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“Without Big Data, you are blind and deaf in the middle of a freeway” 

  
─ Geoffrey Moore 

 
 

“Data is the new science. Big Data holds the answers”  
 

─ Pat Gelsinger 
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Περίληψη 

Στον κλάδο της ανάλυσης δικτύων, οι μετρήσεις κεντρικότητας ενός κόμβου, είναι 

σημαντικές σε ένα μεγάλο αριθμό εφαρμογών που χρησιμοποιούν δίκτυα, από τον κλάδο 

της αναζήτησης και της κατάταξης των δικτύων έως στην ανάλυση των κοινωνικών και 

βιολογικών δικτύων. Σε αυτή την διπλωματική, μελετάμε συγκεκριμένα, την 

κεντρικότητα ενός κόμβου για σύνθετα δίκτυα και κατ’ επέκταση για δίκτυα μεγάλης 

κλίμακας μέχρι τα δισεκατομμύρια των κόμβων και των ακμών. Διάφοροι ορισμοί για 

κεντρικότητα έχουν προταθεί, κάποιοι από αυτούς είναι αρκετά απλοί, π.χ., βαθμός του 

κόμβου, ενώ κάποιοι άλλοι πιο σύνθετοι, π.χ., PageRank. Ωστόσο, η μέτρηση 

κεντρικότητας σε γραφήματα της κλίμακας δισεκατομμυρίων θέτει πολλές προκλήσεις. 

Πολλοί από τους συνήθεις ορισμούς, όπως εγγύτητα και ενδιαμεσότητα δεν έχουν 

σχεδιαστεί με δυνατότητα κλιμάκωσης στο μυαλό. Ως εκ τούτου, είναι πολύ δύσκολο, αν 

όχι αδύνατο, να υπολογίσουμε τόσο με ακρίβεια και αποτελεσματικότητα τέτοιου είδες 

μετρικές. Τέλος, η ανάπτυξη των αλγορίθμων για τον υπολογισμό των προτεινόμενων 

μετρικών κεντρικότητας, γίνεται σε περιβάλλον Hadoop / MapReduce, ένα σύγχρονο 

περιβάλλον για μεγάλης κλίμακας, κατανεμημένη επεξεργασία δεδομένων, που βασίζεται 

στο Cloud Computing.  

 

Λέξεις Κλειδιά:  σύνθετα δίκτυα,  μεγάλης κλίμακας, κεντρικότητα, Hadoop, MapReduce, 

Cloud Computing 
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Abstract 

In the network analysis, the centrality metrics of a node, are important in a large number 

of graph applications, from search and ranking to social and biological network analysis. 

In this thesis, we study node centrality for complex networks, by extension large – scale 

networks up to billions of nodes and edges. Various definitions for centrality have been 

proposed, ranging from very simple, e.g., degree of the node, to more complex. However, 

measuring centrality in billion-scale graphs poses several challenges. Many of the usual 

definitions such as closeness and betweenness were not designed with scalability in mind. 

Therefore, it is very difficult, if not impossible, to compute them both accurately and 

efficiently. Finally, the development of the algorithms to compute the proposed centrality 

measures, is done in Hadoop/MapReduce, a modern environment for large-scale, 

distributed data processing, that is based on Cloud Computing.  

 

Keywords: complex networks, large-scale, centrality, Hadoop, MapReduce, Cloud 

Computing 
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Chapter 1. Introduction 

1.1 The scope of thesis 

owadays, social network and other complex-network applications become 

more and more popular in the world. Complex networks are getting larger and 

the need to analyze datasets with millions of nodes and billions of edges is not 

uncommon any more.  Complex network analysis is always based on large scale 

raw data, so the performance of complex-network analysis becomes the key of its 

development and fast algorithms are desirable for the recomputation of key network 

measures such as centrality. Node centrality measures are important in a large number of 

graph applications, from search and ranking to social and biological network analysis. 

Hadoop, as an implementation of the MapReduce parallel framework, a modern 

paradigm for large-scale, distributed data processing, is very suitable for large-scale data 

analysis [1]. Programs running in Hadoop are automatically parallelized and executed on 

the large cluster. The run-time system takes care of the details of partitioning the input 

data, scheduling the program's execution across a set of machines, handling machine 

failures, and managing the required inter-machine communication. 

Generally, this thesis develops Map-Reduce implementations of analysis methods 

for large-scale complex networks, but more specifically, the scope is to compute different 

metrics of graph’s centrality in Hadoop. Various definitions for centrality have been 

proposed, some of them are degree centrality, power community index, closeness 

centrality, betweenness centrality and PageRank. This thesis presents also, experimental 

results on both synthetic and real datasets, which demonstrate the functionality of these 

algorithms to very large graphs. 

1.2 Organization of thesis 

This thesis is organized as follows. Chapter 2 describes the background knowledge and 

all the related work in large scale complex networks and cloud computing. This includes 

complex networks and more specifically large scale networks (2.1), cloud computing and 

the Hadoop framework (2.2), graph theory (2.3) and the related work (2.4). Chapter 3 

presents detailed the Map/Reduce algorithms of five metrics implemented in this 

undergraduate thesis. Chapter 4 contains the experiments for every Map/Reduce 

N 
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algorithm that they conducted in several graphs, along with the results. Finally, Chapter 5 

concludes the thesis and presents directions for future work. 
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Chapter 2. Background and Related Work 

2.1 Complex Networks 

he term ‘complex networks’ is young. It came to use in the twenty-first century 

when researchers from very distinct sciences, such as computer scientists, 

biologists, sociologists, physicists, and mathematicians started to intensively 

study diverse real-world networks and their models. This notion refers to networks with 

more complex architectures, for example, a uniformly random graph with given numbers 

of nodes and links, like internet. This is the quantitative characterization of a system, but 

on the other hand there is also the quality characterization. As a quality of the system it 

refers to what makes the system complex, in this case complexity refers to the presence 

of emergent properties in the system. That is, to the properties which emerge as a 

consequence of the interactions of the parts in the system. In this sense, the great majority 

of real-world networks are complex. 

 

Figure 1 Various types of networks 

 

In more detail, there are many ways in which networks may be more complex than 

the graphs are illustrated in (Figure 1. a). For instance, there may be more than one 

different type of vertex in a network, or more than one different type of edge (b). Taking 

the example of a social network of people, the vertices may represent men or women, 

people of different nationalities, locations, ages, incomes, or many other things. Edges may 

T 
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represent friendship, but they could also represent animosity, or professional 

acquaintance, or geographical proximity. They can carry weights, representing, say, how 

well two people know each other (c). They can also be directed, pointing in only one 

direction (d).  A graph representing telephone calls or email messages between 

individuals would be directed, since each message goes in only one direction. Directed 

graphs can be either cyclic, meaning they contain closed loops of edges, or acyclic meaning 

they do not. Some networks, such as food webs, are approximately but not perfectly 

acyclic. A complex network can also have hyper edges that could be used to indicate family 

ties in a social network for example, n individuals connected to each other by virtue of 

belonging to the same immediate family could be represented by an n-edge joining them.  

There are more types of graphs, but the study of networks is by no means a complete 

science yet, and many of the possibilities have yet to be explored in depth. 

  

Figure 2 Examples of Complex networks 

Furthermore, complex networks can be classified according to the nature of the 

interactions among the entities forming the nodes of the network. Some examples of these 

classes are: 

 Physical linking: pairs of nodes are physically connected by a tangible link, such 

as a cable, a road, a vein, etc.  

Examples: Internet, urban street networks, road networks, vascular networks, etc. 

 Physical interactions: links between pairs of nodes represents interactions which 

are determined by a physical force.  

Examples: protein residue networks, protein-protein interaction networks, etc. 

 Geographic closeness: nodes represent regions of a surface and their connections 

are determined by their geographic proximity.  

Examples: countries in a map, landscape networks, etc. 
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 “Ethereal” connections: links between pairs of nodes are intangible, such that 

information sent from one node is received at another irrespective of the 

“physical” trajectory. Examples: WWW, airports network. 

 Mass/energy exchange: links connecting pairs of nodes indicate that some energy 

or mass has been transferred from one node to another.  

Examples: reaction networks, metabolic networks, food webs, trade networks, 

etc. 

 Social connections: links represent any kind of social relationship between nodes. 

Examples: friendship, collaboration, etc. 

 Conceptual linking: links indicate conceptual relationships between pairs of 

nodes. Examples: dictionaries, citation networks, etc. 

2.1.1 Large-scale networks 

Complex networks are essentially large graphs of real life.  Large amounts of network data 

are being produced by various modern applications at an ever-growing speed, ranging 

from social networks such as Facebook and Twitter, scientific citation networks such as 

VOSviewer, to biological networks such as gene regulatory networks (DNA–protein 

interaction networks). Network data analysis is crucial to exploit the wealth of 

information encoded in these network data. An effective analysis of these data must take 

into account the complex structure including social, temporal and sometimes spatial 

dimensions, and an efficient analysis of these data demands scalable solutions. As a result, 

there has been increasing research in developing scalable solutions for novel large-scale 

network analytics applications. 

Big data analytics is the process of collecting, organizing and analyzing large sets 

of data to discover patterns and other useful information. Big data analytics can help 

organizations to better understand the information contained within the data and will 

also help identify the data that is most important to the business and future business 

decisions. Analysts working with big data basically want the knowledge that comes from 

analyzing the data. 

