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     A  BSTRACT       

Due to  the  connected  structure  of  modern  society, networks  seem to  appear  in  a

tremendous number  of  topics.  Social  networks,  which represent  the  collections  of

social  ties  among entities  have attracted steadily grown interest  in  the past years.

Understanding any piece of information provided, demands a great understanding of

small  characteristics along with the way that nodes behave and interact with each

other. Mining statistically and topologically interesting patterns is an important task

within the domain of data mining as it can provide that kind of insight. This task

focuses on the identification of frequent subgraphs within graph data sets, the mine of

substructures  that  satisfy  certain  requests  and  the  supply  of  a  set  of  estimations

regarding the way the network will look in the future. 

Social networks are rarely static. Their graph representations evolve as new entities

and links are added or deleted all the time. Additionally, they are rarely simple. That

means that only one type of relation is not enough to precisely represent and portray

them. Even the time that a link appeared on the network constitutes an edge attribute.

Issues regarding social network analysis are extensively studied [31, 32]. However,

the  majority  of  these  studies,  engage  with  simple  networks,  discarding  important

information.  This  thesis  intends  to  apply  several  mining  techniques  in  signed,

dynamic graphs, that allow the existence of multiple-type edges between two nodes
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and see how the extra information provided by the graph enriches the information

mined from the network and helps us predict future possible configurations. 
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     Π  ΕΡΙΛΗΨΗ       

Λόγω της διασυνδεδεμένης  δομής που εμφανίζει  η σύγχρονη κοινωνία,  τα δίκτυα

φαίνεται  να  εμφανίζονται  σε  ένα  τεράστιο  φάσμα  επιστημονικών,  αλλά  και

καθημερινών  θεμάτων.  Τα κοινωνικά δίκτυα,  τα  οποία  περιγράφουν  τις  συλλογές

κοινωνικών  δεσμών  μεταξύ  οντοτήτων,  έχουν  προσελκύσει  σταθερά  αυξανόμενο

ενδιαφέρον τα τελευταία χρόνια. Η κατανόηση κάθε πληροφορίας που παρέχεται από

αυτά, απαιτεί πλήρη κατανόηση των μικροχαρακτηριστικών του δικτύου, καθώς και

του  τρόπου  με  τον  οποίο  οι  κόμβοι  αλληλεπιδρούν  μεταξύ  τους.  Η  εξόρυξη

στατιστικά και τοπολογικά ενδιαφέρουσας γνώσης είναι ένα σημαντικό θέμα στον

τομέα της εξόρυξης δεδομένων και μας παρέχει αυτού του είδους την αντίληψη. Η

συγκεκριμένη  διπλωματική  εργασία  επικεντρώνεται  στην  αναγνώριση  συχνών

υπογραφημάτων  στα  σύνολα  γραφημάτων,  στην  εξόρυξη δομών που  ικανοποιούν

συγκεκριμένες  απαιτήσεις  καθώς  και  στο  να  παρέχει  πιθανές  εκτιμήσεις  για  τον

πιθανό τρόπο εξέλιξης του γραφήματος μελλοντικά.

Η  στατικότητα  χαρακτηρίζει  σπάνια  τα  κοινωνικά δίκτυα.  Τα γραφήματα  που  τα

αναπαραστούν, εξελίσσονται, καθώς νέες οντότητες και νέοι σύνδεσμοι μεταξύ των

οντοτήτων εμφανίζονται με την πάροδο του χρόνου. Επιπλέον, τα γραφήματα αυτά

είναι  σπανίως  απλά.  Αυτό  σημαίνει  ότι  ένας  μόνο  τύπος  σχέσης  μεταξύ  των
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οντοτήτων (πχ. φιλικός ή επαγγελματικός) δεν αρκεί για να τις απεικονίσει και να τις

αναπαραστήσει με ακρίβεια. Ακόμα και η χρονική στιγμή στην οποία εμφανίστηκε

μία  νέα  ακμή  στο δίκτυο,  αποτελεί  χαρακτηριστικό της  ακμής.  Υπάρχουν πολλές

μελέτες  σχετικές  με  το  ζήτημα  της  ανάλυσης  των  κοινωνικών  δικτύων  [31, 32].

Ωστόσο, οι περισσότερες από αυτές, επικεντρώνονται στην ανάλυση απλών δικτύων,

απορρίπτοντας  μεγάλης  σημασίας  πληροφορίες  που  παρέχει  η  συνύπαρξη

διαφορετικών  τύπων  ακμών.  Στα  πλαίσια  αυτής  της  διπλωματικής  εργασίας,

σκοπεύουμε  να  εφαρμόσουμε  διάφορες  τεχνικές  εξόρυξης  γνώσης  σε  δυναμικά

γραφήματα,  στα  οποία  οι  σχέσεις  μεταξύ  των  κόμβων  είναι  είτε  θετικές  είτε

αρνητικές και επιπλέον επιτρέπουν την ύπαρξη ακμών πολλαπλών τύπων μεταξύ δύο

κόμβων,  και να δούμε πώς οι επιπλέον πληροφορίες που παρέχονται από το γράφημα

εμπλουτίζουν τις εξαχθείσες πληροφορίες και μας βοηθούν να προβλέψουμε και να

προσεγγίσουμε το πώς θα  διαμορφωθεί μελλοντικά το δίκτυο.
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     I  NTRODUCTION TO GRAPHS AND PATTERNS  

1.1 Introduction

This chapter will provide an introduction to graphs and pattern mining. We live in a

connected world. Our everyday lives are full of complex systems, each consisting of

entities  and relations  between  them.  For  example,  when someone tells  a  story  to

someone else, it is extremely likely that this story will travel to other people as well,

forming a network of interactions. Graphs are widely used to represent such relations

among objects, in order to be used in applications, such as web analysis, computer

vision, video indexing, social networks, bioinformatics, chemical and text retrieval.

