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Abstract

In a previous paper, we presented conjectures of the recurrence relations with con-

stant coefficients for the multi-indexed orthogonal polynomials of Laguerre, Jacobi,

Wilson and Askey-Wilson types. In this paper we present a proof for the Laguerre

and Jacobi cases. Their bispectral properties are also discussed, which give a method

to obtain the coefficients of the recurrence relations explicitly. This paper extends to

the Laguerre and Jacobi cases the bispectral techniques recently introduced by Gómez-

Ullate et al. to derive explicit expressions for the coefficients of the recurrence relations

satisfied by exceptional polynomials of Hermite type.

1 Introduction

The exceptional orthogonal polynomials have seen remarkable developments in recent years

in connection with exactly solvable quantum mechanical systems in one dimension [1]–[30]

(and the references therein). The exceptional orthogonal polynomials {Pn(η)|n ∈ Z≥0}

satisfy second order differential or difference equations and form a complete set, but there

are missing degrees, by which the constraints of Bochner’s theorem and its generalizations

[31, 32] are avoided. We distinguish the following two cases; the set of missing degrees

I = Z≥0\{degPn|n ∈ Z≥0} is case (1): I = {0, 1, . . . , ℓ−1}, or case (2) I 6= {0, 1, . . . , ℓ−1},

where ℓ is a positive integer. The situation of case (1) is called stable in [8]. By applying

the multi-step Darboux transformation [33] to the quantum mechanical systems described by

the classical orthogonal polynomials, various exceptional orthogonal polynomials with multi-

indices can be obtained. The choice of the seed solutions of the Darboux transformation leads

to case (1) or case (2). When the eigenstate or pseudo virtual state wavefunctions are used
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as seed solutions, we obtain case (2) [17, 27]. When the virtual state wavefunctions are used

as seed solutions, we obtain case (1) and call them multi-indexed orthogonal polynomials

[11, 26, 25].

The ordinary orthogonal polynomials {Pn(η)|n ∈ Z≥0, degPn = n} satisfy the three term

recurrence relations, and conversely the polynomials satisfying the three term recurrence

relations are orthogonal polynomials (Favard’s theorem [32]). Since the exceptional orthog-

onal polynomials are not ordinary orthogonal polynomials, they do not satisfy the three

term recurrence relations. Recurrence relations for exceptional polynomials were discussed

by several authors [7, 34, 35, 36, 37, 38]. In our first paper [34], we showed that M-indexed

orthogonal polynomials PD,n(η) (D = {d1, . . . , dM}) of Laguerre, Jacobi, Wilson and Askey-

Wilson types satisfy 3 + 2M term recurrence relations with variable dependent coefficients.

In our second paper [38], we discussed recurrence relations with constant coefficients for the

multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types,

X(η)PD,n(η) =
L∑

k=−L

rX,D
n,k PD,n+k(η), and gave conjectures on the condition for the polyno-

mial X(η). Recently Gómez-Ullate, Kasman, Kuijlaars and Milson studied the exceptional

Hermite polynomials with multi-indices and showed the recurrence relations with constant

coefficients [39]. Their method can be applied to the Laguerre and Jacobi cases and we can

prove the recurrence relations with constant coefficients for the multi-index Laguerre and

Jacobi polynomials conjectured in [38]. This is the first motivation of the present paper.

The second motivation of the present paper is a study of the bispectral property [32, 40]:

H̃DPD,n(η) = EnPD,n(η), ∆X,DPD,n(η) = X(η)PD,n(η), (1.1)

where H̃D is the second order differential operator of η and ∆X,D is a certain shift operator of

n. In [39] they also studied bispectral properties of the exceptional Hermite polynomials with

multi-indices. Their key point is the anti-isomorphism ♭, which originates from ‘bispectral

Darboux transformation’ [41]. We explain it briefly. The operators ∂η and η act on the

Hermite polynomial Hn(η) as ∂ηHn(η) = 2nHn−1(η) and ηHn(η) =
1
2
Hn+1(η) + nHn−1(η).

By introducing the operators Γ = 2ne−∂n and ∆ = 1
2
e∂n + ne−∂n , we have ∂ηHn(η) =

ΓHn(η) and ηHn(η) = ∆Hn(η). Since commutators among these operators are [∂η, η] = 1

and [∆,Γ] = 1 (and other commutators vanish), we have an algebra anti-isomorphism ♭ :

C[∂η, η] → C[∆,Γ], ♭(ηi∂jη) = Γj∆i (i, j = 0, 1, . . .). The exceptional Hermite polynomial

PD,n(η) and the original Hermite polynomial Hn(η) are related by the multi-step forward
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and backward shift operators, F̂ (D) and B̂(D) (These are our notation, see AppendixA. F̂ (D),

B̂(D) and η correspond to A, B and x in [39], respectively). They are differential operators

of η (F̂ (D) ∈ C[∂η, η], B̂
(D) 6∈ C[∂η, η]) and commute with ∆ and Γ. For an appropriate

polynomial X(η) that gives recurrence relations with constant coefficients, the operator

ΘX,D = B̂(D) ◦X(η) ◦ F̂ (D) belongs to C[∂η, η]. Then the operator ∆X,D = ♭(ΘX,D) ◦ π
−1
D (n),

where πD(n) is a certain function of n and f−1 means f−1(x) = f(x)−1, gives X(η)PD,n(η) =

∆X,DPD,n(η) (X and ∆X,D correspond to f , ∆̃f in [39], respectively). To derive this result,

the commutativity [∆X,D, B̂
(D)] = 0 is important. By using this result, we can obtain the

coefficients rX,D
n,k explicitly.

This argument can be applied to the Laguerre and Jacobi cases but a slight modification is

needed. The reason is that the Hermite polynomial Hn(η) has no parameter but the Laguerre

L
(α)
n (η) and Jacobi P

(α,β)
n (η) polynomials have parameters (α and β). We explain this taking

the Laguerre case as an example. The three term recurrence relations of the Laguerre

polynomial L
(α)
n (η) give ηL

(α)
n (η) = ∆L

(α)
n (η), ∆ = −(n + 1)e∂n + 2n+ α + 1− (n+ α)e−∂n .

For differentiation, a well known formula is the forward shift relation ∂ηL
(α)(η) = −L

(α+1)
n−1 (η)

and it may lead us to define Γ′ = −e−∂ne∂α. Their commutators are

[∆,Γ′] = I ′, [I ′,∆] = [I ′,Γ′] = 0, I ′ = (1− e−∂n)e∂α , I ′L(α)
n (η) = L(α)

n (η), (1.2)

and ∆, Γ′ and I ′ commute with ∂η and η. However Γ′ and I ′ do not commute with α.

Since the operator B̂(D) contains the parameter α as a coefficient of ∂kη , the commutativity

[∆X,D, B̂
(D)] = 0 is lost. The operator Γ should contain n-shifts only. The expression of Γ

becomes more complicated than the Hermite case. The important map ♭ can be defined but

it is no longer anti-isomorphism. The details are given in the main text.

This paper is organized as follows. In section 2 we prove the conjecture of the recurrence

relations with constant coefficients for the multi-indexed Laguerre and Jacobi polynomials.

After recapitulating some fundamental formulas of the multi-indexed Laguerre and Jacobi

polynomials in § 2.1 and the conjecture in § 2.2, a proof is given in § 2.3. In section 3

we discuss the bispectral property of the multi-indexed Laguerre and Jacobi polynomials.

After preparing some algebra and shift operators in § 3.1, we define the map ♭ for any

ordinary orthogonal polynomials in continuous variable in § 3.2. By using this map, the

bispectral property, Theorem2, is established in § 3.3. Examples for Theorem2 are presented

in § 3.4. The final section is for a summary and comments. In AppendixA we review the
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algebraic aspects of the Darboux transformation, which are used to derive various properties

of the exceptional orthogonal polynomials with multi-indices. In AppendixB the algebraic

properties of the multi-indexed Laguerre and Jacobi orthogonal polynomials are reviewed.

The formulas (A.32) and (B.20) are new. These two Appendices fix the notation in this

paper.

2 Recurrence Relations with Constant Coefficients

In this section we prove the conjecture of the recurrence relations with constant coefficients

for multi-indexed Laguerre and Jacobi orthogonal polynomials given in [38].

2.1 Multi-indexed orthogonal polynomials

The Darboux transformation and the multi-indexed orthogonal polynomials of Laguerre and

Jacobi types are reviewed in AppendixA and B, and we follow the notation there. For a set

of labels D = {d1, . . . , dM}, we write Hd1...dM , φd1...dM n(x), Pd1...dM ,n(η), Ξd1...dM (η), Âd1...dM ,

Â(d1...dM ), F̂d1...dM , F̂ (d1...dM ), ℓd1...dM , etc. as HD, φD n(x), PD,n(η), ΞD(η), ÂD, Â
(D), F̂D,

F̂ (D), ℓD, etc., respectively. We assume that the parameters (g and h) are generic such that

cΞD 6= 0 (B.14), cPD,n 6= 0 (B.15) and En − Ẽdj 6= 0.

The multi-indexed orthogonal polynomials of the Laguerre and Jacobi types PD,n(η) and

the original Laguerre and Jacobi polynomials Pn(η) are related as follows:

F̂ (D)Pn(η) = ρ
(D)

F̂
(η)W[µd1 , . . . , µdM , Pn](η) = PD,n(η), (2.1)

B̂(D)PD,n(η) = ρ
(D)

B̂
(η)W[m1, . . . , mM , Pn](η) = πD(n)Pn(η), (2.2)

where F̂ (D), B̂(D), µv(η), ρ
(D)

F̂
(η), ρ

(D)

B̂
(η) and mj(η) = m

(D)
j (η) are defined by (A.41), (A.42),

(B.11), (B.21), (B.22) and (B.23), respectively (see also (A.40)), and the constant πD(n) is

defined by

πD(n)
def
=

M∏

j=1

(En − Ẽdj). (2.3)

This polynomial PD,n(η) satisfies the second order differential equation (see (B.37)–(B.39)),

H̃DPD,n(η) = EnPD,n(η), (2.4)

−1
4
H̃D = c2(η)

d2

dη2
+
(
c11(η)− 2c2(η)

∂ηΞD(η)

ΞD(η)

) d

dη
+ c2(η)

∂2ηΞD(η)

ΞD(η)
− c10(η)

∂ηΞD(η)

ΞD(η)
. (2.5)
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Here c11(η) = c1(η,λ
[MI,MII]), c10(η) = c1(η,λ

[MI,MII] − δ) and c2(η) are

c11(η) =

{
g +MI −MII +

1
2
− η : L

h− g − 2MI + 2MII − (g + h+ 1)η : J
, (2.6)

c10(η) = c11(η) +

{
−1 : L
2η : J

, c2(η) =

{
η : L
1− η2 : J

, (2.7)

where Mt = #{dj | dj : type t, j = 1, . . . ,M} (t = I, II). The degrees of PD,n(η) and ΞD(η)

are ℓD + n and ℓD respectively, and ℓD is given in (B.12). We set Pn(η) = PD,n(η) = 0 for

n < 0.

