
ΤΜΗΜΑ ΜΗΧ. Η/Υ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΔΙΚΤΥΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF THESSALY

Κατανεμημένες υλοποιήσεις σε Hadoop μεθόδων

ανάλυσης σύνθετων δικτύων μεγάλης κλίμακας

Hadoop-based distributed implementations of analysis

methods for large-scale complex networks

Diploma Thesis

of

Kosmidou Maria

Supervisors:

Katsaros Dimitrios | assistant professor

Bozanis Panayiotis | associate professor

September 2016

Volos, Greece

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/157700589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

“Without Big Data, you are blind and deaf in the middle of a freeway”

─ Geoffrey Moore

“Data is the new science. Big Data holds the answers”

─ Pat Gelsinger

2

Acknowledgments

I would like to thank my supervisor Katsaros Dimitrios for his help from the very early

stage of this research and guidance throughout this process of my thesis at the University

of Thessaly. I would also like to thank Dr. Bozanis Panayiotis too, for giving me the

opportunity to work on this interesting field of research.

3

Περίληψη

Στον κλάδο της ανάλυσης δικτύων, οι μετρήσεις κεντρικότητας ενός κόμβου, είναι

σημαντικές σε ένα μεγάλο αριθμό εφαρμογών που χρησιμοποιούν δίκτυα, από τον κλάδο

της αναζήτησης και της κατάταξης των δικτύων έως στην ανάλυση των κοινωνικών και

βιολογικών δικτύων. Σε αυτή την διπλωματική, μελετάμε συγκεκριμένα, την

κεντρικότητα ενός κόμβου για σύνθετα δίκτυα και κατ’ επέκταση για δίκτυα μεγάλης

κλίμακας μέχρι τα δισεκατομμύρια των κόμβων και των ακμών. Διάφοροι ορισμοί για

κεντρικότητα έχουν προταθεί, κάποιοι από αυτούς είναι αρκετά απλοί, π.χ., βαθμός του

κόμβου, ενώ κάποιοι άλλοι πιο σύνθετοι, π.χ., PageRank. Ωστόσο, η μέτρηση

κεντρικότητας σε γραφήματα της κλίμακας δισεκατομμυρίων θέτει πολλές προκλήσεις.

Πολλοί από τους συνήθεις ορισμούς, όπως εγγύτητα και ενδιαμεσότητα δεν έχουν

σχεδιαστεί με δυνατότητα κλιμάκωσης στο μυαλό. Ως εκ τούτου, είναι πολύ δύσκολο, αν

όχι αδύνατο, να υπολογίσουμε τόσο με ακρίβεια και αποτελεσματικότητα τέτοιου είδες

μετρικές. Τέλος, η ανάπτυξη των αλγορίθμων για τον υπολογισμό των προτεινόμενων

μετρικών κεντρικότητας, γίνεται σε περιβάλλον Hadoop / MapReduce, ένα σύγχρονο

περιβάλλον για μεγάλης κλίμακας, κατανεμημένη επεξεργασία δεδομένων, που βασίζεται

στο Cloud Computing.

Λέξεις Κλειδιά: σύνθετα δίκτυα, μεγάλης κλίμακας, κεντρικότητα, Hadoop, MapReduce,

Cloud Computing

4

Abstract

In the network analysis, the centrality metrics of a node, are important in a large number

of graph applications, from search and ranking to social and biological network analysis.

In this thesis, we study node centrality for complex networks, by extension large – scale

networks up to billions of nodes and edges. Various definitions for centrality have been

proposed, ranging from very simple, e.g., degree of the node, to more complex. However,

measuring centrality in billion-scale graphs poses several challenges. Many of the usual

definitions such as closeness and betweenness were not designed with scalability in mind.

Therefore, it is very difficult, if not impossible, to compute them both accurately and

efficiently. Finally, the development of the algorithms to compute the proposed centrality

measures, is done in Hadoop/MapReduce, a modern environment for large-scale,

distributed data processing, that is based on Cloud Computing.

Keywords: complex networks, large-scale, centrality, Hadoop, MapReduce, Cloud

Computing

5

Table of Contents

Chapter 1. Introduction .. 9

1.1 The scope of thesis .. 9

1.2 Organization of thesis .. 9

Chapter 2. Background and Related Work .. 11

2.1 Complex Networks .. 11

2.1.1 Large-scale networks .. 13

2.1.2 Challenges and problems of Large-scale analysis .. 14

2.2 Cloud Computing .. 15

2.2.1 Map/Reduce and Hadoop .. 18

2.3 Graph Theory ... 22

2.3.1 Graph Representation ... 23

2.3.2 Definitions .. 24

2.3.3 Metrics ... 25

2.4 Related Work ... 26

Chapter 3. Implementations ... 27

3.1 Degree Centrality ... 27

3.2 Power Community Index .. 29

3.3 Closeness Centrality ... 31

3.4 Shortest Path Betweenness Centrality ... 35

3.5 Page Rank .. 39

Chapter 4. Experiments and Results .. 42

Chapter 5. Conclusions and Future Work .. 46

Chapter 6. Appendix ... 47

6.1 Degree Centrality’s Experiments .. 47

6.2 Power Community Index’s Experiments ... 50

6.3 Closeness Centrality’s Experiments... 52

6.4 Shortest Path Betweenness Centrality’s Experiments .. 54

6.5 Page Rank’s Experiments ... 56

Chapter 7. Bibliography .. 59

6

List of Figures

Figure 1 Various types of networks .. 11

Figure 2 Examples of Complex networks ... 12

Figure 3 Visualization of daily Wikipedia edits created by IBM, as an example of big data.

(https://en.wikipedia.org/wiki/Big_data#/media/File:Viegas-UserActivityonWikipedia.gif) 14

Figure 4 The pyramid of cloud computing architecture .. 17

Figure 5 HDFS architecture ... 20

Figure 6 A MapReduce job ... 21

Figure 7 Adjacent list and Adjacent matrix of a graph .. 24

Figure 8 Two basic categories of centralities.. 26

Figure 9 Example of a simple undirected graph .. 43

Figure 10 Scalability of metrics ... 45

Figure 11 Output of DC ... 47

Figure 12 Small network experiment for DC .. 48

Figure 13 Medium network experiment for DC ... 48

Figure 14 Large network experiment for DC .. 49

Figure 15 Output of PCI .. 50

Figure 16 Small network experiment for PCI ... 51

Figure 17 Medium network experiment for PCI .. 51

Figure 18 Large network experiment for PCI ... 52

Figure 19 Output of CC .. 52

Figure 20 Small network experiment for CC ... 53

Figure 21 Medium network experiment for CC ... 54

Figure 22 Output of SPBC .. 54

Figure 23 Small network experiment for SPBC ... 55

Figure 24 Medium network experiment for SPBC .. 56

Figure 25 Output of PR .. 56

Figure 26 Small network experiment for PR ... 57

Figure 27 Medium network experiment for PR ... 57

Figure 28 Large network experiment for PR .. 58

7

List of Flowcharts

Flowchart 1 Degree Centrality process ... 28

Flowchart 2 Power Community Index process .. 31

Flowchart 3 Closeness Centrality process .. 34

Flowchart 4 Shortest Path Betweenness Centrality process ... 38

Flowchart 5 PageRank process ... 41

8

List of Tables

Table 1 Characteristics of computing system ... 42

Table 2 Characteristics of network experiments .. 42

Table 3 Rankings.. 43

Table 4 Kendall tau coefficient (τ) ... 44

Table 5 Correlation of metrics ... 44

9

Chapter 1. Introduction

1.1 The scope of thesis

owadays, social network and other complex-network applications become

more and more popular in the world. Complex networks are getting larger and

the need to analyze datasets with millions of nodes and billions of edges is not

uncommon any more. Complex network analysis is always based on large scale

raw data, so the performance of complex-network analysis becomes the key of its

development and fast algorithms are desirable for the recomputation of key network

measures such as centrality. Node centrality measures are important in a large number of

graph applications, from search and ranking to social and biological network analysis.

Hadoop, as an implementation of the MapReduce parallel framework, a modern

paradigm for large-scale, distributed data processing, is very suitable for large-scale data

analysis [1]. Programs running in Hadoop are automatically parallelized and executed on

the large cluster. The run-time system takes care of the details of partitioning the input

data, scheduling the program's execution across a set of machines, handling machine

failures, and managing the required inter-machine communication.

Generally, this thesis develops Map-Reduce implementations of analysis methods

for large-scale complex networks, but more specifically, the scope is to compute different

metrics of graph’s centrality in Hadoop. Various definitions for centrality have been

proposed, some of them are degree centrality, power community index, closeness

centrality, betweenness centrality and PageRank. This thesis presents also, experimental

results on both synthetic and real datasets, which demonstrate the functionality of these

algorithms to very large graphs.

1.2 Organization of thesis

This thesis is organized as follows. Chapter 2 describes the background knowledge and

all the related work in large scale complex networks and cloud computing. This includes

complex networks and more specifically large scale networks (2.1), cloud computing and

the Hadoop framework (2.2), graph theory (2.3) and the related work (2.4). Chapter 3

presents detailed the Map/Reduce algorithms of five metrics implemented in this

undergraduate thesis. Chapter 4 contains the experiments for every Map/Reduce

N

10

algorithm that they conducted in several graphs, along with the results. Finally, Chapter 5

concludes the thesis and presents directions for future work.

11

Chapter 2. Background and Related Work

2.1 Complex Networks

he term ‘complex networks’ is young. It came to use in the twenty-first century

when researchers from very distinct sciences, such as computer scientists,

biologists, sociologists, physicists, and mathematicians started to intensively

study diverse real-world networks and their models. This notion refers to networks with

more complex architectures, for example, a uniformly random graph with given numbers

of nodes and links, like internet. This is the quantitative characterization of a system, but

on the other hand there is also the quality characterization. As a quality of the system it

refers to what makes the system complex, in this case complexity refers to the presence

of emergent properties in the system. That is, to the properties which emerge as a

consequence of the interactions of the parts in the system. In this sense, the great majority

of real-world networks are complex.