Entities in the data are represented by nodes, while the relations between them are

represented by edges that connect the nodes. An email network’s graph for instance,

would have email accounts as nodes and email exchanges as edges, while a protein-

protein interaction network’s graph would  have labeled  proteins  as  nodes  and the

interactions between them as edges. Given a dataset, a topic of interest is to discover

interesting patterns.  The main goal  is  to extract  statistically  significant  and useful

knowledge  from the  given  data  [15].  Structured  and  semi-structured  data  can  be
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represented easily by graphs. Due to this fact, there exists increasing interest in the

mine of graph data. There are many different types of graphs, but we are particularly 

interested  in  the  problem  of  mining  patterns  and  finding  statistically  interesting

behaviors in dynamic graphs whose edges have multiple attributes and the nodes are

connected with positive or negative links, denoting the relationship between them. 

1.2 Graphs

As we previously mentioned, graphs provide a natural way of representing connected

entities, appearing whenever it is useful to represent how things are either physically

or logically linked to one another in a network structure. A graph is often denoted by

G = (V, E), where V is the set of nodes and E is the set of edges. 

1.2.1 Graphs that change over time

In  real-world  systems  relations  between  objects  are  rarely  static.  Their  graph

representations evolve as relations are created or stop existing over time. For example,

proteins interact from time to time, messages on social networks are sent at a certain

point, new friendships are created constantly etc. A time evolving graph contains a

sequence of static graphs {G1, G2, …, Gn}, where  Gt = (Vt,  Et) is a snapshot of the

evolving graph at a timestamp  t.  Each link appears at a specific point in time. As

shown in  Figure 2, dynamic graphs are represented by a series of static snapshots

taken at various points in time. Possible modifications consist of new nodes and edges

being added to the network,  the attributes of the already present edges and nodes

being modified or previously present edges being removed from the network. 
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1.2.2 Graphs with multiple edge attributes

In many real world problems, connections between entities are defined by several

different relationships.  For example, similarity between two scientific articles can be

defined based on authors, citations to, citations from, keywords, titles, where they are

published, text similarity, etc. Social interactions between a group of individuals can

be based on the nature of each relationship like business, family, friendships, or the

means  of  communication  like  phonecalls,  instant  messages,  emails,  personal

meetings. Electronic files can be grouped by their type,  name, the time they were

created, or the pattern they are usually accessed. In these examples, there are multiple

graphs that define relationships between the subjects [13]. 

3

Figure 2: The evolution of alliances in Europe, 1872-1907(the nations GB, Fr, Ru, It,  

Ge and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary

respectively).  Solid  dark  edges  indicate  friendship,  while  dotted  red edges  indicate  

enmity. Note how the network slides into a balanced labeling, and eventually into World

 War I. This figure and example are from Antal, Krapivsky, and Redner [9].



For instance, the graph shown in  Figure 1 illustrates the relations of marriage and

business among 16 families in Florence around 1400 AD. The data are part of a larger

dataset collected and analyzed by John F. Padgett and C. K. Ansell. Each family is

represented  by  a  circle.  Directed  lines  (black  edges)  represent  business  relations

among  families,  pointing  towards  the  more  prosperous  family. Marriage  relations

between families are undirected lines (gray edges) [14]. Padget and Ansell explain in

their work [18] the way that the Medici became an economic force and great political

influence via establishing their family through the marriage network, as more than

half the paths relating the 16 families pass through them.

4

Figure  1:  Social  Graph  of  marriage  and  business  relations  between  16

Florentine families in 1400 AD



1.2.3 Signed Graphs

Relations between nodes can often reflect positive (1), negative (-1) or neutral (0 or

absence of an edge) interaction. The type of the relationship affects the structure of

the network. Positive edges denote  friends, fans, followers or collaborators, while

negative links denote foes, disagreements, controversy or antagonism. Signed graphs

can be used for modeling interactions in chemical or biological networks, in social

network analysis, communication networks, power systems, sociometric structures or

to represent political and economical relations. For example, users on Wikipedia can

vote for or against the nomination of others as admins [1], participants on Slashdot

can declare others to be either friends or foes [2], links between blogposts of different

bloggers can be positive when the one blogger endorses the statements of the other or

negative if the users express difference in opinions [3]. Signed graphs provide patterns

of interaction [4]. 

1.2.3.1 Structural Balance

If we consider a small world social network where everyone knows everyone (e.g. a

classroom or an office), or the setting for international relations between countries and

their diplomatic position towards one another (Figure 2), a question that needs to be

answered is whether or not this network is balanced.

Structural balance is based on theories in social psychology dating back to the work of

Heider  in  the  mid-20th-century  [5],   and  generalized  and  extended  to  graphs

beginning by Cartwright and Harary’s work in the 1950s [19]. The key idea is that

every two people in the network will be either friends or enemies. If we extend the

idea to three people, then we have a combination of positive and negative relations.

Some combinations are more likely and socially accepted than others. Particularly,

there are four possible combinations of relations among these nodes. Firstly, there can

exist  three  pluses  {+,  +,  +}  among  them,  which  is  a  very  common  and  normal

situation, that indicates mutual friends. Another possibility is that of two minuses and

a plus {-, -, +}, which is also a rather common case, that indicates two friends who
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have a common enemy. A different case is having a triangle with two pluses and a

minus {+, +, -}, which corresponds to a complicated situation, where a person has a

friendly relationship with two individuals,  who do not  get  along with  each other.

Lastly, a  triangle  with  three  minuses  {-,  -,  -}  is  also  a  complicated  and  unusual

possibility, where we have three mutual enemies. In the last two combinations there

are usually forces that tend to uncomplicate and balance the situation.  For further

understanding, lets say that we have three people, Alice, Bob and Charlie, where Alice

is friends with the other two, but Bob and Charlie have unfriendly feelings for each

other. Then there would exist two possibilities. In the first one, Alice would try to

persuade  the  others  into  becoming friends  so  the  triangle  would  convert  to  three

pluses {+, +, +}, or one of the them would probably persuade Alice to side with him,

so the triangle would convert to a plus and two minuses {+, -, -}. On the other hand, if

Alice, Bob and Charlie had all hostile feelings for each other, two of them would

probably team up against the other. Based on the theory that in the first two cases

there are no forces trying to change the situation, in contrast to the last two, we refer

in such stable triangles as balanced (Figure 3), while we use the word unbalanced

(Figure 4) for the unstable ones. 
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Structural  balance  theory  has  been  developed  extensively  in  the  time  since  [10],

including the work of Davis, who studied the formulation of a variant proposed as a

way to eliminate the assumption that “the enemy of my enemy is my friend” [11]. In

particular, weak structural balance posits that only triangles with exactly two positive

edges are implausible in real networks and that all other kinds of triangles should be

permissible.