2.2 Recurrence relations with constant coefficients

In our previous paper [38], we discussed the recurrence relations of the multi-indexed La-

guerre or Jacobi polynomials with constant coefficients,

X(η)PD,n(η) =

L∑

k=−L

rX,D
n,k PD,n+k(η) (∀n ∈ Z≥0), (2.8)

where rX,D
n,k ’s are constants and X(η) is some polynomial of degree L in η. To find such

X(η) is our purpose. This problem is rephrased as follows (Remark 3 in § II of [38]): Find a

polynomial X(η) such that the operator ΘX,D
def
= B̂(D) ◦X(η) ◦ F̂ (D) maps polynomials in η

to polynomials in η. The coefficients rX,D
n,k are expressed as (Proposition 1 in [38])

rX,D
n,k =

r
(0)X,D

n,k∏M
j=1(En+k − Ẽdj )

, (2.9)

where the constants r
(0)X,D

n,k are obtained from the relations among the classical orthogonal

polynomials

ΘX,DPn(η) =
L∑

k=−n

r
(0)X,D

n,k Pn+k(η)
(
=

L∑

k=−L

r
(0)X,D

n,k Pn+k(η)
)
. (2.10)

If the two polynomials in η, ΞD(η) = Ξd1...dM (η) and Ξd1...dM−1
(η), do not have common

roots, the necessary condition for X(η) is the following (Proposition 2 and its Remark in

[38]): dX(η)
dη

is divisible by ΞD(η), namely

dX(η)

dη
= ΞD(η)Y (η), Y (η) : a polynomial in η. (2.11)
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Since the overall normalization and the constant term of X(η) are irrelevant, we take the

candidate X(η) as

X(η) =

∫ η

0

ΞD(y)Y (y)dy, degX(η) = L = ℓD + deg Y (η) + 1, (2.12)

and we assume Y (η) ∈ C[η, g, h]. The Conjecture given in [38] is that the polynomial X(η)

satisfying (2.11) gives (2.8). Since we will prove this conjecture in the next subsection, we

state it as a theorem:

Theorem 1 For any polynomial Y (η), we define X(η) as (2.12). Then the multi-indexed

Laguerre and Jacobi polynomials PD,n(η) satisfy 1 + 2L term recurrence relations with con-

stant coefficients (2.8). (See Remark in § 2.3.)

Remark 1 If two polynomials in η, ΞD(η) = Ξd1...dM (η) and Ξd1...dM−1
(η), do not have

common roots, this theorem exhausts all possible X(η) giving recurrence relations with

constant coefficients [38].

Remark 2 If dX(η)
dη

is divisible by ΞD(η), we have ΘX,D ∈ C[∂η, η].

Some examples for (2.8) are found in [7, 36, 37, 38].

2.3 Proof

Following the argument in [39], we prove Theorem1.

Let us define the set of finite linear combinations of PD,n(η), UD ⊂ C[η], and the stabilizer

ring SD ⊂ C[η] by

UD
def
= Span{PD,n(η)

∣∣ n ∈ Zn≥0}, (2.13)

SD
def
=

{
X(η) ∈ C[η]

∣∣ X(η)PD,n(η) ∈ UD (∀n ∈ Z≥0)
}
. (2.14)

Since the degree of PD,n(η) is ℓD + n, it is trivial that p(η) ∈ UD ⇒ deg p ≥ ℓD, except for

p(η) = 0.

For p(η) ∈ UD, let us expand it as p(η) =
deg p−ℓD∑

n=0

anPD,n(η) (an: constant) and consider the

action of H̃D on it. From (2.4), we have H̃D p(η) =
deg p−ℓD∑

n=0

anEnPD,n(η) ∈ C[η]. On the other

hand, from (2.5), we have

H̃D p(η) = −4
(
c2(η)∂

2
ηp(η) + c11(η)∂ηp(η)

)
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+
4

ΞD(η)

(
∂ηΞD(η)

(
2c2(η)∂ηp(η) + c10(η)p(η)

)
− ∂2ηΞD(η)c2(η)p(η)

)
. (2.15)

Since the first line of r.h.s is a polynomial in η, we obtain the condition:

∂ηΞD(η)
(
2c2(η)∂ηp(η) + c10(η)p(η)

)
− ∂2ηΞD(η)c2(η)p(η) is divisible by ΞD(η). (2.16)

Next let us consider the converse. Take any polynomial p(η) satisfying the condition (2.16)

and expand it as

p(η) =

deg p−ℓD∑

n=0

anPD,n(η) + r(η), deg r < ℓD, r(η) =

deg r∑

k=0

rkη
k, (2.17)

(p(η) = r(η) for deg p < ℓD). Since PD,n(η) satisfies (2.16), the condition (2.16) becomes

∂ηΞD(η)
(
2c2(η)∂ηr(η) + c10(η)r(η)

)
− ∂2ηΞD(η)c2(η)r(η) is divisible by ΞD(η). (2.18)

In general the polynomial ΞD(η) has only simple zeros, ΞD(η) ∝
ℓD∏
i=1

(η − ηi). The condition

(2.18) means that the polynomial in (2.18) vanishes at η = ηi. This gives ℓD linear relations

on rk’s. Since these linear relations are independent and the number of rk’s is deg r+1 ≤ ℓD,

all rk’s vanish. Namely we obtain r(η) = 0 and p(η) ∈ UD. We remark that the polynomials

p(η) satisfying the condition (2.16) form a vector space and its codimension in C[η] is ℓD for

r(η) = 0 case. We summarize this argument as the following proposition.

Proposition 1 When ΞD(η) has only simple zeros, a polynomial p(η) belongs to UD if and

only if p(η) satisfies the condition (2.16).

For any polynomial X(η) and p(η), we set q(η) = X(η)p(η). Then the condition (2.16)

for q(η) becomes

∂ηΞD(η)
(
2c2(η)∂ηq(η) + c10(η)q(η)

)
− ∂2ηΞD(η)c2(η)q(η)

= X(η)
(
∂ηΞD(η)

(
2c2(η)∂ηp(η) + c10(η)p(η)

)
− ∂2ηΞD(η)c2(η)p(η)

)

+ ∂ηΞD(η)2c2(η)∂ηX(η)p(η). (2.19)

If X(η) satisfies (2.11) and p(η) belongs to UD, this is divisible by ΞD(η). When ΞD(η) has

only simple zeros, Proposition 1 implies q(η) ∈ UD. Thus we obtain X(η) ∈ SD, namely,

the relation among the polynomials (2.8). The denominator polynomial ΞD(η) contains a

set of parameters λ (λ = g for Laguerre and λ = (g, h) for Jacobi) and it could be made
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to have higher order zeros by tuning λ. Such tuning, however, does not cause any trouble

to the relation among the polynomials (2.8). This is shown as follows. The denominator

polynomial ΞD(η) belongs to C[η, g, h]. The polynomial X(η) (2.12) also belongs to C[η, g, h]

because we assume Y (η) ∈ C[η, g, h]. From (3.58) with (B.11) and (B.21), F̂ (D) belongs to

C[∂η, η, g, h]. From (3.58) with (B.22)–(B.23), the coefficients of ∂kη ’s in B̂(D) are rational

functions of η and the factor in the denominator is only ΞD(η)
M . This factor is factorized

as ΞD(η) = cΞD

ℓD∏
i=1

(η − ηi). Since we already know ΘX,D = B̂(D) ◦X(η) ◦ F̂ (D) ∈ C[∂η, η], this

factor (η − ηi) is canceled out in ΘX,D. Thus the factor in the denominator of ΘX,D is only

cΞD. By our assumption, this cΞD does not vanish. Therefore (2.8) is valid even when ΞD(η)

has higher order zeros. Thus Theorem1 is proved.

Remark If ΞD(η) has only simple zeros, the converse of Theorem1 holds. To show this,

assume that X(η) ∈ SD, p(η) ∈ UD and (2.19) is divisible by ΞD(η). Since the expression

in the second line of (2.19) is divisible by ΞD(η), the expression in the third line should be

divisible by ΞD(η). Since p(η) is arbitrary, ∂ηΞD(η)c2(η)∂ηX(η) should be divisible by ΞD(η).

If ΞD(η) and ∂ηΞD(η) do note have common roots, which happens if ΞD(η) has only simple

zeros, ∂ηX(η) should be divisible by ΞD(η).

We present examples of ΞD(η) which has higher order zeros [42]. We take D = {1I, 2II}.

For the Laguerre case, the denominator polynomial is

−2ΞD(η) = η4 + 2(2g − 3)η3 + (g − 5
2
)(6g − 1)η2 + 2(g − 5

2
)2(2g + 1)η + (g − 5

2
)4, (2.20)

which has higher order zeros for g = −1
2
, 3
2
, 5
2
,−13

2
. For these values, −2ΞD(η) is η2(η −

2)(η− 6), η2(η2 − 8), η3(η + 4) and (η − 6)3(η − 14), respectively. We can check that 8ΘX,D

belongs to Z[∂η, η, g] and nothing happens at g = −1
2
, 3
2
, 5
2
,−13

2
. For the Jacobi case, the

denominator polynomial is (a = g + h, b = g − h)

64ΞD(η) = (b− 4)(b− 3)(b− 1)(b+ 2)η4 + 4(a− 1)(b− 3)(b− 1)bη3

+ 2(b− 1)
(
a(a− 2)(3b− 4) + (b+ 4)(b− 3)

)
η2

+ 4(a− 1)(b− 1)
(
a(a− 2) + b− 3

)
η

+ a3(a− 4) + 2a2(b− 3)− 4a(b− 5)− (b− 3)(b− 1), (2.21)

which has higher order zeros for g = −1
2
, 3
2
, 5
2
, or h = −3

2
,−1

2
, 3
2
, or (g + h)(g + h − 2)(g −

h− 28) = (g−h− 3)(g−h− 1)(g−h+4) (The cases g−h = 4, 3, 1,−2 are excluded by the
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condition cΞD 6= 0.). We can check that 16ΘX,D belongs to Z[∂η, η, g, h] and nothing happens

at these values.

3 Bispectral Property

In this section we discuss the bispectral property of the multi-indexed Laguerre and Jacobi

orthogonal polynomials, (1.1).

3.1 Preparation

3.1.1 some algebra

Let us consider operators A, B and Oj (j = 1, 2, . . .), which satisfy

[A,B] = 1 +O1,1, O1,1 ∈ O
def
= C[O1, O2, . . .],

AOj, OjA,BOj, OjB,OjOk ∈ O. (3.1)

Any element F of the ring C[A,B,O1, O2, . . .] is written as a finite sum F =
∑
i,j≥0

Fi,jB
jAi +

OF (Fi,j ∈ C, OF ∈ O). It is easy to show the following identity (i, j ∈ Z≥0) by induction,

AiBj =

min(i,j)∑

r=0

aijr B
j−rAi−r +Oi,j, aijr

def
= r!

(
i

r

)(
j

r

)
= ajir , Oi,j ∈ O. (3.2)

The explicit form of Oi,j can be obtained by the recurrence relations,

Oi+1,j =

min(i,j)∑

r=0

ai,jr O1,j−rA
i−r + AOi,j, Oi,j+1 =

min(i,j)∑

r=0

ai,jr B
j−rOi−r,1 +Oi,jB, (3.3)

with Oi,0 = O0,j = 0.