Figure 1 Various types of networks

In more detail, there are many ways in which networks may be more complex than

the graphs are illustrated in (Figure 1. a). For instance, there may be more than one

different type of vertex in a network, or more than one different type of edge (b). Taking

the example of a social network of people, the vertices may represent men or women,

people of different nationalities, locations, ages, incomes, or many other things. Edges may

T

12

represent friendship, but they could also represent animosity, or professional

acquaintance, or geographical proximity. They can carry weights, representing, say, how

well two people know each other (c). They can also be directed, pointing in only one

direction (d). A graph representing telephone calls or email messages between

individuals would be directed, since each message goes in only one direction. Directed

graphs can be either cyclic, meaning they contain closed loops of edges, or acyclic meaning

they do not. Some networks, such as food webs, are approximately but not perfectly

acyclic. A complex network can also have hyper edges that could be used to indicate family

ties in a social network for example, n individuals connected to each other by virtue of

belonging to the same immediate family could be represented by an n-edge joining them.

There are more types of graphs, but the study of networks is by no means a complete

science yet, and many of the possibilities have yet to be explored in depth.

Figure 2 Examples of Complex networks

Furthermore, complex networks can be classified according to the nature of the

interactions among the entities forming the nodes of the network. Some examples of these

classes are:

 Physical linking: pairs of nodes are physically connected by a tangible link, such

as a cable, a road, a vein, etc.

Examples: Internet, urban street networks, road networks, vascular networks, etc.

 Physical interactions: links between pairs of nodes represents interactions which

are determined by a physical force.

Examples: protein residue networks, protein-protein interaction networks, etc.

 Geographic closeness: nodes represent regions of a surface and their connections

are determined by their geographic proximity.

Examples: countries in a map, landscape networks, etc.

13

 “Ethereal” connections: links between pairs of nodes are intangible, such that

information sent from one node is received at another irrespective of the

“physical” trajectory. Examples: WWW, airports network.

 Mass/energy exchange: links connecting pairs of nodes indicate that some energy

or mass has been transferred from one node to another.

Examples: reaction networks, metabolic networks, food webs, trade networks,

etc.

 Social connections: links represent any kind of social relationship between nodes.

Examples: friendship, collaboration, etc.

 Conceptual linking: links indicate conceptual relationships between pairs of

nodes. Examples: dictionaries, citation networks, etc.

2.1.1 Large-scale networks

Complex networks are essentially large graphs of real life. Large amounts of network data

are being produced by various modern applications at an ever-growing speed, ranging

from social networks such as Facebook and Twitter, scientific citation networks such as

VOSviewer, to biological networks such as gene regulatory networks (DNA–protein

interaction networks). Network data analysis is crucial to exploit the wealth of

information encoded in these network data. An effective analysis of these data must take

into account the complex structure including social, temporal and sometimes spatial

dimensions, and an efficient analysis of these data demands scalable solutions. As a result,

there has been increasing research in developing scalable solutions for novel large-scale

network analytics applications.

Big data analytics is the process of collecting, organizing and analyzing large sets

of data to discover patterns and other useful information. Big data analytics can help

organizations to better understand the information contained within the data and will

also help identify the data that is most important to the business and future business

decisions. Analysts working with big data basically want the knowledge that comes from

analyzing the data.

Modern informatics applications like web search afford easy parallelization, e.g.

the overall index can be partitioned such that even a single query can use multiple

processors. Moreover, the peak performance of a machine is less important than the

price-performance ratio. In this environment, scalability up to petabyte-sized data often

means working in a software framework like MapReduce/Hadoop that supports data-

intensive distributed computations running on large clusters of hundreds, thousands, or

14

even hundreds of thousands of commodities computers. This differs substantially from

the scalability issues that arise in traditional applications of interest in scientific

computing.

Figure 3 Visualization of daily Wikipedia edits created by IBM, as an example of big data.
(https://en.wikipedia.org/wiki/Big_data#/media/File:Viegas-UserActivityonWikipedia.gif)

2.1.2 Challenges and problems of Large-scale analysis

For most organizations, big data analysis is a challenge. Consider the sheer volume of data

and the different formats of the data, both structured and unstructured data that is

collected across the entire organization and the many different ways of data retrieval can

be combined, contrasted and analyzed to find patterns and other useful business

information.

The first challenge is in breaking down databases to access all data an

organization at stores in different places and often in different systems. A second big data

challenge is in creating platforms that can pull in unstructured data as easily as structured

data. This massive volume of data is typically so large that it's difficult to process using

traditional database and software methods.

Except of these challenges, there are further difficulties in large-scale analysis, but

one of the basic problems is the efficiently and effectively measuring centrality for billion-

scale networks. More specifically, there are the following problems:

1. Design. Careful design centrality measures that avoid inherent limitations to

scalability and parallelization.

2. Algorithms. Fast computations of large scale centralities for billion-scale graphs.

https://en.wikipedia.org/wiki/Big_data#/media/File:Viegas-UserActivityonWikipedia.gif

15

3. Observations. Key patterns and observations on centralities in large, real world

networks.

2.2 Cloud Computing

ith the rapid development of processing, the storage technologies and the

success of the Internet, computing resources have become cheaper, more

powerful and more available than ever before. This technological trend has

enabled the realization of a new computing model called Cloud Computing. Cloud

computing divides the role of service provider into two: the infrastructure providers, who

manage cloud platforms and lease resources according to a usage-based pricing model

and service providers, who rent resources from one or many infrastructure providers to

serve the end users.

The emergence of cloud computing has made a tremendous impact on the

Information Technology (IT) industry over the past few years, where large companies

such as Google and Microsoft try to provide more powerful, reliable and cost-efficient

cloud platforms.

NIST1 definition of cloud computing Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction.

Cloud computing is therefore a type of computing that relies on sharing a pool of

physical and/or virtual resources, rather than deploying local or personal hardware and

software. It is somewhat synonymous with the term ‘utility computing’ as users are able

to tap into a supply of computing resource rather than manage the equipment needed to

generate it themselves; much in the same way as a consumer tapping into the national

electricity supply, instead of running their own generator.

One of the key characteristics of cloud computing is the flexibility that it offers and

one of the ways that flexibility is offered is through scalability. This refers to the ability of

a system to adapt and scale to changes in workload. Cloud technology allows for the

automatic provision and privation of resource as and when it is necessary, thus ensuring

that the level of resource available is as closely matched to current demand as possible.

The basic cloud model is composed of five essential characteristics, four

deployment models and three service models.

1 National Institute of Standards Technology

W

16

ESSENTIAL CHARACTERISTICS:

 On-demand self-service. A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service provider.

 Broad network access. Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick

client platforms (e.g., mobile phones, tablets, laptops, and workstations).

 Resource pooling. The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand. There is a sense of location independence in that the customer generally

has no control or knowledge over the exact location of the provided resources but

may be able to specify location at a higher level of abstraction (e.g., country, state,

or datacenter). Examples of resources include storage, processing, memory, and

network bandwidth.

 Rapid elasticity. Capabilities can be elastically provisioned and released, in some

cases automatically, to scale rapidly outward and inward commensurate with

demand. To the consumer, the capabilities available for provisioning often appear

to be unlimited and can be appropriated in any quantity at any time.

 Measured service. Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate

to the type of service (e.g., storage, processing, bandwidth, and active user

accounts). Resource usage can be monitored, controlled, and reported, providing

transparency for both the provider and consumer of the utilized service.

DEPLOYMENT MODELS:

 Private cloud. It uses pooled services and infrastructure stored and maintained

on a private network – whether physical or virtual – accessible for only one client.

The obvious benefits to this are greater levels of security and control. Cost

benefits must be sacrificed to some extent though, as the enterprise in question

will have to purchase/rent and maintain all the necessary software and hardware

 Community cloud. The cloud infrastructure is provisioned for exclusive use by a

specific community of consumers from organizations that have shared concerns

(e.g., mission, security requirements, policy). It may be owned, managed, and

operated by one or more of the organizations in the community, a third party, or

some combination of them, and it may exist on or off premises.

17

 Public cloud. It is a cloud in which services and infrastructure are hosted off-site

by a cloud provider, shared across their client base and accessed by these clients

via public networks such as the internet. Public clouds offer great economies of

scale and redundancy but are more vulnerable than private cloud setups due their

high levels of accessibility.

 Hybrid cloud. This as the name suggests, combines both public and private cloud

elements. A hybrid cloud allows a company to maximize their efficiencies, by

utilizing the public cloud for non-sensitive operations while using a private setup

for sensitive or mission critical operations, companies can ensure that their

computing setup is ideal without paying any more than is necessary.

Figure 4 The pyramid of cloud computing architecture

Moving away from deployment models, there are three models of cloud

computing which describe the service on offer.

SERVICE MODELS:

 Software as a Service (SaaS). SaaS is arguably the most common of the cloud

computing variations; it’s the term used to describe a software delivery model in

which applications are hosted (usually by a provider) and made available to

customers over a network connection. Many people make use of SaaS without

realizing it as many web applications are delivered in this way; Gmail, Flickr,

Twitter and Facebook are all popular examples of SaaS. Enterprise users also

frequently make use of SaaS with many popular accounting, invoicing, sales,

communications and CRM systems being delivered this way

SaaS Google Apps, Facebook,
YouTube, Saleforce.com

PaaS Google AppEngine, Microsoft
Azure, Amazon SimpleDB

IaaS Google Cloud Storage,
Amazon EC2, VMWare

Software

Platform

Infrastracture

18

 Platform as a Service (PaaS). PaaS is an extension of IaaS and describes a

category of cloud computing that provides developers with environments in

which to build applications, over the internet. In addition to the fundamental

computing resource supplied by the hardware in an IaaS offering, PaaS models

also include the software and configuration (often known as the solution stack)

required to create the platform on which clients can create their applications.

