
UNIVERSITY OF THESSALY

PHD THESIS

Optimization of program execution using
computational significance

Author:
Vassilis VASSILIADIS

Supervisor:
Christos D. ANTONOPOULOS

Advising committee:
Christos D. ANTONOPOULOS,

Nikolaos BELLAS,
Spyros LALIS

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Electrical and Computer Engineering

November 30, 2017

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://www.uth.gr
http://inf-server.e-ce.uth.gr/~vasiliad/
http://inf-server.e-ce.uth.gr/~cda/
http://inf-server.e-ce.uth.gr/~cda/
http://inf-server.e-ce.uth.gr/~nbellas/
http://inf-server.e-ce.uth.gr/~lalis/
http://e-ce.uth.gr

i

“What drives magic is, at the end of the day, sheer will.”

"Harry Dresden" in the novel "Cold days" by Jim Butcher

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

ii

Abstract

Vassilis VASSILIADIS

Optimization of program execution using computational
significance

To this day, advancements in terms of performance and power efficiency for com-
puting systems are primarily the result of transistor shrinking, frequency scaling,
and parallelism exploitation. However, according to the 2013 report of the Interna-
tional Technology Roadmap for Semiconductors, this trend is predicted to come to a
halt beyond 2020. Past practices are bound to hit the so-called power-wall of CMOS
technology. Power consumption is a limiting factor and a key concern for the future
of computing systems.

Heterogeneous architectures are a step towards realizing power-, performance-,
and energy- efficient computing platforms. The advantage of using different com-
pute units in the same system is that each one may be very efficient for specific com-
putation patterns. A modern example is General Purpose programming on Graphics
Processing Units (GPGPU), which exploits GPUs to perform embarrassingly parallel
computations efficiently. Exotic heterogeneous architectures involve the use of ap-
proximate hardware, such as Google’s Tensor Processing Units. Approximate hard-
ware enables developers to increase the performance and energy efficiency of their
applications by relaxing their expectations on the accuracy of the results.

Heterogeneity is not applicable to just hardware. It is inherently present at the
level of software as well. After all, not all parts or execution phases of a program
affect the quality of its output equally. In this Thesis we explore ways to optimize
applications based on this aspect of software heterogeneity, through the algorithmic
property of significance. The significance of computations is a metric that qualita-
tively defines the impact of the computations to the application’s output quality.
We introduce methodologies and frameworks which aim to identify and exploit op-
portunities to aggressively optimize the execution of the least significant parts of a
program. These parts are costly to execute but do not heavily impact the output
quality of the application.

We show that it is possible to optimize applications through the principles of
significance-aware approximate computing. In addition to approximate computing,
we explore a more aggressive approach, significance-aware fault tolerant comput-
ing realized through the use of unreliable hardware. Our motivation is the obser-
vation that hardware designers sacrifice performance, energy, and power efficiency

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

iii

to maintain the illusion of hardware reliability. Consequently, it is possible to re-
lax the reliability constraints of hardware to reduce the associated costs. Unfortu-
nately, unreliable hardware may adversely affect the execution of applications. To
this end, beyond approximate computing, we introduce a collection of frameworks,
and methodologies which make it possible for a developer to execute parts of her
application on extremely efficient, albeit unreliable hardware.

First, we introduce the basic framework for significance aware computing. It
consists of a versatile programming model and accompanying runtime-systems. It
allows developers to exploit the algorithmic property of significance and gracefully
trade-off output accuracy with optimized code execution. Developers may char-
acterize the different parts of their code with respect to their significance, in other
words their impact to the final application output. Following the significance char-
acterization of the code, developers opt for either approximating the least signifi-
cant parts of their code, or executing them using hardware configured at potentially
unreliable operating points. During execution time, the respective runtime system
orchestrates the execution of different parts of the application.

Application developers provide hints to the runtime systems in order to guide
the accuracy/optimization trade-off through the use of a single knob, the so called
"ratio". Ratio serves as a single knob to enforce a minimum quality in the perfor-
mance / quality / energy optimization space. Smaller ratios give the runtimes more
opportunities for optimization, however at a potential quality penalty. For applica-
tions implemented using the fault tolerant flavor of the programming model, devel-
opers may implement result checking functions and instruct the runtime system to
execute them at appropriate times. In the case of the approximate computing pro-
gramming model, application developers may supply an alternative, approximate
implementation of tasks.

Beyond discussing the basic framework for significance-aware approximate and
fault-tolerant computing we also provide methodologies to automate the process
of porting applications to these two computing paradigms. Firstly, we introduce a
hybrid, mathematically rigorous, profile-driven methodology which combines au-
tomatic algorithmic differentiation and interval analysis to compute the impact of
selected parts of a program to its output quality. Beyond significance characteriza-
tion, the same methodology may be used to provide hints to a developer to design
light-weight approximate implementations of tasks.