The algebra of operators ∂η (derivative by η) and η (multiplication by η), [∂η, η] = 1, is

a special case of the above, namely Oj = 0. Eq. (3.2) with i↔ j becomes

∂jη ◦ η
i =

min(i,j)∑

r=0

aijr η
i−r∂j−r

η . (3.4)

3.1.2 shift operators

In the bispectral property (1.1), ∆X,D is a certain shift operator of n. Usually a formal shift

operator, e.g. n→ n+ 1, is used but here we realize shift operators as differential operators
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acting on smooth functions of n. For a function f(n), the exponential of a∂n (a : constant)

acts on f(n) as a shift operator,

ea∂nf(n) = f(n+ a), (3.5)

because

ea∂nf(n) =
∞∑

k=0

ak

k!
∂kn f(n) =

∞∑

k=0

ak

k!

dkf

dnk
(n) = f(n+ a).

We regard a polynomial Pn(η) as a sum
n∑

j=0

aj(n)η
j and treat n (upper limit of the sum) as

a continuous variable in the following way: a sum
n∑

j=1

f(n, j) is understood as

n∑

j=1

f(n, j) =

∫ n+ 1

2

1

2

dx

∞∑

j=−∞

δ(x− j) · f(n, x), (3.6)

where δ(x) is the Dirac delta function (
∫ n+ 1

2
1

2

is replaced by
∫ n+ 1

2

− 1

2

for
n∑

j=0

f(n, j)). Of course,

only an integer shift is allowed for the upper limit of the sum. After all the calculations are

done, we can evaluate various quantities at n = 0, 1, 2, . . . (and j = n, n− 1, . . .).

The exponential operator ea∂n is a shift operator. If a constant a is replaced by a function

g(n), the exponential operator eg(n)∂n is no longer a shift operator, e.g. ean∂nf(n) = f(ean).

Let us define a ‘normal ordered’ exponential operator : eg(n)∂n : as

: eg(n)∂n :
def
=

∞∑

k=0

g(n)k

k!
∂kn. (3.7)

This acts on f(n) as a shift operator,

: eg(n)∂n : f(n) = f
(
n+ g(n)

)
, (3.8)

because we have (f(n) =
∞∑
l=0

fl
l!
nl),

: eg(n)∂n : f(n) =

∞∑

k=0

g(n)k

k!
∂kn

∞∑

l=0

fl

l!
nl =

∞∑

k=0

∞∑

l=0

g(n)k

k!

fl

l!

(
l

k

)
k!nl−k

=
∞∑

l=0

fl

l!

l∑

k=0

(
l

k

)
g(n)knl−k =

∞∑

l=0

fl

l!

(
n + g(n)

)l
= f

(
n+ g(n)

)
.
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For a constant a, we have : ea∂n : = ea∂n . We remark that : e−(n+a)∂n : (a : constant) maps

a function of n to a constant, : e−(n+a)∂n : f(n) = f(−a). The product of normal ordered

exponential operators is again a normal ordered exponential operator,

: eg1(n)∂n : : eg2(n)∂n : = : e(g1⋆g2)(n)∂n :, (g1 ⋆ g2)(n)
def
= g1(n) + g2

(
n+ g1(n)

)
, (3.9)

and associative ((g1 ⋆ g2) ⋆ g3 = g1 ⋆ (g2 ⋆ g3) is easily shown). Eq.(3.9) is shown by

: eg1(n)∂n : : eg2(n)∂n : f(n) = : eg1(n)∂n : f
(
n+ g2(n)

)
= f

(
n + g1(n) + g2(n + g1(n))

)

= : e(g1(n)+g2(n+g1(n)))∂n : f(n).

We give another proof:

: eg1(n)∂n : : eg2(n)∂n : =

∞∑

k=0

g1(n)
k

k!
∂kn ◦

∞∑

l=0

g2(n)
l

l!
∂ln =

∞∑

k=0

∞∑

l=0

g1(n)
k

k! l!

k∑

r=0

(
k

r

)(
g2(n)

l
)(r)

∂k−r
n ∂ln

=

∞∑

m=0

m∑

k=0

k∑

r=0

g1(n)
k

k! (m− k)!

(
k

r

)(
g2(n)

m−k
)(r)

∂m−r
n =

∞∑

r=0

∞∑

m=r

m∑

k=0

g1(n)
k

k! (m− k)!

(
k

r

)(
g2(n)

m−k
)(r)

∂m−r
n

=

∞∑

r=0

∞∑

s=0

s∑

t=0

g1(n)
r+t

(r + t)! (s− t)!

(
r + t

r

)(
g2(n)

s−t
)(r)

∂sn =

∞∑

s=0

s∑

t=0

∞∑

r=0

g1(n)
r+t

r! s!

(
s

t

)(
g2(n)

s−t
)(r)

∂sn

=

∞∑

s=0

1

s!

s∑

t=0

(
s

t

)
g1(n)

t

∞∑

r=0

g1(n)
r

r!

(
g2(n)

s−t
)(r)

∂sn =

∞∑

s=0

1

s!

s∑

t=0

(
s

t

)
g1(n)

t
(
g2
(
n + g1(n)

))s−t

∂sn

=
∞∑

s=0

1

s!

(
g1(n) + g2

(
n + g1(n)

))s

∂sn = : e(g1(n)+g2(n+g1(n)))∂n :,

where (f(n))(r) = ∂rnf(n). Later we will use the following (a, b : constants):

: ea∂n : : eb∂n : = : e(a+b)∂n :, : ea∂n : : e−(n+b)∂n : = : e−(n+b)∂n :,

: e−(n+b)∂n : : ea∂n : = : e−(n−a+b)∂n :, : e−(n+a)∂n : : e−(n+b)∂n : = : e−(n+b)∂n : . (3.10)

The product of the shift operator e±k∂n (k: constant, integer) and a sum of functions
n∑

j=1

f(n, j) as an operator is

e±k∂n ◦

n∑

j=1

f(n, j) =

n±k∑

j=1

f(n± k, j)e±k∂n. (3.11)

This is understood in the following way. By rewriting the sum as (3.6),

e±k∂n ◦

n∑

j=1

f(n, j) =

∫ n±k+ 1

2

1

2

dx

∞∑

j=−∞

δ(x− j) · f(n± k, x)e±k∂n =

n±k∑

j=1

f(n± k, j)e±k∂n.
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3.2 Map ♭

By modifying the arguments in [39], we define the map ♭ (3.26). In this subsection we

consider arbitrary (ordinary) orthogonal polynomials Pn(η) in continuous variable η. The

polynomial Pn(η) = cnη
n + (lower degree terms) is defined by the three term recurrence

relations [32]

ηPn(η) = AnPn+1(η) +BnPn(η) + CnPn−1(η). (3.12)

We set P0(η)
def
= 1, Pn(η)

def
= 0 (n < 0) and A−1

def
= 0. We assume that An, Bn and Cn are

given as functions of continuous n. Note that (3.12) holds for n ∈ Z and Pn(η) may not

satisfy any differential equation.

Since ∂ηPn(η) is a polynomial of degree n− 1, it can be written as

∂ηPn(η) =

n∑

k=1

cn,kPn−k(η), (3.13)

where cn,k are constants and we set cn,0
def
= 0. We have An = cn

cn+1
and cn,1 = n cn

cn−1
, which

imply Ancn+1,1 = n+ 1. Let us define operators ∆, Γ and Oj (j = 1, 2, . . .) as

∆
def
= Ane

∂n +Bn + Cne
−∂n , Γ

def
=

n∑

k=1

cn,k : e
−k∂n :, Oj

def
= : e−(n+j)∂n : . (3.14)

We remark that ∆, Γ and Oj commute with η and ∂η. From (3.12), (3.13) and Pn(η) = 0

(n < 0), they act on Pn(η) as follows:

∆Pn(η) = ηPn(η), ΓPn(η) = ∂ηPn(η), OjPn(η) = 0. (3.15)

Let us calculate the commutation relation of ∆ and Γ. Results in § 3.1.2 give

∆Γ = An

n+1∑

k=1

cn+1,k : e
−(k−1)∂n : +Bn

n∑

k=1

cn,k : e
−k∂n : +Cn

n−1∑

k=1

cn−1,k : e
−(k+1)∂n :

= Ancn+1,1 + An

n+1∑

k=2

cn+1,k : e
−(k−1)∂n : +Bn

n∑

k=1

cn,k : e
−k∂n : +Cn

n−1∑

k=0

cn−1,k : e
−(k+1)∂n :

= n+ 1 +

n∑

k=1

(Ancn+1,k+1 +Bncn,k + Cncn−1,k−1) : e
−k∂n :, (3.16)

Γ∆ =

n∑

k=1

cn,kAn−k : e
−(k−1)∂n : +

n∑

k=1

cn,kBn−k : e
−k∂n : +

n∑

k=1

cn,kCn−k : e
−(k+1)∂n :

= An−1cn,1 +

n+1∑

k=2

An−kcn,k : e
−(k−1)∂n : +

n∑

k=1

Bn−kcn,k : e
−k∂n :
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+
n−1∑

k=0

Cn−kcn,k : e
−(k+1)∂n : +C0cn,n : e−(n+1)∂n :

= n+
n∑

k=1

(An−k−1cn,k+1 +Bn−kcn,k + Cn−k+1cn,k−1) : e
−k∂n : +C0cn,nO1, (3.17)

where we have used A−1 = 0, cn,0 = 0 and Ancn+1,1 = n + 1. From these we have

[∆,Γ] = 1 +
n∑

k=1

bn,k : e
−k∂n : −C0cn,nO1, (3.18)

where the constant bn,k is

bn,k
def
= Ancn+1,k+1 − An−k−1cn,k+1 + (Bn − Bn−k)cn,k + Cncn−1,k−1 − Cn−k+1cn,k−1. (3.19)

The l.h.s of (3.18) acts on Pn(η) as

(l.h.s)Pn(η) = [∆,Γ]Pn(η) = (∆Γ− Γ∆)Pn(η) = (∆∂η − Γη)Pn(η)

= (∂η∆− ηΓ)Pn(η) = (∂ηη − η∂η)Pn(η) = [∂η, η]Pn(η) = Pn(η), (3.20)

and the r.h.s (3.18) acts on Pn(η) as

(r.h.s)Pn(η) = Pn(η) +
n∑

k=1

bn,kPn−k(η), (3.21)

which means
n∑

k=1

bn,kPn−k(η) = 0, namely bn,k = 0. (This bn,k = 0 can be checked by explicit

calculation of (3.19). We have checked this for n ≤ 15 by using Mathematica.) Therefore

we obtain

[∆,Γ] = 1− C0cn,nO1. (3.22)

Products of Oj and (∆, Γ, Ok) are

∆Oj = (An +Bn + Cn)Oj, Oj∆ = A−jOj−1 +B−jOj + C−jOj+1, (3.23)

ΓOj =
( n∑

k=1

cn,k

)
Oj, OjΓj = 0, (3.24)

OjOk = Ok, (3.25)

and all of them belong to O = C[O1, O2, . . .] (O1∆ = B−1O1 + C−1O2 due to A−1 = 0).