Modern informatics applications like web search afford easy parallelization, e.g. 

the overall index can be partitioned such that even a single query can use multiple 

processors. Moreover, the peak performance of a machine is less important than the 

price-performance ratio. In this environment, scalability up to petabyte-sized data often 

means working in a software framework like MapReduce/Hadoop that supports data-

intensive distributed computations running on large clusters of hundreds, thousands, or 



14 

 

even hundreds of thousands of commodities computers. This differs substantially from 

the scalability issues that arise in traditional applications of interest in scientific 

computing. 

 

Figure 3 Visualization of daily Wikipedia edits created by IBM, as an example of big data. 
(https://en.wikipedia.org/wiki/Big_data#/media/File:Viegas-UserActivityonWikipedia.gif) 

2.1.2 Challenges and problems of Large-scale analysis 

For most organizations, big data analysis is a challenge. Consider the sheer volume of data 

and the different formats of the data, both structured and unstructured data that is 

collected across the entire organization and the many different ways of data retrieval can 

be combined, contrasted and analyzed to find patterns and other useful business 

information.  

The first challenge is in breaking down databases to access all data an 

organization at stores in different places and often in different systems. A second big data 

challenge is in creating platforms that can pull in unstructured data as easily as structured 

data. This massive volume of data is typically so large that it's difficult to process using 

traditional database and software methods. 

Except of these challenges, there are further difficulties in large-scale analysis, but 

one of the basic problems is the efficiently and effectively measuring centrality for billion-

scale networks. More specifically, there are the following problems: 

1. Design. Careful design centrality measures that avoid inherent limitations to 

scalability and parallelization. 

2. Algorithms. Fast computations of large scale centralities for billion-scale graphs. 

https://en.wikipedia.org/wiki/Big_data#/media/File:Viegas-UserActivityonWikipedia.gif


 

15 

 

3. Observations. Key patterns and observations on centralities in large, real world 

networks. 

2.2 Cloud Computing 

ith the rapid development of processing, the storage technologies and the 

success of the Internet, computing resources have become cheaper, more 

powerful and more available than ever before. This technological trend has 

enabled the realization of a new computing model called Cloud Computing. Cloud 

computing divides the role of service provider into two: the infrastructure providers, who 

manage cloud platforms and lease resources according to a usage-based pricing model 

and service providers, who rent resources from one or many infrastructure providers to 

serve the end users. 

The emergence of cloud computing has made a tremendous impact on the 

Information Technology (IT) industry over the past few years, where large companies 

such as Google and Microsoft try to provide more powerful, reliable and cost-efficient 

cloud platforms. 

NIST1 definition of cloud computing Cloud computing is a model for enabling ubiquitous, 

convenient, on-demand network access to a shared pool of configurable computing 

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider interaction. 

Cloud computing is therefore a type of computing that relies on sharing a pool of 

physical and/or virtual resources, rather than deploying local or personal hardware and 

software. It is somewhat synonymous with the term ‘utility computing’ as users are able 

to tap into a supply of computing resource rather than manage the equipment needed to 

generate it themselves; much in the same way as a consumer tapping into the national 

electricity supply, instead of running their own generator. 

One of the key characteristics of cloud computing is the flexibility that it offers and 

one of the ways that flexibility is offered is through scalability. This refers to the ability of 

a system to adapt and scale to changes in workload. Cloud technology allows for the 

automatic provision and privation of resource as and when it is necessary, thus ensuring 

that the level of resource available is as closely matched to current demand as possible.  

The basic cloud model is composed of five essential characteristics, four 

deployment models and three service models. 

                                                                    
1 National Institute of Standards Technology 

W 



16 

 

ESSENTIAL CHARACTERISTICS: 

 On-demand self-service. A consumer can unilaterally provision computing 

capabilities, such as server time and network storage, as needed automatically 

without requiring human interaction with each service provider. 

 Broad network access. Capabilities are available over the network and accessed 

through standard mechanisms that promote use by heterogeneous thin or thick 

client platforms (e.g., mobile phones, tablets, laptops, and workstations). 

 Resource pooling. The provider’s computing resources are pooled to serve 

multiple consumers using a multi-tenant model, with different physical and 

virtual resources dynamically assigned and reassigned according to consumer 

demand. There is a sense of location independence in that the customer generally 

has no control or knowledge over the exact location of the provided resources but 

may be able to specify location at a higher level of abstraction (e.g., country, state, 

or datacenter). Examples of resources include storage, processing, memory, and 

network bandwidth. 

 Rapid elasticity. Capabilities can be elastically provisioned and released, in some 

cases automatically, to scale rapidly outward and inward commensurate with 

demand. To the consumer, the capabilities available for provisioning often appear 

to be unlimited and can be appropriated in any quantity at any time. 

 Measured service. Cloud systems automatically control and optimize resource 

use by leveraging a metering capability at some level of abstraction appropriate 

to the type of service (e.g., storage, processing, bandwidth, and active user 

accounts). Resource usage can be monitored, controlled, and reported, providing 

transparency for both the provider and consumer of the utilized service. 

DEPLOYMENT MODELS: 

 Private cloud. It uses pooled services and infrastructure stored and maintained 

on a private network – whether physical or virtual – accessible for only one client. 

The obvious benefits to this are greater levels of security and control.  Cost 

benefits must be sacrificed to some extent though, as the enterprise in question 

will have to purchase/rent and maintain all the necessary software and hardware 

 Community cloud. The cloud infrastructure is provisioned for exclusive use by a 

specific community of consumers from organizations that have shared concerns 

(e.g., mission, security requirements, policy). It may be owned, managed, and 

operated by one or more of the organizations in the community, a third party, or 

some combination of them, and it may exist on or off premises. 
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 Public cloud. It is a cloud in which services and infrastructure are hosted off-site 

by a cloud provider, shared across their client base and accessed by these clients 

via public networks such as the internet. Public clouds offer great economies of 

scale and redundancy but are more vulnerable than private cloud setups due their 

high levels of accessibility. 

 Hybrid cloud. This as the name suggests, combines both public and private cloud 

elements. A hybrid cloud allows a company to maximize their efficiencies, by 

utilizing the public cloud for non-sensitive operations while using a private setup 

for sensitive or mission critical operations, companies can ensure that their 

computing setup is ideal without paying any more than is necessary.  

 

 

Figure 4 The pyramid of cloud computing architecture 

 

Moving away from deployment models, there are three models of cloud 

computing which describe the service on offer. 

SERVICE MODELS: 

 Software as a Service (SaaS). SaaS is arguably the most common of the cloud 

computing variations; it’s the term used to describe a software delivery model in 

which applications are hosted (usually by a provider) and made available to 

customers over a network connection. Many people make use of SaaS without 

realizing it as many web applications are delivered in this way; Gmail, Flickr, 

Twitter and Facebook are all popular examples of SaaS. Enterprise users also 

frequently make use of SaaS with many popular accounting, invoicing, sales, 

communications and CRM systems being delivered this way 

SaaS Google Apps, Facebook, 
YouTube, Saleforce.com

PaaS Google AppEngine, Microsoft 
Azure, Amazon SimpleDB

IaaS Google Cloud Storage, 
Amazon EC2, VMWare

Software

Platform

Infrastracture
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 Platform as a Service (PaaS). PaaS is an extension of IaaS and describes a 

category of cloud computing that provides developers with environments in 

which to build applications, over the internet. In addition to the fundamental 

computing resource supplied by the hardware in an IaaS offering, PaaS models 

also include the software and configuration (often known as the solution stack) 

required to create the platform on which clients can create their applications. 

PaaS packages can be tailored to meet individual user needs; they can cherry pick 

the features of the service that are relevant to them while disregarding those that 

are not. PaaS provides a number of benefits to enterprises, including simplifying 

the development process for geographically split development teams. 

 Infrastructure as a Service (IaaS). IaaS refers to the delivery of virtualized 

computing resource as a service across a network connection. It specifically deals 

with hardware – or computing infrastructure - delivered as a service. Offerings 

include virtualized server space, storage space, network connections and IP 

addresses. The resource is pulled from a pool of servers distributed across data 

centers under the provider’s control, the user is then granted access to this 

resource in order to build their own IT platforms. IaaS can provide enterprises 

with great business benefits.  

2.2.1 Map/Reduce and Hadoop 

Distributed processing on a cloud—a large collection of commodity computers, 

each with its own disk, connected through a network—has the same problem with the 

study of real world networks. It is that the information is extremely large, extending from 

hundreds of edges to billions of edges. Obviously, it is difficult to apply sequential 

algorithms to analyze these graphs. This size has led to the development of parallelization 

architectures. One recent and effective framework that permits the development of 

parallelized algorithms is Hadoop. Hadoop provides us with a distributed filesystem and 

the implementation of the map/reduce programming model, as well as all the necessary 

libraries that are needed in order for a compute cluster to function. Its main advantage is 

that it separates the parallelization code from the business logic, thus making easy for 

anyone to create and execute a parallel algorithm. Additionally, it poses no restrictions 

regarding the number of computer nodes that the cluster should have, something that has 

been an issue in older architectures.  