PaaS packages can be tailored to meet individual user needs; they can cherry pick

the features of the service that are relevant to them while disregarding those that

are not. PaaS provides a number of benefits to enterprises, including simplifying

the development process for geographically split development teams.

 Infrastructure as a Service (IaaS). IaaS refers to the delivery of virtualized

computing resource as a service across a network connection. It specifically deals

with hardware – or computing infrastructure - delivered as a service. Offerings

include virtualized server space, storage space, network connections and IP

addresses. The resource is pulled from a pool of servers distributed across data

centers under the provider’s control, the user is then granted access to this

resource in order to build their own IT platforms. IaaS can provide enterprises

with great business benefits.

2.2.1 Map/Reduce and Hadoop

Distributed processing on a cloud—a large collection of commodity computers,

each with its own disk, connected through a network—has the same problem with the

study of real world networks. It is that the information is extremely large, extending from

hundreds of edges to billions of edges. Obviously, it is difficult to apply sequential

algorithms to analyze these graphs. This size has led to the development of parallelization

architectures. One recent and effective framework that permits the development of

parallelized algorithms is Hadoop. Hadoop provides us with a distributed filesystem and

the implementation of the map/reduce programming model, as well as all the necessary

libraries that are needed in order for a compute cluster to function. Its main advantage is

that it separates the parallelization code from the business logic, thus making easy for

anyone to create and execute a parallel algorithm. Additionally, it poses no restrictions

regarding the number of computer nodes that the cluster should have, something that has

been an issue in older architectures.

In addition, due to Hadoop’s excellent scalability, ease of use, and cost advantage,

Hadoop has been used for important graph mining algorithms. Other variants which

provide advanced MapReduce, like systems include SCOPE, Sphere, and Sawzall.

19

Particularly, Hadoop is a project of the Apache Software Foundation that

parallelizes data processing across many nodes in a compute cluster, speeding up large

computations and hiding I/O latency through increased concurrency. The advantages of

this model lie in its ability to deal with the issues of distributing the data, handling failures,

load balancing among the cluster, thus separating the business logic from the

parallelization code; hence, developers are free to focus on application logic. The Hadoop

project includes various subprojects that provide complementary services. These are:

 MapReduce: a distributed data processing model and execution environment that

runs on compute clusters.

 HDFS: a distributed filesystem that provides high throughput access to

application data.

 Chukwa: a distributed data collection and analysis system.

 Hive: a data warehouse infrastructure that provides a query language based on

SQL.

 Pig: a high-level data flow language and execution framework for parallel

computation. It is built on top of Common.

 Zookeeper: a high-performance coordination service for distributed applications.

Hadoop implements the MapReduce programming model. The user of this library

needs to implement two functions – map and reduce – to perform a computation. Each

input record is converted into a key/value pair. A map operation is applied to each input

record and produces a set of intermediate key/value pairs. The map outputs are grouped

and sorted by key. A reduce operation is applied to all values that share the same key, in

order to combine the derived data appropriately.

HDFS is a file system designed to store large files across multiple machines.

Storage reliability is achieved with the data replication on several nodes. Three processes

control the HDFS services. Namenode manages the filesystem namespace and regulates

access to files by clients. It is a single point of failure for an HDFS installation, as if it goes

down the system is offline. It is responsible for operations like opening, closing and

renaming of files and directories available via an RPC interface. Also, it determines the

mapping of blocks to Datanodes. Secondary Namenode is a process that regularly connects

to the Namenode and downloads a snapshot of its directory information, which is then

saved to a directory. The Secondary Namenode is used together with the edit log of the

Namenode to create an up-to-date directory structure. Datanode is a process that

provides block storage and retrieval services like serving read/write requests from

20

clients and performing block creation, deletion and replication upon instruction from the

Namenode.

Figure 5 HDFS architecture

The Hadoop framework provides two processes that handle the execution of

MapReduce jobs. TaskTracker manages the execution of individual map and reduce tasks

on a compute node in the cluster and JobTracker accepts job submissions, provides job

monitoring and control and manages the distribution of tasks to the TaskTracker nodes.

When a MapReduce job is submitted by the user, it is decomposed into a number of tasks.

The user is responsible for submitting the job configuration in order to provide the

framework with a series of necessary parameters regarding the job, like the input and

output destination in HDFS, the input and output format, the classes that contain the map

and reduce functions and the JAR file(s) that contain the map and reduce functions and

any support classes. Then, the input is split according to the HDFS block size (typically 64

MB) and distributed across the map tasks. If the input is N files, then at least there will be

N map tasks. The map tasks are executed and produce the intermediate key/value pairs

according to the map function that is specified by the user. Each map function receives

one record (line) from the split and process it accordingly. Then, follows the shuffle phase

where the map outputs are partitioned and sorted. The shuffle output for each partition

is sorted. Afterwards, the reduce tasks start with input the data that correspond to their

partition. Each reduce function is called once for each input unique key with all the values

that share that key. The reduce tasks emit key/value pairs, which are written to output

directory. The number of output files in the directory will be as many as the number of

reduce tasks that were executed.

MapReduce has two benefits: (a) The data distribution, replication, fault-

tolerance, and load balancing is handled automatically; and furthermore (b) it uses the

Data NodeData Node Data NodeData Node

Job TrackerJob Tracker

Task TrackerTask TrackerTask TrackerTask Tracker

Name Node
Secondary Name

Node

Data Node

 Task Tracker

Client

21

familiar concept of functional programming. The programmer needs to define only two

functions, a map and a reduce. The general framework is as shows in Figure 6: (a) the map

stage reads the input file and emits (key, value) pairs; (b) the shuffling stage sorts the

output and distributes them to reducers; (c) the reduce stage processes the values with

the same key and emits another (key, value) pairs which become the final result.

Figure 6 A MapReduce job

The map and the reduce functions have 4 parameters. The key, the value, the output

collector and the reporter. The output collector is the object used to emit the key/value

pairs. The reporter object provides the mechanism for informing the framework of the

current status of the job. If a job takes too long to complete, it is useful to inform the

framework that it is still working through the reporter, so that the framework will not kill

it.

As it is appreciated, a large variety of input formats are supplied by the framework.

The major distinctions are between textual and binary input formats. The available

formats are:

FORMATS OF HADOOP:

 KeyValueTextInputFormat: key/value pairs, one per line.

 TextInputFormat: the key is the byte offset of the line and the value is the line.

 NLineInputFormat: similar to KeyValueTextInputFormat, but the splits are based

on N lines of input rather that Y bytes of input.

 MultiFileInputFormat: an abstract class that lets user implement an input format

that aggregates multiple files into one split.

22

 SequenceFileInputFormat: the input file is a Hadoop sequence file, containing

serialized key/value pairs.

Hadoop provides its own set of data types that are optimized for network

serialization and correspond to the known Java built-in data types. Of course, the user can

define custom data types if necessary. The data types that are used as keys need to

implement the WritableComparable and the data types that are used as values need to

implement the Writable interface, which is a subset of WritableComparable. The Writable

interface implements the methods that are used for serialization and deserialization of

the objects and the WritableComparable implements additionally the methods that are

used for the comparison of the keys.

The most common Hadoop data types are:

DATA TYPES OF HADOOP:

 Text: equivalent to String.

 IntWritable: equivalent to Integer.

 VIntWritable: used for integer values stored in variable-length format. Such

values take between 1-5 bytes. Smaller values take fewer bytes.

 LongWritable: equivalent to Long.

 VLongWritable: used for long values stored in variable-length format. Such values

take between 1-5 bytes. Smaller values take fewer bytes.

 FloatWritable: equivalent to Float.

 DoubleWritable: equivalent to Double.

 ByteWritable: equivalent to Byte.

 BytesWritable: used for byte arrays.

 BooleanWritable: equivalent to Boolean.

 NullWritable: equivalent to Null.

2.3 Graph Theory

s it was defined above network science studies representations of physical,

biological and social phenomena and seeks to discover common principles that

govern network behavior. A network is a set of entities, which are pairwise

connected with links. In computer science, networks are represented as graphs, where

the entities correspond to vertices which are connected with edges. Examples include the

World Wide Web, where the vertices are the web pages and links from one page to

another form edges; social networks, where the vertices are people and edges express

some sort of acquaintance like friendship or relativity; co-author ship networks, where

A

23

the vertices are scientists in a particular discipline and edges connect those who have co-

authored a paper; collaboration networks, where the vertices are employees and edges

are formed between those who have worked in common projects; biological networks

that express relations among proteins or neurons.

In more detail, graphs are mathematical structures used to model pairwise

relations between objects from a certain collection. A graph is a collection of objects,

where some pairs of the objects are connected by links. The objects are called vertices or

nodes and the links are called edges or arcs. The edges may be directed ─ asymmetric or

undirected ─ symmetric. The corresponding graphs are called directed or digraphs and

undirected graphs. Of course, we can represent an undirected graph as directed if we have

two edges between every pair of nodes, one for each direction. The edges may carry

weights, that could represent costs, length, capacities or other quantities depending on

the problem. These edges define a graph as weighted. Graphs can be either cyclic, meaning

they contain closed loops of edges or acyclic meaning they do not. Also, there is a subgraph

of a graph G, which is a graph whose vertex set is a subset of G, and whose adjacency

relation is a subset of G restricted to the new vertex subset. In the other direction, a super

graph of a graph G is a graph of which G is a subgraph. Bipartite graphs are graphs whose

vertices are divided into two disjoint sets U and V, such that every edge connects a vertex

from U to one in V. Furthermore, a graph may have hyper edges. Hyper edges join more

than two vertices together. Graphs containing such edges are called hypergraphs.