Secondly, we propose an analytical model to predict the energy consumption of
an application under different input sizes and execution configurations, in terms of
number of cores used, processor frequency, and the mix of accurately and approxi-
mately executed tasks. The model is used during execution-time by the runtime sys-
tem to pick the best configuration for a user-specified energy budget. Even though
we discuss the model in the context of approximate computing, the same methodol-
ogy with minimal modifications can be used in the context of fault-tolerant comput-
ing.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

iv

Finally, we present a methodology for automatic error detection in the output
of tasks, based on Artificial Neural Networks (ANNs). We show that ANNs can
be quite effective for error detection purposes, offering a good trade-off between
accuracy and execution overhead. At the same time, they can be generated in a
highly automated manner, with limited developer effort.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

v

Περίληψη

Βασίλειος Βασιλειάδης

Βελτιστοποίηση της εκτέλεσης προγραμμάτων αξιοποιώντας

τη σημαντικότητα των υπολογισμών

Η κατανάλωση ενέργειας αποτελεί έναν περιοριστικό παράγοντα και βασικό μέλημα για

το μέλλον των υπολογιστικών συστημάτων. Οι ετερογενείς αρχιτεκτονικές αποτελούν

ένα βήμα προς την υλοποίηση πλατφορμών υπολογιστών με μεγάλη απόδοση στους τομείς

της ισχύος, επίδοσης, και κατανάλωσης ενέργειας. Φυσικά, η ετερογένεια δεν ισχύει μόνο

για το υλικό. Είναι εγγενώς παρούσα και στο επίπεδο του λογισμικού. ΄Ολα τα τμήματα ή

οι φάσεις εκτέλεσης ενός προγράμματος δεν επηρεάζουν την ποιότητα των παραγόμενων

αποτελεσμάτων στον ίδιο βαθμό.

Στην παρούσα διδακτορική διατριβή διερευνώνται τρόποι βελτιστοποίησης των εφαρ-

μογών με βάση αυτή την πτυχή της ετερογένειας του λογισμικού, μέσω της αλγοριθμικής

ιδιότητας της σημαντικότητας (significance). Η σημαντικότητα των υπολογισμών είναι
μια μετρική που καθορίζει ποιοτικά τον αντίκτυπο συγκεκριμένων υπολογισμών στην

ποιότητα εξόδου της εφαρμογής. Εισάγουμε μεθοδολογίες και υλοποιούμε εργαλεία λο-

γισμικού που στοχεύουν στον εντοπισμό και την αξιοποίηση των ευκαιριών για φιλόδοξη

βελτιστοποίηση της εκτέλεσης των λιγότερο σημαντικών τμημάτων ενός προγράμματος.

Αυτά τα τμήματα μπορεί να έχουν αντίστοιχο κόστος εκτέλεσης με σημαντικότερα τμήμα-

τα αλλά δεν επηρεάζουν εξίσου έντονα την ποιότητα εξόδου της εφαρμογής.

Δείχνουμε ότι είναι δυνατή η βελτιστοποίηση των εφαρμογών μέσω των αρχών της

προσεγγιστικής υπολογιστικής, που κάνει χρήση της αλγοριθμικής ιδιότητας της σημα-

ντικότητας. Εκτός από την προσεγγιστική υπολογιστική, διερευνάμε και μια πιο φιλόδοξη

προσέγγιση η οποία βασίζεται στη χρήση αναξιόπιστου υλικού και τις αρχές της ανοχής

εφαρμογών σε σφάλματα. Το κίνητρό μας είναι η παρατήρηση ότι οι σχεδιαστές υλικού

θυσιάζουν τις επιδόσεις, την ενέργεια και την αποδοτικότητα ισχύος για να διατηρήσουν

την ψευδαίσθηση της αξιοπιστίας του υλικού. Κατά συνέπεια, μπορεί κανείς να χαλα-

ρώσει τους περιορισμούς αξιοπιστίας του υλικού για να μειώσει τα σχετικά κόστη του

σε ισχύ, απόδοση, καθώς και ενέργεια. Δυστυχώς, το μη αξιόπιστο υλικό μπορεί να

επηρεάσει δυσμενώς την ορθότητα της εκτέλεσης των εφαρμογών. Για το σκοπό αυτό,

σχεδιάζουμε μεθοδολογίες και υλοποιούμε υποστήριξη λογισμικού που δίνουν την επιλο-

γή σε έναν χρήστη να εκτελέσει τμήματα της εφαρμογής του σε ενεργειακά αποδοτικό,

αν και αναξιόπιστο υλικό.

Αρχικά, εισάγουμε το βασικό πλαίσιο για τον υπολογισμό της σημαντικότητας. Αυ-

τό συμπεριλαμβάνει ένα ευέλικτο μοντέλο προγραμματισμού και συνοδευτικά συστήματα

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

vi

χρόνου εκτέλεσης. Επιτρέπει στους προγραμματιστές να εκμεταλλευτούν την αλγοριθμι-

κή ιδιότητα της σημαντικότητας και την ακρίβεια της απόδοσης εξόδου με βελτιστοποιη-

μένη εκτέλεση κώδικα. Οι προγραμματιστές μπορούν να χαρακτηρίζουν τα διάφορα μέρη

του κώδικά τους σε σχέση με τον αντίκτυπό τους στην τελική έξοδο της εφαρμογής.

Μετά τον χαρακτηρισμό του κώδικα ως προς τη σημαντικότητα του, οι προγραμματιστές

επιλέγουν είτε να εκτελέσουν προσεγγιστικά τα λιγότερο σημαντικά τμήματα του κώδι-

κα τους είτε να τα εκτελέσουν χρησιμοποιώντας εξοπλισμό διαμορφωμένο σε δυνητικά

αναξιόπιστα σημεία λειτουργίας. Κατά τη διάρκεια του χρόνου εκτέλεσης, το αντίστοιχο

σύστημα χρόνου εκτέλεσης ενορχηστρώνει την εκτέλεση διαφορετικών τμημάτων της

εφαρμογής.