In addition, due to Hadoop’s excellent scalability, ease of use, and cost advantage, 

Hadoop has been used for important graph mining algorithms. Other variants which 

provide advanced MapReduce, like systems include SCOPE, Sphere, and Sawzall. 
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Particularly, Hadoop is a project of the Apache Software Foundation that 

parallelizes data processing across many nodes in a compute cluster, speeding up large 

computations and hiding I/O latency through increased concurrency. The advantages of 

this model lie in its ability to deal with the issues of distributing the data, handling failures, 

load balancing among the cluster, thus separating the business logic from the 

parallelization code; hence, developers are free to focus on application logic. The Hadoop 

project includes various subprojects that provide complementary services. These are: 

 MapReduce: a distributed data processing model and execution environment that 

runs on compute clusters. 

 HDFS: a distributed filesystem that provides high throughput access to 

application data. 

 Chukwa: a distributed data collection and analysis system. 

 Hive: a data warehouse infrastructure that provides a query language based on 

SQL. 

 Pig: a high-level data flow language and execution framework for parallel 

computation. It is built on top of Common. 

 Zookeeper: a high-performance coordination service for distributed applications.  

Hadoop implements the MapReduce programming model. The user of this library 

needs to implement two functions – map and reduce – to perform a computation. Each 

input record is converted into a key/value pair. A map operation is applied to each input 

record and produces a set of intermediate key/value pairs. The map outputs are grouped 

and sorted by key. A reduce operation is applied to all values that share the same key, in 

order to combine the derived data appropriately.  

HDFS is a file system designed to store large files across multiple machines. 

Storage reliability is achieved with the data replication on several nodes. Three processes 

control the HDFS services. Namenode manages the filesystem namespace and regulates 

access to files by clients. It is a single point of failure for an HDFS installation, as if it goes 

down the system is offline. It is responsible for operations like opening, closing and 

renaming of files and directories available via an RPC interface. Also, it determines the 

mapping of blocks to Datanodes. Secondary Namenode is a process that regularly connects 

to the Namenode and downloads a snapshot of its directory information, which is then 

saved to a directory. The Secondary Namenode is used together with the edit log of the 

Namenode to create an up-to-date directory structure. Datanode is a process that 

provides block storage and retrieval services like serving read/write requests from 
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clients and performing block creation, deletion and replication upon instruction from the 

Namenode.  

 

Figure 5 HDFS architecture 

The Hadoop framework provides two processes that handle the execution of 

MapReduce jobs. TaskTracker manages the execution of individual map and reduce tasks 

on a compute node in the cluster and JobTracker accepts job submissions, provides job 

monitoring and control and manages the distribution of tasks to the TaskTracker nodes. 

When a MapReduce job is submitted by the user, it is decomposed into a number of tasks. 

The user is responsible for submitting the job configuration in order to provide the 

framework with a series of necessary parameters regarding the job, like the input and 

output destination in HDFS, the input and output format, the classes that contain the map 

and reduce functions and the JAR file(s) that contain the map and reduce functions and 

any support classes. Then, the input is split according to the HDFS block size (typically 64 

MB) and distributed across the map tasks. If the input is N files, then at least there will be 

N map tasks. The map tasks are executed and produce the intermediate key/value pairs 

according to the map function that is specified by the user. Each map function receives 

one record (line) from the split and process it accordingly. Then, follows the shuffle phase 

where the map outputs are partitioned and sorted. The shuffle output for each partition 

is sorted. Afterwards, the reduce tasks start with input the data that correspond to their 

partition. Each reduce function is called once for each input unique key with all the values 

that share that key. The reduce tasks emit key/value pairs, which are written to output 

directory. The number of output files in the directory will be as many as the number of 

reduce tasks that were executed. 

MapReduce has two benefits: (a) The data distribution, replication, fault-

tolerance, and load balancing is handled automatically; and furthermore (b) it uses the 

Data NodeData Node Data NodeData Node

Job TrackerJob Tracker

Task TrackerTask TrackerTask TrackerTask Tracker

Name Node
Secondary Name 

Node
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familiar concept of functional programming. The programmer needs to define only two 

functions, a map and a reduce. The general framework is as shows in Figure 6: (a) the map 

stage reads the input file and emits (key, value) pairs; (b) the shuffling stage sorts the 

output and distributes them to reducers; (c) the reduce stage processes the values with 

the same key and emits another (key, value) pairs which become the final result. 

 

Figure 6 A MapReduce job 

The map and the reduce functions have 4 parameters. The key, the value, the output 

collector and the reporter. The output collector is the object used to emit the key/value 

pairs. The reporter object provides the mechanism for informing the framework of the 

current status of the job. If a job takes too long to complete, it is useful to inform the 

framework that it is still working through the reporter, so that the framework will not kill 

it. 

As it is appreciated, a large variety of input formats are supplied by the framework. 

The major distinctions are between textual and binary input formats. The available 

formats are: 

FORMATS OF HADOOP: 

 KeyValueTextInputFormat: key/value pairs, one per line. 

 TextInputFormat: the key is the byte offset of the line and the value is the line. 

 NLineInputFormat: similar to KeyValueTextInputFormat, but the splits are based 

on N lines of input rather that Y bytes of input. 

 MultiFileInputFormat: an abstract class that lets user implement an input format 

that aggregates multiple files into one split. 
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 SequenceFileInputFormat: the input file is a Hadoop sequence file, containing 

serialized key/value pairs. 

Hadoop provides its own set of data types that are optimized for network 

serialization and correspond to the known Java built-in data types. Of course, the user can 

define custom data types if necessary. The data types that are used as keys need to 

implement the WritableComparable and the data types that are used as values need to 

implement the Writable interface, which is a subset of WritableComparable. The Writable 

interface implements the methods that are used for serialization and deserialization of 

the objects and the WritableComparable implements additionally the methods that are 

used for the comparison of the keys.  

The most common Hadoop data types are: 

DATA TYPES OF HADOOP: 

 Text: equivalent to String. 

 IntWritable: equivalent to Integer. 

 VIntWritable: used for integer values stored in variable-length format. Such 

values take between 1-5 bytes. Smaller values take fewer bytes. 

 LongWritable: equivalent to Long. 

 VLongWritable: used for long values stored in variable-length format. Such values 

take between 1-5 bytes. Smaller values take fewer bytes. 

 FloatWritable: equivalent to Float. 

 DoubleWritable: equivalent to Double. 

 ByteWritable: equivalent to Byte. 

 BytesWritable: used for byte arrays. 

 BooleanWritable: equivalent to Boolean. 

 NullWritable: equivalent to Null. 

2.3 Graph Theory 

s it was defined above network science studies representations of physical, 

biological and social phenomena and seeks to discover common principles that 

govern network behavior. A network is a set of entities, which are pairwise 

connected with links. In computer science, networks are represented as graphs, where 

the entities correspond to vertices which are connected with edges. Examples include the 

World Wide Web, where the vertices are the web pages and links from one page to 

another form edges; social networks, where the vertices are people and edges express 

some sort of acquaintance like friendship or relativity; co-author ship networks, where 

A 
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the vertices are scientists in a particular discipline and edges connect those who have co-

authored a paper; collaboration networks, where the vertices are employees and edges 

are formed between those who have worked in common projects; biological networks 

that express relations among proteins or neurons. 

In more detail, graphs are mathematical structures used to model pairwise 

relations between objects from a certain collection. A graph is a collection of objects, 

where some pairs of the objects are connected by links. The objects are called vertices or 

nodes and the links are called edges or arcs. The edges may be directed ─ asymmetric or 

undirected ─ symmetric. The corresponding graphs are called directed or digraphs and 

undirected graphs. Of course, we can represent an undirected graph as directed if we have 

two edges between every pair of nodes, one for each direction. The edges may carry 

weights, that could represent costs, length, capacities or other quantities depending on 

the problem. These edges define a graph as weighted. Graphs can be either cyclic, meaning 

they contain closed loops of edges or acyclic meaning they do not. Also, there is a subgraph 

of a graph G, which is a graph whose vertex set is a subset of G, and whose adjacency 

relation is a subset of G restricted to the new vertex subset. In the other direction, a super 

graph of a graph G is a graph of which G is a subgraph. Bipartite graphs are graphs whose 

vertices are divided into two disjoint sets U and V, such that every edge connects a vertex 

from U to one in V. Furthermore, a graph may have hyper edges. Hyper edges join more 

than two vertices together. Graphs containing such edges are called hypergraphs. 

The goal of network analysis is to model the interactions among the entities and 

discover interesting patterns, by focusing on the properties of real world networks. 

Patterns that have been discovered include the small world effect, the shrinking diameter 

and many others. One important property of networks is that they evolve over time with 

edges appearing or disappearing.  

2.3.1 Graph Representation 

There are different ways to represent a network mathematically, the two most commonly 

used data structures for representing a graph G = (V, E) are the adjacency list and the 

adjacency matrix.  