The goal of network analysis is to model the interactions among the entities and

discover interesting patterns, by focusing on the properties of real world networks.

Patterns that have been discovered include the small world effect, the shrinking diameter

and many others. One important property of networks is that they evolve over time with

edges appearing or disappearing.

2.3.1 Graph Representation

There are different ways to represent a network mathematically, the two most commonly

used data structures for representing a graph G = (V, E) are the adjacency list and the

adjacency matrix.

The adjacency list is implemented as an array of |V| lists, with one list of

destination nodes for each source node. The vertices in each adjacency list are typically

stored in an arbitrary order. In directed graphs the sum of the lengths of all adjacency lists

is |E|, while in undirected graphs it is 2|E|. This happens because in undirected graphs,

each edge (u, v), is stored in the list of node u, as well as in the list of node v.

24

The adjacency matrix is a two-dimensional Boolean matrix, of length |V| × |V|. It

is assumed that the identities of vertices vary from 0. . . |V|. A matrix entry (i, j) indicates

if there is an edge from vertex i to j. Formally, the adjacency matrix A of a simple graph is

the matrix with elements Aij, such that

𝐴𝑖𝑗 = {
 1, 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Adjacency matrices of undirected graphs are symmetric, as for every edge (i, j), there also

exists an edge (j, i). The transposed adjacency matrix of A = (aij) is the matrix A^T = (a^Tij)

= (aji).

Adjacency lists are usually preferable for sparse matrices, where |E| << |V|2 [8],

because they occupy less space, as they do not use any space for edges that are not

present. Respectively, adjacency matrices are preferred when the graph is dense and |E|

⋍ |V |2. Because each entry of matrix requires one bit, they can be represented in a

compact way occupying |V|2/8 bytes. The adjacency matrix requires Θ(V2) memory,

independent of the number of the edges in the graph, while the adjacency list requires

Θ(V + E) memory. Although the adjacency list representation is asymptotically at least as

efficient as the adjacency matrix representation, the simplicity of an adjacency matrix may

make it preferable when graphs are reasonably small.

Figure 7 Adjacent list and Adjacent matrix of a graph

2.3.2 Definitions

Some important definitions and metrics that are used in network analysis are:

 path: an alternating sequence of vertices and edges, beginning and ending with a

vertex, where each vertex is incident to both the edge that precedes it and the edge

1 2

4 5

3

6

1

2

3

4

5

6

 2

 5 /

 6

 2 /

 4 /

 6 /

 4 /

 5 /

0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

4

5

6

1 2 3 4 5 6

3

2

1

25

that follows it in the sequence. The length of a path is the number of edges

traversed.

 degree: number of edges incident to the vertex. The degree is not necessarily equal

to the number of vertices adjacent to a vertex, since there may be more than one

edge between any two vertices. Such a graph is called a multigraph. In directed

graphs, there is in-degree and out-degree for every vertex, which are the numbers

of incoming and outgoing edges respectively.

 geodesic distance: the distance between two vertices in a graph is the number of

edges in a shortest path (also called a graph geodesic) connecting them.

 diameter: the greatest distance between any pair of vertices; it is equal to the

length of the longest shortest path between any two vertices.

 clustering coefficient: the probability that a connected triple of nodes is actually a

triangle. It describes the tendency to form clusters - fully connected subgraphs in

a graph and is a measure of the likelihood that two associates of a node are

associates themselves.

2.3.3 Metrics

If the structure of a network is known, we can calculate from it a variety of useful

quantities or measures that capture particular features of the network topology. In this

thesis are analyzed some of these measures.

Centrality is widely-used for measuring the importance of nodes within a graph.

For instance, who are the most well-connected people in a social network. In general, the

concept of centrality has helped in the understanding of various kinds of networks by

researchers from computer science, network science etc. In addition, centrality has

typically been studied for small graphs. However, in the past few years, centralities have

played important role in the very large graphs, too. Many of these networks reach billions

of nodes and edges requiring terabytes of storage.

Moreover, there are some challenges for measuring centrality in very large

graphs. First, some definitions of centrality have inherently high computational

complexity. For example, shortest-path or random walk betweenness have complexity at

least O(n3) where n is the number of nodes in a graph. Furthermore, some of the faster

estimation algorithms require operations, which are not classified to parallelization, such

as all sources breadth-first search. Second, even if a centrality measure is designed in a

way that avoids expensive or non-parallelizable operations, developing algorithms that

26

are both efficient, scalable and accurate is not straightforward. Clever approximations

may need to be employed, in order to achieve these goals.

Finally, there are two types of centralities: Geodesic-based ─ Closeness, Shortest

Path Betweenness and Degree-based ─ Degree, Power Community Index, PageRank.

Figure 8 Two basic categories of centralities

2.4 Related Work

ome of the related works on processing large-scale, complex networks on

Hadoop are computing social measures in large graphs. In more detail,

processing large graphs for cliques with limited memory, k-core maintenance in

large dynamic graphs, k-core decomposition, truss decomposition. Moreover, the

centrality of a node in a network is interpreted as the importance of the node. Many

centrality measures have been proposed based on how the importance is defined. For

instance, influence-based centralities. The influence-based community partition for social

networks is another issue of the network analysis, too. All these combined with the

parallel graph mining using Hadoop and the distributed programming framework for

processing web-scale data.

 Moreover, another branch that depends on large scale data analysis is

bioinformatics. In bioinformatics, dealing with neural networks, with purpose of

obtaining genetic information for the human organism.

Centrality metrics

Geodesic Degree

CCSPBC PR PCI DC

S

27

Chapter 3. Implementations

3.1 Degree Centrality

egree centrality has a very simple and intuitive definition: it is the number of

neighbors of a node. Despite, or perhaps because of its simplicity, it is very

popular and used extensively. Not surprisingly, it is also the easiest to compute.

The major limitation of degree based centrality is that it only captures the local

information of a node. In many applications, we need more informative measures that can

further distinguish among nodes that have almost equally low degrees, or almost equally

high degrees.

In more particular, for undirected graphs degree centrality of a node is the

number of its links, but for directed graphs degree centrality is separated to the number

of in links and the number of out links.

The general implementation process of this algorithm with the help of MapReduce

jobs is as follows:

 First, as input is given a txt file with the following format:

 the Mapper takes as input the file and separates the indexes of each node with the

nodes to which it is affiliated, by the separator ‘:’. The nodes to which is connected

each node are its neighbors. Finally, mapper sets the output, as a key each id and

as a value its neighbors.

 Subsequently, the Reducer receives as input the output of Mapper and the

essential function of reducer is to separate the neighbors by the separator ‘,’ and

set up for each different id, a list of its neighbors. Finally, as output gives key for

the id of each node and value for the size of the list that it is the number of links of

the current node, hence the DC of each node, for an undirected graph.

D

*VerticeID:neighbor1,...,neighborN

1:2,3

2:1,3

28

PSEUDOCODE:

Class Mapper

public void map(LongWritable key, Text value, Context context){

 String [] inputLine = value.split(“:”);

 nodeID.set(inputLine[0]);

 neighbours.set(inputLine[1]);

 context.write(nodeID, neighbours);

}

Class Reducer

public void reduce(Text key, Iterable<Text> values, Context context){

 for each v in values {

 Sring [] tokens = v.split(“,”);

 List<> adjacencies.add(tokens);

 }

 context.write(key, adjacencies.size());

}

*VerticeID:neighbor1,...,neighborN

1:2,3

2:1,3

Mapper

Reducer

End

For each line separates
the indexes with the

neighbors, by

For each value
separates the

neighbors, by

Key: pointer
Value: each line

Key : id
Value : neighbors Shuffle

Key : id
Value : <neighbor1, neighbor2,...>

Key : id
Value : DC

Start

Flowchart 1 Degree Centrality process

29

3.2 Power Community Index

his is a new centrality metric of the nodes that specifically applies to sensor

networks where there are more efficient algorithms, and not affected by

individual nodes and considerably more informative than computing the DC

degree centrality in a graph.

The μ-Power Community Index of a node V is equal to k, where there are any more

nodes μ * k of the neighbors of V, with degree (DC) greater than or equal to k. In more

particular, the other neighbors of the node should have a degree of less than or equal to

k. For convenience, we consider μ = 1.

The general implementation process of this algorithm with the help of MapReduce

jobs is as follows:

 First, as input is given a txt file with the following format:

Precondition of this algorithm is find first the DC of each node, therefore we follow

the same procedure as described earlier regarding the metric Degree Centrality.

Then, having successfully completed the first job, starts the second entirely on the

pciMapper () and pciReducer ().

 the pciMapper takes as input the output file of dcReducer. Having already

calculated the DC for each node and created a HashMap with key the id and value

the DC and having for each node a list of its neighbors too, pciMapper outputs for

each id a list consisting of DC, of its neighbors. As the key is the id and the value

the DC list of its neighbors.

 the pciReducer takes as input the output file of pciMapper. Having the DC list of

neighboring nodes for each node of the graph, we check if the number of

neighboring nodes with DC > k, is less than or equal to k, then we set the PCI of the

current node, the k. Giving as a final output for the key the id of the node and for

value the PCI.