Οι προγραμματιστές εφαρμογών παρέχουν συμβουλές στα συστήματα χρόνου εκτέλε-

σης για να καθοδηγήσουν την αντιστοίχιση ακρίβειας / βελτιστοποίησης μέσω της χρήσης

μιας μόνο ρύθμισης, του λεγόμενου "ratio". Το ratio χρησιμεύει ως ενιαίο μοχλός για την
επιβολή ελάχιστης ποιότητας στο χώρο απόδοσης / ποιότητας / ενεργειακής βελτιστο-

ποίησης. Μικρότερες αναλογίες δίνουν στους χρόνους εκτέλεσης περισσότερες ευκαιρίες

για βελτιστοποίηση, αλλά δυστυχώς και μεγαλύτερη πιθανή ποινή στην ποιότητα. Για

εφαρμογές που υλοποιούνται υπό τις αρχές της ανοχής σε σφάλματα, οι προγραμματιστές

μπορούν να υλοποιήσουν μεθοδολογίες για τον έλεγχο των ενδιάμεσων αποτελεσμάτων

και να δώσουν εντολή στο σύστημα χρόνου εκτέλεσης να τις εκτελέσει σε κατάλληλες

στιγμές. Στην περίπτωση του μοντέλου προγραμματισμού προσέγγισης, οι προγραμματι-

στές εφαρμογών μπορούν να παρέχουν στο σύστημα χρόνου εκτέλεσης μια εναλλακτική,

κατά προσέγγιση υλοποίηση των εργασιών (approximate tasks) η οποία απαιτεί μειωμένο
κόστος εκτέλεσης.

Πέρα από τη συζήτηση του βασικού πλαισίου για προσεγγιστικούς υπολογισμούς αλ-

λά και υπολογισμούς ανθεκτικούς σε σφάλματα, παρέχουμε επίσης μεθοδολογίες για την

αυτοματοποίηση της διαδικασίας μεταφοράς εφαρμογών σε αυτά τα δύο υποδείγματα υπο-

λογισμών. Βασιζόμαστε σε μια υβριδική, μαθηματικά αυστηρή μεθοδολογία η οποία όμως

είναι καθοδηγούμενη από profiling εκτελέσεις και συνδυάζει την αυτόματη αλγοριθμική
διαφοροποίηση (algorithmic differentiation) αλλά και την ανάλυση διαστημάτων (inter-
val analysis) για να υπολογίσει την επίδραση επιλεγμένων τμημάτων ενός προγράμματος
στην ποιότητα εξόδου του. Εισάγουμε μεθοδολογίες ώστε να εντοπίζονται σημαντικές

διαφοροποιήσεις της σημαντικότητας (significance) σε μονοπάτια του κώδικα ώστε να
χαρακτηρίζεται η σημαντικότητα υπολογισμών σε αδρότερο βαθμό καταμερισμού (tasks),
αλλά και να παρέχεται καθοδήγηση στους προγραμματιστές για την υλοποίηση προσεγ-

γιστικών εναλλακτικών των tasks.
Στη συνέχεια, προτείνουμε ένα αναλυτικό μοντέλο για την πρόβλεψη της κατανάλω-

σης ενέργειας μιας εφαρμογής με διαφορετικά μεγέθη εισόδου και διαμορφώσεις εκτέλε-

σης. Μία τέτοια διαμόρφωση συμπεριλαμβάνει τον αριθμό των χρησιμοποιούμενων πυ-

ρήνων, την συχνότητα του επεξεργαστή καθώς και τον λόγο (ratio) των εργασιών που
εκτελούνται με ακρίβεια και κατά προσέγγιση. Το μοντέλο χρησιμοποιείται κατά το

χρόνο εκτέλεσης από το σύστημα χρόνου εκτέλεσης για να επιλέξει την καλύτερη δια-

μόρφωση για έναν προϋπολογισμό ενέργειας που καθορίζεται από τον χρήστη. Μολονότι

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

vii

συζητούμε το μοντέλο στο πλαίσιο της προσεγγιστικής υπολογιστικής, η ίδια μεθοδολο-

γία με ελάχιστες τροποποιήσεις μπορεί να χρησιμοποιηθεί στο πλαίσιο των υπολογισμών

ανθεκτικότητας σε σφάλματα.

Τέλος, παρουσιάζουμε μια μεθοδολογία για την αυτόματη ανίχνευση σφαλμάτων στις

εξόδους των εργασιών, με βάση τα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ). Δείχνουμε ότι τα

ΤΝΔ μπορεί να είναι αρκετά αποτελεσματικά για τους σκοπούς ανίχνευσης σφαλμάτων.

Προσφέρουν έτσι ένα καλό αντιστάθμισμα μεταξύ ακρίβειας στην αναγνώριση σφαλμάτων

και κόστους για την εκτέλεσή τους. Ταυτόχρονα, μπορούν να δημιουργηθούν με πολύ

αυτοματοποιημένο τρόπο, καθώς απαιτούν περιορισμένη προσπάθεια από τη μεριά του

προγραμματιστή εφαρμογών.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

viii

Acknowledgements

This thesis is the result of research work conducted while I was pursuing my PHD
degree in the Department of Electrical and Computing Engineering of University of
Thessaly in Greece. I acknowledge the funding agencies which made this research
possible through financial means. These include the European Commission through
the SCoRPiO EU project as well as the Center for Research & Technology Hellas
(CERTH).