The adjacency list is implemented as an array of |V| lists, with one list of 

destination nodes for each source node. The vertices in each adjacency list are typically 

stored in an arbitrary order. In directed graphs the sum of the lengths of all adjacency lists 

is |E|, while in undirected graphs it is 2|E|. This happens because in undirected graphs, 

each edge (u, v), is stored in the list of node u, as well as in the list of node v.  
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The adjacency matrix is a two-dimensional Boolean matrix, of length |V| × |V|. It 

is assumed that the identities of vertices vary from 0. . . |V|. A matrix entry (i, j) indicates 

if there is an edge from vertex i to j. Formally, the adjacency matrix A of a simple graph is 

the matrix with elements Aij, such that 

𝐴𝑖𝑗 = {
  1, 𝑖𝑓 (𝑖, 𝑗)  ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Adjacency matrices of undirected graphs are symmetric, as for every edge (i, j), there also 

exists an edge (j, i). The transposed adjacency matrix of A = (aij) is the matrix A^T = (a^Tij) 

= (aji).  

Adjacency lists are usually preferable for sparse matrices, where |E| << |V|2 [8], 

because they occupy less space, as they do not use any space for edges that are not 

present. Respectively, adjacency matrices are preferred when the graph is dense and |E| 

⋍ |V |2. Because each entry of matrix requires one bit, they can be represented in a 

compact way occupying |V|2/8 bytes. The adjacency matrix requires Θ(V2) memory, 

independent of the number of the edges in the graph, while the adjacency list requires 

Θ(V + E) memory. Although the adjacency list representation is asymptotically at least as 

efficient as the adjacency matrix representation, the simplicity of an adjacency matrix may 

make it preferable when graphs are reasonably small. 

 

Figure 7 Adjacent list and Adjacent matrix of a graph 

2.3.2 Definitions 

Some important definitions and metrics that are used in network analysis are: 

 path: an alternating sequence of vertices and edges, beginning and ending with a 

vertex, where each vertex is incident to both the edge that precedes it and the edge 
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that follows it in the sequence. The length of a path is the number of edges 

traversed. 

 degree: number of edges incident to the vertex. The degree is not necessarily equal 

to the number of vertices adjacent to a vertex, since there may be more than one 

edge between any two vertices. Such a graph is called a multigraph. In directed 

graphs, there is in-degree and out-degree for every vertex, which are the numbers 

of incoming and outgoing edges respectively. 

 geodesic distance: the distance between two vertices in a graph is the number of 

edges in a shortest path (also called a graph geodesic) connecting them. 

 diameter: the greatest distance between any pair of vertices; it is equal to the 

length of the longest shortest path between any two vertices. 

 clustering coefficient: the probability that a connected triple of nodes is actually a 

triangle. It describes the tendency to form clusters - fully connected subgraphs in 

a graph and is a measure of the likelihood that two associates of a node are 

associates themselves. 

2.3.3 Metrics 

If the structure of a network is known, we can calculate from it a variety of useful 

quantities or measures that capture particular features of the network topology. In this 

thesis are analyzed some of these measures.  

Centrality is widely-used for measuring the importance of nodes within a graph. 

For instance, who are the most well-connected people in a social network. In general, the 

concept of centrality has helped in the understanding of various kinds of networks by 

researchers from computer science, network science etc. In addition, centrality has 

typically been studied for small graphs. However, in the past few years, centralities have 

played important role in the very large graphs, too. Many of these networks reach billions 

of nodes and edges requiring terabytes of storage. 

Moreover, there are some challenges for measuring centrality in very large 

graphs. First, some definitions of centrality have inherently high computational 

complexity. For example, shortest-path or random walk betweenness have complexity at 

least O(n3) where n is the number of nodes in a graph. Furthermore, some of the faster 

estimation algorithms require operations, which are not classified to parallelization, such 

as all sources breadth-first search. Second, even if a centrality measure is designed in a 

way that avoids expensive or non-parallelizable operations, developing algorithms that 
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are both efficient, scalable and accurate is not straightforward. Clever approximations 

may need to be employed, in order to achieve these goals. 

Finally, there are two types of centralities: Geodesic-based ─ Closeness, Shortest 

Path Betweenness and Degree-based ─ Degree, Power Community Index, PageRank. 

 

Figure 8 Two basic categories of centralities 

2.4 Related Work 

ome of the related works on processing large-scale, complex networks on 

Hadoop are computing social measures in large graphs. In more detail, 

processing large graphs for cliques with limited memory, k-core maintenance in 

large dynamic graphs, k-core decomposition, truss decomposition. Moreover, the 

centrality of a node in a network is interpreted as the importance of the node. Many 

centrality measures have been proposed based on how the importance is defined. For 

instance, influence-based centralities. The influence-based community partition for social 

networks is another issue of the network analysis, too. All these combined with the 

parallel graph mining using Hadoop and the distributed programming framework for 

processing web-scale data. 

 Moreover, another branch that depends on large scale data analysis is 

bioinformatics. In bioinformatics, dealing with neural networks, with purpose of 

obtaining genetic information for the human organism. 

Centrality metrics
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Chapter 3. Implementations 

3.1 Degree Centrality 

egree centrality has a very simple and intuitive definition: it is the number of 

neighbors of a node. Despite, or perhaps because of its simplicity, it is very 

popular and used extensively. Not surprisingly, it is also the easiest to compute.  

The major limitation of degree based centrality is that it only captures the local 

information of a node. In many applications, we need more informative measures that can 

further distinguish among nodes that have almost equally low degrees, or almost equally 

high degrees. 

In more particular, for undirected graphs degree centrality of a node is the 

number of its links, but for directed graphs degree centrality is separated to the number 

of in links and the number of out links. 

The general implementation process of this algorithm with the help of MapReduce 

jobs is as follows: 

  First, as input is given a txt file with the following format: 

 the Mapper takes as input the file and separates the indexes of each node with the 

nodes to which it is affiliated, by the separator ‘:’. The nodes to which is connected 

each node are its neighbors. Finally, mapper sets the output, as a key each id and 

as a value its neighbors. 

 Subsequently, the Reducer receives as input the output of Mapper and the 

essential function of reducer is to separate the neighbors by the separator ‘,’ and 

set up for each different id, a list of its neighbors. Finally, as output gives key for 

the id of each node and value for the size of the list that it is the number of links of 

the current node, hence the DC of each node, for an undirected graph. 

 

 

 

D 

*VerticeID:neighbor1,...,neighborN 

1:2,3 

2:1,3 
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PSEUDOCODE: 

Class Mapper 

public void map(LongWritable key, Text value, Context context){  

 String [] inputLine = value.split(“:”);  

 nodeID.set(inputLine[0]);  

 neighbours.set(inputLine[1]);  

 context.write(nodeID, neighbours);  

} 
 

Class Reducer 
 
public void reduce(Text key, Iterable<Text> values, Context context){  
 

 for each v in values {  

  Sring [] tokens = v.split(“,”);  

  List<> adjacencies.add(tokens);  

 }  

 context.write(key, adjacencies.size());  

} 

 

*VerticeID:neighbor1,...,neighborN

1:2,3

2:1,3

Mapper

Reducer

End

For each line separates 
the indexes with the 

neighbors, by    

For each value 
separates the 

neighbors, by    

Key: pointer 
Value: each line

Key : id 
Value : neighbors Shuffle

Key : id 
Value :  <neighbor1, neighbor2,...>

Key : id
Value : DC

Start

 

Flowchart 1 Degree Centrality process 
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3.2 Power Community Index 

his is a new centrality metric of the nodes that specifically applies to sensor 

networks where there are more efficient algorithms, and not affected by 

individual nodes and considerably more informative than computing the DC 

degree centrality in a graph. 

The μ-Power Community Index of a node V is equal to k, where there are any more 

nodes μ * k of the neighbors of V, with degree (DC) greater than or equal to k. In more 

particular, the other neighbors of the node should have a degree of less than or equal to 

k. For convenience, we consider μ = 1. 

The general implementation process of this algorithm with the help of MapReduce 

jobs is as follows: 

  First, as input is given a txt file with the following format: 

Precondition of this algorithm is find first the DC of each node, therefore we follow 

the same procedure as described earlier regarding the metric Degree Centrality. 

Then, having successfully completed the first job, starts the second entirely on the 

pciMapper () and pciReducer (). 

 the pciMapper takes as input the output file of dcReducer. Having already 

calculated the DC for each node and created a HashMap with key the id and value 

the DC and having for each node a list of its neighbors too, pciMapper outputs for 

each id a list consisting of DC, of its neighbors. As the key is the id and the value 

the DC list of its neighbors. 

 the pciReducer takes as input the output file of pciMapper. Having the DC list of 

neighboring nodes for each node of the graph, we check if the number of 

neighboring nodes with DC > k, is less than or equal to k, then we set the PCI of the 

current node, the k. Giving as a final output for the key the id of the node and for 

value the PCI. 