PSEUDOCODE:

Class DCMapper

public void map(LongWritable key, Text value, Context context){

 String [] inputLine = value.split(“:”);

 nodeID.set(inputLine[0]);

T

*VerticeID:neighbor1,...,neighborN

1:2,3

2:1,3

30

 neighbours.set(inputLine[1]);

 context.write(nodeID, neighbours);

}

Class DCReducer

public void reduce(Text key, Iterable<Text> values, Context context){

 for each v in values.split(“,”) {

 List<> adjacencies.add(v);

 }

 Node nodeInfo = new Node(key, adjacencies.size);

 context.write(nodeInfo, adjacencies);

}

Class PCIMapper

public void map(Node node, ArrayListWritable<> value, Context context){

MapWritable dcList;

//toReturn is the list of neighbor’s DC

StringBuilder toReturn;

//value is a list with neighbors

for (int i = 0; i<value.size(); i++){

 Writable list = dcList.get(value.get(i))

 Append(toReturn,list.toString());

 if (i + 1 < value.size)

 Append(toReturn, “,”);

}

context.write(nodeID, toReturn);

}

Class PCIReducer

public void reduce(Text key, Iterable<Text> value, Context context){
 List<> neighbourDcList;
 int PCI = 0;
 for (k=1 to neighbourDcList.size()) {
 for each m from neighbourDcList{
 if (m > k)
 count++;
 }
 if (count <= k) {
 PCI = k;
 break;
 }
 }

 context.write(key, PCI);

}

31

*VerticeID:neighbor1,..neighborN

1:2,3

2:1,3

Mapper1

Reducer1

End

For each line,
separates the ids

and their neighbors,
by

For each line,
separates the

neighbors by

Key : pointer
Value : each line

Key : id
Value : neighbors Shuffle

Key : id
Value : <neighbors1, neighbors2,...>

Key : info
Value : adjacencyList

Start

Mapper2

For each node
generates a list of

the neighbors s DCs

Key : id
Value : neighborDClist Shuffle

Key : id
Value : <neighborDClist1, neighborDClist2,...>

Reducer2

Checks if the number of neighboring
nodes with DC > k, is less than or

equal to k, computing the PCI

Key : id
Value : PCI

Flowchart 2 Power Community Index process

3.3 Closeness Centrality

loseness centrality is the most popular diameter-based centrality measure. While

degree centrality considers only one-step neighbors, closeness centrality

considers all nodes in the graph, and gives high score to nodes which have short

average distances to all the other nodes.

Closeness of a node is typically defined as the inverse of the average over the

shortest distances to all other nodes; to simplify formulas we omit the inverse. Exact

computation requires an all-pairs shortest paths algorithm. Unfortunately, this operation

requires O(n3) time. For the billion-scale graphs we consider in this work, computing

closeness centrality is prohibitively expensive.

To implement the Closeness centrality, BFS algorithm was used for the pervasion

of the graph and Dijkstra algorithm for finding the shortest path between any two nodes

in the graph. The fact that we have to find the minimum distances from each node to

source, forcing us to use iteration and thus counters of mapreduce library. Each iteration

also implies a different node source; therefore, the same process is performed as many

times as the n, number of nodes of the graph.

C

32

The general implementation process of this algorithm with the help of MapReduce

jobs is as follows:

 First, as input is given a txt file with the following format:

 This file is taken as input by InitMapper which aims to give as output a txt file

with the following format:

So as to start the BFS algorithm process. Specifically, the BFS algorithm assumes

that the source node is initialized as VISITED, while all adjacent nodes can now be

processed. At the end of processing, they become VISITED, while the source node

is now become PROCESSED. When there is no one else VISITED node, then

consider that the pervasion of the graph is over and we have reached to the final

node of each current iteration.

 the InitMapperTwo takes as input the txt file produced by the InitMapper and

aims to set the start BFS algorithm, i.e., to set source node as VISITED

τον source κόμβο ως VISITED and determine the distance 0, because obviously

the distance from starting node is constant and equal to 0. The key is the id of each

node and the value is all of the remaining information, that is properly processed.

 the SearchMapper takes as input the output of InitMappertwo and aims to verify

if it is accessible by the current node, i.e., if it is VISITED, then access all of its

neighbors and set them as VISITED, add the distance, in more particular, the

weight of each node if we refer to weighted graphs or 1 if we refer to unweighted

graphs and in the end, as long as we finish the access of neighbors, we make

current node PROCESSED. Giving as an expense as key the id of each node and as

value the rest information.

 SearchReducer takes as input the output of SearchMapper and aims to keep

always, a minimum distance value; giving as output the same format with

SearchMapper.

*VerticeID:neighbor1,...,neighborN

1:2,3

2:1,3

*VerticeID neigbor1,...,neighborN|distance|status|cc

1 5|2147483647|UNVISITED|0

2 5|2147483647|UNVISITED|0

3 4,2|2147483647|UNVISITED|0

3 5|2147483647|UNVISITED|0

2 5|2147483647|UNVISITED|0

1 4,2|0|VISITED|0

33

 the FinalMapper takes as input the output of SearchReducer and aims to keep

through all the information, only the id of each node and the minimum distance.

As a key set the id of each node and as a value the minimum distance from the

current source node.

 the FinalReducer takes as input the output of FinalMapper and intends to calculate

the sum of all minimum distances of all other nodes for each node and finally, the

inverse of this number is the CC. Giving key as the id of each node and the value as

CC.

PSEUDOCODE:

Class SearchMapper

public void map(LongWritable key, Text value, Context context, Node inNode){
if (inNode.getStatus() == Node.State.VISITED) {

// for all the adjacent nodes of the VISITED node
for (neighbor in inNode.getEdges()) {

Node adjacentNode = new Node();

adjacentNode.setId(neighbor);
// set the id of the node
// for weighted graph or for unweighted the weight is 1
adjacentNode.setDistance(inNode.getDistance() +

inNode.getWeight());
// set the status of the current node to be VISITED

adjacentNode.setStatus(Node.State.VISITED);

context.write(adjacentNode.getId()),

adjacentNode.getNodeInfo());
}
// this node is done, set status to be PROCESSED

inNode.setStatus(Node.State.PROCESSED);
}
context.write(inNode.getId(), inNode.getNodeInfo());

}

Class SearchReducer

public Node reduce(Text key, Iterable<Text> values, Context context, Node

outNode){
int sum = 0;
//set the node id as the key
outNode.setId(key);
//for all the values corresponding to a particular node id
for each v in values {
 Node inNode = new Node(key + "\t" + v);

if (inNode.getEdges().size() > 0)
 outNode.setEdges(inNode.getEdges());
// Save the minimum distance
if (inNode.getDistance() < outNode.getDistance())

 outNode.setDistance(inNode.getDistance());
// Save the VISITED between UNVISITED and VISITED
// Save the PROCESSED between VISITED and PROCESSED
if (inNode.getStatus().ordinal() >

outNode.getStatus().ordinal())

 outNode.setStatus(inNode.getStatus());
}
context.write(key, outNode.getNodeInfo());
return outNode;

}

34

Class FinalMapper

public void map(LongWritable key, Text value, Context context){

String[] inputLine = value.split("\\t");
String[] tokens = inputLine[1].split("\\|");
// key is id and value is minimum distance
context.write(inputLine[0], tokens[1]);

}

Class FinalReducer

public void reduce(Text key, Iterable<Text> values, Context context){
for each v in values{
 sum = sum + Integer.parseInt(v.toString());

//if it's the source node, get the id
if (Integer.parseInt(v.toString()) == 0)
 id.set(key);
//if it's the last node of the graph, set the closeness
if (N == Integer.parseInt(key.toString())) {

 closeness.set(String.valueOf(1/sum));
 list.add(closeness);
}

}
//if we are at the end of the list, set the final output key & value
if (N == list.size()) {
 for (int i = 0; i<list.size(); i++) {
 context.write((i+1)), list.get(i));
 }
}

}

3 5|2147483647|UNVISITED|0

2 5|2147483647|UNVISITED|0

1 4,2|0|VISITED|0

Mapper1

Reducer1

End

Makes VISITED the neighbors and
the current node PROCESSED.
Changes distances respectively

Takes always the
minimum distance

Key : pointer
Value : each line

Key : id
Value : info Shuffle

Key : id
Value : <info1, info2,...>

Key : id
Value : info

Start

Mapper2

Takes only the id of
the node and its

minimum distance

Key : id
Value : minDistance Shuffle

Key : id
Value : <minDistance1, minDistance2,...>

Reducer2

Sums the minimum distances for
each same id and finally calculates
the inverse of the sum

Key : id
Value : CC

Flowchart 3 Closeness Centrality process

35

3.4 Shortest Path Betweenness Centrality

etweenness centrality is the most common and representative flow-based

measure. In general, the betweenness centrality of a node V is the number of

times a walker visits node V, averaged over all possible starting and ending

nodes. Different types of walks lead to different definitions for betweenness centrality. In

Freeman betweenness, the walks always follow the shortest path from starting to ending

node. In Newman’s betweenness, the walks are absorbing random walks. Both of these

popular definitions require prohibitively expensive computations: the best algorithm for

shortest-path betweenness has O (n2 * log n) complexity, while the best for Newman’s

betweenness has O((m * n)2) complexity.

To implement this algorithm BFS algorithm was used for the permeation of the

graph and Dijkstra algorithm for finding the shortest path between any two nodes in the

graph. The fact that we have to find the minimum distance of 2 any node couples to source

all the graph nodes each time while store Mr. different equally spaced possible minimum

paths, forcing us to use repetition and thus counters the implementation of algorithm.

Each iteration also implies a different node source; therefore, the same process is

performed as many times as there are the n nodes of the graph.