First and foremost I would like to thank my mentors, professors Christos D.
Antonopoulos, Nikolaos Bellas, and Spyros Lalis from the University of Thessaly.
They have been exceptionally good at guiding me during my initial steps, through-
out my Master’s and PHD, and have molded me as a researcher. Without their
guidance and mentoring none of this work would be possible. They were always
available to discuss and provide constructive criticism.

I would also like to thank my colleagues who provided me with help, as well as
stress relief with their wit and humor to ease the burden of research. Special thanks
to my friend and colleague Konstantinos Parasyris with whom I shared, pretty much
all of my research career thus far. Our joined research efforts, stimulating, and often
heated, discussions were very educating and most of the time relaxing.

Last but not least, I owe great many thanks to my friends and family. Especially,
I owe to my parents, Anna and Yannis, for their unconditional love and support
all along my academic pursuits. My friends will always have a special place in my
heart because they were always there during good times, and bad times to support
me with patience and love. The least I can do is dedicate this thesis to them all.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

ix

Contents

Abstract ii

Περίληψη v

Acknowledgements viii

1 Introduction 1
1.1 Problem . 1
1.2 Motivation . 2
1.3 Contributions . 4

1.3.1 Significance aware approximate computing 4
1.3.2 Significance aware fault tolerant computing 6

1.4 Outline . 7

2 Background 10
2.1 Benchmarks . 10

2.1.1 DCT . 10
2.1.2 Sobel . 11
2.1.3 K-means . 11
2.1.4 Jacobi . 11
2.1.5 Blackscholes . 11
2.1.6 Fisheye . 11
2.1.7 N-Body . 11
2.1.8 Lulesh . 12
2.1.9 Bonds . 12
2.1.10 MC . 12
2.1.11 Bodytrack . 12
2.1.12 Inversek2j . 12
2.1.13 Barnes . 13
2.1.14 Canneal . 13

2.2 Mathematical definition of the algorithmic property of significance . . 13
2.2.1 Significance as an Algorithmic Property 13
2.2.2 Limitations . 16
2.2.3 dco/scorpio Framework . 16

2.3 Fault, Time, and Energy models to facilitate software fault injection . . 19
2.3.1 Fault modeling . 19

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

x

2.3.2 Simulation-based fault injection 21
2.3.3 Software-based fault injection during native execution 21

Hardware configurations . 22
2.3.4 Execution Time and Energy Consumption Model 23
2.3.5 Execution time modeling . 23
2.3.6 Power and energy modeling . 24
2.3.7 Calibration and validation . 25

3 Significance-aware computing framework 27
3.1 Programming model objectives . 28
3.2 Task instantiation . 28

3.2.1 Approximate computing extensions to #pragma omp task . . . 29
3.2.2 Fault-tolerant computing extensions to #pragma omp task . . . 30

3.3 Synchronization . 30
3.3.1 Synchronization for approximate computing 31
3.3.2 Synchronization for fault-tolerant computing 31
3.3.3 Compiler implementation . 31

3.4 Approximate computing example . 32
3.5 Fault-tolerant computing example . 33
3.6 Programmer Insight . 33
3.7 Application Characteristics . 34
3.8 Runtime support for significance aware approximate computing 35

3.8.1 Life of a group-of-tasks . 36
3.8.2 Experimental Evaluation . 36

Approach . 38
Experimental Results . 39

3.9 Runtime support for significance aware fault tolerant computing . . . 43
3.9.1 Runtime Execution Management 43
3.9.2 Life of a group-of-tasks . 46
3.9.3 Benchmarks . 46
3.9.4 Simulated Software Fault Injection 49

4 Automating significance characterization of tasks 55
4.1 Workflow for Systematic Significance Driven Programming 56

4.1.1 Significance Analysis Framework 56
4.2 Experimental Evaluation . 61

4.2.1 Method validation . 61
Sobel . 61
Discrete Cosine Transformation 61
Fisheye Lens Image Correction (Fisheye) 61
N-Body . 63
Blackscholes . 64

4.2.2 Performance evaluation . 64

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

xi

Loop perforation . 64
Quality, performance and energy quantification 65

5 Modeling and Prediction of Application Energy Footprint 67
5.1 Analytic Model of Execution Time . 68
5.2 Analytic Model of Power and Energy Consumption 69
5.3 Offline Profiling and Model Fitting . 69
5.4 Benchmarks . 70
5.5 Experimental Methodology . 71
5.6 Experimental Evaluation and Discussion 72
5.7 Conclusions . 77

6 Automatic result checking for fault-tolerant computing 78
6.1 Artificial Neural Networks for Error Detection 79

6.1.1 Application profiling . 80
6.1.2 ANN structures . 81
6.1.3 Training the ANNs . 82
6.1.4 Deployment . 83

6.2 Evaluation approach . 84
6.2.1 Fault injection approach . 84
6.2.2 Metrics . 85

6.3 Evaluation . 86
6.3.1 Benchmarks . 87

DCT . 88
Sobel . 89
Blackscholes . 90
Bonds . 91
Lulesh . 91
Barnes . 93
Inversek2j . 93
Bodytrack . 94

6.3.2 Case study - Analysis for an unreliable configuration at the PoFF 95

7 Related work 99
7.1 Approximate computing . 99
7.2 Fault tolerant computing . 101

7.2.1 Power and Energy-Aware Optimization 104

8 Concluding remarks 106
8.1 Retrospective . 106
8.2 Conclusions . 107
8.3 Future work . 110

Related publications 112

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

xii

Contribution to Joint Publications 113

Bibliography 114

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

xiii

List of Figures

1.1 Application domains with intrinsic error resiliency. 3
1.2 Overview of the interaction of all techniques introduced in this Thesis

to facilitate the efficient implementation of applications using the sig-
nificance aware approximate and fault-tolerant computing paradigms. 8