1.3 Graph and Link Patterns

The discovery of patterns in graph data provides an insight of useful knowledge and

meaningful information for many applications, via the embodiment of descriptive and

predictive modeling,  including compact representation of the information,  creating

friend suggestions  in  social  networks and finding frequent  molecular  structures  in

biological networks. By mining patterns, we are able to answer questions like how

many triangles exist in a graph, which subgraphs are frequent, what is the possibility

of an edge to appear in the future, what defines a normal or an abnormal behavior for

the  graph,  thing  that  may indicate  fraud or  spam,  user  behavior  predictions,  user

preference based applications etc. Or in a more comprehensive way, questions such as

what products are often purchased together, in which products are users interested in

based on their  model  user  profile,  what  reaction will  certain organisms have in  a

certain drug based on their DNA, what is the role of a user in the network based on

his relations with other users , who is the leader or the main character of a network

(Figure 5), who should someone follow in order to see the most interesting or popular

content etc. We can also use frequent subgraphs to monitor the health of a network as

it evolves, which is an important tool for a cyber-security analyst who is monitoring a

large cyber-network and may be alerted to a potential attack due to the change in the

frequent subgraphs.
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1.3.1 Maximal Frequent Subgraphs

Among the various kinds of patterns that someone can discover in a graph, frequent

subgraphs are the most basic. The problem of frequent subgraph mining is to find any

subgraph g, whose occurrence counts are above a predefined threshold across a set of

graphs (Figure 6). The number of possible frequent subgraphs increases exponentially

with  the  size  of  the graph i.e.  for  a  frequent  k-graph,  the  number  of  its  frequent

subgraphs can be as large as 2k [16]. 

8

Figure  5:  Othello's  Social  Network.  Two  characters  are  connected  if  they  

appear  in  the  same  scene  together. The  color  of  the  nodes  is  assigned  by  

gender  and their  size  is  based on the  number  of  lines  the  node is  part  of.  

The  bigger  the  size  of  the  node,  the  more  socially  central  the  character  

is  in  the  play.  By  this  model,  we  can  easily  see  that  Desdemona,  Iago  

and Othello appear to be the most crucial characters. [12]



As the set  of maximal frequent subgraphs is much smaller compared to the set of

frequent subgraphs, maximal frequent subgraphs are proposed as mechanisms to limit

the number of frequent subgraphs generated and provide a more meaningful set by

encoding the maximal common structures in a set of graphs. According to studies 

[6, 7, 8],  in  the  case  of  biological  networks,  protein  contact  maps  and metabolic

pathways, they appear to be the most interesting patterns. 
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Figure 6: Common occurrences of hydroxide-ion, which, as we can see, exists in

two of the graphs of the dataset (Graph 1 and Graph 2), while it is absent from the

third one (Graph 3). 

Graph 2
Graph 1

Graph 3



1.3.2 Link Type Prediction

In dynamic networks, where new edges appear, indicating new interactions between

objects, it is useful to predict links. That is, given a snapshot of a network at time t,

we wish to predict the edges, that will appear in the network during the interval from

time t to a future time, t’, along with their types.

 

By predicting the type of the relationships between objects, based on the properties of

the objects involved, more information is made available to the mining process. Given

epidemiological data, for instance, we may try to predict whether two people who

know each  other  are  family  members,  coworkers,  or  acquaintances,  by  using  the

attributes of the linked entities. In another example, we may want to predict whether

there is an advisor-advisee relationship between two coauthors. Given Web page data,

we can try to predict whether a link on a page is an advertising link or a navigational

link. [20]

1.3.3 Predicting Link Existence

Unlike link type prediction, where we know that a connection exists between two

objects, we now want to predict the existence of a link between them. In order to do

that,  we  must  consider  links  that  exist  and  links  that  do  not.  Examples  include

predicting whether there will  be a link between two Web pages,  or given a social

network  of  coautorship  among  scientists,  we  try  to  predict  whether  or  not,  two

scientists that are close in the network, may collaborate in the future. In epidemiology,

we can try to predict with whom a patient came in contact. [20]
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1.3.4 Pattern mining with restrictions

This  type  of  mining  aims  to  identify  all  frequent  patterns  displaying  a  specified

constraint, for instance finding all triangles on a graph, all patterns that have a certain

degree, every node that has only positive or negative relationships etc. 

11



   

 

     A  LGORITHMS       

2.1 Mining Interesting Patterns in Signed, Attributed Graphs; Description of the

Problem

In  recent  years  there  has  been  an  explosion  in  the  amount  of  data  available  for

network analysis leading to various types of networks, forcing us to be creative with

the description of graphs in order  to fit  all  their  particular features.  Network data

involving  relational  structures  representing  interactions  between  entities,  are

commonly  represented  by  graphs.  Analyzing  the  data  that  are  derived  from such

networks results to much gained information.

Studies in social network analysis are mainly focused on graphs consisting of  binary

relations between the nodes, i.e. a line between a pair of entities either exists or not,

considering almost exclusively one type of positive relationship.  We find that this

approach discards essential information attached to the original network. For instance,

consider a network with nodes representing different students of a school. The edges

12
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then  may  indicate  coexistence  in  the  same  classroom,  family  ties,  cooperation,

friendship, antagonism or dislike. In order to understand the structure and underlying

social mechanisms of the network, these different types of edges should be considered

in our analysis. Therefore, in our approach, in order to provide a fuller insight into

patterns of interactions, we will use techniques to analyze and mine the structure of

such graphs and see how this structure affects the evolution of the network. 

With this in mind, our first task is to find subgraphs that best match our interest (e.g.

to find all triangles connected with same-type-edges) in a graph. Next, we identify

maximal frequent subgraphs. Lastly, we will adapt the structural balance theory to

examine the interplay between friendly and non-friendly links in  the network and

recognize the differences between the true and predicted configurations of the various

types of links. 