PSEUDOCODE: 

Class DCMapper 

public void map(LongWritable key, Text value, Context context){  

 String [] inputLine = value.split(“:”);  

 nodeID.set(inputLine[0]);  

T 

*VerticeID:neighbor1,...,neighborN 

1:2,3 

2:1,3 
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 neighbours.set(inputLine[1]);  

 context.write(nodeID, neighbours);  

} 

Class DCReducer 
 
public void reduce(Text key, Iterable<Text> values, Context context){  

 for each v in values.split(“,”) {  

  List<> adjacencies.add(v);  

 }  

 Node nodeInfo = new Node(key, adjacencies.size); 

 context.write(nodeInfo, adjacencies);  

} 

 

Class PCIMapper 

public void map(Node node, ArrayListWritable<> value, Context context){  

MapWritable dcList;  

//toReturn is the list of neighbor’s DC 

StringBuilder toReturn; 

//value is a list with neighbors 

for (int i = 0; i<value.size(); i++){ 

 Writable list = dcList.get(value.get(i)) 

 Append(toReturn,list.toString());  

 if (i + 1 < value.size) 

  Append(toReturn, “,”); 

}  

context.write(nodeID, toReturn); 

} 

Class PCIReducer 

public void reduce(Text key, Iterable<Text> value, Context context){ 
 List<> neighbourDcList;  
 int PCI = 0;  
 for (k=1 to neighbourDcList.size()) {  
  for each m from neighbourDcList{  
   if (m > k)  
    count++;  
  }  
  if (count <= k) {  
   PCI = k;  
   break;  
  }  
 }  

 context.write(key, PCI);  

} 
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Flowchart 2 Power Community Index process 

3.3 Closeness Centrality 

loseness centrality is the most popular diameter-based centrality measure. While 

degree centrality considers only one-step neighbors, closeness centrality 

considers all nodes in the graph, and gives high score to nodes which have short 

average distances to all the other nodes. 

Closeness of a node is typically defined as the inverse of the average over the 

shortest distances to all other nodes; to simplify formulas we omit the inverse. Exact 

computation requires an all-pairs shortest paths algorithm. Unfortunately, this operation 

requires O(n3) time. For the billion-scale graphs we consider in this work, computing 

closeness centrality is prohibitively expensive.  

To implement the Closeness centrality, BFS algorithm was used for the pervasion 

of the graph and Dijkstra algorithm for finding the shortest path between any two nodes 

in the graph. The fact that we have to find the minimum distances from each node to 

source, forcing us to use iteration and thus counters of mapreduce library. Each iteration 

also implies a different node source; therefore, the same process is performed as many 

times as the n, number of nodes of the graph. 

C 
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The general implementation process of this algorithm with the help of MapReduce 

jobs is as follows: 

 First, as input is given a txt file with the following format: 

  This file is taken as input by InitMapper which aims to give as output a txt file 

with the following format: 

So as to start the BFS algorithm process. Specifically, the BFS algorithm assumes 

that the source node is initialized as VISITED, while all adjacent nodes can now be 

processed. At the end of processing, they become VISITED, while the source node 

is now become PROCESSED. When there is no one else VISITED node, then 

consider that the pervasion of the graph is over and we have reached to the final 

node of each current iteration. 

 the InitMapperTwo takes as input the txt file produced by the InitMapper and 

aims to set the start BFS algorithm, i.e., to set source node as VISITED 

τον source κόμβο ως VISITED and determine the distance 0, because obviously 

the distance from starting node is constant and equal to 0. The key is the id of each 

node and the value is all of the remaining information, that is properly processed. 

 the SearchMapper takes as input the output of InitMappertwo and aims to verify 

if it is accessible by the current node, i.e., if it is VISITED, then access all of its 

neighbors and set them as VISITED, add the distance, in more particular, the 

weight of each node if we refer to weighted graphs or 1 if we refer to unweighted 

graphs and in the end, as long as we finish the access of neighbors, we make 

current node PROCESSED. Giving as an expense as key the id of each node and as 

value the rest information.  

 SearchReducer takes as input the output of SearchMapper and aims to keep 

always, a minimum distance value; giving as output the same format with 

SearchMapper. 

*VerticeID:neighbor1,...,neighborN 

1:2,3 

2:1,3 

 

*VerticeID neigbor1,...,neighborN|distance|status|cc 

1  5|2147483647|UNVISITED|0 

2  5|2147483647|UNVISITED|0 

3  4,2|2147483647|UNVISITED|0 

 

3  5|2147483647|UNVISITED|0 

2  5|2147483647|UNVISITED|0 

1  4,2|0|VISITED|0 
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 the FinalMapper takes as input the output of SearchReducer and aims to keep 

through all the information, only the id of each node and the minimum distance. 

As a key set the id of each node and as a value the minimum distance from the 

current source node. 

 the FinalReducer takes as input the output of FinalMapper and intends to calculate 

the sum of all minimum distances of all other nodes for each node and finally, the 

inverse of this number is the CC. Giving key as the id of each node and the value as 

CC. 

PSEUDOCODE: 

Class SearchMapper 

public void map(LongWritable key, Text value, Context context, Node inNode){  
if (inNode.getStatus() == Node.State.VISITED) {  

// for all the adjacent nodes of the VISITED node  
for (neighbor in inNode.getEdges()) {  

Node adjacentNode = new Node(); 

adjacentNode.setId(neighbor);  
// set the id of the node  
// for weighted graph or for unweighted the weight is 1  
adjacentNode.setDistance(inNode.getDistance() + 

inNode.getWeight());  
// set the status of the current node to be VISITED 

adjacentNode.setStatus(Node.State.VISITED); 

context.write(adjacentNode.getId()), 

adjacentNode.getNodeInfo());  
}  
// this node is done, set status to be PROCESSED 

inNode.setStatus(Node.State.PROCESSED);  
}  
context.write(inNode.getId(), inNode.getNodeInfo()); 

} 

 

Class SearchReducer 
 
public Node reduce(Text key, Iterable<Text> values, Context context, Node 

outNode){  
int sum = 0;  
//set the node id as the key  
outNode.setId(key);  
//for all the values corresponding to a particular node id  
for each v in values {  
 Node inNode = new Node(key + "\t" + v);  

if (inNode.getEdges().size() > 0)  
 outNode.setEdges(inNode.getEdges());  
// Save the minimum distance  
if (inNode.getDistance() < outNode.getDistance()) 

 outNode.setDistance(inNode.getDistance());  
// Save the VISITED between UNVISITED and VISITED  
// Save the PROCESSED between VISITED and PROCESSED  
if (inNode.getStatus().ordinal() > 

outNode.getStatus().ordinal()) 

 outNode.setStatus(inNode.getStatus());  
}  
context.write(key, outNode.getNodeInfo());  
return outNode;  

} 
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Class FinalMapper 
 
public void map(LongWritable key, Text value, Context context){  

String[] inputLine = value.split("\\t");  
String[] tokens = inputLine[1].split("\\|");  
// key is id and value is minimum distance  
context.write(inputLine[0], tokens[1]);  

} 

 

Class FinalReducer 

public void reduce(Text key, Iterable<Text> values, Context context){  
for each v in values{  
 sum = sum + Integer.parseInt(v.toString());  

//if it's the source node, get the id  
if (Integer.parseInt(v.toString()) == 0)  
 id.set(key);  
//if it's the last node of the graph, set the closeness  
if (N == Integer.parseInt(key.toString())) { 

 closeness.set(String.valueOf(1/sum));  
 list.add(closeness);  
}  

}  
//if we are at the end of the list, set the final output key & value  
if (N == list.size()) {  
 for (int i = 0; i<list.size(); i++) {  
  context.write((i+1)), list.get(i)); 
 }  
}  

}  

 

3 5|2147483647|UNVISITED|0 

2 5|2147483647|UNVISITED|0 

1 4,2|0|VISITED|0 

Mapper1

Reducer1
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Key : id
Value : info

Start

Mapper2

Takes only the id of 
the node and its 

minimum distance
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Key : id 
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Sums the minimum distances for 
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Flowchart 3 Closeness Centrality process 
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3.4 Shortest Path Betweenness Centrality 

etweenness centrality is the most common and representative flow-based 

measure. In general, the betweenness centrality of a node V is the number of 

times a walker visits node V, averaged over all possible starting and ending 

nodes. Different types of walks lead to different definitions for betweenness centrality. In 

Freeman betweenness, the walks always follow the shortest path from starting to ending 

node. In Newman’s betweenness, the walks are absorbing random walks. Both of these 

popular definitions require prohibitively expensive computations: the best algorithm for 

shortest-path betweenness has O (n2 * log n) complexity, while the best for Newman’s 

betweenness has O((m * n)2) complexity. 

To implement this algorithm BFS algorithm was used for the permeation of the 

graph and Dijkstra algorithm for finding the shortest path between any two nodes in the 

graph. The fact that we have to find the minimum distance of 2 any node couples to source 

all the graph nodes each time while store Mr. different equally spaced possible minimum 

paths, forcing us to use repetition and thus counters the implementation of algorithm. 

Each iteration also implies a different node source; therefore, the same process is 

performed as many times as there are the n nodes of the graph. 

