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Abstract

In a previous paper, we presented conjectures of the recurrence relations with con-
stant coeflicients for the multi-indexed orthogonal polynomials of Laguerre, Jacobi,
Wilson and Askey-Wilson types. In this paper we present a proof for the Laguerre
and Jacobi cases. Their bispectral properties are also discussed, which give a method
to obtain the coefficients of the recurrence relations explicitly. This paper extends to
the Laguerre and Jacobi cases the bispectral techniques recently introduced by Gémez-
Ullate et al. to derive explicit expressions for the coefficients of the recurrence relations
satisfied by exceptional polynomials of Hermite type.

1 Introduction

The exceptional orthogonal polynomials have seen remarkable developments in recent years

in connection with exactly solvable quantum mechanical systems in one dimension [1]-[30]
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(and the references therein). The exceptional orthogonal polynomials {P,(n)|n € Zso}
satisfy second order differential or difference equations and form a complete set, but there
are missing degrees, by which the constraints of Bochner’s theorem and its generalizations
[31, 32] are avoided. We distinguish the following two cases; the set of missing degrees
T =Z>o\{degPy|n € Z>o} is case (1): Z={0,1,...,—1}, or case (2) Z # {0,1,...,0—1},
where ¢ is a positive integer. The situation of case (1) is called stable in [8]. By applying
the multi-step Darboux transformation [33] to the quantum mechanical systems described by
the classical orthogonal polynomials, various exceptional orthogonal polynomials with multi-
indices can be obtained. The choice of the seed solutions of the Darboux transformation leads

to case (1) or case (2). When the eigenstate or pseudo virtual state wavefunctions are used
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as seed solutions, we obtain case (2) [17, 27]. When the virtual state wavefunctions are used
as seed solutions, we obtain case (1) and call them multi-indexed orthogonal polynomials
[11, 26, 25].

The ordinary orthogonal polynomials { P,(n)|n € Zx¢,deg P,, = n} satisfy the three term
recurrence relations, and conversely the polynomials satisfying the three term recurrence
relations are orthogonal polynomials (Favard’s theorem [32]). Since the exceptional orthog-
onal polynomials are not ordinary orthogonal polynomials, they do not satisfy the three
term recurrence relations. Recurrence relations for exceptional polynomials were discussed
by several authors [7, 34, 35, 36, 37, 38]. In our first paper [34], we showed that M-indexed
orthogonal polynomials Pp ,(n) (D = {di,...,dyn}) of Laguerre, Jacobi, Wilson and Askey-
Wilson types satisfy 3 + 2M term recurrence relations with variable dependent coefficients.
In our second paper [38], we discussed recurrence relations with constant coefficients for the
multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types,

L
X(n)Ppn(n) = > rff,}prmM(n), and gave conjectures on the condition for the polyno-
k=L

mial X (7). Recently Gémez-Ullate, Kasman, Kuijlaars and Milson studied the exceptional
Hermite polynomials with multi-indices and showed the recurrence relations with constant
coefficients [39]. Their method can be applied to the Laguerre and Jacobi cases and we can
prove the recurrence relations with constant coefficients for the multi-index Laguerre and
Jacobi polynomials conjectured in [38]. This is the first motivation of the present paper.

The second motivation of the present paper is a study of the bispectral property [32, 40]:

ﬁDP’D,n(n) = gnPD,n(n)> AX,DPD,H(H) = X(n)P’D,n(n)a (11)

where Hp is the second order differential operator of n and Ay p is a certain shift operator of
n. In [39] they also studied bispectral properties of the exceptional Hermite polynomials with
multi-indices. Their key point is the anti-isomorphism b, which originates from ‘bispectral
Darboux transformation’ [41]. We explain it briefly. The operators 9, and 7 act on the
Hermite polynomial H,(n) as 9,H,(n) = 2nH,_1(n) and nH,(n) = $H,+1(n) + nH,_1(n).
By introducing the operators I' = 2ne % and A = %ean + ne~ % we have o,H,(n) =
I'H,(n) and nH,(n) = AH,(n). Since commutators among these operators are [9,,n] = 1
and [A,I'] =1 (and other commutators vanish), we have an algebra anti-isomorphism b :
C[0,,m] — C[A,T], b(n'd)) = TVA" (i,j = 0,1,...). The exceptional Hermite polynomial
Pp (1) and the original Hermite polynomial H,(n) are related by the multi-step forward



and backward shift operators, () and B®) (These are our notation, see Appendix A. F(®),
B®) and 7 correspond to A, B and z in [39], respectively). They are differential operators
of n (F® ¢ C[d,,n], BP) ¢ C[d,,n]) and commute with A and T'. For an appropriate
polynomial X (n) that gives recurrence relations with constant coefficients, the operator
Oxp = B® o X(n) o FP) belongs to C[d,,n]. Then the operator Ax.p = b(Oxp) o npt(n),
where 7p(n) is a certain function of n and f~! means f~'(z) = f(x)™!, gives X () Ppn(n) =
AxpPpn(n) (X and Axp correspond to f, A; in [39], respectively). To derive this result,
the commutativity [Ax p, B(D)] = 0 is important. By using this result, we can obtain the
coefficients 7“7); }QD explicitly.

This argument can be applied to the Laguerre and Jacobi cases but a slight modification is
needed. The reason is that the Hermite polynomial H,,(n) has no parameter but the Laguerre
LY (n) and Jacobi pie? (n) polynomials have parameters (« and ). We explain this taking
the Laguerre case as an example. The three term recurrence relations of the Laguerre
polynomial LI (n) give nL' () = ALY (), A = —(n+ 1)e? + 2n+a + 1 — (n+ a)eo.
For differentiation, a well known formula is the forward shift relation 9, L(® (n) = —L ()

and it may lead us to define IV = —e=%¢% . Their commutators are
AT =1, [I''Al=[I'"T"|=0, I'=(1—e%)e? T'LYMn) =L%), (1.2

and A, I'" and I’ commute with 0, and n. However I" and I’ do not commute with o.
Since the operator B() contains the parameter « as a coefficient of 8,"; , the commutativity
[Axp, B(D)] = 0 is lost. The operator I' should contain n-shifts only. The expression of I'
becomes more complicated than the Hermite case. The important map b can be defined but
it is no longer anti-isomorphism. The details are given in the main text.

This paper is organized as follows. In section 2 we prove the conjecture of the recurrence
relations with constant coefficients for the multi-indexed Laguerre and Jacobi polynomials.
After recapitulating some fundamental formulas of the multi-indexed Laguerre and Jacobi
polynomials in §2.1 and the conjecture in §2.2, a proof is given in §2.3. In section 3
we discuss the bispectral property of the multi-indexed Laguerre and Jacobi polynomials.
After preparing some algebra and shift operators in §3.1, we define the map b for any
ordinary orthogonal polynomials in continuous variable in §3.2. By using this map, the
bispectral property, Theorem 2, is established in § 3.3. Examples for Theorem 2 are presented

in §3.4. The final section is for a summary and comments. In Appendix A we review the



algebraic aspects of the Darboux transformation, which are used to derive various properties
of the exceptional orthogonal polynomials with multi-indices. In Appendix B the algebraic
properties of the multi-indexed Laguerre and Jacobi orthogonal polynomials are reviewed.

The formulas (A.32) and (B.20) are new. These two Appendices fix the notation in this
paper.

2 Recurrence Relations with Constant Coefficients

In this section we prove the conjecture of the recurrence relations with constant coefficients

for multi-indexed Laguerre and Jacobi orthogonal polynomials given in [38].

2.1 Multi-indexed orthogonal polynomials

The Darboux transformation and the multi-indexed orthogonal polynomials of Laguerre and
Jacobi types are reviewed in Appendix A and B, and we follow the notation there. For a set
of labels D = {d,, ..., dy}, we write Ha, _ay,> Pas...dnsn(E)s Pay.dryn(1)s Sy (1), Ady.da
.»Zl(dl“'dM), ﬁdl___dM, ]:"(dl“'dM), lay..dy s €tc. as Hp, ¢pn(z), Ppn(n), Z2p(n), ./le, A(D), ]:"p,
F®) 5, etc., respectively. We assume that the parameters (g and h) are generic such that
5 #0 (B.14), ch,, # 0 (B.15) and &, — &, # 0.