2.2 Basics, Algorithms and Examples

For the rest of the thesis we assume that our dataset is a set of different instances of a

social graph at different times that each has a static set of nodes and a dynamic set of

attributed edges. The edges of the graph are undirected and signed. Each one has a

certain connection type and in the case that a line or more exist between two entities,

there will be an assigned weight (1 for a positive sign, or -1 for a negative sign) that

denotes the feeling of the relationship. Multiple edges connecting the same two nodes

with different connection types, are allowed. The graphs are simple, that means that

they do not contain loops( (i,i) edges do not exist). For each edge, we know the time

of its first appearance on the graph. Not all edges need to be present; a non-existing

edge between two nodes corresponds to neutral  or absent feelings.  There are four

possible configurations of signed triangles. In the theory of social balance, the triangle

configurations with an even number of minus signs are considered as balanced. On

the other hand, the two configurations with an odd number of minus signs correspond

to unbalanced triangles. So if a triangle has a product of weight greater than 0, it is

13



balanced,  otherwise,  it  is  considered  unbalanced.  Table  1 lists  the  notations  used

below.

Notation Interpretation

G = (V, E) The data graph with vertex set V & edge set

E

R = {r1, r2, …, rl } The set of l attributes defined on V 

Si The edge array containing the sign of each

edge.  1  for  positive  sign,  -1  for  negative

sign.

A The  edge  x  attribute  matrix  denoting  the

type of the edge

Gt = (V, E, t) Snapshot of the graph at time t

N(V) The set of nodes that share a link with each

node v, signifying the neighbors of v

C = {e1, e2, …, ek} Array that contains the labels of the k edges

included in graph g

Smax The  maximal  frequent  subgraph  of  the

dataset

support The  number  of  snapshots  that  contain  the

pattern

minsup The support threshold

code(g), Ci Array that contains the edge list of graph g 

Code,  C Array  that  contains  the  common edge  list

between a set of graphs
Table 1. Notations used in the algorithms below. 
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2.2.1 Pattern mining with restrictions

We, firstly, address the problem of finding subgraphs (triangle patterns in particular)

that best match our needs. A typical constraint specifies both connectivity patterns

between nodes and the type of their connection. For example, in the above school

network, a constraint may have a triangle pattern where every node like each other

and they have also participated in a group project together. In a problem like that, we

have to consider structure, attributes and signs to exact match our demands. 

The reason why we present a high interest in triangle patterns is, that counting the

number of triangles in a graph has gained importance over the last years, since several

significant graph mining applications rely on computing them in the graph of interest.

In our case, it is significant to find the triangles in the dataset, in order to determine

whether or not the graph and each node are balanced. Other metrics that involve the

execution of a triangle counting algorithm in order to be computed, are the clustering

coefficient and the transitivity ratio. Recently, in [22] it was shown that triangles can

be used to detect spamming activity. Moreover, [23] shows how triangles can be used

to uncover the hidden thematic structure of the web.

2.2.1.1 Algorithm1;Listing Triangles and Examples

To begin with, we will present a way to count and list all triangles present in our

graphs, along with their balance situation and their type configuration. The key idea of

our algorithm, is that only the lowest alphabetically vertex of a triangle is responsible

for counting it. Furthermore, it is very useful and applicable in all possible scenarios. 
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Algorithm1 Listing Triangles

Input: graph G = {V, E, N(V), Si(E)}, where V is the set of the N nodes of the graph,

E is the set of e edges, N(V) is the set of neighbors of every node v  ∈ V and Si(E) is

the list of signs corresponding to every edge in E. 

1. foreach vertex v  V ∈ do

2.       foreach u  ∈ N(v), so that u is higher alphabetically than v do

3.             if there exists a vertex w, so that w  ∈ N(v) & w  ∈ N(u), and in

the same time w is higher alphabetically than v and u, then u,v,w form

a triangle

Output: list of existing triangles

Considering the case that we want to find, for instance, only the balanced triangles

that exist in the graph, we will modify the algorithm in order to fulfill our needs. In

the case of the balanced triangles, we should check if the sum of the edge signs in the

triangle equals 3 (case of mutual friends) or -1 (case of two friends sharing a mutual

enemy). 
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Figure 7.  The  first  10  nodes  of  a  data  set  collected

among  a  group  of  university  freshmen.  Green  edges

indicate friends  or friendly relations,  while red edges

indicate troubled relationships. [21]



The data  in  Figure  7 were collected among a group of  university  freshmen who,

except for a few existing relationships (acquaintances from a former school), did not

know each  other  at  the  first  measurement.  The  students  were  asked to  rate  their

relationships [23].  Applying  Algorithm1  in the signed network of  Figure 7,  would

return three triangles ({1, 3, 7}, {2, 5, 10}, {5, 7, 10}), two unbalanced ({2, 5, 10},

{5, 7, 10}) and a balanced {1, 3, 7}. 

The  data  in  Figure  8 were  collected  from a  high-tech  company’s managers.  The

company manufactured high-tech equipment on the west coast of the United States

and had just over 100 employees with 21 managers. Each manager was asked "To

whom do you go to for advice?" and "Who is your friend?". Data for the item "To 

whom do you report?" were taken from company documents. 
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Figure 8. The first 7 nodes of a data set collected from the managers of

a high-tech company. Each manager was asked "To whom do you go to

for  advice?"  (blue  edges)  and  "Who  is  your  friend?"  (dark  red

edges).Data for the item "To whom do you report?" (green edges) were

taken from company documents. [33]



2.2.2 Subgraph Mining

The discovery of graph structures that occur  a significant number of times across

different snapshots of a dynamic graph can unveil new and useful knowledge hidden

in the dataset. For instance, we can detect stable and regular sets of node relationships

or which are the most influential communities among the graph.  In our case, we are

not  only  interested  in  extracting  topological  patterns  that  frequently  exist  among

nodes, but also in the type of the relation that connects said nodes. 

Using only maximal frequent subgraphs instead of using all the patterns is one of the

techniques  that  aim  to  avoid  redundancy  among  the  computed  patterns  and

consequently reduce the dimensionality of the set. A maximal frequent subgraph is a

pattern  which  is  not  a  subgraph  of  any  other  frequent  subgraph  [24].  From  the

frequent maximal subgraphs it  is possible to reconstruct the whole set of frequent

subgraphs, as they are all summarized into the maximal patterns. 