The relations (3.22)–(3.25) satisfy the conditions given in § 3.1.1, where the correspondence

is (A,B,Oj) ↔ (∆,Γ, Oj). If C−j 6= 0, we have C[∆,Γ, O1, O2, . . .] = C[∆,Γ].
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Any element F of C[∂η, η] is written as a finite sum F =
∑
i,j≥0

Fi,jη
i∂jη (Fi,j ∈ C). Let us

define a map ♭ : C[∂η, η] → C[∆,Γ]:

F =
∑

i,j≥0

Fi,jη
i∂jη ∈ C[∂η, η], ♭(F )

def
=

∑

i,j≥0

Fi,jΓ
j∆i ∈ C[∆,Γ]. (3.26)

We remark that ♭(∂ηη) is not directly given in the above definition and it is calculated as

♭(∂ηη) = ♭(η∂η + 1) = Γ∆ + 1 6= ∆Γ = Γ∆+ 1− C0cn,nO1. From (3.15), we have

ηi∂jηPn(η) = ηiΓjPn(η) = ΓjηiPn(η) = Γj∆iPn(η). (3.27)

By using (3.4) and (3.2) with (A,B) = (∆,Γ), we have

ηi2∂j2η η
i1∂j1η Pn(η) = ηi2

(min(j2,i1)∑

r=0

aj2i1r ηi1−r∂j2−r
η

)
∂j1η Pn(η)

=

min(j2,i1)∑

r=0

aj2i1r ηi1+i2−r∂j1+j2−r
η Pn(η) =

min(j2,i1)∑

r=0

aj2i1r Γj1+j2−r∆i1+i2−rPn(η)

= Γj1

(min(i1,j2)∑

r=0

ai1j2r Γj2−r∆i1−r
)
∆i2Pn(η) = Γj1(∆i1Γj2 − Oi1,j2)∆

i2Pn(η)

= Γj1∆i1Γj2∆i2Pn(η)− Γj1Oi1,j2∆
i2Pn(η) = Γj1∆i1Γj2∆i2Pn(η), (3.28)

where we have used Oi1,j2∆
i2 ∈ O in the last line. Therefore we obtain the following propo-

sition.

Proposition 2 The action of C[∂η, η] on Pn(η) is related to that of C[∆,Γ] by the map ♭:

F ∈ C[∂η, η] ⇒ FPn(η) = ♭(F )Pn(η), (3.29)

F,G ∈ C[∂η, η] ⇒ FGPn(η) = ♭(FG)Pn(η) = ♭(G)♭(F )Pn(η). (3.30)

Remark 1 This anti-homomorphism property (3.30) does not hold as algebra, namely

♭(FG) 6= ♭(G)♭(F ) in general.

Remark 2 The polynomial Pn(η) may depend on a set of parameters λ = (λ1, λ2, . . .),

Pn(η) = Pn(η;λ). The above C[∂η, η] and C[∆,Γ] are understood as C(λ)[∂η, η] and

C(λ)[∆,Γ] respectively.

For later use, we present ∆i and Γj (i, j = 0, 1, 2, . . .):

∆i =

i∑

k=−i

Di,k
n ek∂n, D0,0

n = 1, Di,k
n

def
= 0 (|k| > i),
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Di,k
n = Di−1,k−1

n An+k−1 +Di−1,k
n Bn+k +Di−1,k+1

n Cn+k+1 (−i ≤ k ≤ i), (3.31)

Γj =

n∑

k1=1

k1−1∑

k2=1

k1−k2−1∑

k3=1

k1−k2−k3−1∑

k4=1

· · ·

k1−k2−···−kj−1−1∑

kj=1

cn,k2cn−k2,k3cn−k2−k3,k4 · · · cn−k2−k3−···−kj−1,kj

× cn−k2−k3−···−kj ,k1−k2−k3−···−kj : e
−k1∂n : . (3.32)

Note that
n∑

k1=1

is actually
n∑

k1=j

because of our convention of the summation symbol:
m−1∑
k=m

∗ = 0.

We explain Γ2:

Γ2 =
( n∑

k2=1

cn,k2 : e
−k2∂n :

)( n∑

k′
2
=1

cn,k′
2
: e−k′2∂n :

)
=

n∑

k2=1

cn,k2

n−k2∑

k′
2
=1

cn−k2,k
′
2
: e−k2∂n : : e−k′2∂n :

=
n∑

k2=1

cn,k2

n−k2∑

k′
2
=1

cn−k2,k
′
2
: e−(k2+k′

2
)∂n : =

n∑

k1=1

k1−1∑

k2=1

cn,k2cn−k2,k1−k2 : e
−k1∂n : . (3.33)

Here we have used : e−k2∂n : : e−k′
2
∂n : = : e−(k2+k′

2
)∂n : because k2 and k′2 are independent of

n. As remarked in the first paragraph in § 3.1.2, after all the calculations are done, we can

evaluate various quantities at k2 = n, n− 1, . . ., k′2 = n− k2, . . ., etc.

In the rest of this subsection we present the explicit forms of ∆ and Γ for the Hermite,

Laguerre and Jacobi polynomials.

3.2.1 example 1 : Hermite polynomial

The Hermite polynomial Hn(η) [32] satisfies (3.12) with

An = 1
2
, Bn = 0, Cn = n, (3.34)

and

∂ηHn(η) = 2nHn−1(η). (3.35)

Therefore ∆ and Γ become

∆ = 1
2
e∂n + ne−∂n , Γ = 2ne−∂n , (3.36)

and they satisfy

[∆,Γ] = 1. (3.37)

In this case ♭ is an anti-isomorphism of algebra, ♭(FG) = ♭(G)♭(F ) [39].
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3.2.2 example 2 : Laguerre polynomial

The Laguerre polynomial L
(α)
n (η) [32] satisfies (3.12) with

An = −(n + 1), Bn = 2n+ α + 1, Cn = −(n + α), (3.38)

and

∂ηL
(α)
n (η) = −L

(α+1)
n−1 (η), (3.39)

L
(α)
n−1(η) + L(α−1)

n (η) = L(α)
n (η). (3.40)

From (3.40) we have

L(α+1)
n (η) =

n∑

k=0

L
(α)
k (η). (3.41)

So we have cn,k = −1 (1 ≤ k ≤ n). Therefore ∆ and Γ become

∆ = −(n + 1)e∂n + 2n+ α + 1− (n + α)e−∂n, Γ = −

n∑

k=1

: e−k∂n : . (3.42)

It is easy to check that bn,k (3.19) vanishes. The operators ∆ and Γ satisfy

[∆,Γ] = 1− αO1. (3.43)

3.2.3 example 3 : Jacobi polynomial

The Jacobi polynomial J
(α,β)
n (η) [32] satisfies (3.12) with

An =
2(n+ 1)(n+ α + β + 1)

(2n+ α + β + 1)(2n+ α+ β + 2)
, Bn =

β2 − α2

(2n+ α + β)(2n+ α + β + 2)
,

Cn =
2(n+ α)(n+ β)

(2n+ α + β)(2n+ α + β + 1)
, (3.44)

and

∂ηP
(α,β)
n (η) = 1

2
(n+ α + β + 1)P

(α+1,β+1)
n−1 (η), (3.45)

(2n+ α + β)P (α−1,β)
n (η) = (n+ α + β)P (α,β)

n (η)− (n+ β)P
(α,β)
n−1 (η), (3.46)

(2n+ α + β)P (α,β−1)
n (η) = (n+ α + β)P (α,β)

n (η) + (n + α)P
(α,β)
n−1 (η). (3.47)

From (3.46)–(3.47) we have

P (α+1,β+1)
n (η) = αnP

(α,β)
n (η) + βnP

(α+1,β+1)
n−1 (η) + γnP

(α+1,β+1)
n−2 (η) (n ≥ 0), (3.48)
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where αn, βn and γn are

αn =
(2n + α+ β + 1)(2n+ α + β + 2)

(n + α+ β + 1)(n+ α + β + 2)
, βn =

(β − α)(2n+ α + β + 1)

(n+ α + β + 2)(2n+ α + β)
,

γn =
(n + α)(n+ β)(2n+ α + β + 2)

(n+ α + β + 1)(n+ α + β + 2)(2n+ α + β)
. (3.49)

By substituting (3.48) into the second term of the r.h.s of (3.48) and repeating this, P
(α+1,β+1)
n (η)

has the following form

P (α+1,β+1)
n (η) = p(k)n (η) + β(k)

n P
(α+1,β+1)
n−k (η) + γ(k)n P

(α+1,β+1)
n−k−1 (η), (3.50)

and we have

P (α+1,β+1)
n (η)

= p(k)n (η) + β(k)
n

(
αn−kP

(α,β)
n−k (η) + βn−kP

(α+1,β+1)
n−k−1 (η) + γn−kP

(α+1,β+1)
n−k−2 (η)

)
+ γ(k)n P

(α+1,β+1)
n−k−1 (η)

= p(k)n (η) + αn−kβ
(k)
n P

(α,β)
n−k (η) + (βn−kβ

(k)
n + γ(k)n )P

(α+1,β+1)
n−k−1 (η) + γn−kβ

(k)
n P

(α+1,β+1)
n−k−2 (η)

= p(k+1)
n (η) + β(k+1)

n P
(α+1,β+1)
n−k−1 (η) + γ(k+1)

n P
(α+1,β+1)
n−k−2 (η).

Namely p
(k)
n (η), β

(k)
n and γ

(k)
n satisfy the recurrence relations:

p(k+1)
n (η) = p(k)n (η) + αn−kβ

(k)
n P

(α,β)
n−k (η),

β(k+1)
n = βn−kβ

(k)
n + γ(k)n , γ(k+1)

n = γn−kβ
(k)
n (1 ≤ k ≤ n), (3.51)

with the initial values,

p(1)n (η) = αnP
(α,β)
n (η), β(1)

n = βn, γ(1)n = γn. (3.52)

From this, P
(α+1,β+1)
n (η) = p

(n+1)
n (η) is expressed as

P (α+1,β+1)
n (η) =

n∑

k=0

a
(α,β)
n,k P

(α,β)
n−k (η), a

(α,β)
n,k

def
=

{
αn : k = 0

αn−kβ
(k)
n : 1 ≤ k ≤ n

, (3.53)

and cn,k in (3.13) is given by

cn,k =
1
2
(n+ α + β + 1)a

(α,β)
n−1,k−1. (3.54)

Therefore ∆ and Γ become

∆ = Ane
∂n +Bn + Cne

−∂n , Γ = 1
2
(n + α + β + 1)

n∑

k=1

a
(α,β)
n−1,k−1 : e

−k∂n : . (3.55)
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We can check that bn,k (3.19) vanishes. The operators ∆ and Γ satisfy

[∆,Γ] = 1− 1
2
(n+ α + β + 1)a

(α,β)
n−1,n−1C0O1. (3.56)

Explicit forms of a
(α,β)
n,k for lower k are

a
(α,β)
n,0 =

(2n + α+ β + 1)2
(n+ α + β + 1)2

, a
(α,β)
n,1 =

(β − α)(2n+ α + β − 1)(2n+ α + β + 1)

(n+ α + β)3
,

a
(α,β)
n,2 =

(2n + α+ β − 3)(2n+ α+ β)
(
(n+ α)(n+ β) + (α− β)2 − 1

)

(n + α + β − 1)4
,

a
(α,β)
n,3 =

(β − α)(2n+ α + β − 5)(2n+ α + β − 1)

(n+ α + β − 2)5

×
(
2(n+ α + β)(n− 1) + α(α + 1) + β(β + 1)− 2

)
, (3.57)

a
(α,β)
n,4 =

(2n + α+ β − 7)(2n+ α+ β − 2)

16(n+ α + β − 3)6

×
(
5(α− β)4 + 10(α− β)2

(
4n(n+ α + β − 2) + (α + β + 1)(α+ β − 5) + 3

)

+ (2n+ α+ β − 6)(2n+ α+ β − 4)(2n+ α+ β)(2n+ α + β + 2)
)
.