The general implementation process of this algorithm with the help of MapReduce

jobs is as follows:

 First, as input is given a txt file with the following format:

 This file is taken as input by InitMapper which aims to give as output a txt file

with the following format:

So as to start the BFS algorithm process. Specifically, the BFS algorithm assumes that

the source node is initialized as VISITED, while all adjacent nodes can now be

processed. At the end of processing, they become VISITED, while the source node is

now become PROCESSED. When there is no one else VISITED node, then consider that

B

*VerticeID:neighbor1,...,neighborN

1:2,3

2:1,3

*VerticeID neigbor1,...,neighborN|distance|status|cc

1 5|2147483647|UNVISITED|0

2 5|2147483647|UNVISITED|0

3 4,2|2147483647|UNVISITED|0

36

the pervasion of the graph is over and we have reached to the final node of each

current iteration.

 the InitMapperTwo takes as input the txt file produced by the InitMapper and

aims to set the start BFS algorithm, i.e., to set source node as VISITED

τον source κόμβο ως VISITED and determine the distance 0, because obviously

the distance from starting node is constant and equal to 0. The key is the id of

each node and the value is all of the remaining information, that is properly

processed.

 the SearchMapper takes as input the output of InitMappertwo and aims to verify

if it is accessible by the current node, i.e. if VISITED, to access all the neighbors,

put and them VISITED, add the distance the weight of each node if refer to

weighted graphs or 1 if we refer to unweighted graphs and end as long as you

finish the access of neighbors to appoint current node as PROCESSED. Here are

perceived as necessary to the store somehow all possible paths soon because

SPBC varies and depends directly. More specifically, in cases with equivalent

minimum paths added to each if located intermediate node we ask each time, 1

for the number of equivalent paths rather than one as in the other cases. Giving as

an expense for the key id of each node and for value the rest information.

 the SearchReducer takes as input the output of SearchMapper and aims to always

keep a minimum distance value giving as output the same format with

SearchMapper.

 the FinalMapper takes as input the output of SearchReducer and aims if we have

all the possible paths for each pair to add together the times we meet in between

the current node in these lists are all possible short paths between the source and

destination, allowing as the key id of each node and value that sum.

 the FinalReducer receives as input the output of FinalMapper and intends to

summation of all the individual impressions of each node for all replicates i.e. each

node that becomes source. This sum is in fact the SPBC node. Giving key as the id

of each node and the value SPBC.

PSEUDOCODE:

Class SearchMapper

public void map(LongWritable key, Text value, Context context, Node inNode){
if (inNode.getStatus() == Node.State.VISITED) {
 //for all the adjacent nodes of the VISIED node
 for each neighbor in inNode.getEdges(){

3 5|2147483647|UNVISITED|0

2 5|2147483647|UNVISITED|0

1 4,2|0|VISITED|0

37

 adjacentNode.set(all the info);
 //id, VISITED, distance
 ArrayList<> list;
 //list with the nodes of the path

 adjacentNode.setShortest_Path(list);
//if the parent is not exist in the list from adjacents and add the parent

 check(adjacentNode);

 context.write(adjacentNode.getId(),

 adjacentNode.getNodeInfo());
inNode.setShortest_Path(list);

// if the parent is not exist in the list from current node and add the

parent
 check(inNode);
 }
 // this node is done, set it PROCESSED

 inNode.setStatus(Node.State.PROCESSED);
}
context.write(inNode.getId(), inNode.getNodeInfo());

}

Class SearchReducer

public Node reduce(Text key, Iterable<Text> values, Context context, Node

outNode){
int sum = 0;
//set the node id as the key
outNode.setId(key);
//for all the values corresponding to a particular node id
for each v in values {
 Node inNode = new Node(key + "\t" + v);

if (inNode.getEdges().size() > 0)
 outNode.setEdges(inNode.getEdges());
// Save the minimum distance
if (inNode.getDistance() <= outNode.getDistance()){
 if (inNode.getDistance == outNode.getDistance)

 outNode.setShortest_Path(inNodeSP,

outNodeSP);
 outNode.setDistance(inNode.getDistance());
}
// Save the VISITED between UNVISITED and VISITED
// Save the PROCESSED between VISITED and PROCESSED
if (inNode.getStatus().ordinal() >

outNode.getStatus().ordinal())

 outNode.setStatus(inNode.getStatus());
//same source but destination?
for each inNodeSP
 checkDestination();
checkDuplicates();

}
context.write(key, outNode.getNodeInfo());
return outNode;

}

Class FinalMapper

public void map(LongWritable key, Text value, Context context){
for (int k = 1; k<=N;k++) {

String element = String.valueOf(k);
//the rest info from the inputLine
//distance,Status etc
String[] tokens;
//if there is one shortest path
if (tokens.length == 4) {
 ArrayList<String> ar; //list with the nodes of the path
 //check if the element is in the list
 //but not at the start and in the end of the list
 //and if it's true sum++

38

 checkIfContainsK(ar,element);
} //if there are more than one shortest paths
else if (tokens.length > 4) {
 double pathNum;
 for each path from paths {
 ArrayList<String> ar2 = new ArrayList<>();
 //check if the element is in the list
 //but not at the start and in the end of the list
 //and if it's true sum=sum + 1/pathNum
 checkIfContainsK(ar2,element)
 }
}
context.write(k, sum);
sum = 0;

}
}

Class FinalReducer

public void reduce(Text key, Iterable<Text> values, Context context){
double sum = 0;
Text spbc = new Text();
// for directed graphs
Text spbc2 = new Text();
// for undireted graphs
for each v in values {

//id is initialized to 1
//Sum all the spbc from all the iterations
//first for id = 1, then for id = 2, etc.
if (key.equals(id))
 sum = sum + (double) v;

}
context.write(key, sum + “ ” + sum/2); id++;
// for the next iteration

}

3 5|2147483647|UNVISITED|0

2 5|2147483647|UNVISITED|0

1 4,2|0|VISITED|0

Mapper1

Reducer1

End

Makes VISITED the neighbors and the
current node PROCESSED. Changes
distances respectively and save the

shortest paths

Save always the
shortest paths

Key : pointer
Value : each line

Key : id
Value : info Shuffle

Key : id
Value : <info1, info2,...>

Key : id
Value : info

Start

Mapper2

For each id checks if it is between
each short path and compute the

sum respectively

Key : id
Value : sum Shuffle

Key : id
Value : <sum1, sum2,...>

Reducer2

Sums the individual totals for each
same id, ie. calculate spbc

Key : id
Value : SPBC

Flowchart 4 Shortest Path Betweenness Centrality process

39

3.5 Page Rank

his algorithm is perhaps the most popular centrality metric of a node in a graph.

More specifically, the PageRank of a node is the sum of the quotient of incoming

PageRank nodes, to the plurality of outgoing nodes. The formula is:

Such as, d = 0.85

 j: number of outgoing links

The general implementation process of this algorithm with the help of MapReduce

jobs is as follows:

 First, as input is given a txt file with the following format :

 Subsequently, IniMapper simply outputs a txt file in format:

 We insert the initial value of PageRank of each node as 0.166667 arbitrarily.

 the PageRankMapper takes as input the output of InitMapper and aims to separate

the current node to the other adjacent to each line of the input file for each

outgoing node of current starting with the initial value of PageRank divide by the

number of neighboring nodes having each node. Giving as an expense for the key

id of each adjacent node for value and a current value that will be the end of the

PageRank value and end of each file key as the parent node and value nodes

children that their outgoing links.

 the PageRankReducer receives as input the output of PageRankMapper and aims

to add all of the individual values from the input file, and finally adding the term

1-d and multiply the sum by d agent giving as output the same format with the

PageRankMapper, i.e., the key id of each node and value as their neighboring

nodes and the renewed PageRank value.

T

*VerticeID:neighbor1,...,neighborN

1:2,3

2:1,3

*VerticeID neighbor1 ... neighborN PR

1 2 3 0.166667

2 1 3 0.166667

40

PSEUDOCODE:

Class PageRankMapper

public void map(LongWritable key, Text value, Context context){

 //val = PR / numOfChildren or outlinks

 String valString;

 String outgoing = "";

 for each c in chidren {

 page.set(c);

 context.write(page, valString);

 }

 for each c in chidren

 outgoing += (c + " ");

 page.set(parent);

 context.write(page, outgoing);

}

Class PageRankReducer

public void reduce(Text key, Iterable<Text> values, Context context){
 String outgoing = "";
 double trans;
 double sum = 0.0;
 for each v in values{
 if(v.startsWith("0")) {

 //trans = parseDouble(line)
 sum += trans;
 } else outgoing = v;
 }
 sum = ((1-0.85) + 0.85*(sum));
 outgoing += Double.toString(sum);
 result = new Text(outgoing);
 context.write(key, result);

}

41

*VerticeID:neighbor1,..neighborN

1 2 3 0.166667

2 1 3 0.166667

Mapper

Reducer

End

Starting with the initial
value PR, compute for

each neighbor
PR / # neighbors

Adds all the individual values for each
same Id. Adds the term (1-d) * d

Key : pointer
Value : each line

Key : neighborId
Value : value Shuffle

Key : id
Value : <value1, value2,...>

Key : id
Value : PR

Start

Flowchart 5 PageRank process

42

Chapter 4. Experiments and Results

n this section, it is present the experimental evaluation of each algorithm. The

experiments were run on a computer with the following characteristics:

Core i7 4770K 3.9 GHz

24 GB DDR3 RAM

128GB SSD

OS Ubuntu 16.04 LTS

Table 1 Characteristics of computing system

For each algorithm, it is used as input 3 graphs of different sizes. These are described in

Table 2. There is a wide collection of real graphs in [7]. The scope of this thesis is to show

the implementation of algorithms in an environment that supports parallel processing,

like Hadoop. For this reason, we will not deal with performance and accuracy of

algorithms.