The general implementation process of this algorithm with the help of MapReduce 

jobs is as follows: 

 First, as input is given a txt file with the following format: 

  This file is taken as input by InitMapper which aims to give as output a txt file 

with the following format: 

So as to start the BFS algorithm process. Specifically, the BFS algorithm assumes that 

the source node is initialized as VISITED, while all adjacent nodes can now be 

processed. At the end of processing, they become VISITED, while the source node is 

now become PROCESSED. When there is no one else VISITED node, then consider that 

B 

*VerticeID:neighbor1,...,neighborN 

1:2,3 

2:1,3 

 

*VerticeID neigbor1,...,neighborN|distance|status|cc 

1  5|2147483647|UNVISITED|0 

2  5|2147483647|UNVISITED|0 

3  4,2|2147483647|UNVISITED|0 
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the pervasion of the graph is over and we have reached to the final node of each 

current iteration. 

 the InitMapperTwo takes as input the txt file produced by the InitMapper and 

aims to set the start BFS algorithm, i.e., to set source node as VISITED 

τον source κόμβο ως VISITED and determine the distance 0, because obviously 

the distance from starting node is constant and equal to 0. The key is the id of 

each node and the value is all of the remaining information, that is properly 

processed. 

 the SearchMapper takes as input the output of InitMappertwo and aims to verify 

if it is accessible by the current node, i.e. if VISITED, to access all the neighbors, 

put and them VISITED, add the distance the weight of each node if refer to 

weighted graphs or 1 if we refer to unweighted graphs and end as long as you 

finish the access of neighbors to appoint current node as PROCESSED. Here are 

perceived as necessary to the store somehow all possible paths soon because 

SPBC varies and depends directly. More specifically, in cases with equivalent 

minimum paths added to each if located intermediate node we ask each time, 1 

for the number of equivalent paths rather than one as in the other cases. Giving as 

an expense for the key id of each node and for value the rest information. 

 the SearchReducer takes as input the output of SearchMapper and aims to always 

keep a minimum distance value giving as output the same format with 

SearchMapper. 

 the FinalMapper takes as input the output of SearchReducer and aims if we have 

all the possible paths for each pair to add together the times we meet in between 

the current node in these lists are all possible short paths between the source and 

destination, allowing as the key id of each node and value that sum. 

 the FinalReducer receives as input the output of FinalMapper and intends to 

summation of all the individual impressions of each node for all replicates i.e. each 

node that becomes source. This sum is in fact the SPBC node. Giving key as the id 

of each node and the value SPBC. 

PSEUDOCODE: 

Class SearchMapper 

public void map(LongWritable key, Text value, Context context, Node inNode){  
if (inNode.getStatus() == Node.State.VISITED) {  
 //for all the adjacent nodes of the VISIED node  
 for each neighbor in inNode.getEdges(){  

3  5|2147483647|UNVISITED|0 

2  5|2147483647|UNVISITED|0 

1  4,2|0|VISITED|0 
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  adjacentNode.set(all the info); 
  //id, VISITED, distance  
  ArrayList<> list;  
  //list with the nodes of the path    

 adjacentNode.setShortest_Path(list);  
//if the parent is not exist in the list from adjacents and add the parent  

  check(adjacentNode);      

 context.write(adjacentNode.getId(),    

 adjacentNode.getNodeInfo());  
inNode.setShortest_Path(list);  

// if the parent is not exist in the list from current node and add the 

parent  
  check(inNode);  
 }  
 // this node is done, set it PROCESSED 

 inNode.setStatus(Node.State.PROCESSED);  
}  
context.write(inNode.getId(), inNode.getNodeInfo());  

} 

Class SearchReducer 

public Node reduce(Text key, Iterable<Text> values, Context context, Node 

outNode){  
int sum = 0;  
//set the node id as the key  
outNode.setId(key);  
//for all the values corresponding to a particular node id  
for each v in values {  
 Node inNode = new Node(key + "\t" + v);  

if (inNode.getEdges().size() > 0)  
 outNode.setEdges(inNode.getEdges());  
// Save the minimum distance  
if (inNode.getDistance() <= outNode.getDistance()){ 
 if (inNode.getDistance == outNode.getDistance)  

   outNode.setShortest_Path(inNodeSP, 

outNodeSP);  
 outNode.setDistance(inNode.getDistance());  
} 
// Save the VISITED between UNVISITED and VISITED  
// Save the PROCESSED between VISITED and PROCESSED  
if (inNode.getStatus().ordinal() > 

outNode.getStatus().ordinal()) 

 outNode.setStatus(inNode.getStatus()); 
//same source but destination? 
for each inNodeSP 
 checkDestination(); 
checkDuplicates();  

}  
context.write(key, outNode.getNodeInfo());  
return outNode;  

}  

 

Class FinalMapper 

public void map(LongWritable key, Text value, Context context){  
for (int k = 1; k<=N;k++) {  

String element = String.valueOf(k);  
//the rest info from the inputLine  
//distance,Status etc  
String[] tokens;  
//if there is one shortest path  
if (tokens.length == 4) {  
 ArrayList<String> ar; //list with the nodes of the path  
 //check if the element is in the list  
 //but not at the start and in the end of the list  
 //and if it's true sum++  
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 checkIfContainsK(ar,element);  
} //if there are more than one shortest paths  
else if (tokens.length > 4) {  
 double pathNum;  
 for each path from paths {  
  ArrayList<String> ar2 = new ArrayList<>();  
  //check if the element is in the list  
  //but not at the start and in the end of the list  
  //and if it's true sum=sum + 1/pathNum  
  checkIfContainsK(ar2,element)  
 }  
}  
context.write(k, sum);  
sum = 0;  

}  
} 

Class FinalReducer 

public void reduce(Text key, Iterable<Text> values, Context context){  
double sum = 0;  
Text spbc = new Text();  
// for directed graphs  
Text spbc2 = new Text();  
// for undireted graphs  
for each v in values {  

//id is initialized to 1 
//Sum all the spbc from all the iterations  
//first for id = 1, then for id = 2, etc.  
if (key.equals(id))  
 sum = sum + (double) v;  

}  
context.write(key, sum + “ ” + sum/2); id++;  
// for the next iteration  

} 

 

3 5|2147483647|UNVISITED|0 

2 5|2147483647|UNVISITED|0 

1 4,2|0|VISITED|0 

Mapper1

Reducer1

End

Makes VISITED the neighbors and the 
current node PROCESSED. Changes 
distances respectively and save the 

shortest paths

Save always the 
shortest paths

Key : pointer 
Value :  each line

Key : id 
Value :  info Shuffle

Key : id 
Value :  <info1, info2,...>

Key : id
Value : info

Start

Mapper2

For each id checks if it is between 
each short path and compute the 

sum respectively

Key : id
Value : sum Shuffle

Key : id 
Value :  <sum1, sum2,...>

Reducer2

Sums the individual totals for each 
same id, ie. calculate spbc

Key : id
Value : SPBC

 
Flowchart 4 Shortest Path Betweenness Centrality process 
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3.5 Page Rank 

his algorithm is perhaps the most popular centrality metric of a node in a graph. 

More specifically, the PageRank of a node is the sum of the quotient of incoming 

PageRank nodes, to the plurality of outgoing nodes. The formula is: 

 
Such as, d = 0.85 

   j: number of outgoing links 

The general implementation process of this algorithm with the help of MapReduce 

jobs is as follows: 

 First, as input is given a txt file with the following format : 

 

 Subsequently, IniMapper simply outputs a txt file in format:  

 We insert the initial value of PageRank of each node as 0.166667 arbitrarily. 

 the PageRankMapper takes as input the output of InitMapper and aims to separate 

the current node to the other adjacent to each line of the input file for each 

outgoing node of current starting with the initial value of PageRank divide by the 

number of neighboring nodes having each node. Giving as an expense for the key 

id of each adjacent node for value and a current value that will be the end of the 

PageRank value and end of each file key as the parent node and value nodes 

children that their outgoing links. 

 the PageRankReducer receives as input the output of PageRankMapper and aims 

to add all of the individual values from the input file, and finally adding the term 

1-d and multiply the sum by d agent giving as output the same format with the 

PageRankMapper, i.e., the key id of each node and value as their neighboring 

nodes and the renewed PageRank value. 

 

 

T 

*VerticeID:neighbor1,...,neighborN 

1:2,3 

2:1,3 

 

*VerticeID neighbor1 ... neighborN PR 

1 2 3 0.166667 

2 1 3 0.166667 
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PSEUDOCODE: 

Class PageRankMapper 

public void map(LongWritable key, Text value, Context context){  

 //val = PR / numOfChildren or outlinks  

 String valString;   

 String outgoing = "";  

 for each c in chidren {  

  page.set(c);  

  context.write(page, valString);  

 }  

 for each c in chidren  

  outgoing += (c + " ");  

 page.set(parent);  

 context.write(page, outgoing);  

} 

 

Class PageRankReducer 

public void reduce(Text key, Iterable<Text> values, Context context){  
 String outgoing = "";  
 double trans;  
 double sum = 0.0;  
 for each v in values{  
  if(v.startsWith("0")) {  

    //trans = parseDouble(line)  
   sum += trans;  
  } else outgoing = v;  
 }  
 sum = ((1-0.85) + 0.85*(sum)); 
 outgoing += Double.toString(sum);   
 result = new Text(outgoing);   
 context.write(key, result); 

} 
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*VerticeID:neighbor1,..neighborN 

1 2 3 0.166667

2 1 3 0.166667 

Mapper

Reducer

End

Starting with the initial 
value PR, compute for 

each neighbor
PR / # neighbors

Adds all the individual values for each 
same Id. Adds the term (1-d) * d

Key : pointer 
Value :  each line

Key : neighborId 
Value :  value Shuffle

Key : id 
Value :  <value1, value2,...>

Key : id 
Value : PR

Start

 

 
Flowchart 5 PageRank process 
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Chapter 4. Experiments and Results 

n this section, it is present the experimental evaluation of each algorithm. The 

experiments were run on a computer with the following characteristics: 

Core i7 4770K 3.9 GHz 

24 GB DDR3 RAM 

128GB SSD 

OS Ubuntu 16.04 LTS 

Table 1 Characteristics of computing system 

 

For each algorithm, it is used as input 3 graphs of different sizes. These are described in 

Table 2. There is a wide collection of real graphs in [7].  The scope of this thesis is to show 

the implementation of algorithms in an environment that supports parallel processing, 

like Hadoop. For this reason, we will not deal with performance and accuracy of 

algorithms. 