The multi-indexed orthogonal polynomials of the Laguerre and Jacobi types Pp (1) and

the original Laguerre and Jacobi polynomials P,(n) are related as follows:

FOP,) = p 2 0)Wltta, - - - f1ans» Pal () = Ppn(n), (2.1)
B®) Pp () = p (M Wims, ..., mar, Pal(n) = 7p(n) Pa(n), (2:2)

where 7P, B®), (), o2 (n), p3” (n) and m;(n) = mS” () are defined by (A.41), (A.42),

(B.11), (B.21), (B.22) and (B.23), respectively (see also (A.40)), and the constant mp(n) is

defined by
M

mo(n) = [ (6 — &) (2.3)

J=1

This polynomial Pp,(n) satisfies the second order differential equation (see (B.37)-(B.39)),

HoPp (1) = E.Ppn(n), (2.4)
_ 2 = 625 Zp
_iHD 02(77)5—772 + (Cll(n) — 2¢9(n) 829(7(77)7))0%7 + 02(77)T1§)n) — c10(n) 059(757)7)' (2.5)



Here c11(n) = c1(n, A[MI’MH])a cio(n) = c1(n, AlMMul 0) and cy(n) are

_ 9+MI_MII+%_77 L
Cn(n)—{h—g—2M1+2MH—(g+h+1)n 1y (2.6)
-1 :L - L
CIO(U):CII(U)_'_{ 277 -] 02(77):{ 717_772 -] (27)

where M, = #{d; |d;: type t, j =1,...,M} (t = I,II). The degrees of Pp,(n) and Zp(n)
are {p + n and {p respectively, and ¢p is given in (B.12). We set P,(n) = Ppn,(n) = 0 for
n < 0.

2.2 Recurrence relations with constant coefficients

In our previous paper [38], we discussed the recurrence relations of the multi-indexed La-

guerre or Jacobi polynomials with constant coefficients,

L

X(0)Ppn(n) =Y 1% Ppask(n) (¥n € Zsy), (2.8)
k=—L

where rfi ;Z) 's are constants and X () is some polynomial of degree L in 7. To find such
X (n) is our purpose. This problem is rephrased as follows (Remark 3 in §1I of [38]): Find a
polynomial X (n) such that the operator O x p LR 6 x (n) o FD maps polynomials in 7
to polynomials in 1. The coefficients rfi P are expressed as (Proposition 1 in [38])

A0 XD

X,p Tk
T = . (2.9)
g 1L (Enrr — €4))

where the constants rn(?,)cX’D are obtained from the relations among the classical orthogonal
polynomials
L
@X,DP Z T(O XD n+k ( Z T(O XD n+k )) (2'10)
k=—n k=—L

If the two polynomials in 1, Zp(n) = Z4, 4, (n) and =4, _4,,_, (1), do not have common
roots, the necessary condition for X (n) is the following (Proposition 2 and its Remark in

38]): %7(777) is divisible by Zp(n), namely

dX(n)

=Zp(n)Y(n), Y(n): apolynomial in 7. (2.11)



Since the overall normalization and the constant term of X (n) are irrelevant, we take the

candidate X (n) as

X(n) = / "Zo)Y ()dy, degX(n) = L = fp + deg Y (1) + 1. (2.12)

and we assume Y (n) € C[n, g, h]. The Conjecture given in [38] is that the polynomial X (n)
satisfying (2.11) gives (2.8). Since we will prove this conjecture in the next subsection, we

state it as a theorem:

Theorem 1 For any polynomial Y (n), we define X (n) as (2.12). Then the multi-indezed
Laguerre and Jacobi polynomials Pp,,(n) satisfy 1 + 2L term recurrence relations with con-

stant coefficients (2.8). (See Remark in § 2.3.)

Remark 1 If two polynomials in 1, Zp(n) = Z4 4, (n) and Z4 4,,_,(n), do not have
common roots, this theorem exhausts all possible X (n) giving recurrence relations with
constant coefficients [38].

Remark 2 If d?;(]n)

Some examples for (2.8) are found in [7, 36, 37, 38|.

is divisible by Zp(n), we have Ox p € C[9,, 7).

2.3 Proof

Following the argument in [39], we prove Theorem 1.
Let us define the set of finite linear combinations of Pp ,(n), Up C C[n], and the stabilizer
ring Sp C Cln] by

Up < Span{Pp (1) | n € Znso}, (2.13)

Sp = {X(n) € Clyl | X(n)Ppu(n) € Up (¥n € Zp)}. (2.14)

Since the degree of Pp,(n) is {p + n, it is trivial that p(n) € Up = deg p > lp, except for
p(n) =0.
deg p—{p

For p(n) € Up, let us expand it as p(n) = > a,Ppn(n) (a,: constant) and consider the
n=0
~ ~ deg p—{p
action of Hp on it. From (2.4), we have Hpp(n) = > an&Ppn(n) € C[n]. On the other
n=0
hand, from (2.5), we have

Hp p(n) = —4(c2()02p(n) + c11(n)dyp(n))



4
+=—

=y (BhZ0 () (2e2(0)up(0) + exo(mp(n) = DiEw(m)eanlp(n). (215)

Since the first line of r.h.s is a polynomial in 7, we obtain the condition:
9y=p(n) (2¢2(n)3yp(1) + c10()p(n)) — 9a=p(n)ea(n)p(n) is divisible by Ep(n).  (2.16)

Next let us consider the converse. Take any polynomial p(n) satisfying the condition (2.16)

and expand it as

deg p—{¢p deg r
p(n) = > anPon(n) +r(n), degr<tp, r(n)=> rn’ (2.17)
n=0 k=0

(p(n) = r(n) for deg p < ¢p). Since Pp,(n) satisfies (2.16), the condition (2.16) becomes
0,=p(n) (202(17)&77’(17) + 010(77)7“(77)) — 8259(77)02(77)7“(77) is divisible by Zp(n). (2.18)

In general the polynomial Zp(n) has only simple zeros, Zp(n) ﬁ(n — ;). The condition
(2.18) means that the polynomial in (2.18) vanishes at n = 7;. T}fi:slgives {p linear relations
on 1’s. Since these linear relations are independent and the number of r,’s is deg r+1 < /p,
all 7.’s vanish. Namely we obtain () = 0 and p(n) € Up. We remark that the polynomials
p(n) satisfying the condition (2.16) form a vector space and its codimension in C[n] is ¢p for

r(n) = 0 case. We summarize this argument as the following proposition.

Proposition 1 When Zp(n) has only simple zeros, a polynomial p(n) belongs to Up if and
only if p(n) satisfies the condition (2.16).

For any polynomial X (n) and p(n), we set g(n) = X (n)p(n). Then the condition (2.16)
for q(n) becomes

(1) (2c2(n)0ya(n) + cr0(n)q(n)) — 92Zp(n)cz2(n)a(n)
(3175@(77) (2¢2(n)Dyp(n) + cr0(n)p(n)) — 8,35@(77)02(77)17(77))
O=p(n)2¢2(n)0y X (n)p(n). (2.19)

If X (n) satisfies (2.11) and p(n) belongs to Up, this is divisible by Zp(n). When =p(n) has
only simple zeros, Proposition1 implies ¢(n) € Up. Thus we obtain X (n) € Sp, namely,
the relation among the polynomials (2.8). The denominator polynomial Zp(n) contains a

set of parameters A (A = g for Laguerre and XA = (g, h) for Jacobi) and it could be made

7



to have higher order zeros by tuning A. Such tuning, however, does not cause any trouble
to the relation among the polynomials (2.8). This is shown as follows. The denominator
polynomial Zp(n) belongs to C[n, g, h]. The polynomial X (n) (2.12) also belongs to Cln, g, h]
because we assume Y (1) € C[n, g, h]. From (3.58) with (B.11) and (B.21), F(®) belongs to
C[dy,n,g,h]. From (3.58) with (B.22)-(B.23), the coefficients of d}’s in B®) are rational
functions of n and the factor in the denominator is only Zp(n)™. This factor is factorized
as Zp(n) = 5 ﬁ(n — ;). Since we already know Oxp = B®) o X (1) o F(P) € C[d,, n], this
factor (n — n;) Zi:s canceled out in ©x p. Thus the factor in the denominator of ©x p is only
c5. By our assumption, this ¢5 does not vanish. Therefore (2.8) is valid even when Zp(n)
has higher order zeros. Thus Theorem 1 is proved.
Remark If Zp(n) has only simple zeros, the converse of Theorem 1 holds. To show this,
assume that X (n) € Sp, p(n) € Up and (2.19) is divisible by Zp(n). Since the expression
in the second line of (2.19) is divisible by Zp(n), the expression in the third line should be
divisible by =Zp(7). Since p(n) is arbitrary, 0,=p(n)c2(n)0,X (n) should be divisible by Zp(n).
If Zp(n) and 9,=Zp(n) do note have common roots, which happens if =p(n) has only simple
zeros, 0,X (n) should be divisible by Zp (7).