2.2.2.1 Algorithm2;Maximal Subgraph Mining

Given a set of graphs  G,  the support of a subgraph  s is defined as the fraction of

graphs in G in which s occurs [30, 29].  s is frequent if its support is at least a user

specified threshold, which is referred to as the support threshold. Given our dataset of

graph snapshots, we define the support as the number of graph snapshots that s occurs

and set the support threshold to at least No of snapshots-1. 
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Algorithm2 Maximal Subgraph Mining

Input:  codes  C1, C2, …, Cn containing the edge list of the  g1, g2, …, gn snapshots

respectively,  minsup,which  is  the  support  threshold,  set  to

numberOfGraphSnapshots-1

1. find the global code C = {e1, e2, …, ek} that contains the k frequent edges of

the dataset, meaning the edges that exist in at least minsup codes

2. choose edge ei , insert ei in S and delete ei from C

3. do

4.     find edge ej so that ej contains one of the nodes that create ei (In a Breadth   

first manner) and insert ej in S

until there are no remaining edges in C, or the remaining edges do not 

have common nodes with the edges already chosen

5. if C is not empty, goTo step 2 and create a new Subgraph S

  

Output: Smax, maximal frequent subgraph set in the dataset

In a similar manner as before, we can modify the input array in order to include only

the type of edges that we wish the output subgraphs to contain. Another modification

to the algorithm would be to ignore certain differences. For instance, in the above

example  of  a  school  network,  the  switch  of  an  edge  type  from  cooperation  to

friendship would not cause that much of an impact in the network, as would the swift

from friendship or cooperation to antagonism. It all depends on what we are looking

for. 
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2.2.3 Link Prediction

The attitude of one user toward another can be estimated from evidence provided by

their  relationships  with  other  members  of  the  surrounding  social  network  [25].

Additionally,  being  part  of  a  particular  community,  business,  school,  voluntary

organization or neighborhood, being a patron in a certain place, being a member in a

certain gym, are all activities that, when shared between two people, tend to increase

the likelihood that they will interact and hence form a link in a social network [28].

Naturally,   if  two  people  are  friends,  they  influence  each  others  friendships  and

enmities. 

2.2.3.1 Algorithm3;Likelihood of a link to appear

In a social network, people tend to create new relationships with people that are closer

to them.  Based on the dynamic nature of our graph, we will empirically estimate the

possibility  of a  connection to  appear  between two nodes,  by taking as  metric  the

number of common neighbors they had in two different snapshots of the network.  A

link is significantly more likely to be positive when its two endpoints have multiple

neighbors (of either sign) in common. This observation is consistent with qualitative

notions of social capital [27], as users with common neighbors have relations that are

in  plain  site  for  others  to  see  in  a  social  sense,  and  hence  have  greater  implicit

pressure to remain positive. 
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Algorithm3 Likelihood of a link to appear

Input: two snapshots of the graph at times t1 and t2, where graph Gt1 = {V, E1, N1(V),

S(E1)}, where V is the set of the N nodes of the graph, E1 is the set of e1 edges, N1(V)

is  the  set  of  neighbors  of  every  node  v  ∈ V and  S(E1) is  the  list  of  signs

corresponding to every edge in E1 and graph Gt2 = {V, E2, N2(V), S(E2)} respectively. 

1. foreach node v  ∈ V do

2.      foreach neighbor n  ∈ N1(v) do

3.           foreach node w  ∈ V, so that w ≠ v and w ∉ N1(v) do

4.               foreach neighbor b  ∈ N1(w)

5.                    if n == b then

6.                      increase the number of common neighbors between v and w

7. for k=1 to max(number of common neighbors between two nodes) do

8.     foreach node v  ∈ V do

9.         foreach node w  ∈ V, so that w ≠ v and w  ∉ N1(v) do

10.             if (the number of common neighbors between v and w == k) then

11.               if w  ∈ N2(v) then

12.                 increase the number of  unlinked nodes of G1 that connected in

G2

13.                        else increase the number of  unlinked nodes of G1 that did not

connect in G2

14. T(k) = the fraction of the pairs that have formed an edge by the time of the

second snapshot

Output: T(k), an empirical estimation of the probability that two people will form a

link in the future, as a function of the number of common friends they have

21



2.2.3.2 Link Sign Prediction

A more useful estimation for the considered signed networks would be to find the

possible sign that the certain link will have, given the information provided by the

network so far. Signed link prediction has connections to social balance theory while

no such connection exists for the unsigned link prediction task. In order to do that, we

will modify our algorithm as follows. In addition to the evaluation of the common

neighbors between two nodes, we will also consider the negative or positive relation

between each neighbor with both of the nodes. 

The basic idea is that the sign of an edge should minimize the number of unbalanced

triangles involving this particular edge. So for each choice of the sign of an edge, we

choose the sign that causes it to participate in a greater number of triangles that are

consistent with balance theory. The logic of social balance theory indicates that “the

enemy of my friend is  my enemy,” “the friend of my enemy is  my enemy,” and

variations on these [26]. Consider the situation in which a user A links positively to a

user B, and B in turn links positively to a user C. If C then forms a link to A, what

sign should we expect this link to have? Balance theory predicts that since C is a

friend of A’s friend, so we should see a positive link from C to A. So based on the

ideas that if w forms a triad with the edge (u, v), then structural balance theory posits

that  (u, v) should have the sign that causes the triangle on  {u, v, w} to have an odd

number of positive signs, we come up with this possibilities. 

• Case 1: If both node A and node B have balanced relations with the majority

of their common neighbors, then if the link between them will appear, it will

probably  be  a  positive  one,  as  the  friends  of  your  friends  are  also  your

friends. 

• Case  2: If  both  node  A and  node  B  have  unbalanced  relations  with  the

majority  of  their  common neighbors,  then  if  the  link  between  them will

appear, it will also be a positive one, based on the idea that the enemies of

your enemies are your friends.
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• Case 3:  If node A (respectively node B) has unbalanced relations with the

majority of common neighbors, while B (respectively node A) has mainly

balanced relations with the majority of them, then if the link between them

will appear, it  will probably be a negative one, based on the idea that the

enemies of your enemies are your friends.
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     D  ATA AND RESULTS    

3.1 Description of the Datasets and Results

In this chapter, we will apply mining techniques in dynamic social networks, with

multiple types of edges. Our main goal is to determine whether or not the existence of

multiple and/or signed edges, helps us in the mining process. 