2.1 Annotated DynDFG and adjoint propagation : (a) DynDFG of f(x)
with local partial derivatives. (b) Derivatives available after evaluat-
ing∇[x][y]. 18

2.2 Effects of single fault injection, using the GemFI simulator at the ar-
chitectural CPU level, and the software-based approach during native
execution. 22

2.3 Hardware configurations with different reliability/performance trade-
offs. 22

2.4 Relative error for the execution time and energy as predicted by our
model vs. a real execution, for our application benchmarks when
half of the tasks execute in the FastRel = (3.7GHz, 1.06V) config-
uration and the other half in a lower-power SlowRel configuration.
All SlowRel configurations are shown in x-axis. 26

3.1 The typical life of a group-of-tasks in the context of significance aware
approximate computing . 36

3.2 Different levels of approximation for the Sobel benchmark 37
3.3 Execution time, energy and quality of results for the benchmarks used

in the experimental evaluation under different runtime policies and
degrees of approximation. In all cases lower is better. Quality is de-
picted as PSNR−1 for Sobel and DCT, relative error (%) is used in all
others benchmarks. The accurate execution and the approximate exe-
cution using perforation are visualized as lines. Note that perforation
was not applicable for Fluidanimate. 40

3.4 Different levels of perforation for the Sobel benchmark. Accurate ex-
ecution, Perforation of 20%, 70% and 100% of loop iterations on the
upper left, upper right, lower left and lower right quadrants respec-
tively. 41

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

xiv

3.5 The normalized execution time of benchmarks under different task
categorization policies, with respect to that over the significance-agnostic
runtime system . 43

3.6 The configurations FastRel, SlowRel and FastUnRel used by the
runtime system, to reduce the energy footprint by exploiting the sig-
nificance of computations. Our approach exploits non-nominal con-
figurations, that are energy-efficient but unreliable. 44

3.7 The typical life of a group-of-tasks in the context of significance aware
fault tolerant computing . 47

3.8 Energy gains of a single task for Sobel executed at voltages Vl < Vh for
constant frequency fh = 3.7GHz. 49

3.9 Breakdown of task execution time, for each benchmark. 50
3.10 Experimental results for different Vl values for the SlowRel and Fas-

tUnRel configurations. Percentage of experiments which achieved a
certain quality (left), and energy gains with each protection scenario
(right). 51

3.11 DCT output at 0.89V, with one fault injected every 100,000 cycles. The
images correspond (from left to right) to the BP, B-RC, B-SF and FS
protection configurations, resulting to PSNRs of 12, 13, 15 and 37 dB
respectively. A fault free execution leads results in a PSNR of 43 dB.
NP deterministically leads to crashes. 53

3.12 Quality vs. energy trade-offs using the ratio parameter in the FS con-
figuration. 54

4.1 Dynamic DFG (DynDFG) of the application 58
4.2 Figure (a) illustrates the Graph containing the significance values of

the elemental computations as produced by dco/scorpio during S3
and (b) The simplified graph after S4 for the Taylor Series example. . . 60

4.3 Task boundaries for the toy benchmark Taylor. 60
4.4 Significance analysis for DCT and task boundaries. Note that in both

figures, the darker the color the higher the significance value. 62
4.5 Significance analysis for Fisheye and the resulting task boundaries. . . 62
4.6 Significance graphs for the pixels in the 4x4 block of BicubicInterp with

respect to the interpolated output image; letters in (i) point to the cor-
responding graphs. 63

4.7 Output quality (blue bars, left y-axis) and energy consumption (blue
lines, right y-axis) for the 5 benchmarks, as a function of the ratio
of accurately executed tasks (x-axis). The results obtained by loop
perforation are depicted in red. 64

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

xv

5.1 Quality and energy metrics for different energy targets (as a percent-
age of the most energy-efficient accurate execution). Energy & quality
plots show the results achieved by our system, an oracle selecting the
optimal configuration and loop perforation. 73

5.2 Lena portrait compressed and decompressed using DCT with a ratio
of 0.3. 75

5.3 Final positions of particles for an approximate execution with ratio
0.2. Particles have been colored according to the relative error of their
position with respect to an accurate execution. 76

6.1 Training Artificial Neural Network classifiers for online error detection 80
6.2 Structural template for the generated ANNs. The input is the feature

vector of the task. The output consists of two values corresponding
to the one-hot classification of the task output as correct or incorrect.
There can be zero up to two intermediate pairs of IP and ReLU layers. 81

6.3 Evaluation with DCT and Sobel. Figures (a) and (b) show the over-
head and quality measurements for the non-batched/batched version
of DCT respectively (similarly, Figures (e) and (f) for Sobel). The Over-
head denotes the fraction of cycles required to perform error detection
and correction divided by the cycles required for a fully reliable exe-
cution. The Y-axis for the PSNR metric increases going down. The
closer a data point is to the bottom left of the figure, the better the de-
tector it represents is. Figures (c) and (d) present the EEOP values for
DCT (similarly, Figures (g) and (h) for Sobel). Quality/Overhead fig-
ures always omit error detectors whose overhead is larger than 33%;
recall that their EEOP is Infinity (worst case scenario) 88

6.4 Blackscholes and Bonds evaluation results. The Quality/Overhead
figures omit error detectors whose overhead is larger than 33% 90