We present examples of Zp(n) which has higher order zeros [42]. We take D = {11, 2!1}.

For the Laguerre case, the denominator polynomial is

—2Ep(n) = 0" +2(29 = 3)1° + (9 — 2)(69 — 1)n” +2(g — 3)2(29 + 1)+ (g — 3)s,  (2.20)

which has higher order zeros for ¢ = —3,2,2 —1. For these values, —2Zp(n) is n*(n —

2)(n—6), n*(n* —8), n*(n+4) and (n — 6)*(n — 14), respectively. We can check that 80 x p
belongs to Z[0,, 7, g] and nothing happens at g = —%, %, g, —%. For the Jacobi case, the

denominator polynomial is (a =g+ h, b= g — h)

64Zp(n) = (b—4)(b—3)(b — 1)(b +2)n* + 4(a — 1)(b—3)(b— 1)bn?

+2(b—1)(ala —4)+ (b+4)(b—3))n?
Faa—1)(b- >(a< ~2)+b -3
a*(a —4) 4+ 2a*(b —3) — da(b —5) — (b—3)(b— 1), (2.21)
which has higher order zeros for g = —1,2,2 or h = -2, -1 3 or (g +h)(g+h —2)(g —

h—28)=(9—h—3)(g—h—1)(9g—h+4) (The cases g —h = 4,3,1, —2 are excluded by the



condition ¢ # 0.). We can check that 160y p belongs to Z[d,, 7, g, h] and nothing happens

at these values.

3 Bispectral Property

In this section we discuss the bispectral property of the multi-indexed Laguerre and Jacobi

orthogonal polynomials, (1.1).

3.1 Preparation
3.1.1 some algebra
Let us consider operators A, B and O; (j = 1,2,...), which satisfy

[A,B] =1+ 01, 011€0%C[0,0,,..],

AOj,OjA, BOj,OjB,OjOk e 0. (31)

Any element F of the ring C[A, B, O, Oa, .. ] is written as a finite sum F = Y F;;B/A"+
ij>0
Or (F;; € C, O € O). It is easy to show the following identity (¢, j € Z>() by induction,

min(z,5) X .
AB = > a/B AT+ 0y, aP défr!(l) (j) =ad', 0;;€0. (3.2)

r r
r=0

The explicit form of O; ; can be obtained by the recurrence relations,

min(i,j) min(é,5)
Oi-i—l,j = Z afszl,j_,,Ai_’" + AOZ'J, Oi7j+1 = Z ai’ij_rOi_r71 + Oi,jB, (33)
r=0 r=0

with Oi,O = Oo,j =0.
The algebra of operators 0, (derivative by n) and n (multiplication by ), [0,,n] = 1, is

a special case of the above, namely O; = 0. Eq. (3.2) with i <> j becomes
Bon= S aly e (3.4
r=0
3.1.2 shift operators

In the bispectral property (1.1), Ax p is a certain shift operator of n. Usually a formal shift

operator, e.g. n — n + 1, is used but here we realize shift operators as differential operators



acting on smooth functions of n. For a function f(n), the exponential of ad, (a : constant)

acts on f(n) as a shift operator,

e f(n) = f(n +a), (3.5)
because o . o kg
o fn) = Y ok f) = Y- 5T = pln+a),
k=0 k=0

We regard a polynomial P,(n) as a sum Y a;(n)n’ and treat n (upper limit of the sum) as
=0

n
a continuous variable in the following way: a sum ) f(n,j) is understood as
j=1

S s = [ de 3 e —9)- flno) (36)

2 j=—00

1 1 n
where 6(z) is the Dirac delta function ([, 2 is replaced by ["12 for 3 f(n,7)). Of course,
p) 2 =0

only an integer shift is allowed for the upper limit of the sum. After all the calculations are

done, we can evaluate various quantities at n =0,1,2,... (and j =n,n—1,...).

29 ig a shift operator. If a constant a is replaced by a function

(n)r

The exponential operator e
g(n), the exponential operator e9™?% is no longer a shift operator, e.g. €™ f(n) = f(e%n).

Let us define a ‘normal ordered’ exponential operator : (™9 : ag

0 k
;@9 & Z g(:') o (3.7)
k=0 '
This acts on f(n) as a shift operator,
9 f(p) = f(n+g(n)), (3.8)

10



For a constant a, we have : e : = % We remark that : e="*®% : (¢ : constant) maps
a function of n to a constant, : e=("*®% : f(n) = f(—a). The product of normal ordered

exponential operators is again a normal ordered exponential operator,
c et 1 0920, — . p(91%92)(m)0n . (91 % g2)(n) = 91(n) + g2 (n + 0 (n)), (3.9)
and associative ((g1 * g2) * g3 = g1 * (g2 * g3) is easily shown). Eq.(3.9) is shown by

D9t (M0 9200 f(p) = e (M0 f(n+g2(n)) = f(n+ g1(n) + ga(n + g1(n)))

= el (MFg2(nta1(m)dn . £ (),

We give another proof:

- mi;o gg k! ?;E@kk)v f) (ga(n)™ ) em—r = 2 W:i; g '?;En_)’“k)' (i:) (g2(m)™) Vo=
N 2 2 t; (r +g t()?z;i P (r N t) (g5(n)~1) Ve — 2 ;) 2 9 i:ti'*t (i) (g2n)) Vo
_ f) - (})ntor f: B (g, =), = fjl, ()t (st + )"

[e.e] 1 s

where (f(n))") = " f(n). Later we will use the following (a, b : constants):

cen . b= gaFt)Ohn . gadn . o= (FB)On . — . o (N HH)O

LoD adn . m(nmatb)On L (@)D (e HD)On . (0400 (3.10)

+kOn

The product of the shift operator e (k: constant, integer) and a sum of functions

>_ f(n,j) as an operator is

7j=1
n ntk
0N f(n, ) = fn+k, et (3.11)
j=1 j=1
This is understood in the following way. By rewriting the sum as (3.6),
ko N\ nhts S ) — +kd)
03 tng) = [ e 30 o) ke = 3 b et
j= j=—o0 j=

11



3.2 Map b

By modifying the arguments in [39], we define the map b (3.26). In this subsection we
consider arbitrary (ordinary) orthogonal polynomials P, (n) in continuous variable 1. The
polynomial P,(n) = ¢,n™ + (lower degree terms) is defined by the three term recurrence
relations [32]

nPa(n) = AnPria(n) + B Pu(n) + CpPai(n). (3.12)

L) (n <0)and A_; ). We assume that A,, B, and C,, are

We set Py(n) = 1, Po(1)
given as functions of continuous n. Note that (3.12) holds for n € Z and P,(n) may not
satisfy any differential equation.

Since 0, P,(n) is a polynomial of degree n — 1, it can be written as

OpPa(n) = eniPaci(n), (3.13)

Cn

def
where ¢, ;, are constants and we set ¢, = 0. We have A, = .
n

and ¢, ; = n-""—, which

Cn—1

imply A,cp+11 =n+ 1. Let us define operators A, I" and O; (j =1,2,...) as
AY A, + B, +Che ™, T o chvk : g ko 0, Lf o= (nti)on (3.14)
k=1

We remark that A, I' and O; commute with 7 and 0,. From (3.12), (3.13) and P,(n) =0
(n < 0), they act on P,(n) as follows:

AP,(n) =nPu(n), TPu(n) = 0,P.(n), O;P.(n) =0. (3.15)

Let us calculate the commutation relation of A and I'. Results in §3.1.2 give

n+1 n n—1
—(k—1)0, —kOn . . ,—(k+1)0n .
AF:AHE cn+1,k:e( )":+Bn§ Cnj i€ L.+C’n§ cn_17k.e(+)ﬂ
n+1 n n—1
E: —(k—1)0, E —kOn . E . ,—(k+1)0n .
= Ancn-i-l,l + An Cnt1k - € ( ) " _I'Bn Cnk € tl +Cn Cn—1k - € (k+1)5n .
k=2 k=1 k=0
n
. —k?67 .
=n+1+ E (Ancn-i-l,k—i-l + Bncmk + Cncn—l,k—l) re v (316)
k=1

I'A = Z C o An—k e~ (k=1)dn . 4 Z Co kBt : e kon. 4 Z CnkCon - e~ (k+1)0n .

k=1 k=1 k=1
n+1 n
., —(k—=1)0n . . _—kOn .
=A,_1ch1 + g Ap_pCnp i e (k=1)0n . 1 g B, _pchi e :
k=2 k=1