Table 2 lists the real world datasets we used in our experiments in order to evaluate

the extra information we receive,  when we allow different types of ties with both

negative and positive signs, to exist in the network. We have some smaller datasets

with hundreds of edges and some larger ones with thousands of edges. 
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Datasets Number of

Snapshots

Static Number Of

Nodes

Number of Edges Distinct Edge

Attributes

Dutch College

Freshmen

3 32 1st Snapshot: 600

2nd Snapshot: 390

3rd Snapshot: 424

6

Slashdot1 3 774 1st Snapshot: 3,253

2nd Snapshot: 3,239

3rd Snapshot: 3,325

2

Slashdot2 3 7736 1st Snapshot: 105,966

2nd Snapshot: 105,272

3rd Snapshot: 106,327

2

SG&R Law Firm 3 71 1st Snapshot: 1,139

2nd Snapshot: 852

3rd Snapshot:  465

3

Table 2: Datasets and their Characteristics

3.1.1 Dutch College Freshmen

The first dataset, which was collected by Gerhard van de Bunt [33], is a relatively

small,  signed graph  that  contains  the  relationships  between a  group of  university

freshmen and how they evolved in a period of 24 weeks. At the beginning of the first

week, only a few acquaintances between them existed from a former school. Other

than these, the students did not know each other. The original dataset was collected at

7 time points. The first four time points were three weeks apart, whereas the last three

time points were six weeks apart.  The original group consisted of 49 students, but

some  of  them  did  not  continue  with  their  studies,  while  others  did  not  fill  the

questionnaire, leading to a group of 32 students, for whom almost complete data are

available. The students were asked to rate their relationships on a six point scale, with

ratings corresponding to:

• 1-4: Best friends, friendly relationships and pleasant contacts 

• 5: Troubled relationships and conflicts

• 0, 6, 9: People who don’t know each other or absent data 
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The dataset also provides information regarding the smoking behavior of the students

and  their  education  program.  These  attributes  supply  information  regarding  the

contact  situation  between  the  students,  as  smokers  had  to  separate  themselves  in

special  areas  and  students  attending  different  education  programs  had  different

schedules and courses, even though they had all started their education at the same

time. 

We converted  the  data  in  graph snapshots.  We proceeded to  group them in  three

snapshots, in order to increase the density of each of them. The first snapshot contains

the relationships that appeared in the first 9 weeks, the second one contains the next 6

weeks and the last  one the last  12 weeks,  as the two last  time points  were more

distant.  Each node corresponds to  a  student  and each edge denotes  a  relationship

between two students. We assigned signs and attributes (friendship, enmity, smokers,

same program) to the edges. If the relationship is rated between 1 and 4, then the sign

is positive. If the relationship is rated as 5, then the sign is negative. For every other

rating, the edge is absent. The average snapshot size, in terms of number of edges, is

471.3  .  The  largest  snapshot  contains  600  edges.  The  average  number  of  edges

connecting two nodes is 1.2 and the maximum number of edges between two nodes is

3. The 81% of the edges denote either friendship or enmity, the 6% denote smoking

habits  and  the  last  13%  ,the  type  of  study  program  that  connects  the  entities.  
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Snapshot 1 Snapshot 2 Snapshot 3

Number of Triangles 6824 2615 3163

Number of Signed

Triangles

324 298 439

Balanced Triangles 321 296 438

Unbalanced Triangles 3 2 1

Type Of Triangle: + +

+

306 286 429

Type Of Triangle: + - - 15 11 9

Type Of Triangle: + + - 2 1 1

Type Of Triangle: - - - 1 1 0

Same-Type-Edges

Triangles

1300 298 439

Different-Type-Edges

Triangles

4980 1748 2069

Table 3: Numbers and Types of the first network’s triads

Table 3 gives the counts of the possible triangle configurations of the network. The

number of triangles is different from the number of signed triangles, as not all types of

edges have signs. The edges that have signs are those that indicate the existence of a

friendship or an enmity between two nodes. By considering all types of edges in the

network, we extract almost 23 times more triangle patterns, than we would have in the

case we considered only the friendship ties. 

As we can see, in all three snapshots the all-positive triad is overrepresented, while

the triads consisting of two enemies with a common friend, along with the triads of

three mutual enemies, are underrepresented. Even though the number of unbalanced

triangles in the dataset is relatively small, the structural balance theory is consistent

with the data. Unbalanced triangles gave in to the social forces and reversed their

signs in order to become balanced. Considering the configurations that balance theory

suggests, along with the theory of weak balance, we evaluated the prediction accuracy

of the sign of the new edges. The probability of the new edge, having the sign we

predicted, was as high as 0.7 . This can also be explained by the notion from social-
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capital theory, saying that pressure is exerted on the entities on display in order to

remain positive and maintain the harmony of the community. 

By systematically going through the relative frequency or proportions of edges within

and between vertex pair categories, we can detect conditional dependencies of types

of edges. Within the category of social relations (friendship or enmity) , there are 60%

of vertex combinations where a social relation exists along with a common smoking

condition. Also there are 32.7% vertex combinations where a social relation exists

along with a common program attendance. From these results we can conclude, that

there  is  a  high  tendency  to  create  social  relations  within  the  programs  of  the

university. We also detect tendencies to social relations between smokers.
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Figure 9. Evaluation of the probability that two nodes will connect in the future,

as a function of the number of common neighbors they have. The dark red bars

represent the probabilities as they formed, when we used merely the friendship

ties, while the yellow bars represent the configuration of the probabilities when all

the given information,  i.e.  smoking habits  and type of attending program, was

included. The probabilities of the yellow bars, are product of the evaluation of all

three snapshots and represent our estimation for the unknown possible future of

the network. 