NETWORK 1 NETWORK 2 NETWORK 3

100 nodes

200 edges

Undirected

500 nodes

1500 edges

Undirected

1000 nodes

5000 edges

Undirected

Table 2 Characteristics of network experiments

Moreover, in this section there are analyzed two different approaches. On the one hand,

the relationship of the algorithms with the size of complex networks, in other words,

scalability w.r.t. complex net size, and on the other, the relationship between them, based

on the correlation of the results, i.e., ranking correlation

We present some simple experiments, that are based on the graph that is shown

in Figure 9. The outputs of the simple examples and the screenshots of the real network

experiments are shown in Appendix. Subsequetly, we explain the Kendall distance in

which the second approach is based on and finally, we show some graphs on real

networks that we have ran.

I

43

Figure 9 Example of a simple undirected graph

The Kendall tau rank distance is a metric that counts the number of pairwise

disagreements between two ranking lists. The larger the distance, the more dissimilar the

two lists are. Kendall tau distance is also called bubble-sort distance since it is equivalent

to the number of swaps that the bubble sort algorithm would make to place one list in the

same order as the other list. The Kendall tau distance was created by Maurice Kendall.

First of all, for the graph on Figure 9, we create the table 3, in other words, we run

and compute each algorithm so as to find out the rankings/outputs.

 1 2 3 4 5 6 7 8 9

DC 3 3 3 1 1 1 1 2 3

PCI 3 3 3 1 2 1 2 2 3

CC 5 6 6 1 2 1 3 4 7

SPBC 5 5 5 2 1 4 3 5 5

PR 7 6 6 3 1 1 2 5 8

Table 3 Rankings

In statistics, the Kendall rank correlation coefficient, commonly referred to as

Kendall's tau coefficient (after the Greek letter τ), is a statistic used to measure the ordinal

association between two measured quantities. It is a measure of rank correlation, too, i.e.,

the similarity of the orderings of the data when ranked by each of the quantities.

Intuitively, the Kendall correlation between two variables will be high when observations

have a similar (or identical for a correlation of 1) rank between the two variables, and low

when observations have a dissimilar (or fully different for a correlation of -1) rank

between the two variables.

1 4

2

7

5 6

3

9

8

44

𝜏 =
(𝑛𝑢𝑚𝑂𝑓𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡) − (𝑛𝑢𝑚𝑂𝑓𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡)

𝑛(𝑛 − 1)/2

In accordance with the above formula, we can now calculate on the following table the τ

coefficient.

 DC PCI CC SPBC PR

DC 1 1 1 11

PCI 1 1 1 0.833 0.777

CC 1 1 1 0.833 0.666

SPBC 1 0.833 0.833 1 0.944

PR 1 0.777 0.666 0.944 1

Table 4 Kendall tau coefficient (τ)

The correlation of the algorithms from max to min, is shown in the following table:

Metrics Kendall’s tau coefficient (τ)

{DC, #}, {CC, PCI} 1

{PR, SPBC} 0.944

{SPBC, PCI}, {SPBC, CC} 0.833

{PR, PCI} 0.777

{PR, CC} 0.666

Table 5 Correlation of metrics

We observe that DC algorithm is correlated with each other algorithm. This

phenomenon applies because of the small information that offers, so that all the rest

algorithms have fully correlation with DC. This contrasts with efficiency at runtime, as we

will see later. In addition, the maximum correlation, except DC, appears between CC and

PCI, and the minimum one appears between CC and PR.

Furthermore, on Figure 10, we see that DC, PCI, PR are not affected by the size of

the networks. Also, we can clearly see that SPBC and CC algorithms, because of their big

complexity (O|n3|), όπου n = number of nodes of the graph, differ from the others at

45

runtime efficiency. As we expect, they are slower than the others and as the size is

increasing, so the execution time get higher.

Figure 10 Scalability of metrics

1 sec

10 sec

100 sec

1000 sec

10000 sec

100000 sec

Network 1 Network 2 Network 3

Scalability w.r.t. complex net size

DC PCI CC SPBC PR

46

Chapter 5. Conclusions and Future Work

he motivation of this thesis has been to develop parallel Map/Reduce algorithms

in Hadoop to handle a graph mining task. This task was chosen to be node

centrality, which shows the significance of each node in a given graph. Centrality

has many applications in network theory according to the relations that a network

expresses. Such include recommendation systems, social network analysis and the

discovery of patterns in a computer network traffic.

However, sequential algorithms cannot address the problem of data that occurs

in real world networks. Hadoop is a tool that offers us the possibility to easily write

parallel algorithms without caring about parallelization details like the communication of

machines, the distribution of data, the replication and fault tolerance. All that is needed

for a programmer, is to supply the implementation of a map and a reduce function.

Hadoop is a powerful tool and has already been used in graph mining algorithms like

counting triangles, detecting components, finding the diameter, link prediction etc.

As a subject of future study could be considered to optimize some algorithms, so

as to succeed better efficiency at runtime and accuracy. There are many techniques in

parallel computing that can help us to do this., some are based on hardware and some

others on software. A good technique, for example is to reduce the size of the intermediate

data by adopting techniques of data compression or implementations that compute

matrix approximations.

Furthermore, another issue of the future study is, if it is possible, the merge of two

quite correlated metrics, so as to create a tool that will provide us more information about

the graphs.

T

47

Chapter 6. Appendix

In this section, we present the outputs/screenshots of the experiments, for each metric.

6.1 Degree Centrality’s Experiments

Figure 11 Output of DC

File System Counters

 FILE: Number of bytes read=35556

 FILE: Number of bytes written=1181325

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=6232

 HDFS: Number of bytes written=978

 HDFS: Number of read operations=42

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=16

 Map-Reduce Framework

 Map input records=100

 Map output records=100

 Map output bytes=1460

 Map output materialized bytes=1678

 Input split bytes=100

 Combine input records=0

 Combine output records=0

 Reduce input groups=100

 Reduce shuffle bytes=1678

 Reduce input records=100

 Reduce output records=100

 Spilled Records=200

 Shuffled Maps =3

 Failed Shuffles=0

 Merged Map outputs=3

48

 GC time elapsed (ms)=3

 Total committed heap usage (bytes)=1107296256

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=1558

 File Output Format Counters

 Bytes Written=492

Elapsed time is: 1s.

Figure 12 Small network experiment for DC

File System Counters

 FILE: Number of bytes read=101846

 FILE: Number of bytes written=1262937

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=54968

 HDFS: Number of bytes written=5784

 HDFS: Number of read operations=42

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=16

 Map-Reduce Framework

 Map input records=500

 Map output records=500

 Map output bytes=13244

 Map output materialized bytes=14262

 Input split bytes=100

 Combine input records=0

 Combine output records=0

 Reduce input groups=500

 Reduce shuffle bytes=14262

 Reduce input records=500

 Reduce output records=500

 Spilled Records=1000

 Shuffled Maps =3

 Failed Shuffles=0

 Merged Map outputs=3

 GC time elapsed (ms)=3

 Total committed heap usage (bytes)=1105199104

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=13742

 File Output Format Counters

 Bytes Written=2892

Elapsed time is: 1s.

Figure 13 Medium network experiment for DC

49

File System Counters

 FILE: Number of bytes read=224092

 FILE: Number of bytes written=1446386

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=175284

 HDFS: Number of bytes written=13778

 HDFS: Number of read operations=42

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=16

 Map-Reduce Framework

 Map input records=1000

 Map output records=1000

 Map output bytes=42823

 Map output materialized bytes=44841

 Input split bytes=101

 Combine input records=0

 Combine output records=0

 Reduce input groups=1000

 Reduce shuffle bytes=44841

 Reduce input records=1000

 Reduce output records=1000

 Spilled Records=2000

 Shuffled Maps =3

 Failed Shuffles=0

 Merged Map outputs=3

 GC time elapsed (ms)=3

 Total committed heap usage (bytes)=1119879168

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=43821

 File Output Format Counters

 Bytes Written=6893

Elapsed time is: 1s.

Figure 14 Large network experiment for DC

50

6.2 Power Community Index’s Experiments

Figure 15 Output of PCI

File System Counters

 FILE: Number of bytes read=230945

 FILE: Number of bytes written=3685514

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=156558

 HDFS: Number of bytes written=45120

 HDFS: Number of read operations=342

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=90

 Map-Reduce Framework

 Map input records=100

 Map output records=100

 Map output bytes=1092

 Map output materialized bytes=1346

 Input split bytes=312

 Combine input records=0

 Combine output records=0

 Reduce input groups=100

 Reduce shuffle bytes=1346

 Reduce input records=100

 Reduce output records=100

 Spilled Records=200

 Shuffled Maps =9

 Failed Shuffles=0

 Merged Map outputs=9

 GC time elapsed (ms)=5

 Total committed heap usage (bytes)=2884108288

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

51

 File Input Format Counters

 Bytes Read=7357

 File Output Format Counters

 Bytes Written=492

Elapsed time is: 3s.

Figure 16 Small network experiment for PCI

File System Counters

 FILE: Number of bytes read=471552

 FILE: Number of bytes written=3898986

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=875670

 HDFS: Number of bytes written=243726

 HDFS: Number of read operations=342

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=96

 Map-Reduce Framework

 Map input records=500

 Map output records=500

 Map output bytes=7892

 Map output materialized bytes=8946

 Input split bytes=315

 Combine input records=0

 Combine output records=0

 Reduce input groups=500

 Reduce shuffle bytes=8946

 Reduce input records=500

 Reduce output records=500

 Spilled Records=1000

 Shuffled Maps =9

 Failed Shuffles=0

 Merged Map outputs=9

 GC time elapsed (ms)=4

 Total committed heap usage (bytes)=2912419840

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=39657

 File Output Format Counters

 Bytes Written=2892

Elapsed time is: 3s.