12



n—1

+ Z C’n_kcn,k . 6_(k+1)8n: +COCn,n : 6_(n+1)8";
k=0

=n-+ Z(An—k—lcn,k-‘rl + Bn—kcn,k + Cn—k-l—lcn,k—l) . 6_k8n . _I'OOCn,nOla (317)
k=1

where we have used A_y =0, ¢, 0 =0 and A,,¢,111 =n + 1. From these we have

(AT =14 byt e —CoennOs, (3.18)
k=1

where the constant b, j, is

def
bn,k = Ancn+1,k+1 - An—k—lcn,k-l-l + (Bn - Bn—k)cn,k + Cncn—l,k—l - Cn—k—l—lcn,k—l- (319)

The Lh.s of (3.18) acts on P,(n) as

(Lh.s) () = [A, TP (n) = (AT = TA) Py (n) = (Ad, — I'n) P, (n)

= (9,A = nL)Pu(n) = (9yn — n0y) Pu(n) = [0y, n] Pu(n) = Pu(n), (3.20)

and the r.h.s (3.18) acts on P,(n) as

(rhus)Po(n) = Pu(n) + Y buaPaci(n), (3.21)

which means ) by, xP,—r(n) = 0, namely b, = 0. (This b, = 0 can be checked by explicit
k=1

calculation of (3.19). We have checked this for n < 15 by using Mathematica.) Therefore

we obtain
[AT] =1 — CocnnOh. (3.22)
Products of O; and (A, I', Oy) are
AO; = (A, + B, +C,)0;, O;A=A_;0;_1+B_;0;+ C_;Oj1, (3.23)
ro, = (f: i) 05, O =0, (3.24)
0,0, = kO:kl, (3.25)

and all of them belong to O = C[Oy,0,...] (O1A = B_101 + C_105 due to A_; = 0).
The relations (3.22)—(3.25) satisfy the conditions given in §3.1.1, where the correspondence
is (A, B,0;) < (A, I,0;). If C_; # 0, we have C[A,T",01,0,,...] = C[A,T].
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Any element F of C[0,,n] is written as a finite sum F' = 7 F;;n'0? (F;; € C). Let us
i7>0
define a map b : C[0,,n] — C[A,T]:

F =Y FmoeCo,n, bF)=Y F VA eC[A,T]. (3.26)

i,j>0 4,j20
We remark that b(09,n) is not directly given in the above definition and it is calculated as

b(Oyn) =b(no, +1) =TA+1# Al' ='A+ 1 — Cyc,,,O;. From (3.15), we have
'3 Pa(n) = 117 Py(n) = T Pa(n) = TIA'P, (1) (3.27)

By using (3.4) and (3.2) with (A, B) = (A,T"), we have

min(ja,i1)
neopn 0 Paln) = (2 o)) Paln)
r=0

min(ja2,i1) min(j2,i1)

— Z ajzilni1+i2—7’aj1+j2—rp (77) — Z @2 tie—r Alitia—r p (77)
T n n r n
r=0 r=0
— 1"]1( Z a’T”QF]Q_TA”_T)A”Pn(n) = TV (ANT?2 — O, 4,) A2 P, (n)
r=0

=THAT2A2P, () — 170;, j, A" P,(n) = T"A"T2 A2 P, (n), (3.28)

where we have used O;, ;,A” € O in the last line. Therefore we obtain the following propo-

sition.
Proposition 2 The action of C[0,,n] on P,(n) is related to that of C[A,T'] by the map b:

F € Clo,, 1) = FP.(n) = 5(F)Pa(n), (3.29)
F,G € C[9,,1] = FGP,(n) = b(FG)Pa(n) = b(G)b(F)Pa(n). (3.30)

Remark 1 This anti-homomorphism property (3.30) does not hold as algebra, namely
b(FG) # b(G)b(F) in general.
Remark 2 The polynomial P,(n) may depend on a set of parameters A = (A1, A\a,...),
P,(n) = P,(m;A). The above C[9,,n] and C[A,I'] are understood as C(A)[9,,n] and
C(A)[A,T'] respectively.

For later use, we present A* and IV (i,5 =0,1,2,...):

A=Y Dt DR =1, Do (k] > ),

k=—1
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DiF = Di_l’k_lAn+k—1 + DB 4+ DEYRICL o (=i < k<), (3.31)

n ki—1 ki—ko—1 ki—ko—ks—1 k1i—ko—-—kj_1—1
§ E § § e § Cn,koCn—ko k3Cn—ko—kskg * * ° Cn—k:z—k:;—---—k‘j,l,kj
ki=1ko=1 k3z=1 ka=1 k‘j:l
. o= k10 .
X C’n—kg—kg—---—kj,kl—kz—kg—”'—kj e I (332)
n n m—1
Note that Y isactually > because of our convention of the summation symbol: > % = 0.
ki=1 ki=j k=m

We explain I'%:

n n n—=ko
_ . ,—k20n . . . —koOn .. —kbhoOn .
= ( § Cnky * € 2 >< E Cn,k) - k30 ) E Cn,ks E Cr—ko, k) - 20 e 2%
ko=1 kL=1 ko=1 kh=1
n—ko n ki—1
—(k2+k5)0 —k10p .
= E Cn ks E Cr—ka k) - ? E E CrokoCr—koky—ks - € 75 (3.33)
ko=1 kh=1 ki=1ky=1

Here we have used : e#2% :: ¢7F20n . = ¢=(R2Fk2)9n . hocause ky and kb are independent of
n. As remarked in the first paragraph in §3.1.2, after all the calculations are done, we can

evaluate various quantities at ko =n,n —1,..., kb =n — ko, ..., etc.

In the rest of this subsection we present the explicit forms of A and I' for the Hermite,

Laguerre and Jacobi polynomials.

3.2.1 example 1 : Hermite polynomial

The Hermite polynomial H,,(n) [32] satisfies (3.12) with

A, = %, B,=0, C,=n, (3.34)
and
Therefore A and I' become
A= %ea” +ne %, T =2ne %, (3.36)
and they satisfy
A T]=1. (3.37)

In this case b is an anti-isomorphism of algebra, b(FG) = b(G)b(F') [39].
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3.2.2 example 2 : Laguerre polynomial

The Laguerre polynomial L{ (n) [32] satisfies (3.12) with

A,=—n+1), By=2n+a+l, C,=-(n+a), (3.38)

and
0,L\ (n) = =Ly (), (3.39)
L) + LD () = L (). (3.40)

From (3.40) we have
L) => "L (). (3.41)
k=0

So we have ¢, ;, = —1 (1 < k < n). Therefore A and I" become

A=—-n+De+2n+a+1—(n+a)e ™, T=- Z ceTRon (3.42)
k=1

It is easy to check that b, x (3.19) vanishes. The operators A and I satisfy
A, T] =1—a0;. (3.43)

3.2.3 example 3 : Jacobi polynomial

The Jacobi polynomial Ji*” (n) [32] satisfies (3.12) with

_ 2n+1)(n+a+p+1) B B2 — a?
" @nta+B+D)2n+a+B+2) " 2nta+B)2nt+a+B+2)
B 2(n+ a)(n+ pB)
Cn = Cn+a+B)2n+a+pB+1) (344)
and
0, PP () = L(n+a+ B+ 1P (), (3.45)
(2n+a+B)PL ) = (n+a+ BPI () — (n+ BPY (), (3.46)
@2n+a+B)PPV0) = (n+a+ B PO )+ (n+a) P (). (3.47)
From (3.46)—(3.47) we have
PEt o0 () = a, PO (1) + B, P () 4, PSSV () (> 0), (348)
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where «,, £, and 7, are

2n+a+B+1)2n+a+B+2) B
n+a+B8+1)(n+a+B+2) "’ P =
(n+a)(n+p)2n+a+p+2)
(n+a+B+)n+a+8+2)2n+a+p)

(B—a)2n+a+5+1)
m+a+B+2)2n+a+ )

oy =

= (3.49)

