
employed (i.e., at short circuit conditions).

hPEC ¼
P

i vi � DGi

Plight � A
ð5Þ
h a PEM cell. Reproduced with permission from ref. [136].



Fig. 21. Schematic illustration of the chlor-syngas electrochemical process. Repro-
duced with permission from ref. [144].
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TaggedPwhere vi is the formation rate of a given product (mmol s¡1), DGi is
the Gibbs free energy per mole of a given product (J mol¡1), Ptotal is
the incident illumination power density (mWcm¡2), and A is the
illuminated electrode area (cm2).

7. Summary and outlook

TaggedPAs demonstrated in this review article, multiple parameters have
to be optimized simultaneously to efficiently perform continuous-
flow electroreduction of CO2. Some of them are well understood,
while others still need to be carefully studied. The effects of high
pressure and temperature are of particular interest to achieve rea-
sonable current density and selectivity. These parameters will also
affect the surface of the catalysts [140], which is another factor to be
studied in continuous-flow cells. Computational modeling can con-
tribute to the rational design of electrolyzer configuration. In this
vein, the reactor performance can be numerically simulated to
unravel the influence of flow rate and channel geometry on CO2 con-
version and consumption rate. Similarly, recent advances in 3D
printing allows rapid prototyping of different cell geometries and
thus will be a powerful tool in the hand of electrochemists [141].
Furthermore, we believe that successful studies in vapor phase will
open up the opportunity to use industrial exhaust fume (rich in both
CO2 and H2O) directly as feedstock for solar fuel generation. Accord-
ingly, different model gases containing typical impurities should be
studied in the future.

TaggedPAs for future development avenues, we would like to emphasize
two directions. One is coming from the materials perspective: the
need for intricate architectures where the elements of the GDE
are simultaneously optimized. As shown in Sections 3.3�3.5, ratio-
nally designed interfaces are required for efficient CO2 conversion.
In this endeavor, the cooperation of chemists, materials scientists,
and engineers is highly recommended. The second R&D path is
rooted in the fact that the anode reaction was oxygen evolution
(water oxidation, OER) in almost all the presented studies. In such
cases the formed oxygen is considered as a non-harmful by-product,
and is simply let to the atmosphere without using it for any purpose.
We also note that OER as the anode process can be important in
Space applications, namely as a root for the recovery of O2 from CO2.
With the interest of deep space exploration (i.e., possible prolonged
missions to Mars), it is of high importance to improve such key
enabling technologies. As for terrestrial applications, the formed
oxygen can be compressed and sold, but driving a more beneficial
electrochemical procedure on the anode could be a value-added
approach. In this manner, CO2 electrolyzers could be easily inte-
grated in other industrial processes, in which the main product is
formed on the anode.

TaggedPThere are several candidates, for example, using the oxidation of
organic pollutants on the anode, which is a kinetically-facile reac-
tion. Thus the electrolyzer can be employed as both CO2 converter
and water purifier (i.e., wastewater treatment with a net zero CO2

emission) adding value to the overall process [142]. This can be envi-
sioned by either directly oxidizing the organic pollutants, or indi-
rectly, by generating ozone on the anode. This concept is well-
known for water electrolyzers, in which hydrogen is produced on
the cathode, while oxidation of water pollutant occurs on the anode
[143]. Chlorine (Cl2) evolution is another technologically relevant
reaction, which might be worth coupling with CO2 reduction (also
called chlor-syngas process, see Fig. 21) [144]. Importantly, the
redox potential of chloride oxidation matches with that for the
water oxidation; therefore, this approach does not lead to an
increased cell voltage [145]. In this case, however, important precur-
sors of some commodity chemicals are formed on both the electro-
des. As these products are all in the gas phase, it is easy to separate
them from the aqueous electrolyte during a subsequent technologi-
cal step. This concept is very similar to the so called oxygen
TaggedPdepolarized cathode chlor-alkali cells, where chlorine is formed on
the anode, while oxygen gas is reduced on the cathode [146]. Plants
operating on this concept have been in operation for years; and
therefore the infrastructure and technological know-how are readily
available. Finally, while H2 oxidation at the anode is not a value-
added approach, it allows for gas feed on both sides, which can be
beneficial in certain instances [44,147].

TaggedPWe are also convinced that concentrated efforts need to be
devoted to scale-up and scale-out, to achieve reactor sizes which are
at least similar to industrially used water electrolyzers (2 MW). It is
worth emphasizing that conclusions drawn for electrochemical cells
offering very low current densities are not necessarily valid for those
with high currents. Consequently, analyzing electrodes/cells under
conditions which are far removed from those which are necessary
for practical applications, is a futile exercise. Finally, we hope that
the proposed benchmarking protocol will provide insightful guide-
lines to researchers involved in this endeavor and will lead to more
comparable results.
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