6.5 Lulesh and Barnes evaluation results. The Quality/Overhead figures
omit error detectors whose overhead is larger than 33% 92

6.6 Inversek2j and Bodytrack evaluation results. The Quality/Overhead
figures omit error detectors whose overhead is larger than 33% 94

6.7 Reliable and Unreliable configurations 96
6.8 The overhead of performing error detection defined as the number

of cycles spent to perform error detection over the number of cycles
required for a fully reliable execution of the application 97

8.1 Envisioned design for significance-aware fault tolerant computing on
mixed-reliability heterogeneous platforms. 109

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

xvi

List of Tables

2.1 Macros of the dco/scorpio tool . 19

3.1 Benchmarks used for the evaluation. For all cases, except Jacobi, the
approximation degree is given by the percentage of accurately exe-
cuted tasks. In Jacobi, it is given by the error tolerance in convergence
of the accurately executed iterations/tasks (10−5 in the native version). 37

3.2 Lines of code (LOC) for the tasks and corresponding result-check and
correction functions for each benchmark. The result-check functions
are implemented based on the original task code, which was modified
to reduce its computational complexity. 48

3.3 SlowRel and FastUnRel configuration settings used in our evalua-
tion, and average fault rates of the FastUnRel configurations. 49

3.4 Average task execution time in cycles (thousands), number of tasks
executed reliably/unreliably, and number of voltage and frequency
transitions, for each benchmark. 50

6.1 The seven different ANNs used for error detection. f is the feature
vector of the task, N is the size of the feature vector, B is the power of
two closest to N , and out is the 2-dimensional output. The dimension
of the input/output vectors and IP layers are given in brackets 82

6.2 Comparison between the execution speedups achieved through over-
clocking in conjunction with Artificial Neural Networks, Topaz, and
Oracle error detector. The baseline is the time required to complete an
error-free execution under the reliable configuration (Vlow, flow) = (0.9
V, 1.67 GHz). Overclocking results in the execution of unreliable tasks
under the configuration (Vlow, fhigh) = (0.9 V, 3.7 GHz) 98

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

xvii

Dedicated to my family and
friends

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

1

Chapter 1

Introduction

Recent reports of the International Technology Roadmap for Semiconductors (ITRS)
are disconcerting to scientists and consumers alike. The 2013 ITRS report warns the
public that CMOS, due to their constant horizontal scaling, will reach their atomistic
and quantum mechanical physics boundaries within the next 3-12 years [37]. The
report goes on to suggest that the scientific community should investigate novel de-
signs which integrate heterogeneous technologies and new information-processing
paradigms. In the past, technology was driven by the desire for more performance.
However, the primary goal of Integrated Circuit (IC) design has now shifted to min-
imizing the power consumption of the hardware or optimizing the power/perfor-
mance balance. As such, ITRS reports that beyond the year 2020 devices and systems
will eventually evolve to:

• be completely new devices

• operate on completely new principles

• support completely new architectures

1.1 Problem

Hardware designers go to great lengths to improve hardware reliability. Typically,
they safeguard their designs against adverse combinations of factors that affect hard-
ware reliability. This conservative design methodology essentially results in area,
performance, power and energy overheads. However, such design choices are not
unreasonable. Computation accuracy and hardware reliability have traditionally
been primary concerns during the design of computing systems. After all, develop-
ers expect hardware to always behave in a reliable and predictable way. In fact, in
the event that an error arises it is treated as a particularly rare scenario with devel-
opers actively spending effort to mask the error from the user space, regardless of
the magnitude of its effects. In this Thesis we find that this course of action is not
necessarily the best choice in terms of performance, power, and energy efficiency.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 2

Possible sources of hardware unreliability are transistor variability, aging, tem-
perature, hardware/software interaction, or even alpha particles temporarily af-
fecting hardware functionality. Traditional design techniques addressing this prob-
lem involve extra logic circuitry provisions known as guardbands. The guardband
approach deals with expected performance degradation of transistors over time.
Guardbanding typically involves increased voltage margins, layout rules, and cir-
cuit redundancy. On the one hand, guardbands have successfully ensured reliable
operation up to date. On the other hand, their effectiveness in detecting and correct-
ing all possible errors is being questioned by researchers, as geometries and supply
voltages are being scaled down and circuits become more vulnerable to failures [89,
13, 78]. The extent of guardbanding that may be necessary to protect circuits against
all potential errors will lead to significant power overheads not sustainable by fu-
ture systems, thus conflicting with power dissipation which is another major chal-
lenge of the semiconductor industry. Note that, these guard bands are pessimistic,
as they have to compensate for the worst case scenarios and combinations of non-
determinism, switching patterns, temperature and aging effects. According to [15]
the average power cost of guard bands is roughly 35%. However, most of the time,
these guard bands represent mere overhead, as worst case scenarios and combina-
tions will appear very seldom during application execution. The main reason for
having these pessimistic guard bands and energy inefficiency is that modern com-
puting systems execute programs under strict correctness requirements.

Guardbanding not only increases the power consumption of hardware but it im-
plicitly limits its performance as well. For example, [20] warns that regardless of
chip organization and topology, multicore scaling is power limited. A side-effect of
this issue is that at the 7nm process node, more than 50% of the transistors in a gen-
eral purpose processor will have to be powered off in every cycle. This is a trend that
will be visible at larger scale as well. Even though, it will be possible to fit thousands
of cores in the die it will be impossible to activate simultaneously more than a few
tens or low hundreds [30].