Figure 17 Medium network experiment for PCI

File System Counters

 FILE: Number of bytes read=955321

 FILE: Number of bytes written=4454899

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=2166960

 HDFS: Number of bytes written=584960

52

 HDFS: Number of read operations=342

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=90

 Map-Reduce Framework

 Map input records=1000

 Map output records=1000

 Map output bytes=33893

 Map output materialized bytes=35947

 Input split bytes=312

 Combine input records=0

 Combine output records=0

 Reduce input groups=1000

 Reduce shuffle bytes=35947

 Reduce input records=1000

 Reduce output records=1000

 Spilled Records=2000

 Shuffled Maps =9

 Failed Shuffles=0

 Merged Map outputs=9

 GC time elapsed (ms)=5

 Total committed heap usage (bytes)=3318218752

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=95197

 File Output Format Counters

 Bytes Written=6893

Elapsed time is: 3s.

Figure 18 Large network experiment for PCI

6.3 Closeness Centrality’s Experiments

Figure 19 Output of CC

File System Counters

 FILE: Number of bytes read=7513684531

 FILE: Number of bytes written=70328444360

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

53

 FILE: Number of write operations=0

 HDFS: Number of bytes read=730618114

 HDFS: Number of bytes written=725350494

 HDFS: Number of read operations=5935170

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=2635203

 Map-Reduce Framework

 Map input records=10000

 Map output records=10000

 Map output bytes=49200

 Map output materialized bytes=74600

 Input split bytes=32328

 Combine input records=0

 Combine output records=0

 Reduce input groups=100

 Reduce shuffle bytes=74600

 Reduce input records=10000

 Reduce output records=100

 Spilled Records=20000

 Shuffled Maps =900

 Failed Shuffles=0

 Merged Map outputs=900

 GC time elapsed (ms)=3864

 Total committed heap usage (bytes)=161719779328

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=286000

 File Output Format Counters

 Bytes Written=2436

Elapsed time is: 897s.

Figure 20 Small network experiment for CC

File System Counters

 FILE: Number of bytes read=2433954365879

 FILE: Number of bytes written=5181243880516

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=325853542792

 HDFS: Number of bytes written=318138992353

 HDFS: Number of read operations=850481604

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=348627936

 Map-Reduce Framework

 Map input records=250000

 Map output records=250000

 Map output bytes=1446000

 Map output materialized bytes=2138000

 Input split bytes=431648

 Combine input records=0

 Combine output records=0

 Reduce input groups=500

 Reduce shuffle bytes=2138000

54

 Reduce input records=250000

 Reduce output records=500

 Spilled Records=500000

 Shuffled Maps =32000

 Failed Shuffles=0

 Merged Map outputs=32000

 GC time elapsed (ms)=735099

 Total committed heap usage (bytes)=2088738226176

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=10122000

 File Output Format Counters

 Bytes Written=12374

Elapsed time is: 7542s.
Figure 21 Medium network experiment for CC

6.4 Shortest Path Betweenness Centrality’s Experiments

Figure 22 Output of SPBC

File System Counters

 FILE: Number of bytes read=11545071989

 FILE: Number of bytes written=75065433660

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=1061388179

 HDFS: Number of bytes written=1106338165

 HDFS: Number of read operations=5935170

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=2635203

 Map-Reduce Framework

 Map input records=10000

 Map output records=1000000

 Map output bytes=7130811

 Map output materialized bytes=9136211

55

 Input split bytes=32328

 Combine input records=0

 Combine output records=0

 Reduce input groups=100

 Reduce shuffle bytes=9136211

 Reduce input records=1000000

 Reduce output records=100

 Spilled Records=2000000

 Shuffled Maps =900

 Failed Shuffles=0

 Merged Map outputs=900

 GC time elapsed (ms)=4004

 Total committed heap usage (bytes)=161877590016

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=662677

 File Output Format Counters

 Bytes Written=4117

Elapsed time is: 845s.

Figure 23 Small network experiment for SPBC

File System Counters

 FILE: Number of bytes read=1807745748637

 FILE: Number of bytes written=4186599361080

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=191044761418

 HDFS: Number of bytes written=202383347078

 HDFS: Number of read operations=141298539

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=62717196

 Map-Reduce Framework

 Map input records=250000

 Map output records=125000000

 Map output bytes=989216868

 Map output materialized bytes=1239243868

 Input split bytes=161868

 Combine input records=0

 Combine output records=0

 Reduce input groups=500

 Reduce shuffle bytes=1239243868

 Reduce input records=125000000

 Reduce output records=500

 Spilled Records=250000000

 Shuffled Maps =4500

 Failed Shuffles=0

 Merged Map outputs=4500

 GC time elapsed (ms)=169717

 Total committed heap usage (bytes)=1573436522496

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

56

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=30712316

 File Output Format Counters

 Bytes Written=20682

Elapsed time is: 6263s.
Figure 24 Medium network experiment for SPBC

6.5 Page Rank’s Experiments

Figure 25 Output of PR

File System Counters

 FILE: Number of bytes read=105120

 FILE: Number of bytes written=2410024

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=18274

 HDFS: Number of bytes written=17735

 HDFS: Number of read operations=91

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=40

 Map-Reduce Framework

 Map input records=100

 Map output records=196

 Map output bytes=1346

 Map output materialized bytes=1744

 Input split bytes=116

 Combine input records=0

 Combine output records=0

 Reduce input groups=100

 Reduce shuffle bytes=1744

 Reduce input records=196

 Reduce output records=100

 Spilled Records=392

 Shuffled Maps =1

 Failed Shuffles=0

 Merged Map outputs=1

 GC time elapsed (ms)=0

 Total committed heap usage (bytes)=608174080

57

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=2577

 File Output Format Counters

 Bytes Written=2577

Elapsed time is: 5s.
Figure 26 Small network experiment for PR

File System Counters

 FILE: Number of bytes read=297236

 FILE: Number of bytes written=2609404

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=115148

 HDFS: Number of bytes written=101973

 HDFS: Number of read operations=91

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=48

 Map-Reduce Framework

 Map input records=500

 Map output records=1140

 Map output bytes=9786

 Map output materialized bytes=12072

 Input split bytes=116

 Combine input records=0

 Combine output records=0

 Reduce input groups=500

 Reduce shuffle bytes=12072

 Reduce input records=1140

 Reduce output records=500

 Spilled Records=2280

 Shuffled Maps =1

 Failed Shuffles=0

 Merged Map outputs=1

 GC time elapsed (ms)=0

 Total committed heap usage (bytes)=840957952

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=14309

 File Output Format Counters

 Bytes Written=14309

Elapsed time is: 5s.
Figure 27 Medium network experiment for PR

File System Counters

 FILE: Number of bytes read=1174720

58

 FILE: Number of bytes written=3491829

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=314496

 HDFS: Number of bytes written=254472

 HDFS: Number of read operations=91

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=40

 Map-Reduce Framework

 Map input records=1000

 Map output records=1954

 Map output bytes=16159

 Map output materialized bytes=20073

 Input split bytes=116

 Combine input records=0

 Combine output records=0

 Reduce input groups=1000

 Reduce shuffle bytes=20073

 Reduce input records=1954

 Reduce output records=1000

 Spilled Records=3908

 Shuffled Maps =1

 Failed Shuffles=0

 Merged Map outputs=1

 GC time elapsed (ms)=0

 Total committed heap usage (bytes)=1034944512

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=27618

 File Output Format Counters

 Bytes Written=27618

Elapsed time is: 5s.
Figure 28 Large network experiment for PR

59

Chapter 7. Bibliography

[1] http://hadoop.apache.org

[2] https://en.wikipedia.org/wiki/PageRank

[3] https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient

[4] https://en.wikipedia.org/wiki/Cloud_computing

[5] https://snap.stanford.edu/data/

[6] M. Newman. The Structure and Function of Complex Networks. SIAM

Review 45: 167-256, 2003

[7] Peter Mell Timoty Grance, The Nist Definition of Cloud Computing, 2011

[8] Basaras, Detecting Influential Spreaders in Complex, Dynamic Networks,

2013

[9] Vishnu Sankar, Scalable Community Detection and Centrality Algorithms

for Network Analysis, 2014

[10] Sushant S.Khopkar, Rakesh Nagi and Alexander G.Nikolaev, An Efficient

Map-Reduce Algorithm for the Incremental Computation of All-Pairs

Shortest Paths in Social Networks, 2012

[11] Nikhitha Cyril, Arun Soman, Map-based Multi-Source Message Passing

Model to find Betweenness Centrality using MapReduce, 2015

[12] Jonathan Magnusson, Social Network Analysis Utilizing Big Data

Technology, 2012

[13] Pei-Ling Chen, Chung-Kuang Chou and Ming-Syan Chen, Distributed

Algorithms for k-truss Decomposition, 2014

[14] Fragkiskos D.Malliaros, Apostolos N.Papadopoulos, Michalis

Vazirgiannis, Core Decomposition in Graphs: Concepts, Algorithms and

Applications, 2016

[15] C. E. Tsourakakis, U. Kang, G. L. Miller, C. Faloutsos. Doulion: Counting

triangles in massive graphs with a coin. KDD, 2009

[16] U. Kang, Charalampos E. Tsourakakis, Christos Faloutsos,”PEGASUS”: A

Peta-Scale Graph Mining System,” icdm, pp.229-238, 2009 Ninth IEEE

International Conference on Data Mining, 2009

http://hadoop.apache.org/
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Cloud_computing
https://snap.stanford.edu/data/

60

[17] J. Bank and B. Cole, Calculating the Jaccard Similarity Coefficient with

MapReduce for Entity Pairs in Wikipedia. December 2008.

[18] Sabeur Aridhi, Vincent Benjamin, Philippe Lacomme, Libo Ren, Shortest

Path Resolutionusing Hadoop, 2014

[19] Alexis Papadimitriou1, Dimitrios Katsaros2, Yannis Manolopoulos,

Social Network Analysis and its Applications in Wireless Sensor and

Vehicular Networks,

[20] Ulrik Brandes, A Faster Algorithm for Betweenness Centrality