NETWORK 1 NETWORK 2 NETWORK 3 

100 nodes 

200 edges 

Undirected 

500 nodes 

1500 edges 

Undirected 

1000 nodes 

5000 edges 

Undirected 

Table 2 Characteristics of network experiments 

Moreover, in this section there are analyzed two different approaches. On the one hand, 

the relationship of the algorithms with the size of complex networks, in other words, 

scalability w.r.t. complex net size, and on the other, the relationship between them, based 

on the correlation of the results, i.e., ranking correlation 

We present some simple experiments, that are based on the graph that is shown 

in Figure 9. The outputs of the simple examples and the screenshots of the real network 

experiments are shown in Appendix. Subsequetly, we explain the Kendall distance in 

which the second approach is based on and finally, we show some graphs on real 

networks that we have ran.  

I 
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Figure 9 Example of a simple undirected graph 

 

The Kendall tau rank distance is a metric that counts the number of pairwise 

disagreements between two ranking lists. The larger the distance, the more dissimilar the 

two lists are. Kendall tau distance is also called bubble-sort distance since it is equivalent 

to the number of swaps that the bubble sort algorithm would make to place one list in the 

same order as the other list. The Kendall tau distance was created by Maurice Kendall. 

First of all, for the graph on Figure 9, we create the table 3, in other words, we run 

and compute each algorithm so as to find out the rankings/outputs. 

 1 2 3 4 5 6 7 8 9 

DC 3 3 3 1 1 1 1 2 3 

PCI 3 3 3 1 2 1 2 2 3 

CC 5 6 6 1 2 1 3 4 7 

SPBC 5 5 5 2 1 4 3 5 5 

PR 7 6 6 3 1 1 2 5 8 

Table 3 Rankings 

 

In statistics, the Kendall rank correlation coefficient, commonly referred to as 

Kendall's tau coefficient (after the Greek letter τ), is a statistic used to measure the ordinal 

association between two measured quantities. It is a measure of rank correlation, too, i.e., 

the similarity of the orderings of the data when ranked by each of the quantities. 

Intuitively, the Kendall correlation between two variables will be high when observations 

have a similar (or identical for a correlation of 1) rank between the two variables, and low 

when observations have a dissimilar (or fully different for a correlation of -1) rank 

between the two variables. 

1 4

2

7

5 6

3

9

8
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𝜏 =
(𝑛𝑢𝑚𝑂𝑓𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡) −  (𝑛𝑢𝑚𝑂𝑓𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡)

𝑛(𝑛 −  1)/2
 

 

In accordance with the above formula, we can now calculate on the following table the τ 

coefficient. 

 DC PCI CC SPBC PR 

DC 1 1 1 11  

PCI 1 1 1 0.833 0.777 

CC 1 1 1 0.833 0.666 

SPBC 1 0.833 0.833 1 0.944 

PR 1 0.777 0.666 0.944 1 

Table 4 Kendall tau coefficient (τ) 

 

The correlation of the algorithms from max to min, is shown in the following table:  

Metrics Kendall’s tau coefficient (τ) 

{DC, #}, {CC, PCI} 1 

{PR, SPBC} 0.944 

{SPBC, PCI}, {SPBC, CC} 0.833 

{PR, PCI} 0.777 

{PR, CC} 0.666 

Table 5 Correlation of metrics 

 

We observe that DC algorithm is correlated with each other algorithm. This 

phenomenon applies because of the small information that offers, so that all the rest 

algorithms have fully correlation with DC. This contrasts with efficiency at runtime, as we 

will see later. In addition, the maximum correlation, except DC, appears between CC and 

PCI, and the minimum one appears between CC and PR. 

Furthermore, on Figure 10, we see that DC, PCI, PR are not affected by the size of 

the networks. Also, we can clearly see that SPBC and CC algorithms, because of their big 

complexity (O|n3|), όπου n = number of nodes of the graph, differ from the others at 
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runtime efficiency. As we expect, they are slower than the others and as the size is 

increasing, so the execution time get higher. 

 

 

Figure 10 Scalability of metrics 

 

1 sec

10 sec

100 sec

1000 sec

10000 sec

100000 sec

Network 1 Network 2 Network 3

Scalability w.r.t. complex net size

DC PCI CC SPBC PR
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Chapter 5. Conclusions and Future Work 

he motivation of this thesis has been to develop parallel Map/Reduce algorithms 

in Hadoop to handle a graph mining task. This task was chosen to be node 

centrality, which shows the significance of each node in a given graph. Centrality 

has many applications in network theory according to the relations that a network 

expresses. Such include recommendation systems, social network analysis and the 

discovery of patterns in a computer network traffic. 

However, sequential algorithms cannot address the problem of data that occurs 

in real world networks. Hadoop is a tool that offers us the possibility to easily write 

parallel algorithms without caring about parallelization details like the communication of 

machines, the distribution of data, the replication and fault tolerance. All that is needed 

for a programmer, is to supply the implementation of a map and a reduce function. 

Hadoop is a powerful tool and has already been used in graph mining algorithms like 

counting triangles, detecting components, finding the diameter, link prediction etc. 

As a subject of future study could be considered to optimize some algorithms, so 

as to succeed better efficiency at runtime and accuracy. There are many techniques in 

parallel computing that can help us to do this., some are based on hardware and some 

others on software. A good technique, for example is to reduce the size of the intermediate 

data by adopting techniques of data compression or implementations that compute 

matrix approximations. 

Furthermore, another issue of the future study is, if it is possible, the merge of two 

quite correlated metrics, so as to create a tool that will provide us more information about 

the graphs. 

T 
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Chapter 6. Appendix 

In this section, we present the outputs/screenshots of the experiments, for each metric. 

6.1 Degree Centrality’s Experiments 

 

Figure 11 Output of DC 

 

File System Counters 

        FILE: Number of bytes read=35556 

        FILE: Number of bytes written=1181325 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=6232 

        HDFS: Number of bytes written=978 

        HDFS: Number of read operations=42 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=16 

    Map-Reduce Framework 

        Map input records=100 

        Map output records=100 

        Map output bytes=1460 

        Map output materialized bytes=1678 

        Input split bytes=100 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=100 

        Reduce shuffle bytes=1678 

        Reduce input records=100 

        Reduce output records=100 

        Spilled Records=200 

        Shuffled Maps =3 

        Failed Shuffles=0 

        Merged Map outputs=3 
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        GC time elapsed (ms)=3 

        Total committed heap usage (bytes)=1107296256 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=1558 

    File Output Format Counters  

        Bytes Written=492 

Elapsed time is: 1s. 

Figure 12 Small network experiment for DC 

 
File System Counters 

        FILE: Number of bytes read=101846 

        FILE: Number of bytes written=1262937 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=54968 

        HDFS: Number of bytes written=5784 

        HDFS: Number of read operations=42 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=16 

    Map-Reduce Framework 

        Map input records=500 

        Map output records=500 

        Map output bytes=13244 

        Map output materialized bytes=14262 

        Input split bytes=100 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=500 

        Reduce shuffle bytes=14262 

        Reduce input records=500 

        Reduce output records=500 

        Spilled Records=1000 

        Shuffled Maps =3 

        Failed Shuffles=0 

        Merged Map outputs=3 

        GC time elapsed (ms)=3 

        Total committed heap usage (bytes)=1105199104 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=13742 

    File Output Format Counters  

        Bytes Written=2892 

Elapsed time is: 1s. 

Figure 13 Medium network experiment for DC 
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File System Counters 

        FILE: Number of bytes read=224092 

        FILE: Number of bytes written=1446386 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=175284 

        HDFS: Number of bytes written=13778 

        HDFS: Number of read operations=42 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=16 

    Map-Reduce Framework 

        Map input records=1000 

        Map output records=1000 

        Map output bytes=42823 

        Map output materialized bytes=44841 

        Input split bytes=101 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=1000 

        Reduce shuffle bytes=44841 

        Reduce input records=1000 

        Reduce output records=1000 

        Spilled Records=2000 

        Shuffled Maps =3 

        Failed Shuffles=0 

        Merged Map outputs=3 

        GC time elapsed (ms)=3 

        Total committed heap usage (bytes)=1119879168 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=43821 

    File Output Format Counters  

        Bytes Written=6893 

Elapsed time is: 1s. 

Figure 14 Large network experiment for DC 
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6.2 Power Community Index’s Experiments 

 

Figure 15 Output of PCI 

 

File System Counters 

        FILE: Number of bytes read=230945 

        FILE: Number of bytes written=3685514 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=156558 

        HDFS: Number of bytes written=45120 

        HDFS: Number of read operations=342 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=90 

    Map-Reduce Framework 

        Map input records=100 

        Map output records=100 

        Map output bytes=1092 

        Map output materialized bytes=1346 

        Input split bytes=312 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=100 

        Reduce shuffle bytes=1346 

        Reduce input records=100 

        Reduce output records=100 

        Spilled Records=200 

        Shuffled Maps =9 

        Failed Shuffles=0 

        Merged Map outputs=9 

        GC time elapsed (ms)=5 

        Total committed heap usage (bytes)=2884108288 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 
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    File Input Format Counters  

        Bytes Read=7357 

    File Output Format Counters  

        Bytes Written=492 

Elapsed time is: 3s. 