3.3 Bispectral property

Following the arguments in [39], we discuss the bispectral property of the multi-indexed

Laguerre and Jacobi polynomials (1.1).

From (2.1)–(2.2), the M-th order differential operators F̂ (D) and B̂(D) are expressed as

determinants:

F̂ (D) = ρ
(D)

F̂
(η)

∣∣∣∣∣∣∣∣∣

µd1 · · · µdM 1

µ
(1)
d1

· · · µ
(1)
dM

∂η
... · · ·

...
...

µ
(M)
d1

· · · µ
(M)
dM

∂Mη

∣∣∣∣∣∣∣∣∣

, B̂(D) = ρ
(D)

B̂
(η)

∣∣∣∣∣∣∣∣∣

m1 · · · mM 1

m
(1)
1 · · · m

(1)
M ∂η

... · · ·
...

...

m
(M)
1 · · · m

(M)
M ∂Mη

∣∣∣∣∣∣∣∣∣

,

(3.58)

where µ
(i)
v = ∂iηµv(η) and m

(i)
j = ∂iηmj(η). Our definition of the determinant (order of the

matrix elements) is

det(aij)1≤i,j≤n =

∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

... · · ·
...

an1 an2 · · · ann

∣∣∣∣∣∣∣
=

n∑

i1,...,in=1

εi1i2...inai11ai22 · · ·ainn, (3.59)

where εi1i2...in is the antisymmetric symbol. From these forms and (2.1)–(2.2), the operator
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F̂ (D) belongs to C[∂η, η] but B̂
(D) does not. We have

F̂ (D)Pn(η) = PD,n(η), B̂(D)PD,n(η) = πD(n)Pn(η), πD(n) =

M∏

j=1

(En − Ẽdj ), (3.60)

and these give the following:

B̂(D)F̂ (D)Pn(η) = πD(n)Pn(η), F̂ (D)B̂(D)PD,n(η) = πD(n)PD,n(η). (3.61)

For X(η) (2.12), the operator ΘX,D = B̂(D) ◦X(η) ◦ F̂ (D) belongs to C[∂η, η]. Therefore

we can consider ♭(ΘX,D). Following the argument in [39], let us define ∆X,D,

∆X,D
def
= ♭(ΘX,D) ◦ π

−1
D (n), (3.62)

which commutes with η and ∂η. Then we have a theorem.

Theorem 2 For the multi-indexed Laguerre and Jacobi polynomials PD,n(η) and a polyno-

mial X(η) (2.12), we have

X(η)PD,n(η) = ∆X,DPD,n(η). (3.63)

Proof We have

(
B̂(D)X(η)

)
PD,n(η) = B̂(D)X(η)F̂ (D)Pn(η) =

(
B̂(D) ◦X(η) ◦ F̂ (D)

)
Pn(η)

= ♭
(
B̂(D) ◦X(η) ◦ F̂ (D)

)
Pn(η) =

(
∆X,D ◦ πD(n)

)
Pn(η) = ∆X,DπD(n)Pn(η)

= ∆X,DB̂
(D)F̂ (D)Pn(η) =

(
∆X,DB̂

(D)
)
F̂ (D)Pn(η) =

(
B̂(D)∆X,D

)
PD,n(η), (3.64)

where we have used (3.60)–(3.61), (3.29) and [∆X,D, B̂
(D)] = 0. Therefore we obtain

B̂(D)
(
X(η)−∆X,D

)
PD,n(η) = 0. (3.65)

For appropriate parameter range, various operators appearing in each step of the Darboux

transformations are non-singular and we can use properties of the inner product (f, g) =
∫ x2

x1
dxf(x)g(x). For any polynomial P(η) in η, we have

(
φD n(x),ΨD(x)P(η(x))

)
= (Â(D)φ0(x)Pn(η(x)),ΨD(x)P(η(x))

)
= (φ0Pn, Â

(D) †ΨDP
)

= (φ0Pn, φ0B̂
(D)P

)
= (φ2

0Pn, B̂
(D)P

)
, (3.66)

where we have used (A.30), (A.42), etc. If B̂(D)P = 0, we have (φD n,ΨDP) = 0 and the

completeness of φD n implies P = 0. We remark that this result is derived for appropriate
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parameter range but it is valid for any parameter range because it is a relation of a polyno-

mial. Therefore (3.65) gives (3.63).

Remark 1 We have used (3.29) but not used (3.30). For ♭
(
B̂(D) ◦X(η) ◦ F̂ (D)

)
, we can not

apply (3.30), because B̂(D) does not belong to C[∂η, η]. The commutativity [∆X,D, B̂
(D)] = 0

is important.

Remark 2 If we already know the coefficients rX,D
n,k (2.8)–(2.10), the operator ∆X,D is ex-

pressed as

∆X,D =
L∑

k=−L

rX,D
n,k e

k∂n =
L∑

k=−L

r
(0)X,D

n,k ek∂n ◦ π−1
D (n). (3.67)

3.4 Examples

As an illustration of Theorem2, we present examples: M = 1 case, D = {d1}.

Eqs.(3.58) give

F̂ (D) = ρ
(D)

F̂
µ2
d1
∂η ◦ µ

−1
d1
, B̂(D) = ρ

(D)

B̂
m2

1∂η ◦m
−1
1 , (3.68)

and ΘX,D becomes

ΘX,D = ρ
(D)

B̂
m2

1∂η ◦m
−1
1 Xρ

(D)

F̂
µ2
d1
∂η ◦ µ

−1
d1

= ρ
(D)

B̂
ρ
(D)

F̂
Xm1µd1∂

2
η + ρ

(D)

B̂
m2

1µd1∂η
(
m−1

1 Xρ
(D)

F̂

)
∂η − ρ

(D)

B̂
m2

1∂η
(
m−1

1 Xρ
(D)

F̂
∂ηµd1

)
. (3.69)

3.4.1 Laguerre

Let us consider type I Laguerre case, D = {dI1}. Then we have ΞD(η) = L
(g− 1

2
)

d1
(−η)

def
= ξ(η)

and

ρ
(D)

F̂
= e−η, ρ

(D)

B̂
= −4ηg+

3

2 ξ−1, µd1 = eηξ, m1 = η−g− 1

2 , (3.70)

and ΘX,D becomes

−1
4
ΘX,D = ηX∂2η +

(
(g + 1

2
− η)X + ηξY

)
∂η − (d1 + g + 1

2
)X − η(ξ + ∂ηξ)Y, (3.71)

where we have used ∂ηX = ΞDY and η∂2ηξ + (g + 1
2
+ η)∂ηξ = d1ξ. For simplicity we take

d1 = 1 and a minimal degree one Xmin, which corresponds to Y (η) = 1. Then we have

X(η) = Xmin(η) =
1
2
η(η + 2g + 1) = L

(g− 3

2
)

2 (−η)− L
(g− 3

2
)

2 (0), (3.72)

ΘX,D =
(
−2η3 − 4(g + 1

2
)η2

)
∂2η +

(
2η3 + 2(g − 3

2
)η2 − 4(g + 1

2
)2η

)
∂η
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+ 2(g + 7
2
)η2 + 4(g + 3

2
)2η. (3.73)

By the map ♭, ΘX,D is mapped to

♭(ΘX,D) = Γ2
(
−2∆3 − 4(g + 1

2
)∆2

)
+ Γ

(
2∆3 + 2(g − 3

2
)∆2 − 4(g + 1

2
)2∆

)

+ 2(g + 7
2
)∆2 + 4(g + 3

2
)2∆. (3.74)

The operators ∆ and Γ are given in (3.42) and Γ2 (3.32) is Γ2 =
n∑

k=2

(k − 1) : e−k∂n :. A

straightforward calculation gives

♭(ΘX,D) =
1
2
(n+ 2)2 × 4(n+ g + 7

2
)e2∂n − (n+ 1)(2g + 2n+ 3)× 4(n+ g + 5

2
)e∂n

+ 1
8

(
24n2 + 4(10g + 11)n+ (2g + 1)(6g + 13)

)
× 4(n+ g + 3

2
)

− 1
2
(2g + 2n− 1)(2g + 2n + 3)× 4(n+ g + 1

2
)e−∂n

+ 1
8
(2g + 2n− 3)(2g + 2n+ 3)× 4(n + g − 1

2
)e−2∂n +O, (3.75)

where O is an element of C[O1, O2, . . .]

O = (g − 1
2
)2
(
3(2g − 3)n− 8

)
O1 − 4(g − 1

2
)2
(
(2g − 1)n− 1

)
O2 + 2n(g − 5

2
)3O3, (3.76)

which annihilates PD,n(η). By using (3.63) and πD(n) = 4(n+ g + 3
2
), we obtain

rX,D
n,2 = 1

2
(n + 1)2, rX,D

n,1 = −(n+ 1)(2g + 2n+ 3),

rX,D
n,0 = 1

8

(
24n2 + 4(10g + 11)n+ (2g + 1)(6g + 13)

)
, (3.77)

rX,D
n,−1 = −1

2
(2g + 2n− 1)(2g + 2n+ 3), rX,D

n,−2 =
1
8
(2g + 2n− 3)(2g + 2n+ 3).

These 5-term recurrence relations were given in [36, 37, 38].

3.4.2 Jacobi

Let us consider type I Jacobi case, D = {dI1}. We set a = g + h and b = g − h. Then we

have ΞD(η) = P
(g− 1

2
, 1
2
−h)

d1
(η)

def
= ξ(η) and

ρ
(D)

F̂
=

(
1+η

2

)h+ 1

2 , ρ
(D)

B̂
= −16

(
1−η

2

)g+ 3

2 ξ−1, µd1 =
(
1+η

2

) 1

2
−h
ξ, m1 =

(
1−η

2

)−g− 1

2 , (3.78)

and ΘX,D becomes

−1
4
ΘX,D = (1− η2)X∂2η +

(
−(b+ (a+ 1)η)X + (1− η2)ξY

)
∂η (3.79)

+
(
d1(d1 + 1 + b)− (g + 1

2
)(h− 1

2
)
)
X +

(
(h− 1

2
)(1− η)ξ − (1− η2)∂ηξ

)
Y,
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where we have used ∂ηX = ΞDY and (1−η2)∂2ηξ+
(
1−a−(b+2)η

)
∂ηξ = −d1(d1+1+b)ξ. For

simplicity we take d1 = 1 and a minimal degree one Xmin, which corresponds to Y (η) = 1.