By substituting (3.48) into the second term of the r.h.s of (3.48) and repeating this, plethitD) (n)

has the following form

Pl a0 () = p®) () 4 BE PUEEED () 4 A0 Pl LI (), (3.50)

n

and we have

Pysa-l-l,ﬁ—i-l)(n)
= o000 + B (an s P2 0) + Bk P () + e PV ) + 0B ()
= () + an i BO P () + (Bai B +%’)P,§“Zi’f+l)(?7)+% PP ()

a+1,6+1 a+1,6+1
_pglk—i—l (n )—l—ﬁ (k+1) P 1ﬁ+ )(77) jL%kﬂ Pr(L —I"c_ §+ )(77)-
Namely p,({” (n), ) and % satisfy the recurrence relations:

p(“l’(n) = p® <n> + an_WPﬁ,f’ (n),

with the initial values,

P = PP (), B =B A = (3.52)
From this, P,(LQH’BH)(n) = pslnﬂ)(n) is expressed as
P (a+1 ﬁ—i—l Z a(aﬁ Pr(LaB ), gakﬁ) def { (o7 o k=0 ’ (3.53)
QB 1<k<n
and ¢, in (3.13) is given by
Cok =+ a+ B+ 1)a] . (3.54)
Therefore A and I become
A=A, +B,+Che ™, I'=iln+a+p+1) Y anoif?k_l e ko, (3.55)
k=1
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We can check that b, ; (3.19) vanishes. The operators A and I' satisfy
AT =1-1(n+a+B+1)d™) _CO:. (3.56)

Explicit forms of ailofif ) for lower k are

Jep) _ @ntat B+l @p _(B-a)@nta+f-1)C2n+atftl)

0 (n+a+pB+1), ™ (n+ o+ B);

(2n—|—oz—|—5—3)(2n+a+ﬁ)((n—l—a)(n+ﬁ)+(a—5)2—1)
(n+a+pB—1)4

@H) B-—a)2n+a+p-=5)2n+a+p-1)

Y

75
agza2 )

Y

m,3 (n+a+5—2)s

X (2(n+a+B)(n—1)+ala+1)+B(B+1)—2), (3.57)
a(a’ﬁ) - (2n+0z+ﬁ—7)(2n+a+ﬁ—2)
nd 16(n +a+ 8 —3)s

X (5(@—6)4+10(a—6)2(4n(n+a+6—2)+(a+6+1)(a+ﬁ—5)+3)

—|—(2n—|—oz—|—5—6)(2n+a+6—4)(2n+a+5)(2n—|—a+ﬁ—|—2)>.

3.3 Bispectral property

Following the arguments in [39], we discuss the bispectral property of the multi-indexed

Laguerre and Jacobi polynomials (1.1).

From (2.1)-(2.2), the M-th order differential operators F®) and B are expressed as

determinants:
Hdy 0 Hay 1 my - my 1
FD) pf)(n) Mclel) uleﬂ)l oy ’ B(D’ng))(n) m" o), |
40 e i o Wl o

(3.58)
where p{) = 9 v (n) and mg-i) = 0;m;(n). Our definition of the determinant (order of the

matrix elements) is

a;iy Q2 -+ Aip

n
det(aij)1<ij<n = Z Eivig..inWig1Qix2 * * * Qipn, (3.59)

Ulyeesy In=

Qp1 Ap2 " App

where €;,4, 4, is the antisymmetric symbol. From these forms and (2.1)—(2.2), the operator
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F®) belongs to C[,, ] but BP) does not. We have

~

FEIP,(n) = Pon(n),  B® Ppu(n) = mp(n)Pu(n), wp(n) =[[(€.—&,),  (3.60)

and these give the following:
BPIFPIP, (1) = mp(n)Pa(n),  FPBP) Pp (i) = mp(n) Pp.a(n)- (3.61)

For X (n) (2.12), the operator Ox.p = B®) o X (1) o F®) belongs to C[d,,n]. Therefore

we can consider b(Ox p). Following the argument in [39], let us define Ax p,

Axp EH(Oxp)omp'(n), (3.62)

which commutes with 1 and ,. Then we have a theorem.

Theorem 2 For the multi-indexed Laguerre and Jacobi polynomials Pp ,(n) and a polyno-

mial X (n) (2.12), we have
X(n)Ppa(n) = AxpPpn(n). (3.63)

Proof We have

A

(BPYX (1)) Ppo(n) = BPX () FPIP, () = (BP o X(n) o FP)) P, (n)
=5(B® o X(n) o FP)P,(n) = (Axp o mp(n)) Pu(n) = Axpmp(n) Pa(n)
= AxpBP FPP, (1) = (AX,DB(D))ﬁ(D)Pn(n) = (B(D)AX,D)PD,n(n)a (3.64)

where we have used (3.60)(3.61), (3.29) and [Ax p, BP)] = 0. Therefore we obtain
B®) (X (n) — Ax.p) Pp.a(n) = 0. (3.65)

For appropriate parameter range, various operators appearing in each step of the Darboux
transformations are non-singular and we can use properties of the inner product (f,g) =

f;z dzf(x)g(x). For any polynomial P(n) in n, we have

(6pn(), Tp(2)P(n(2))) = (AP o (2) P (n(x)), Up(2)P(n(x))) = (doPn, AP TUHP)
= (¢oPn, 9BPP) = (¢3 P, BP'P), (3.66)

where we have used (A.30), (A.42), etc. If BP)P = 0, we have (¢pn,, UpP) = 0 and the

completeness of ¢p, implies P = 0. We remark that this result is derived for appropriate
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parameter range but it is valid for any parameter range because it is a relation of a polyno-

mial. Therefore (3.65) gives (3.63). O

Remark 1 We have used (3.29) but not used (3.30). For b(B(D) oX(n)o ]:"(D)), we can not
apply (3.30), because BP) does not belong to C[d,, n]. The commutativity [Axp, BP)] =0
is important.

Remark 2 If we already know the coefficients iy P (2.8)-(2.10), the operator Ay p is ex-

pressed as
L

L
Axp= Y et = 37 10X Pt o npl(n). (3.67)

k=—L k=—L

3.4 Examples

As an illustration of Theorem 2, we present examples: M =1 case, D = {d }.

Eqgs.(3.58) give

A D _ 5 D
FD) _ p; )M?zlan ouzl, B® = '01(3 m3d, omy?t, (3.68)

and ©x p becomes

Oxp = ply 'm3d, omi Xp'T i3 0, 0 !

D - D D - D
— pé )p;)Xm 73 102 +pB ml,udlﬁ (m; 1Xp§%))0n - pé )mfﬁn(ml 1X,0;)8,7,ud1). (3.69)

3.4.1 Laguerre

. - -1 def
Let us consider type I Laguerre case, D = {d}}. Then we have Zp(n) = Lfigl 2)(—17) = £(n)

and
p]:‘ = 6_n> PgD) = _477g+%§—1’ Hdy = 6775’ m; = 77_9_%7 (370)
and ©x p becomes

—1Oxp =nX + ((g+ 5 — X +nEY )0, — (d + g+ )X —n(€+9,0)Y,  (3.71)

where we have used 9,X = EpY and 792¢ + (g + 2 +n)9,¢ = di&. For simplicity we take

d; = 1 and a minimal degree one X, which corresponds to Y (n) = 1. Then we have

X()

(9-3) 3
Kuin(n) = 3n(n +2g+1) = Ly *(-n) — Ly *>'(0), (3.72)

)
(=20° —4(g+ Hn?)0; + (20° +2(g — 30" — 4(g + 3)2n) 0y
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+2(g+ Dn” +4(g+ 2)*n. (3.73)
By the map b, © x p is mapped to

(Oxip) = [*(247 —4(g + H)A%) +T(2A7 +2(g = AT —d(g +3)28)

n

The operators A and I' are given in (3.42) and I'? (3.32) is 2 = S (k—1) : e % A
k=2
straightforward calculation gives

(Oxp) = t(n+2)s x 4(n+g+1)e*” — (n+1)(2g+2n+3) x 4(n+ g+ 3)e’

+ £ (24n% + 4(10g + 11)n + (29 + 1)(6g + 13)) x 4(n+ g+ 3)
—12g+2n—1)(29+2n+3) x4(n+ g+ 1)e
+1(29+2n—3)(29+2n+3) x 4(n+g—1)e ¥ + 0, (3.75)

where O is an element of C[O1, O, .. |
O =(9-3)*(329 = 3)n—8)01 — 4(g — 5)2((29 = )n — 1) Oz + 2n(g — 3)303,  (3.76)

which annihilates Pp (7). By using (3.63) and mp(n) = 4(n+ g + 3), we obtain

ray =im+1)s, iy =—(n+1)(2g+2n+3),
o = §(24n% +4(10g + 11)n + (29 + 1)(6g + 13)), (3.77)

il =—3(29+2n—1)(29+2n+3), 75 =120+ 2n—3)(29+ 2n+3).

These 5-term recurrence relations were given in [36, 37, 38|.