The issue at hand, is quite alarming. Even if future applications have the inher-
ent parallelism to make efficient use of thousands of cores, the performance of our
computing systems is going to be restricted due to the extreme power dissipation.
In other words, much like [37] warned, unless we manage to come up with novel
heterogeneous architectures, technology is bound to hit again the same power wall
as single core architectures did ten years ago.

1.2 Motivation

Many algorithms and application domains are amenable to approximation due to
their intrinsic fault tolerance. Inherently fault-tolerant applications typically share
a common property: they have relaxed accuracy constraints. In other words, they
can accept a range of possible values as "correct". Figure 1.1 lists a few examples

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 3

Potential to
Approximate

(Too) Many, Noisy
Measurements

(big data)

Statistical & Probabilistic
Computations
(monte carlo)

Self-Healing
(iterative methods)

Streaming Nature

Perceptual Limitations
(visualization, multimedia, etc)

Computational Redundancy
(communications)

FIGURE 1.1: Application domains with intrinsic error resiliency.

of application domains which have intrinsic error resiliency and are consequently
approximation friendly.

For example:
Visualization applications are amenable to approximations because their output

is typically consumed by humans. Application developers can exploit the percep-
tual limitations of the human eye to approximate computations without inflicting
noticeable quality degradation to their output.

Streaming applications are inherently amenable to approximations since they
do not maintain a large state. They consume input data, perform computations, and
produce output data. If an error occurs during the computation of a specific output
data batch, the next batch will not be severely affected. In that sense, streaming
applications inherently exhibit computational isolation.

Iterative methods tend to be self healing. For example, in the presence of er-
rors iterative numerical methods still tend to converge to a correct solution but will
typically require more iterations.

Randomized computations, such as Monte Carlo simulations also tend to sup-
press outliers and are thus amenable to approximation.

Approximate computing is an emerging paradigm that allows trading-off per-
formance and energy efficiency with accuracy [4, 86, 109]. Typically, approximate
computing is used as a blanket term to describe both:

a) the disciplined aggressive optimization at the algorithmic level to gracefully
trade-off computation accuracy with performance/energy efficiency, and

b) the execution of instructions on hardware which may exhibit unexpected be-
haviour such as computation errors, crashes, or even infinite loops. This uncer-
tainty/unreliability can be the result of a wide variety of causes. It may be due
to hardware artifacts, unreliable but energy efficient substrates, or even hostile

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 4

environments such as space (alpha particles, cosmic rays, solar wind flux, etc).
In any case, maintaining acceptable levels of reliability while executing code
using unreliable hardware requires the use of fault tolerance techniques.

We make a distinction between approximate and fault tolerant computing. Ap-
proximate computing is controlled and predictable. A developer explicitly and con-
sciously designs an approximate version of a code to be less accurate but more en-
ergy/power/performance efficient. Execution under unreliable conditions is less
predictable and typically requires the application of fault tolerant computing tech-
niques. For example, the developer must consider detecting as well as correcting
errors before they irreversibly contaminate the application state.

One factor that contributes to the energy footprint of current computer technol-
ogy is that all parts of the program are considered to be equally important, and thus
are all executed with full accuracy and reliability. However, as shown by previous
work [64], in several classes of computations, not all parts or execution phases of a
program affect the quality of its output equally. In fact, the output may remain vir-
tually unaffected even if some computations produce incorrect results or fail com-
pletely.

Significance-aware computing [45, 65] exploits the algorithmic property of com-
putational significance to create optimization opportunities in terms of performance
and power-efficiency of applications. This thesis explores two significance-driven
approaches, which aim to gracefully trade-off application output quality with im-
proved performance: a) significance-aware approximate computing, and b) significance-
aware fault-tolerant computing. The next section discusses the key challenges of
these two computing paradigms and presents our contributions.

1.3 Contributions

1.3.1 Significance aware approximate computing

We investigate significance aware approximate computing, based on the premise
that specific phases of a computation may incur a high performance and energy toll
without a corresponding contribution to the quality of the result.

For example, Discrete Cosine Transform (DCT), a module of popular video com-
pression kernels, which transforms a block of image pixels to a block of frequency
coefficients, can be partitioned into layers of significance, owing to the fact that hu-
man eye is more sensitive to lower spatial frequencies, rather than higher ones. By
explicitly tagging operations that contribute to the computation of higher frequen-
cies as less-significant, one can leverage smart underlying system software to trade-
off video quality with energy and performance improvements. Significance aware
computing aims to identify regions of an application which are amenable to aggres-
sive optimizations which do not severely impact the final application outcome but
lead to improvements in energy/power/performance.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 5

Effectively applying significance aware approximate computing to gracefully
trade-off application output quality with energy/performance gains requires a sys-
tematic approach to executing programs using the principles of significance aware
approximate computing, as well as answering three key questions: What, how, and
when to approximate?
How to implement and execute?
There is need for an intuitive programming model which is user-friendly but also
offers the necessary expressiveness and functionality to address all of the key chal-
lenges of the proposed paradigm. The programming model should enable applica-
tion developers to both implement applications from scratch, as well as to gradually
modify existing code bases to make use of the significance aware approximate com-
puting advantages. The goal of the programming model is to give the means to
application developers to use the principles of significance aware computing. The
information exposed using the programming model needs to be efficiently utilized
by an intelligent runtime system. More specifically, the runtime system should take
advantage of the opportunities that the programming model creates for program op-
timization, and gracefully trade-off application quality with improved performance
and or energy/power efficiency.