Then we have

X(η) = Xmin(η) =
1
4
η
(
(b+ 2)η + 2(a− 1)

)
= 2

b+1

(
P

(g− 3

2
,−h− 1

2
)

2 (η)− P
(g− 3

2
,−h− 1

2
)

2 (0)
)
,

(3.80)

ΘX,D =
(
(b+ 2)η4 + 2(a− 1)η3 − (b+ 2)η2 − 2(a− 1)η

)
∂2η

+
(
(a+ 3)(b+ 2)η3 + (2a2 + b2 + 4g − 4)η2 + 2((a− 2)b− 2)η − 2a + 2

)
∂η

+ 1
4
(2h− 3)

(
(b+ 2)(2g + 7)η2 + 2

(
a(a + b) + g + 7h− 5)η − 4a− 4

)
. (3.81)

By the map ♭, ΘX,D is mapped to

♭(ΘX,D) = Γ2
(
(b+ 2)∆4 + 2(a− 1)∆3 − (b+ 2)∆2 − 2(a− 1)∆

)

+ Γ
(
(a+ 3)(b+ 2)∆3 + (2a2 + b2 + 4g − 4)∆2 + 2((a− 2)b− 2)∆− 2a+ 2

)

+ 1
4
(2h− 3)

(
(b+ 2)(2g + 7)∆2 + 2

(
a(a + b) + 4a− 3b− 5)∆− 4a− 4

)
. (3.82)

The operators ∆ and Γ are given in (3.55) and ∆i and Γ2 are given in (3.31)–(3.32). By

using (3.57), a straightforward but a little lengthy calculation gives

♭(ΘX,D)

=
(n+ 1)2(b+ 2)(a+ n)2(2h+ 2n− 3)

(a+ 2n)4(2h+ 2n+ 1)
× (2n+ 2g + 7)(2n+ 2h+ 1)e2∂n

+
(n+ 1)(a− 1)(a+ n)(2g + 2n+ 3)(2h+ 2n− 3)

(a+ 2n− 1)3(a+ 2n+ 3)
× (2n+ 2g + 5)(2n+ 2h− 1)e∂n

+
b+ 2

4(a+ 2n− 2)2(a+ 2n+ 1)2

(
−b(b+ 4)

(
2n(a+ n)− (a− 2)(a− 1)

)

+ (a + 2n− 1)(a+ 2n+ 1)
(
2n(a+ n)− (a− 2)(2a− 1)

))
× (2n+ 2g + 3)(2n+ 2h− 3)

+
(a− 1)(2g + 2n− 1)(2g + 2n+ 3)(h+ n− 3

2
)2

(a+ 2n− 3)(a+ 2n− 1)3
× (2n + 2g + 1)(2n+ 2h− 5)e−∂n

+
(b+ 2)(2g + 2n− 3)(2g + 2n+ 3)(h+ n− 3

2
)2

4(a+ 2n− 3)4
× (2n+ 2g − 1)(2n+ 2h− 7)e−2∂n

+
n∑

k=3

(· · · ) : e−k∂n : +O, (3.83)

where O is an element of C[O1, O2, . . .]. From Theorem1 and 2, the coefficients (· · · ) in the

sum
∑n

k=3 should vanish. By using (3.63) and πD(n) = (2n+2g+3)(2n+2h−3), we obtain

rX,D
n,2 =

(n+ 1)2(b+ 2)(a+ n)2(2h+ 2n− 3)

(a + 2n)4(2h+ 2n+ 1)
,
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rX,D
n,1 =

(n+ 1)(a− 1)(a+ n)(2g + 2n+ 3)(2h+ 2n− 3)

(a+ 2n− 1)3(a+ 2n+ 3)
,

rX,D
n,0 =

b+ 2

4(a+ 2n− 2)2(a+ 2n+ 1)2

(
−b(b+ 4)

(
2n(a+ n)− (a− 2)(a− 1)

)

+ (a+ 2n− 1)(a+ 2n+ 1)
(
2n(a + n)− (a− 2)(2a− 1)

))
, (3.84)

rX,D
n,−1 =

(a− 1)(2g + 2n− 1)(2g + 2n+ 3)(h+ n− 3
2
)2

(a+ 2n− 3)(a+ 2n− 1)3
,

rX,D
n,−2 =

(b+ 2)(2g + 2n− 3)(2g + 2n+ 3)(h+ n− 3
2
)2

4(a+ 2n− 3)4
,

which were given in [38] (g = h case was given in [37]).

4 Summary and Comments

The recurrence relations with constant coefficients for the multi-indexed Laguerre and Jacobi

orthogonal polynomials conjectured in our previous paper II [38] are established as Theorem1

by following the argument in [39]. Their bispectral properties are also discussed by the similar

argument in [39] and Theorem2 is obtained. To obtain this, the map ♭ plays an important

role but it is not an anti-isomorphism in contrast to the exceptional Hermite case in [39].

The discussion in § 3.2 is valid for any ordinary orthogonal polynomials.

From Theorem2, we can obtain the coefficients rX,D
n,k explicitly as demonstrated in § 3.4,

because F̂ (D), B̂(D), X(η), Ξ(η), ∆, Γ and πD(n) are known as (3.58), (2.12), (B.9), (3.42),

(3.55) and (2.3). In practice, however, this calculation is not so easy. The examples in [38]

were obtained by a brute force method: Expand X(η)PD,n(η) in terms of PD,m(η) for small

n, and guess rX,D
n,k for arbitrary n (Or, based on (2.10), calculate ΘX,DPn(η) and expand it

in terms of Pm(η) for small n, and guess r
(0)X,D

n,k for arbitrary n). We hope to find a more

efficient method to obtain rX,D
n,k .

In our previous paper II [38], the recurrence relations with constant coefficients are con-

jectured also for the multi-indexed Wilson and Askey-Wilson orthogonal polynomials. These

polynomials satisfy second order difference equations. The method in the present paper may

be applied to these polynomials but it seems more difficult technically. We hope this problem

will be solved in the near future.
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A Darboux Transformation

In this appendix we review the algebraic aspects of the Darboux transformation [33]. We do

not discuss non-singularity of operators, square integrability of wavefunctions, etc.

Various formulas in the Darboux transformation are expressed in terms of the Wronskian.

The Wronskian of a set of n functions {fj(x)} is defined by

W [f1, . . . , fn](x)
def
= det

(dj−1fk(x)

dxj−1

)

1≤j,k≤n
, (A.1)

(for n = 0, we set W [·](x) = 1). It satisfies the following identities (n ≥ 0),

W[gf1, gf2, . . . , gfn](x) = g(x)nW[f1, f2, . . . , fn](x), (A.2)

W
[
W[f1, f2, . . . , fn, g],W[f1, f2, . . . , fn, h]

]
(x)

= W[f1, f2, . . . , fn](x)W[f1, f2, . . . , fn, g, h](x), (A.3)

W[f1, f2, . . . , fn](x) =
(dη(x)

dx

) 1

2
n(n−1)

W[F1, F2, . . . , Fn]
(
η(x)

)
,

where fj(x) = Fj

(
η(x)

)
, (A.4)

W[F1, F2, . . . , Fn](x) = (−1)
1

2
n(n−1)W[f1, f2, . . . , fn](x)

n−1,

where Fj(x) = W[f1, . . . , fj−1, fj+1, . . . , fn](x). (A.5)

We learned (A.5) in Ref.[39].

A.1 Darboux transformation

We consider the Schrödinger equation,

Hψ(x) = Eψ(x), H = p2 + U(x), p = −i
d

dx
, x1 < x < x2. (A.6)

By taking a seed solution φ̃(x), which is any solution of the Schrödinger equation,

Hφ̃(x) = Ẽφ̃(x), (A.7)
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the Hamiltonian H is expressed as

H = Â†Â+ Ẽ , Â
def
= d

dx
− ∂x log

∣∣φ̃(x)
∣∣, Â† = −

(
d
dx

− ∂x log
∣∣φ̃−1(x)

∣∣), (A.8)

where f−1(x) means f−1(x) = f(x)−1. We do not discuss the non-singularity of the operators

Â and Â† as mentioned above. The Darboux transformation is given by

Hnew def
= ÂÂ† + Ẽ , ψnew(x)

def
= Âψ(x). (A.9)

Then we have

Hnewψnew(x) = Eψnew(x), (A.10)

Hnewφ̃−1(x) = Ẽ φ̃−1(x)
(
⇐ Â†φ̃−1(x) = 0

)
, (A.11)

Â†ψnew(x) = (E − Ẽ)ψ(x). (A.12)

The first and second equations say that ψnew and φ̃−1 are solutions of the new Schrödinger

equation, but it does not mean that they exhaust all of the solutions. We remark that the

new wavefunction corresponding to the seed solution is absent in the new system, because

φ̃new(x) = Âφ̃(x) = 0. The second equation of (A.9) and (A.12) are expressed in terms of

the Wronskian:

Âψ(x) =
W[φ̃, ψ](x)

φ̃(x)
= ψnew(x), Â†ψnew(x) = −

W[φ̃−1, ψnew](x)

φ̃−1(x)
= (E − Ẽ)ψ(x). (A.13)

A.2 Multi-step Darboux transformation

Assume that the original Hamiltonian H = p2 + U(x) has eigenstates φn(x),

Hφn(x) = Enφn(x) (n = 0, 1, . . .), 0 = E0 < E1 < · · · , (A.14)

where we have chosen the constant term of U(x) such that E0 = 0. We take seed solutions

φ̃dj (x),

Hφ̃dj (x) = Ẽdj φ̃dj (x) (j = 1, 2, . . . ,M). (A.15)

By rewriting the original Hamiltonian (0-th step Hamiltonian) as H = Â†
d1
Âd1 + Ẽd1 , we

perform the Darboux transformation. By repeating this procedure, the s-step system is

obtained from the (s− 1)-th step system:

Hd1...ds

def
= Âd1...dsÂ

†
d1...ds

+ Ẽds
(
= Â†

d1...ds+1
Âd1...ds+1

+ Ẽds+1
for the next step

)
, (A.16)
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Âd1...ds

def
= d

dx
− ∂x log

∣∣φ̃d1...ds(x)
∣∣, Â†

d1...ds
= −

(
d
dx

− ∂x log
∣∣φ̃−1

d1...ds
(x)

∣∣), (A.17)

φd1...ds n(x)
def
= Âd1...dsφd1...ds−1 n(x) (n = 0, 1, . . .), (A.18)

φ̃d1...ds v(x)
def
= Âd1...ds φ̃d1...ds−1 v(x) (v = ds+1, ds+2, . . . , dM), (A.19)

Φ̆
(j)
d1...ds

(x)
def
= (−1)s−jφ̃−1

d1...dj−1dj+1...ds dj
(x) (j = 1, 2, . . . , s), (A.20)

which satisfy

Hd1...dsφd1...ds n(x) = Enφd1...ds n(x) (n = 0, 1, . . .), (A.21)

Hd1...dsφ̃d1...ds v(x) = Ẽvφ̃d1...ds v(x) (v = ds+1, ds+2, . . . , dM), (A.22)

Hd1...dsΦ̆
(j)
d1...ds

(x) = ẼdjΦ̆
(j)
d1...ds

(x) (j = 1, 2, . . . , s), (A.23)

Â†
d1...ds

φd1...ds n(x) = (En − Ẽds)φd1...ds−1 n(x). (A.24)

The wavefunctions (A.18)–(A.20) and the potential (Hd1...ds = p2 +Ud1...ds(x)) are expressed

in terms of the Wronskian,

φd1...ds n(x) =
W[φ̃d1 , . . . , φ̃ds, φn](x)

W[φ̃d1 , . . . , φ̃ds](x)
, (A.25)

φ̃d1...ds v(x) =
W[φ̃d1 , . . . , φ̃ds, φ̃v](x)