3.4.2 Jacobi

Let us consider type I Jacobi case, D = {d}}. We set a = g+ h and b = g — h. Then we

—_ —L1lp e
have Zp(n) = P22 7" () & ¢ () and
1 1

o0 = (B P = 165ty = (505 = (5177 @)
and ©x p becomes
1Oy = (1-P)XE + (~(b+ (at+ V)X + (1 - 72)EV)d, (3.79)
+ (di(di +14+b) = (g+3)(h = 3)) X + ((h = 3) (L = n)é = (1 = n*)I,E)Y,
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where we have used 9,X = ZpY and (1—-1?)92¢+ (1—a—(b42)n)9,§ = —dy(d1+1+b)E. For
simplicity we take d; = 1 and a minimal degree one X,,;,, which corresponds to Y (n) = 1.

Then we have
(9-3,

Oxp = ((b+2)n* +2(a—1)n* = (b+2)n* —2(a — 1)n)0;
+ ((a+3)(b+2)n* + (2a* + b* + 49 — 4)n° + 2((a — 2)b — 2)n — 2a + 2)0,
+22h=3)((b+2)29+)n* +2(ala+b) + g+ Th—5)np—4a—4).  (3.81)

By the map b, © x p is mapped to

b(Ox.p) =I?((b+2)A" +2(a — 1)A® — (b+2)A* — 2(a — 1)A)
+T((a+3)(b+2)A% + (24> + b* + 49 — 4)A* + 2((a — 2)b — 2)A — 2a + 2)
+12h=3)((b+2)(29g + T)A* +2(ala +b) + 4a — 3b— 5)A —da — 4). (3.82)

The operators A and T' are given in (3.55) and A’ and I'? are given in (3.31)-(3.32). By
using (3.57), a straightforward but a little lengthy calculation gives

b(Oxp)
_ (n+1)2(b+2)(a+n)2(2h +2n - 3)
B (a+2n)4(2h 4+ 2n + 1)
N (n+1)(a—1)(a+n)(2g +2n+3)(2h + 2n — 3)
(a+2n—1)3(a+2n+ 3)

b+ 2
T lat2n 250t 20t 1) (=00 + 9 (2n(a+ )~ (a = 2)(a ~ 1))

+(a+2n—1)(a+2n+1)(2n(a+n) — (a— 2)(2a — 1))) X (20 + 2g + 3)(2n + 2h — 3)

N (a—1)(29+2n—1)(2g+2n+3)(h+n—3)
(a+2n—3)(a+2n—1)3

N (b+2)(29+2n—3)(2g+2n+3)(h+n—2)

x (2n + 29 + 7)(2n + 2h + 1)

x (2n +2g 4+ 5)(2n + 2h — 1)

2 x (2n +2g + 1)(2n + 2k — 5)e ™"

2 % (2n 429 — 1)(2n + 2h — T)e~2n

4(a+2n —3)4
+ Y (o) e 10, (3.83)
k=3
where O is an element of C[O1, O,,...]. From Theorem 1 and 2, the coefficients (---) in the

sum »_,_, should vanish. By using (3.63) and 7p(n) = (2n+2¢+3)(2n+2h — 3), we obtain

XD (n+1)2(b+2)(a+ n)s(2h + 2n — 3)
mro (a +2n)4(2h +2n + 1) ’
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xp (n+1)(a—1)(a+n)(2g9+2n+3)(2h +2n - 3)

Tt = (a+2n—1)3(a+2n+3) ’

xp b+ 2

P e e e 1 (b +4)(2n(a+n) — (@ = 2)(a - 1))

+(a+2n—1)(a+2n+1)(2n(a+n) — (a— 2)(2a— 1))), (3.84)

XD (a—1)29g+2n—1)(29+2n+3)(h+n — %)2

1= (@a+2n—3)(a+2n—1) ’

xp  (0+2)(29+2n—3)(2g+2n+3)(h+n — 3),

Tn,=2 = 4(a+2n — 3)4 ’

which were given in [38] (¢ = h case was given in [37]).

4 Summary and Comments

The recurrence relations with constant coefficients for the multi-indexed Laguerre and Jacobi
orthogonal polynomials conjectured in our previous paper II [38] are established as Theorem 1
by following the argument in [39]. Their bispectral properties are also discussed by the similar
argument in [39] and Theorem 2 is obtained. To obtain this, the map b plays an important
role but it is not an anti-isomorphism in contrast to the exceptional Hermite case in [39].
The discussion in §3.2 is valid for any ordinary orthogonal polynomials.

From Theorem 2, we can obtain the coefficients ri;z) explicitly as demonstrated in §3.4,
because FP), BP) X (n), Z(n), A, T and 7p(n) are known as (3.58), (2.12), (B.9), (3.42),
(3.55) and (2.3). In practice, however, this calculation is not so easy. The examples in [3§]
were obtained by a brute force method: Expand X (n)Pp,(n) in terms of Pp,,(n) for small
n, and guess rff,};D for arbitrary n (Or, based on (2.10), calculate ©x pP,(n) and expand it

in terms of P,,(n) for small n, and guess rfLO’I)CX’D for arbitrary n). We hope to find a more

efficient method to obtain rff,};D.

In our previous paper II [38], the recurrence relations with constant coefficients are con-
jectured also for the multi-indexed Wilson and Askey-Wilson orthogonal polynomials. These
polynomials satisfy second order difference equations. The method in the present paper may
be applied to these polynomials but it seems more difficult technically. We hope this problem

will be solved in the near future.
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A Darboux Transformation

In this appendix we review the algebraic aspects of the Darboux transformation [33]. We do

not discuss non-singularity of operators, square integrability of wavefunctions, etc.

Various formulas in the Darboux transformation are expressed in terms of the Wronskian.

The Wronskian of a set of n functions {f;(x)} is defined by

e d'_l
W, ful() € det(%ﬁ(lx))m k<n’

(for n =0, we set W [-](z) = 1). It satisfies the following identities (n > 0),

W[gflvgf27 s 7gfn](x) = g(l‘)nW[fl’fz’ . ’fn](l'),
W[W[f1>f2a .. '>fn>g]7W[-f1’f2’ c ,fn,h]}(l')
= WS, for- s @) WIS, for oy frr g, B (),

Wisi fo - £@) = ()N BB ()

where f;(z) = F; (U(I))a
WIE, By, ., Fo)(@) = (=1)2" " DW 1, fo, o ful(2)"

where Fj(z) = W(f1,..., fi—1, fi+1, .- -, [a](@).

We learned (A.5) in Ref.[39].

A.1 Darboux transformation

We consider the Schrodinger equation,

d

Hi(a) = Ev(@), H=p+U), p=—is,

T < T < To.

By taking a seed solution <;~S(x), which is any solution of the Schrodinger equation,

(A1)

(A.6)



the Hamiltonian H is expressed as

H=AA+E A= 2L 9, l0g|d(x)

At = — (£ — 9, log|¢~(2)]), (A.8)

where f~1(z) means f~!(z) = f(z)~!. We do not discuss the non-singularity of the operators

A and A" as mentioned above. The Darboux transformation is given by

g L AAT L E o (2) E Av(a). (A.9)
Then we have
H Y (x) = Ewmw(az) (A.10)
H M 2) =Ep M (a) (= Alp(2) =0), (A.11)
Al (z) = (5 — E)(x). (A.12)

The first and second equations say that " and ¢! are solutions of the new Schrédinger
equation, but it does not mean that they exhaust all of the solutions. We remark that the
new wavefunction corresponding to the seed solution is absent in the new system, because
" (x) = Ag(x) = 0. The second equation of (A.9) and (A.12) are expressed in terms of
the Wronskian:

() = VO pongy  gigren(gy = - WION@) e gy (an3)

() o~ 1(z)

A.2 Multi-step Darboux transformation

Assume that the original Hamiltonian H = p* + U(xz) has eigenstates ¢, (),
Hop(x) = Eppp(x) (n=0,1,...), 0=E<&E <---, (A.14)

where we have chosen the constant term of U(x) such that & = 0. We take seed solutions
Q;dj (ZE’),
Hoa,(x) = E4;00,(x) (G =1,2,..., M). (A.15)

By rewriting the original Hamiltonian (0-th step Hamiltonian) as H = /Alih/ldl + &gy, we
perform the Darboux transformation. By repeating this procedure, the s-step system is

obtained from the (s — 1)-th step system:

def

Hd1~~~ds -Adl ds'Adl ds + Eds (: Azll Adl---ds+1 -+ gds+1 for the next step), (A.lﬁ)

cdsy1
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~ def It n 7 —
Ad,..d, = % — Oy 10g‘¢d1...ds ()|, A:ril...ds = _(% — 0, log‘(bdll...ds (x)
O (1) E Agy 00y a.1n(x) (R=0,1,...),

édl...dsv(x) d:ef Adl...dsédl...ds,lv(x) (V = ds+17 ds+27 <. 7dM)7

¥ (5 def s—i T — .
¢[(i]1)ds (x) = (_1) ]¢d1:.l..dj,1dj+1...ds d] (x) (] = ]‘7 2? A S)?