Figure  9 shows  our  evaluation  of  how  likely  it  is  for  a  new  interaction  among

members to happen in the near future, based on the number of common neighbors

they have. Given two snapshots of the network at time t1 and t2, we seek to accurately

predict the edges that will be added to the network to a future time t3. We can see the

differences  that  appear,  when  we  consume  some  (blue  bar)  vs  all  the  available

information  (red  bar)  from  the  dataset.  As  we  can  see,  in  most  cases,  the  extra

information comes to fill in pieces and shift the probability towards a more certain

outcome (values closer to 0 or 1). 
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Figure 10. Probability of an edge to appear and join a pair of nodes in the near future,

based on our approach. This first predictor evaluated the probabilities, while having a

limited image of the interactions existing in the network.
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Figure 11. Probability of  an edge to appear and join a pair of nodes in the near

future,  based  on  our  approach.  The  second  predictor  had  a  fuller  image  of  the

interactions existing inside the network.
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Figure 12. Probability of an edge to appear and join a pair of nodes in the near

future, based on our approach. The prediction for a currently missing edge, is based

on all three snapshots of the network.
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Across  Figure 10,  Figure 11 and  Figure 12, we can see the suggested outcomes for

every single edge, based on our approach. In 87% of the cases, the first two predictors

(Figure 10  & 11), which are products of the same two snapshots, are overlapping,

showing similar behavior, while in the rest 13% they give reverse suggestions. We

proceeded to compare the suggestions that the predictors created based on the two

first  snapshots  of  the network,  to  the new relationships  that  appeared in  the third

snapshot. As a matter of fact, the score (48%) of the predictor that was given the

partly information was almost the same as the score (51,3%) of the predictor that had

a fuller image of the interactions that exist in the network. The third predictor (Figure

12), that had as input all three snapshots of the network, gave the same predictions as

the other two, in, averagely, 60% of the cases. 

The set of the maximal frequent subgraphs that were obtained from the full image of

the network, was, as expected, smaller, with more edges per set. On the other hand,

the maximal frequent subgraphs of the limited image, where frequent subgraphs that

appeared in the first set, but in this case they were not connected. 

3.1.2 SG&R Law Firm

This dataset comes from a network study [34] of corporate law partnership that was

carried out between 1988 and 1991 in New England, in a Northeastern US corporate

law firm, referred to as SG&R. It includes the relations among the 71 partners and

associates  of  the  firm,  covering  friendly,  strong  co-working  and  advisor-advisee

relationships. 

For every attorney in the firm, it is also provided the number of years that they work

with the firm, as well as some attributes, such as the individual’s status in the firm,

his/her gender, the location of the office he/she works in, his/her age, the law school

they attended and their practice field. We took advantage of the given information

about each attorney’s years with the firm and we created 3 snapshots of the dataset.
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Each node corresponds to an attorney and the edges represent a relationship between

the  attorneys.  Each  edge  has  also  an  attribute  that  indicates  the  type  of  the

relationship. The average snapshot size, in terms of number of edges, is 818.6 . The

largest snapshot contains 1,152 edges. The average number of edges connecting two

nodes is 1.3 and the maximum number of edges between two nodes is 3. The average

number of advisor-advisee relations that exist per snapshot are 190, while the average

number of friendly and strong co-working relations are 242 and 386 respectively.

Snapshot 1 Snapshot 2 Snapshot 3

Number of Triangles 9897 4659 797

Same-Type-Edges

Triangles

2613 1013 482

Different-Type-Edges

Triangles

7284 3646 315

Table 4: SG&R Law firm. Number and types of triads. 

Table  4 shows the  number  of  triangles  that  exist  in  every  snapshot.  The  type  of

triangles that appear in the data, can either connect the nodes with edges of the same

type (Figure 13), or the type of the edges will vary (Figure 14). 
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Figure 14:  SG&R Triangles.  The  possible  configurations  of

triangle patterns between nodes that are interconnected with

edges of different types.

Figure 13: SG&R Triangles. The possible configurations

of triangle patterns between nodes that are interconnected

with edges of the same type.



If we consider exclusively the advisor-advisee network, the triangle patterns that we

extract are significantly fewer. In case we add only the ties that denote friendship, we

get 2.3 times more patterns. While, assuming that we add only the ties that denote

strong co-working relationship, we get 1.3 more patterns. Lastly, if we add them both

and extract triangle patterns from the network that we described above, their number

goes up to 5.9 times. 

Within the advisor-advisee network, both friendships and strongly co-working ties are

highly regular, with frequencies of 35% and 52% respectively. From these results we

can conclude that attorneys have the tendency to seek for advice in their co-workers

first and then in their friends. In a similar investigation within the network of strong

co-working ties, the results indicate that strong co-workers have a relatively small

tendency to maintain a friendly relationship as well, in a frequency of 12%. 
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In  Figure 15 we can see the differences between the estimated probabilities of the

appearance of a relationship between two attorneys, based on the number of common

people  they  have  on  their  surroundings.  The  blue  and  the  dark  red  bars  are

overlapping,  with  a  few  exceptions,  meaning  that  the  extra  information  that  we

discarded when we evaluated the dark red bars, is essential for the network. Actually,

the  predictions  we  made  having  the  full  image  of  the  network,  were  7%  more

accurate. The yellow bar represents the probabilities as they formed, when we utilized

the edge and node information of all three snapshots of the network. In all three cases,
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Figure  15.  Evaluation  of  the  probability  that  two  attorneys  will

connect  in  the  future,  as  a  function  of  the  number  of  common

neighbors they have. The dark red bar represents the probabilities as

they formed, when we used merely the advisor-advisee ties, while the

blue  bar  represents  the  configuration  of  the  probabilities  when  all

three  types  of  ties  were  included.  The  yellow  bar,  represents  the

possibilities, as they formed when we used as input all three snapshots

of the network. 



the highest probabilities of a relation to be formed, are between people with many

neighbors in common.  

Once again, the set of maximal frequent subgraphs acquired from the limited image of

the network, where frequent subgraphs that we could find in the maximal frequent

subgraph set of the full image. 

3.1.3 Slashdot

Slashdot  is  a  technology-related  news  website.  In  2002,  Slashdot  introduced  the

Slashdot  Zoo  feature  which  allows  users  to  tag  each  other  as  friends  or  foes.  A

positively signed link means that a user likes another user’s comments, while a foe

relationship means that a user finds another user’s comments uninteresting. We used

three snapshots of the network [35]. The first one is from November 2008, while the

other two were obtained on February 16th and 21st  ,  2009. The size of the original

dataset, in terms of number of edges is, averagely, 537,149 links per snapshot. 