W[φ̃d1 , . . . , φ̃ds ](x)
, (A.26)

Φ̆
(j)
d1...ds

(x) =
W[φ̃d1 , . . . , φ̃dj−1

, φ̃dj+1
, . . . , φ̃ds](x)

W[φ̃d1 , . . . , φ̃ds](x)
, (A.27)

Ud1...ds(x) = U(x)− 2∂2x log
∣∣W[φ̃d1, . . . , φ̃ds](x)

∣∣, (A.28)

which are shown by using (A.2)–(A.3). Note thatHd1...ds , Âd1...ds and Â†
d1...ds

are independent

of the order of d1, . . . , ds (φd1...ds n(x), φ̃d1...ds v(x) and Φ̆
(j)
d1...ds

(x) may change sign). Let us

define Â(d1...ds) as

Â(d1...ds) def
= Âd1...ds · · · Âd1d2Âd1, Â(d1...ds) † = Â†

d1
Â†

d1d2
· · · Â†

d1...ds
. (A.29)

Then we have

Â(d1...ds)φn(x) = φd1...ds n(x), Â(d1...ds) †φd1...ds n(x) =

s∏

j=1

(En − Ẽdj) · φn(x). (A.30)

They are expressed in terms of the Wronskian,

Â(d1...ds)φn(x) =
W[φ̃d1 , . . . , φ̃ds, φn](x)

W[φ̃d1 , . . . , φ̃ds](x)
= φd1...ds n(x), (A.31)

26



Â(d1...ds) †φd1...ds n(x) = (−1)s
W[Φ̆

(1)
d1...ds

, . . . , Φ̆
(s)
d1...ds

, φd1...ds n](x)

W[Φ̆
(1)
d1...ds

, . . . , Φ̆
(s)
d1...ds

](x)
=

s∏

j=1

(En − Ẽdj ) · φn(x)

= (−1)
1

2
s(s+1)W

[
w1, . . . , ws,W[φ̃d1 , . . . , φ̃ds , φn]

]
(x)

W[φ̃d1 , . . . , φ̃ds](x)
s

, (A.32)

where wj is wj(x) = W[φ̃d1 , . . . , φ̃dj−1
, φ̃dj+1

, . . . , φ̃ds](x). As far as we know, this formula

(A.32) is new. Eq. (A.31) is already given in (A.25). To obtain the second line of (A.32)

from the first line, we use (A.5), and the formula (A.32) is shown by using (A.2)–(A.3).

A.3 Polynomial type solutions

Let us assume that eigenfunctions φn(x) and seed solutions φ̃v(x) are polynomial type solu-

tions, namely they have the following forms,

φn(x) = φ0(x)Pn

(
η(x)

)
, φ̃v(x) = φ̃0(v)(x)ξv

(
η(x)

)
, (A.33)

where φ0(x), φ̃0(v)(x) and η(x) are functions of x, and Pn(η) and ξv(η) are polynomials in η.

For concrete examples, e.g. Laguerre and Jacobi cases given in AppendixB, the Wronskians

in (A.31) have the following forms,

W[φ̃d1 , . . . , φ̃ds](x) = (some function of x)× Ξd1...ds

(
η(x)

)
, (A.34)

W[φ̃d1 , . . . , φ̃ds , φn](x) = (some function of x)× Pd1...ds,n

(
η(x)

)
, (A.35)

where Ξd1...ds(η) and Pd1...ds,n(η) are polynomials in η. Therefore φd1...ds n(x) has the following

form,

φd1...ds n(x) = Ψd1...ds(x)Pd1...ds,n

(
η(x)

)
, Ψd1...ds(x) =

(some function of x)

Ξd1...ds

(
η(x)

) . (A.36)

Let us define the step forward (F̂) and backward (B̂) shift operators as,

F̂d1...ds

def
= Ψ−1

d1...ds
(x) ◦ Âd1...ds ◦Ψd1...ds−1

(x), (A.37)

B̂d1...ds

def
= Ψ−1

d1...ds−1
(x) ◦ Â†

d1...ds
◦Ψd1...ds(x), (A.38)

where Ψd1...ds−1
(x)

∣∣
s=1

= φ0(x). The relations (A.18) and (A.24) are rewritten as

F̂d1...dsPd1...ds−1,n(η) = Pd1...ds,n(η), B̂d1...dsPd1...ds,n(η) = (En − Ẽds)Pd1...ds−1,n(η). (A.39)
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The relations (A.30) are also rewritten as

F̂ (d1...ds)Pn(η) = Pd1...ds,n(η), B̂(d1...ds)Pd1...ds,n(η) =

s∏

j=1

(En − Ẽdj) · Pn(η), (A.40)

where the multi-step forward and backward shift operators, F̂ (d1...ds) and B̂(d1...ds), are defined

by

F̂ (d1...ds) def
= F̂d1...ds · · · F̂d1d2F̂d1 = Ψ−1

d1...ds
(x) ◦ Â(d1...ds) ◦ φ0(x), (A.41)

B̂(d1...ds) def
= B̂d1B̂d1d2 · · · B̂d1...ds = φ−1

0 (x) ◦ Â(d1...ds) † ◦Ψd1...ds(x). (A.42)

We have

B̂(d1...ds)F̂ (d1...ds)Pn(η) =

s∏

j=1

(En − Ẽdj) · Pn(η), (A.43)

F̂ (d1...ds)B̂(d1...ds)Pd1...ds,n(η) =
s∏

j=1

(En − Ẽdj) · Pd1...ds,n(η). (A.44)

Remark that

F̂ (d1...ds)Pn

(
η(x)

)
= Ψ−1

d1...ds
(x)Â(d1...ds)φn(x), (A.45)

B̂(d1...ds)Pd1...ds,n

(
η(x)

)
= φ−1

0 (x)Â(d1...ds) †φd1...ds n(x). (A.46)

B Multi-indexed Laguerre and Jacobi polynomials

In this appendix we review the multi-indexed orthogonal polynomials of Laguerre and Ja-

cobi types [11], mainly their algebraic properties. They are obtained from the Laguerre and

Jacobi polynomials by applying the multi-step Darboux transformation explained in Ap-

pendixA. If necessary, we write the parameter λ dependence explicitly, Âd1...ds = Âd1...ds(λ),

φd1...ds n(x) = φd1...ds n(x;λ), Pd1...ds,n(η) = Pd1...ds,n(η;λ), En = En(λ), etc. We assume that

the parameters (g and h) are generic such that cΞd1...ds 6= 0 (B.14), cPd1...ds,n 6= 0 (B.15) and

En − Ẽdj 6= 0.

The original systems are the radial oscillator and the Darboux-Pöschl-Teller potential for

Laguerre (L) and Jacobi (J) cases respectively:

L : H = p2 + x2 +
g(g − 1)

x2
− 2g − 1, 0 < x <∞, g > 1

2
,

λ = g, δ = 1, cF = 2, En = 4n,
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η(x) = x2, φ0(x) = e−
1

2
x2

xg, Pn(η) = L
(g− 1

2
)

n (η), (B.1)

J : H = p2 +
g(g − 1)

sin x2
+
h(h− 1)

cos x2
− (g + h)2, 0 < x < π

2
, g, h > 1

2
,

λ = (g, h), δ = (1, 1), cF = −4, En = 4n(n + g + h),

η(x) = cos 2x, φ0(x) = (sin x)g(cosx)h, Pn(η) = P
(g− 1

2
,h− 1

2
)

n (η), (B.2)

with φn(x) = φ0(x)Pn

(
η(x)

)
. We take the virtual state wavefunctions as seed solutions,

L : type I: φ̃I
v(x;λ)

def
= i−gφv(ix;λ) = e

1

2
x2

xgL
(g− 1

2
)

v

(
−η(x)

)
, δ̃

I def
= 1,

Ẽ I
v = −4(g + v + 1

2
), (B.3)

type II: φ̃II
v (x;λ)

def
= φv

(
x; tII(λ)

)
= e−

1

2
x2

x1−gL
( 1
2
−g)

v

(
η(x)

)
, δ̃

II def
= −1,

t
II(λ)

def
= 1− g, Ẽ II

v (λ) = −4(g − v− 1
2
), (B.4)

J : type I: φ̃I
v(x;λ)

def
= φv

(
x; tI(λ)

)
= (sin x)g(cosx)1−hP

(g− 1

2
, 1
2
−h)

v

(
η(x)

)
, δ̃

I def
= (1,−1),

t
I(λ) = (g, 1− h), Ẽ I

v = −4(g + v + 1
2
)(h− v− 1

2
), (B.5)

type II: φ̃II
v (x;λ)

def
= φv

(
x; tII(λ)

)
= (sin x)1−g(cosx)hP

( 1
2
−g,h− 1

2
)

v

(
η(x)

)
, δ̃

II def
= (−1, 1),

t
II(λ) = (1− g, h), Ẽ II

v = −4(g − v− 1
2
)(h + v + 1

2
), (B.6)

where the range of v, g, h are found in [11]. These virtual state wavefunctions are labeled

by the degree v of the polynomial part and the type t (I or II), (v, t) which we write as vt.

For simplicity in notation, we abbreviate vt as v in most places.

Eqs. (A.34)–(A.35) become

W[φ̃d1 , . . . , φ̃ds](x) = c
1

2
s(s−1)

F Ξd1...ds(η)×

{
ηs

′(s′+g− 1

2
)es

′η : L
(
1−η

2

)s′(s′+g− 1

2
)(1+η

2

)−s′(−s′+h− 1

2
)

: J
, (B.7)

W[φ̃d1 , . . . , φ̃ds, φn](x)

= c
1

2
s(s+1)

F Pd1...ds,n(η)×

{
η(s

′+ 1

2
)(s′+g)e(s

′− 1

2
)η : L

(
1−η

2

)(s′+ 1

2
)(s′+g)(1+η

2

)(−s′+ 1

2
)(−s′+h)

: J
, (B.8)

where η = η(x), s′ = 1
2
(sI− sII) and st = #{dj | dj : type t, j = 1, . . . , s} (t = I, II). Here the

denominator polynomial Ξd1...ds(η) and the multi-indexed orthogonal polynomial Pd1...ds,n(η),

which are polynomials of degree ℓd1...ds and ℓd1...ds + n in η respectively, are defined by

Ξd1...ds(η)
def
= W[µd1 , . . . , µds](η)×

{
η(sI+g− 1

2
)sIIe−sIη : L

(
1−η

2

)(sI+g− 1

2
)sII(1+η

2

)(sII+h− 1

2
)sI : J

, (B.9)

Pd1...ds,n(η)
def
= W[µd1 , . . . , µds, Pn](η)×

{
η(sI+g+ 1

2
)sIIe−sIη : L

(
1−η

2

)(sI+g+ 1

2
)sII(1+η

2

)(sII+h+ 1

2
)sI : J

, (B.10)
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µv(η) =






eη × L
(g− 1

2
)

v (−η) : L, v type I

η
1

2
−g × L

( 1
2
−g)

v (η) : L, v type II
(
1+η

2

) 1

2
−h

× P
(g− 1

2
, 1
2
−h)

v (η) : J, v type I
(
1−η

2

) 1

2
−g

× P
( 1
2
−g,h− 1

2
)

v (η) : J, v type II

, (B.11)

and

ℓd1...ds
def
=

s∑

j=1

dj −
1

2
s(s− 1) + 2sIsII. (B.12)

Since L
(α)
n (η) and P

(α,β)
n (η) belong to Q[η, α, β], these polynomials Ξd1...ds(η) and Pd1...ds,n(η)

also belong to Q[η, g, h]. Under a permutation of dj’s, Ξd1...ds(η) and Pd1...ds,n(η) change their

overall sign, Ξdσ1 ...dσs
(η) = sgn

(
1 ... s

σ1 ... σs

)
Ξd1...ds(η) and Pdσ1 ...dσs ,n

(η) = sgn
(
1 ... s

σ1 ... σs

)
Pd1...ds,n(η).