)

which satisfy

Ha,..d.Pdy.don(®) = Enday. aon(x) (n=0,1,...), ( )
Hay . dibdy.dov () = Evayain(t) (v =day1, dera, .- dar), (A.22)
Hay.a. B9 4 (0) =E,®F 4 (x) (G=1,2,...,5), (A.23)
Al 0. Gdrdin(®) = (En = E0.)bur.durn(2). (A.24)

The wavefunctions (A.18)—(A.20) and the potential (Hg,..q, = p? + Uq,..a.(x)) are expressed

in terms of the Wronskian,

. W[dila .- ->Q~Sdsa ¢n]($)

Pdy...den(T) = Wion . onl(@) (A.25)

- Wlda,, ..., Pa,, o] (1)

Gay...a,v(T) = W[dil’ ‘ .;,éds]gx) ~ (A.26)

OV (z) = Widar, - Pty bt ¢ds](‘”), (A.27)
o W(day; - - ¢a.l(x)

Ugy...a.(x) = U(x) — 202 10g|W(day, . . ., 4] (7)), (A.28)

which are shown by using (A.2)—(A.3). Note that Hg, 4., Aq,..q. and Azzl...ds are independent
of the order of dy,...,ds (Ga,..d.n(x), Ga,..q.v(x) and (f((fl)d(x) may change sign). Let us
define A(@1-ds) a5

o ) def 2 N 1 1 1 1 1
A(dl'"dé) = Adl--.ds T -Ad1d2-’4d1> A(dlmdS)T = 'AIh'AIth T AEL..ds' (A29)
Then we have

A(dlmds)QSn(x) = ¢d1--.ds n(x)> A(dlmdS)TqﬁdL--dS n(l’) = H(gn - gdj) ) gb"(ZE) (A?)O)

They are expressed in terms of the Wronskian,

A(dl___ds)¢n(x> _ W[¢d17 s ¢ds7 (bn](x) — ¢d1...dsn(x>7 (Agl)

W[q;du ceey q;ds](x)
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~ W[é(l) )t i)(S) 7¢d wds n]([lf) : o
ANy, () = (1) e e = []E —&s) - 6ul@)
WDy - Py, a)(2)

— (_1>%s(s+1)w[w1> s awfa W[Q;chl < ngs, Can (l’)
W[¢d17 SRR (bds](x)s

, (A.32)

where w; is w;(x) = W[dil, . .,gz;djfl, g?sdm, . gzzds](x). As far as we know, this formula
(A.32) is new. Eq.(A.31) is already given in (A.25). To obtain the second line of (A.32)
from the first line, we use (A.5), and the formula (A.32) is shown by using (A.2)—(A.3).

A.3 Polynomial type solutions

Let us assume that eigenfunctions ¢, () and seed solutions ¢, (z) are polynomial type solu-

tions, namely they have the following forms,

On() = do() Pa (@), (@) = dog) ()& (n(2)), (A.33)

where ¢o(), ¢ow) () and n(x) are functions of z, and P,(n) and &,(n) are polynomials in 7.
For concrete examples, e.g. Laguerre and Jacobi cases given in Appendix B, the Wronskians

in (A.31) have the following forms,

W[gz;dl, e gzNSdS](x) = (some function of ) X =4, 4. (77(:17)), (A.34)
W[(ﬁdl, o <f~>d5, ®n)(z) = (some function of z) X Py, 4. (n(:c)), (A.35)

where =4, _4,(n) and Py, 4, »(n) are polynomials in 7. Therefore ¢4, 4, »(x) has the following

form,

(some function of z)

Gay.don(2) = Vo, a0, (2) Py aon(n(2)), Vo q,(z) = — (A.36)
Ear..a. (n(x))
Let us define the step forward (F) and backward (B) shift operators as,
Fanoas C0E (@) 0 Ay g, 0 Vay g, (@), (A.37)
Bira, S Wyl g, (@) 0 Al g 0 Wiy, (2), (A.38)

where \Ddl---ds—l(z)‘szlz ¢o(z). The relations (A.18) and (A.24) are rewritten as

Favoa,Pasody 2n(0) = Payoaon(m)s Bayoa,Paroayn(n) = (En — Ea.) Pirooay 1n(n). (A.39)
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The relations (A.30) are also rewritten as
FO-tIPy () = Payasn(n), B Py u(n) = [0 —E4) - Puln),  (A40)

where the multi-step forward and backward shift operators, F(@1-d) and B(@--) are defined

by

f(dl def fd1 ds ” ﬁd1d2ﬁd1 = \Ild_11d6 (LU) ° A(dlmdS) © ¢0($)7 (A41>
B(dl" ds) def Bd18d1d2 Bdl...ds _ Cbo_l(l') o A(dl-.-ds)T o \I/dl___ds ([L’) (A42)
We have
Blr-ds) fldrds) p () = H(gn _ gdj) - P,(n), (A.43)
j=1
OB By ) = [[E0—E4) - Patnl). (A4
j=1
Remark that
J—:-(dl...ds)Pn(n(x)) vl (2 )A(dl...ds)¢ (z), (A.45)
B Py (10) = 657 (D AD 4,0, (A.46)

B Multi-indexed Laguerre and Jacobi polynomials

In this appendix we review the multi-indexed orthogonal polynomials of Laguerre and Ja-
cobi types [11], mainly their algebraic properties. They are obtained from the Laguerre and
Jacobi polynomials by applying the multi-step Darboux transformation explained in Ap-
pendix A. If necessary, we write the parameter A dependence explicitly, /ldl,,,ds = /ldl,,,ds (N),
Gdy.dsn(T) = Gay ain(TN), Py asn(n) = Payasn(m; A), En = En(A), ete. We assume that
the parameters (g and h) are generic such that ¢, # 0 (B.14), ¢f , , # 0 (B.15) and
En — gdj # 0.
The original systems are the radial oscillator and the Darboux-Poschl-Teller potential for

Laguerre (L) and Jacobi (J) cases respectively:

L:H=p*+2"+
A=g, 0=1 c-=2, &,=4dn,

—1
9(92 )—29—1, 0<z< oo, g>%
x
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n(z) =22, do(z) = e 39, Pu(y) = LY 2 (n), (B.1)
2+g(g—1) +h(h—1)

Cay B ) N .
JiH = sin 2 cos 12 (g+h>7 O<SL’<2, g’h>2’

A=(g.h), 6=(L1), cr=—4, & =dn(n+g+h),

n(x) = cos2x, ¢o(z) = (sinx)?(cosz)", P,(n) = Pég_%’h_%)(n), (B.2)

with ¢, (z) = ¢o(z) P, (n(z)). We take the virtual state wavefunctions as seed solutions,

L: type It dh(x: ) i 9, (ir; A) = e3 /LY 2 (—y(a)), & <1,
53 =—4(g+v+ l) (B.3)
type II: ¢ (z; A) & ¢y (7, 871(N)) = 6—%x2x1—ng%—9) (n(x)), Gl

B S g A = —4(g—v—1),

3 s type I Ghai A) = o, (w1 (N) = (sina)?(cos ) PYHE (nia)), 8 (1,1
) = (g,1-h), E=—-4(g+v+Hh—v-1),

type TI: (s A) 2 6, (23 €1(X)) = (sinz)' = (cos )" P2 "7 (n(a)), & % (—

A =(1—-g.h), Ef=—-4(g—v-(h+v+1), (B.6)

where the range of v, g, h are found in [11]. These virtual state wavefunctions are labeled
by the degree v of the polynomial part and the type t (I or II), (v,t) which we write as v*.
For simplicity in notation, we abbreviate v' as v in most places.

Egs. (A.34)—(A.35) become

9= ) '

W[q;dw ceey q;ds](x) = CJ%—'S(S_I)EdL..ds (77) X {
W[&dw R &ds7 (bn]( )

L
(1__77)3’(3’4-9—%)(H__n)—s’(—s’-l-h—%) ) J 5 (B?)
2 2 .