Figure 16 Small network experiment for PCI 

 

File System Counters 

        FILE: Number of bytes read=471552 

        FILE: Number of bytes written=3898986 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=875670 

        HDFS: Number of bytes written=243726 

        HDFS: Number of read operations=342 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=96 

    Map-Reduce Framework 

        Map input records=500 

        Map output records=500 

        Map output bytes=7892 

        Map output materialized bytes=8946 

        Input split bytes=315 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=500 

        Reduce shuffle bytes=8946 

        Reduce input records=500 

        Reduce output records=500 

        Spilled Records=1000 

        Shuffled Maps =9 

        Failed Shuffles=0 

        Merged Map outputs=9 

        GC time elapsed (ms)=4 

        Total committed heap usage (bytes)=2912419840 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=39657 

    File Output Format Counters  

        Bytes Written=2892 

Elapsed time is: 3s. 

Figure 17 Medium network experiment for PCI 

 

File System Counters 

        FILE: Number of bytes read=955321 

        FILE: Number of bytes written=4454899 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=2166960 

        HDFS: Number of bytes written=584960 
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        HDFS: Number of read operations=342 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=90 

    Map-Reduce Framework 

        Map input records=1000 

        Map output records=1000 

        Map output bytes=33893 

        Map output materialized bytes=35947 

        Input split bytes=312 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=1000 

        Reduce shuffle bytes=35947 

        Reduce input records=1000 

        Reduce output records=1000 

        Spilled Records=2000 

        Shuffled Maps =9 

        Failed Shuffles=0 

        Merged Map outputs=9 

        GC time elapsed (ms)=5 

        Total committed heap usage (bytes)=3318218752 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=95197 

    File Output Format Counters  

        Bytes Written=6893 

Elapsed time is: 3s. 

Figure 18 Large network experiment for PCI 

 

6.3 Closeness Centrality’s Experiments 

 

Figure 19 Output of CC 

 

File System Counters 

        FILE: Number of bytes read=7513684531 

        FILE: Number of bytes written=70328444360 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 



 

53 

 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=730618114 

        HDFS: Number of bytes written=725350494 

        HDFS: Number of read operations=5935170 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=2635203 

    Map-Reduce Framework 

        Map input records=10000 

        Map output records=10000 

        Map output bytes=49200 

        Map output materialized bytes=74600 

        Input split bytes=32328 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=100 

        Reduce shuffle bytes=74600 

        Reduce input records=10000 

        Reduce output records=100 

        Spilled Records=20000 

        Shuffled Maps =900 

        Failed Shuffles=0 

        Merged Map outputs=900 

        GC time elapsed (ms)=3864 

        Total committed heap usage (bytes)=161719779328 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=286000 

    File Output Format Counters  

        Bytes Written=2436 

Elapsed time is: 897s. 

Figure 20 Small network experiment for CC 

 

File System Counters 

        FILE: Number of bytes read=2433954365879 

        FILE: Number of bytes written=5181243880516 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=325853542792 

        HDFS: Number of bytes written=318138992353 

        HDFS: Number of read operations=850481604 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=348627936 

    Map-Reduce Framework 

        Map input records=250000 

        Map output records=250000 

        Map output bytes=1446000 

        Map output materialized bytes=2138000 

        Input split bytes=431648 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=500 

        Reduce shuffle bytes=2138000 
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        Reduce input records=250000 

        Reduce output records=500 

        Spilled Records=500000 

        Shuffled Maps =32000 

        Failed Shuffles=0 

        Merged Map outputs=32000 

        GC time elapsed (ms)=735099 

        Total committed heap usage (bytes)=2088738226176 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=10122000 

    File Output Format Counters  

        Bytes Written=12374 

Elapsed time is: 7542s. 
Figure 21 Medium network experiment for CC 

 

6.4 Shortest Path Betweenness Centrality’s Experiments 

 

Figure 22 Output of SPBC 

 

File System Counters 

        FILE: Number of bytes read=11545071989 

        FILE: Number of bytes written=75065433660 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=1061388179 

        HDFS: Number of bytes written=1106338165 

        HDFS: Number of read operations=5935170 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=2635203 

    Map-Reduce Framework 

        Map input records=10000 

        Map output records=1000000 

        Map output bytes=7130811 

        Map output materialized bytes=9136211 
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        Input split bytes=32328 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=100 

        Reduce shuffle bytes=9136211 

        Reduce input records=1000000 

        Reduce output records=100 

        Spilled Records=2000000 

        Shuffled Maps =900 

        Failed Shuffles=0 

        Merged Map outputs=900 

        GC time elapsed (ms)=4004 

        Total committed heap usage (bytes)=161877590016 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=662677 

    File Output Format Counters  

        Bytes Written=4117 

Elapsed time is: 845s. 

Figure 23 Small network experiment for SPBC 

 

File System Counters 

        FILE: Number of bytes read=1807745748637 

        FILE: Number of bytes written=4186599361080 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=191044761418 

        HDFS: Number of bytes written=202383347078 

        HDFS: Number of read operations=141298539 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=62717196 

    Map-Reduce Framework 

        Map input records=250000 

        Map output records=125000000 

        Map output bytes=989216868 

        Map output materialized bytes=1239243868 

        Input split bytes=161868 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=500 

        Reduce shuffle bytes=1239243868 

        Reduce input records=125000000 

        Reduce output records=500 

        Spilled Records=250000000 

        Shuffled Maps =4500 

        Failed Shuffles=0 

        Merged Map outputs=4500 

        GC time elapsed (ms)=169717 

        Total committed heap usage (bytes)=1573436522496 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 



56 

 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=30712316 

    File Output Format Counters  

        Bytes Written=20682 

Elapsed time is: 6263s. 
Figure 24 Medium network experiment for SPBC 

 

6.5 Page Rank’s Experiments 

 

Figure 25 Output of PR 

 

File System Counters 

        FILE: Number of bytes read=105120 

        FILE: Number of bytes written=2410024 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=18274 

        HDFS: Number of bytes written=17735 

        HDFS: Number of read operations=91 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=40 

    Map-Reduce Framework 

        Map input records=100 

        Map output records=196 

        Map output bytes=1346 

        Map output materialized bytes=1744 

        Input split bytes=116 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=100 

        Reduce shuffle bytes=1744 

        Reduce input records=196 

        Reduce output records=100 

        Spilled Records=392 

        Shuffled Maps =1 

        Failed Shuffles=0 

        Merged Map outputs=1 

        GC time elapsed (ms)=0 

        Total committed heap usage (bytes)=608174080 
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    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=2577 

    File Output Format Counters  

        Bytes Written=2577 

Elapsed time is: 5s. 
Figure 26 Small network experiment for PR 

 

File System Counters 

        FILE: Number of bytes read=297236 

        FILE: Number of bytes written=2609404 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=115148 

        HDFS: Number of bytes written=101973 

        HDFS: Number of read operations=91 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=48 

    Map-Reduce Framework 

        Map input records=500 

        Map output records=1140 

        Map output bytes=9786 

        Map output materialized bytes=12072 

        Input split bytes=116 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=500 

        Reduce shuffle bytes=12072 

        Reduce input records=1140 

        Reduce output records=500 

        Spilled Records=2280 

        Shuffled Maps =1 

        Failed Shuffles=0 

        Merged Map outputs=1 

        GC time elapsed (ms)=0 

        Total committed heap usage (bytes)=840957952 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=14309 

    File Output Format Counters  

        Bytes Written=14309 

Elapsed time is: 5s. 
Figure 27 Medium network experiment for PR 

File System Counters 

        FILE: Number of bytes read=1174720 
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        FILE: Number of bytes written=3491829 

        FILE: Number of read operations=0 

        FILE: Number of large read operations=0 

        FILE: Number of write operations=0 

        HDFS: Number of bytes read=314496 

        HDFS: Number of bytes written=254472 

        HDFS: Number of read operations=91 

        HDFS: Number of large read operations=0 

        HDFS: Number of write operations=40 

    Map-Reduce Framework 

        Map input records=1000 

        Map output records=1954 

        Map output bytes=16159 

        Map output materialized bytes=20073 

        Input split bytes=116 

        Combine input records=0 

        Combine output records=0 

        Reduce input groups=1000 

        Reduce shuffle bytes=20073 

        Reduce input records=1954 

        Reduce output records=1000 

        Spilled Records=3908 

        Shuffled Maps =1 

        Failed Shuffles=0 

        Merged Map outputs=1 

        GC time elapsed (ms)=0 

        Total committed heap usage (bytes)=1034944512 

    Shuffle Errors 

        BAD_ID=0 

        CONNECTION=0 

        IO_ERROR=0 

        WRONG_LENGTH=0 

        WRONG_MAP=0 

        WRONG_REDUCE=0 

    File Input Format Counters  

        Bytes Read=27618 

    File Output Format Counters  

        Bytes Written=27618 

Elapsed time is: 5s. 
Figure 28 Large network experiment for PR 
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