We investigated two parts of the original dataset. The size of the first and the second

part, in terms of number of edges are, on average, 3,272 and 105,855 per snapshot,

respectively.

Snapshot 1 Snapshot 2 Snapshot 3

Number of Triangles 4404 4465 4248

Balanced Triangles 4155 4213 3997

Unbalanced Triangles 249 252 251

Type Of Triangle: + +

+

3777 3810 3599

Type Of Triangle: + - - 378 403 398

Type Of Triangle: + + - 230 234 233

Type Of Triangle: - - - 19 18 18

Table 5: Slashdot. Triangle pattern interconnections between 774 nodes.
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Table 5 shows the number of triangle patterns that exist in the first part of the dataset,

along  with  their  types.  The  count  of  positive  and  negative  edges  does  not  differ

dramatically from snapshot to snapshot. The first one contains 2,913 positive and 353

negative links, the second one 2,679 positive and 71 negative links and lastly, the third

one, 2,844 positive and 76 negative links. By allowing negative links in our dataset,

we extract 1.24 times more triangle patterns. In all three snapshots, the three-mutual-

friends  type  of  triangles  are  overrepresented,  while  the  three-mutual-enemies  are

extremely underrepresented. Also, in all three, the percentage of the balanced triangles

is 94%, meaning that the conflicts’ proportion in the network is stable. 

Considering the configurations that balance theory suggests and whether a node tends

to be balanced or not in the first two snapshots, we tried to predict, once more, the

sign of the edges added in the third snapshot. The probability of the new edge to have

the sign we predicted, was as high as 0.8 .
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Figure 16 shows our evaluation of how likely it is for a new edge to appear in the near

future,  based  on  the  number  of  common  neighbors  they  have.  Again,  given  two

snapshots of the network at time t1  and t2, we tried to predict the edges that will be

added to the network to a future time t3. The predictors are highly overlapping, as in

most cases they predict that an edge will not appear. We proceeded to compare the

suggestions  that  the  predictors  created,  based  on  the  first  two  snapshots  of  the

network, to the new relationships that appeared, or not appeared, in the third snapshot.

Their scores were very close and they were higher than 90% right. It is useful to

predict that an edge will not appear anytime soon in the network, but this approach is

not useful for the prediction of the edges that will appear. 
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Figure 16. Evaluation of the probability that two nodes will connect

in the future, as a function of the number of common neighbors they

have. The blue bars represent the probabilities as they formed, when

we used both positive and negative links, while the dark red bars

represent the configuration of the probabilities when we used merely

the positive links.  The yellow bar represents the probabilities that

formed  from  the  evaluation  of  the  nodes  and  ties  of  all  three

snapshots. 



Snapshot 1 Snapshot 2 Snapshot 3

Number of Triangles 157818 157421 153853

Balanced Triangles 138219 137735 135321

Unbalanced Triangles 19599 19686 18534

Type Of Triangle: + +

+

120851 120371 118204

Type Of Triangle: + - - 17268 17364 17117

Type Of Triangle: + + - 16698 16752 15730

Type Of Triangle: - - - 2901 2934 2804

Table 6: Slashdot. Triangle pattern interconnections between 7736 nodes. 

Similarly,  Table 6 shows the triangle counts and types of patterns that exist in the

second  part  taken  from  the  Slashdot  dataset.  The  78% of  the  edges  of  the  first

snapshot are positive, while 89% and 90% are positive in the second and the third

snapshot, respectively. By allowing negative links in our dataset, we extract 1.3 times

more  triangle  patterns.  As  before,  the  three-mutual-friends  type  of  triangles  are

overrepresented, while the three-mutual-enemies are extremely underrepresented. In

the first two snapshots, the proportion of balanced triangles against unbalanced ones

is 87%, while in the third snapshot it slightly falls to 85%. That means that more

conflicted  relationships  between  nodes  appear  in  the  network.   In  this  case,  our

attempt to predict the sign of the edges added to the network, was 3.5 times out of 5,

successful. 

Taking into account the above considerations, and applying them to both signed and

positive  only  network,  as  before,  the  predictions  for  every  particular  edge  were

overlapping in several cases. 

In both parts, the conclusion about the sets of maximal frequent subgraphs, was the

same. The only-positive network’s set, was a subset of the signed network’s set. 
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     C  ONCLUSIONS AND DISCUSSION     

In situations that we use graphs in order to model data in social networks and other

applications,  it  is often important to allow the existence of multiple and/or signed

edges, in order to have models that capture more than just a binary relationship. 

In order to identify the importance of the type and the number of ties that compose a

network in the process of pattern and link mining, we tested some mining techniques,

in different kinds of social networks and we compared the results. The networks had

different  sizes  and  different  types  of  edges.  We  investigated  interdependencies

between the nature of the different connections existing between two entities and how

the lack of a connection affects the patterns mined from the network. The advantage

of having signed and multi-attributed edges in a graph is that the type of patterns that

we mine, are far more interesting, as they provide information about the type of the

relationship that these entities have with each other, and give us a sense of the nature

of each link and the behavior of each entity in the scope of a group. Moreover, the

maximal frequent subgraphs that were mined, in terms of edges, were bigger, but the
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set  overall,  was smaller, serving the benefits  that the mining of maximal  frequent

subgraphs  provides,  which  is  to  reduce  the  total  number  of  mined  subgraphs,  to

reduce  the  total  mining  time,  to  be  able  to  reconstruct  the  non-maximal  frequent

subgraphs from them and encode the maximal  structure commonalities within the

graph [36]. Concerning the problem of link and sign prediction, the results were more

hazy,  as  in  some  cases  the  existence  of  several  types  of  relation,  did  not  affect

remarkably the results. On the other hand, we cannot ignore the increase in the cost

and the complexity of the mine techniques, that the great rise in the number of edges

causes. 

In summary, this work presents how multiple and signed edges can affect the process

of mining patterns and predicting behaviors in social networks. However, as we are

dealing  with  an  enormously  growing  field,  with  many  applications  and  various

techniques, the future of our work is naturally to test more techniques, along with

larger and real world data, and compare the importance of the mined patterns against

the increase of its cost, in order to get a better idea of the underlying possibilities and

limitations. 
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