We denote the coefficients of the highest degree term of the polynomials Ξd1...ds(η) and

Pd1...ds,n(η) as

Ξd1...ds(η) = cΞd1...dsη
ℓd1...ds + (lower order terms),

Pd1...ds,n(η) = cPd1...ds,nη
ℓd1...ds+n + (lower order terms). (B.13)

In the ‘standard order’ {dI1, . . . , d
I
sI
, dII1 , . . . , d

II
sII
}, these coefficients are [28]

cΞ
dI
1
...dIIsII

=

sI∏

j=1

cI
dIj
·

sII∏

j=1

cII
dIIj

·
∏

1≤j<k≤sI

(dIk − dIj) ·
∏

1≤j<k≤sII

(dIIk − dIIj )

×





(−1)sIsII : L
sI∏
j=1

sII∏
k=1

1
4
(g − h+ dIj − dIIk ) : J , (B.14)

cP
dI
1
...dIIsII

,n
= cΞ

dI
1
...dIIsII

cn ×





(−1)sI
sII∏
j=1

(g + n− dIIj − 1
2
) : L

sI∏
j=1

1
2
(h+ n− dIj −

1
2
) ·

sII∏
j=1

−1
2
(g + n− dIIj − 1

2
) : J

, (B.15)

where cn, c
I
v and cIIv are

Pn(η) = cnη
n + (lower order terms), cn =






(−1)n

n!
: L

(n + g + h)n
2n n!

: J
, (B.16)

cIv(λ)
def
=

{
(−1)vcv(λ) : L

cv
(
t
I(λ)

)
: J

, cIIv (λ)
def
= cv

(
t
II(λ)

)
: L, J. (B.17)

From (A.25) and (B.7)–(B.8), we obtain

φd1...ds n(x;λ) = Ψd1...ds(x;λ)Pd1...ds,n

(
η(x);λ

)
,
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Ψd1...ds(x;λ) = cs
F

φ0(x;λ
[sI,sII])

Ξd1...ds

(
η(x);λ

) , λ
[sI,sII] def

= λ+ sIδ̃
I
+ sIIδ̃

II
. (B.18)

Explicit forms of the step forward and backward shift operators F̂d1...ds and B̂d1...ds are given

by eqs.(A.1)–(A.4) in [38]. To calculate the multi-step one F̂ (d1...ds) and B̂(d1...ds), however,

they are not so useful. Instead, we use (A.31)–(A.32) and (A.45)–(A.46). By using (B.7)–

(B.8), we obtain

F̂ (d1...ds)Pn(η) = ρ
(d1...ds)

F̂
(η)W[µd1 , . . . , µds, Pn](η), (B.19)

B̂(d1...ds)Pd1...ds,n(η) = ρ
(d1...ds)

B̂
(η)W[m1, . . . , ms, Pd1...ds,n](η). (B.20)

Here µv(η) is given in (B.11), and ρ
(d1...ds)

F̂
(η), ρ

(d1...ds)

B̂
(η) and mj(η) are

ρ
(d1...ds)

F̂
(η)

def
=

{
η(sI+g+ 1

2
)sIIe−sIη : L

(
1−η

2

)(sI+g+ 1

2
)sII(1+η

2

)(sII+h+ 1

2
)sI : J

, (B.21)

ρ
(d1...ds)

B̂
(η)

def
=
c2s
F
(−1)

1

2
s(s+1)

Ξd1...ds(η)
s

×

{
ηsI(sI+g+ 1

2
)e−sIIη : L

(
1−η

2

)sI(sI+g+ 1

2
)(1+η

2

)sII(sII+h+ 1

2
)

: J
, (B.22)

mj(η) = m
(d1...ds)
j (η)

def
= Ξd1...dj−1dj+1...ds(η)×





η−(sI−sII+g− 1

2
) : L, dj type I

eη : L, dj type II
(
1−η

2

)−(sI−sII+g− 1

2
)

: J, dj type I
(
1+η

2

)−(sII−sI+h− 1

2
)

: J, dj type II

, (B.23)

where Ξd1...dj−1dj+1...ds(η)
∣∣
s=1

= 1. This formula (B.20) (see (A.40)) is new. For the exceptional

Hermite polynomial with multi indices, the formula like (B.20) was given in [39].

The Hamiltonian Hd1...ds can be written in the standard form:

Hd1...ds = A†
d1...ds

Ad1...ds , Ad1...ds

def
= d

dx
− ∂x log

∣∣φd1...ds 0(x)
∣∣. (B.24)

The shape invariance of the original system is inherited by the deformed system,

Ad1...ds(λ)Ad1...ds(λ)
† = Ad1...ds(λ+ δ)†Ad1...ds(λ+ δ) + E1(λ). (B.25)

As a consequence of the shape invariance, we have

Ad1...ds(λ)φd1...ds n(x;λ) = fn(λ)φd1...ds n−1(x;λ + δ), (B.26)

Ad1...ds(λ)
†φd1...ds n−1(x;λ+ δ) = bn−1(λ)φd1...ds n(x;λ), (B.27)
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where the constants fn(λ) and bn−1(λ) are the factors of the eigenvalue fn(λ)bn−1(λ) =

En(λ):

fn(λ) =

{
−2 : L
−2(n + g + h) : J

, bn−1(λ) = −2n : L, J. (B.28)

The relations (B.26)–(B.27) give the forward and backward shift relations,

Fd1...ds(λ)Pd1...ds,n(η;λ) = fn(λ)Pd1...ds,n−1(η;λ+ δ), (B.29)

Bd1...ds(λ)Pd1...ds,n−1(η;λ+ δ) = bn−1(λ)Pd1...ds,n(η;λ), (B.30)

where the forward (F) and backward (B) shift operators are defined by

Fd1...ds(λ)
def
= Ψ−1

d1...ds
(x;λ+ δ) ◦ Ad1...ds(λ) ◦Ψd1...ds(x;λ), (B.31)

Bd1...ds(λ)
def
= Ψ−1

d1...ds
(x;λ) ◦ Ad1...ds(λ)

† ◦Ψd1...ds(x;λ+ δ). (B.32)

Another consequence of the shape invariance is the following proportionality,

Pd1...ds,0(η;λ) = A× Ξd1...ds(η;λ+ δ), (B.33)

A =





(−1)sI
sII∏
j=1

(g − dj −
1
2
) : L

2−sI
sI∏
j=1

(h− dj −
1
2
) · (−2)−sII

sII∏
j=1

(g − dj −
1
2
) : J

,

where j runs for type I dj (or type II dj) in the products
sI∏
j=1

(or
sII∏
j=1

). Therefore the ground

state has the form,

φd1...ds 0(x;λ) ∝ φ0(x;λ
[sI,sII])

Ξd1...ds

(
η(x);λ+ δ

)

Ξd1...ds

(
η(x);λ

) . (B.34)

Then eqs.(B.31)–(B.32) become

Fd1...ds(λ) = cF
Ξd1...ds(η;λ+ δ)

Ξd1...ds(η;λ)

( d

dη
−
∂ηΞd1...ds(η;λ+ δ)

Ξd1...ds(η;λ+ δ)

)
, (B.35)

Bd1...ds(λ) = −4c−1
F
c2(η)

Ξd1...ds(η;λ)

Ξd1...ds(η;λ+ δ)

( d

dη
+
c1(η,λ

[sI,sII])

c2(η)
−
∂ηΞd1...ds(η;λ)

Ξd1...ds(η;λ)

)
, (B.36)

where the functions c1(η;λ) and c2(η) are those appearing in the (confluent) hypergeometric

equations for the Laguerre and Jacobi polynomials

c1(η,λ)
def
=

{
g + 1

2
− η : L

h− g − (g + h + 1)η : J
, c2(η)

def
=

{
η : L
1− η2 : J

. (B.37)
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The second order differential operator H̃d1...ds(λ) governing the multi-indexed polynomials

is:

H̃d1...ds(λ)
def
= Ψ−1

d1...ds
(x;λ) ◦ Hd1...ds(λ) ◦Ψd1...ds(x;λ) = Bd1...ds(λ)Fd1...ds(λ)

= −4

(
c2(η)

d2

dη2
+
(
c1(η,λ

[sI,sII])− 2c2(η)
∂ηΞd1...ds(η;λ)

Ξd1...ds(η;λ)

) d

dη

+ c2(η)
∂2ηΞd1...ds(η;λ)

Ξd1...ds(η;λ)
− c1(η,λ

[sI,sII] − δ)
∂ηΞd1...ds(η;λ)

Ξd1...ds(η;λ)

)
, (B.38)

H̃d1...ds(λ)Pd1...ds,n(η;λ) = En(λ)Pd1...ds,n(η;λ). (B.39)

For appropriate parameter range (see [11]), the operators Hd1...ds, Âd1...ds , Ad1...ds , etc.

are non-singular, and we have the norm formula, (φd1...ds n, φd1...ds m) =
s∏

j=1

(En−Ẽdj ) · (φn, φm)

with (f, g)
def
=

∫ x2

x1
dxf(x)g(x). For equivalence among the multi-indexed polynomials, see

[28, 29].
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[1] D.Gómez-Ullate, N.Kamran and R.Milson, “An extension of Bochner’s problem: ex-

ceptional invariant subspaces,” J. Approx. Theory 162 (2010) 987-1006, arXiv:0805.

3376[math-ph]; “An extended class of orthogonal polynomials defined by a Sturm-

Liouville problem,” J. Math. Anal. Appl. 359 (2009) 352-367, arXiv:0807.3939[math-

ph].

[2] C.Quesne, “Exceptional orthogonal polynomials, exactly solvable potentials and super-

symmetry,” J. Phys. A41 (2008) 392001 (6pp), arXiv:0807.4087[quant-ph].

[3] S.Odake and R. Sasaki, “Infinitely many shape invariant potentials and new orthogonal

polynomials,” Phys. Lett. B679 (2009) 414-417, arXiv:0906.0142[math-ph]; “An-

other set of infinitely many exceptional (Xℓ) Laguerre polynomials,” Phys. Lett. B684

(2010) 173-176, arXiv:0911.3442[math-ph].

[4] S.Odake and R. Sasaki, “Infinitely many shape invariant potentials and cubic identi-

ties of the Laguerre and Jacobi polynomials,” J. Math. Phys. 51 (2010) 053513 (9pp),

arXiv:0911.1585[math-ph].

[5] C.-L.Ho, S.Odake and R. Sasaki, “Properties of the exceptional (Xℓ) Laguerre and

Jacobi polynomials,” SIGMA 7 (2011) 107 (24pp), arXiv:0912.5447[math-ph].

33
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Liouvillesche Polynomsysteme,” Math. Zeit. 29 (1929) 730-736.
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