(s'+ l><s 0l ~L 1
—s(s—i—l n 2 .
= Pdl dsn ( ) { 1 )(s'+9) /1 (=s'+3)(—s"+h) ) (B8>
(51T () 2
where = 7(x), ' = 2(s1 — sn) and s, = #{d; | d;: type t, j = .,s} (t =1, 1I). Here the

denominator polynomial =4, _4.(7) and the multi-indexed orthogonal polynomial Py, 4, »(n),

which are polynomials of degree ¢4, 4, and {4, 4, + n in n respectively, are defined by

(s1+9—3)s11 o — 511 L
—_ def n 2 e :
Zdy..ds (77) = W[:udl’ te ?/J“ds](n) X 1-n (sI—I—g—%)sII 147 (SII+h—%)SI i ) (Bg)
(2% (%) 2
(s1+9+3)s11 ,— 517 L
def n e :
Py a,n(m) = Wy, - - -, pra,, Pa](n) X { (1—_n)(SI+g+%)sH(m)(SHJthF%)SI :J (B.10)
2 2 :
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p

e x Lsg_ﬁ)(—n) L, v type I
1 (5-9)

n2=9 x Lv* 7 (n) L, v type 11
w() = 1_ Z11_ B.11
et (Em)2 ™" x PO () 3 v type T (B.11)

1 1o pol
[ (577 x P2 ) 0, v type I
and

gdl ds = dof Zd 8 - 1) + 2818[1. (B12)

Since L™ (1) and P (n) belong to Q[n, a, 5], these polynomials 4, 4, (1) and Py, _a, »(1)
also belong to Q[n, g, h]. Under a permutation of d;’s, 24, 4, (n) and Py, 4, »(n) change their
overall sign, Zg,, 4, () = sgn(}, " 2 ) B4y a,(n) and Pa, 4, n(n) = sgn(y " 2 ) Pay. a.n(n)-
We denote the coefficients of the highest degree term of the polynomials =4 4. (1) and
Pa,...a.n(n) as

Ea,.4.(n) = chlh_.dSngdl'“dS + (lower order terms),

Py .a,n(n) = ci"'dsmnédlmdﬁ" + (lower order terms). (B.13)

In the ‘standard order’ {d},...,d.  d},... dl}, these coefficients are [28]

> sy 7SI

SII

CdI a1 H CdI H CdII . H d;) . H (d}fI — d;I)

SIT

1<j<k<s] 1<j<k<sn
(—1)515H L
ST SII
VI b htd —df) ) (B14)
J=1 k=
SII
(—1) 1:[1(g+n—dn ) L
CCI; gy CdI a7y g I_ 1y, TT =1 1 . (B15)
J= J=
where ¢, ¢l and ¢! are
(1" L
P,(n) = con™ + (lower order terms), ¢, = (nnj'L g+ R : (B.16)
o 2 J
e >\) L def
P & [ (D T < e (89N) L. B.17
Cv( ) CV(tI(A) :J ) Cv( ) C ( ( )) Y ( )

From (A.25) and (B.7)—(B.8), we obtain
Gdy.dyn (T3 A) = Wy _a, (25 X) Payaon (0(2); X)),
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o (ar; Alren)
Uy a. (T3 A) = =
e ) F:dl...ds (ﬁ($)§>\)

7 )\[SI,SH] def A+ SISI + SHSH, (B18)

Explicit forms of the step forward and backward shift operators ﬁdl---ds and Bdl___ds are given
by eqs.(A.1)-(A.4) in [38]. To calculate the multi-step one F(@--ds) and B4 however,
they are not so useful. Instead, we use (A.31)—(A.32) and (A.45)—(A.46). By using (B.7)-
(B.8), we obtain

A dy...ds
FlltIPy () = pf " ) Wlpay, - pas Pal (), (B.19)
B Py an(n) = pg ™ () Wlmi, o, Pay.aon] (0): (B.20)
o (dy..ds) (dy...ds)
Here py(n) is given in (B.11), and p="""(n), pg" " (n) and m;(n) are
(s1g+3)s11 p—517 - L
(dy...ds), ~ def | 7 e :
p]:_l (77) - { (ﬂ)(sﬁ-g—i—%)sn(H__n)(811+h+%)51 ] ’ (BQl)
2 2 :
2s5(_1\%s(s+1) si(si+g+3) ,—sun .
di.ds), \ def C7(—1)2 n 2e L
pél )(77) - ﬁ { 1n\s1(s1+9+3) (Len\sulsuthts) 1 0 (B.22)
=di..ds 1] (5%) (%) +J
p(s1=sutg—3) - L, d; type I
n L, d; type 11
di...ds def — € ; @i TYyD
m](n) = m§ 1 )(’)7) = ‘:‘d1---dj71dj+1---ds(n) X (1_Tn)—(81—811+g—%) : J, d] type I 5 (B23)
(s —si b
(L)~ Cnmerth=) g g type I

where Zq,..a;_1d;.1...d. (1) }821: 1. This formula (B.20) (see (A.40)) is new. For the exceptional
Hermite polynomial with multi indices, the formula like (B.20) was given in [39].

The Hamiltonian Hg4, 4, can be written in the standard form:
Hay g, = AL o Ag sy Agya, S L —8,108]bay _a, o(2)|. (B.24)
The shape invariance of the original system is inherited by the deformed system,
Adya, N Agya, (N = Agy g, A+ 0)T Ag, g, A+ 8) + E(N). (B.25)
As a consequence of the shape invariance, we have

Adydi(N)@dydin(T3A) = [u(N)Pay...dun—1(T; X + ), (B.26)
Adl...ds(A)T¢d1...dS n—1(T; A+ 6) = b1 (N) @, g, n(x5 N), (B.27)
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where the constants f,(A) and b,_1(X) are the factors of the eigenvalue f,(A)b,_1(A) =
En(A):

fn(X)

—2 L
{—2(n+g+h) g0 (A ==2n :LJ. (B.28)

The relations (B.26)—-(B.27) give the forward and backward shift relations,

‘Fdlmds (A)de..ds,n(n; >‘> = fn(A)PdL..ds,n—l(n; A+ 5)7

(B.29)
Ba,..a,(A) Pay..agn-1(1; A+ 8) = buo1(A) Py in (75 N), (B.30)
where the forward (F) and backward (B) shift operators are defined by
FireaN) UL (@ X+ 8) 0 Agya,(N) 0 Wy, (23 N), (B.31)
Baya,AN) Z 0 (23 2) 0 Agya,(A)T 0 Wy, g (23 A+ 8). (B.32)
Another consequence of the shape invariance is the following proportionality,
Py .ac0(m; X) = A X Eqy.a, (1 A+ 6), (B.33)
SII
(=1 (9 —dj—3) - L
A= =
—s T 1 —en TT 1 ’
2 [ —d;— ) (-2 T g—d;— )
j=1 j=1
where j runs for type I d; (or type II d;) in the products ]_I[ (or ﬁ) Therefore the ground
=1 j=1
state has the form,
= A+ 0
G003 A) ox (s At Ziate (7(0) ). (B.34)
Ea...a. (0(x); X)

Then eqs.(B.31)—(B.32) become

Earoa(mA+8) rd 0,Za a. (m: A+ )
Fo 0N =c A @ On=drda (T , B.35
id:(N) = €7 Edr..ds (15 A) <Cll?7 Zay..d, (M A+ 0) ) (B3

) Zaoa(mA) rdei(n, e
) = —dc;! e 7 ( 7
Ba,...a,(A) Cr Cz(”)Edl,,,ds(n;)\Jr‘S)

OnZay..d (M A)
4 _ Sn=ds..ds . (B.36
T am ey ) (B30

where the functions ¢;(n; X) and c3(n) are those appearing in the (confluent) hypergeometric
equations for the Laguerre and Jacobi polynomials

1 _ . .
Cl(n’A)d_ef{g—i—2 n L def{n ?

"V hog—(g4htty -3 0= (B.37)
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The second order differential operator ﬁdl,,,ds()\) governing the multi-indexed polynomials

18:

Haya,(N) E 01 (50) 0 Hay gy (N) 0 Way a, (25 X) = Bay_ay (N Faya,(A)

d? s OnZdy..a. (M AN d
= (s + (enln Ao — 2y Pt ST

825d d\(n' )\) 0, Ed d (77' )\)
Yo i 1..ds \T]5 e ’)\[31,811} -5 i 18 A D )7 B.38
2(n) Sy (1) 1(n ) Edr.ds (15 A) ( )

Heara;N) Pay (15 X) = Ea(XN) Paya, (3 N). (B.39)

For appropriate parameter range (see [11]), the operators Hg, a., .»Zldl___ds, Ag,a., ete.

are non-singular, and we have the norm formula, (¢4, 4.n, Pdy..dcm) = [[(En— édj) (bny Om)

j=1

with (f, g) o f:f dxf(x)g(x). For equivalence among the multi-indexed polynomials, see
28, 29].
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