• We introduce a programming model which extends OpenMP, one of the most
popular parallel programming models. The programming model offers the
necessary expressiveness to enable the development of significance aware ap-
proximate and fault tolerant applications.

• We introduce a runtime system for significance-aware approximate comput-
ing.

What to approximate?
One could exploit the algorithmic property of significance to pinpoint parts of a
program which are costly to execute but do not significantly impact the application
output quality. Intuitively, a piece of code can be considered of low significance if it
produces similar output values regardless of how much its input data are perturbed.
On the contrary, a highly significant part of the application would produce highly
varying outputs with even small perturbations to its input.

• We introduce a methodology to estimate the importance (significance) of com-
putations for the quality of the end result. This information is used to decide
which parts of a program to approximate or execute using unreliable hardware
for the case of fault tolerant computing.

However, simply figuring out which parts of the program are safe to approximate is
not sufficient for efficient significance aware approximate computing.

How to approximate?

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 6

Selected parts of an application which are deemed to be safe for approximations
require an approximate implementation as well. By definition, this alternative algo-
rithm is less precise than the original code but is cheaper in terms of computational
cost. Typically, approximate alternatives for code are implemented by hand.

• We introduce an automatic significance analysis methodology which provides
hints to application developers so that they can implement lightweight ap-
proximate alternatives for selected parts of their programs.

When to approximate?
Finally, when is it appropriate to resort to approximation? One the one hand, an ap-
plication should be robust, in other words, it should always deliver user-acceptable
results. On the other hand, it should be elastic; different users may have varying
expectations on the performance and output quality of an application. In fact, even
the same user may need an application to be amenable to adaption with respect to
different execution scenarios.

• We introduce a methodology which, based on application profiling and per-
formance / energy modeling, can in turn automatically select the appropriate
approximation level of computations in order to meet user specified energy
budget constraints.

1.3.2 Significance aware fault tolerant computing

There is a crucial difference between significance aware fault tolerant computing
and significance aware approximate computing. Executing code without reliability
guarantees can lead to arbitrary errors, which are not easily controllable and may
cause significant disruptions to the application output or even crash the program.
This necessitates mechanisms to isolate/protect unreliable computations from reli-
able ones, in conjunction with methods for detecting and correcting severe silent
errors.

Consequently, efficient significance aware fault tolerant computing requires the
answers to four questions: What/Why/When to execute unreliably? and How to
detect errors? Furthermore, it also requires an intuitive and user friendly way to
provide all of this information to an intelligent runtime system which will support
and orchestrate the execution of code using mixed reliability hardware.

Interestingly, the answers to the questions "What/When to execute unreliably?"
are identical to their sibling questions for significance aware approximate comput-
ing.

How to implement and execute?
Our programming model, through its fault-tolerance extensions, facilitates the de-
velopment of applications for the significance aware fault tolerant computing paradigm

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 7

as well. A runtime system orchestrates the execution of mixed-significance tasks on
unreliable hardware to exploit opportunities for graceful trade-off of program out-
put quality with performance/energy/power improvements.

• We introduce a runtime system for significance-aware fault tolerant comput-
ing. It schedules tasks on reliable and unreliable hardware.and offers mecha-
nisms for containment of severe errors such as crashes, elastic synchronization,
and task output-error checking via user-supplied result-check functions.

Why execute unreliably?
In current and future large-scale systems unreliability is and will remain an inherent,
first-class design concern. Moreover, in the quest of power and energy efficiency one
may opt to purposely eliminate hardware guardbands by operating at non-nominal
voltage/frequency configurations, thus increasing the chances to accidentally enter
regions of operation where faults may occur. It should be noted that those regions
are not static and may vary for different applications, different parts [69], different
environmental conditions etc. In a sense, significance aware approximate comput-
ing exposes and takes into account the heterogeneity of importance of computations
at the level of software, whereas significance aware fault tolerant computing addi-
tionally takes into account the heterogeneity of mixed-reliability hardware.

How to detect errors?
Arguably, the most important issue of significance aware fault tolerant computing is
the detection of errors. Unreliable hardware is much less predictable than approxi-
mate implementations of algorithms. To this end, the need for error detection arises.
Unfortunately, manually implementing detectors with high error coverage that are
also also light-weight is a labor intensive process often requiring deep algorithmic
insight.

• We introduce a methodology to generate lightweight error-detectors which are
based on Artificial Neural Networks. These detectors can be utilized in the
context of fault tolerant computing to identify errors and initiate correction
actions before those errors manage to propagate to the end result of the appli-
cation.

1.4 Outline

Figure 1.2 provides a high level illustration of the different aspects of significance
aware approximate and fault tolerant computing that we focus on in this Thesis.

In more detail, Chapter 2 introduces the necessary background to assist the reader
in understanding the methodologies presented in this document. Chapter 3 intro-
duces the programming model which offers the necessary functionality to facilitate

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 8

the development of applications for the two computing paradigms through its ex-
tensions. Additionally, we present the runtime systems which orchestrate the ex-
ecution of applications implemented using our programming model. Essentially,
this chapter presents the supporting computing framework that we use throughout
our research. The remaining chapters present a set of methodologies which aim to
automate the process of addressing design challenges for both significance aware
approximate and fault tolerant computing.

Chapter 4 discusses the algorithmic property of significance and introduces our
automatic significance analysis methodology. The methodology can be used to au-
tomatically characterize parts of an application with respect to their effect to the
quality of the end result. Additionally, it can be used to provide hints to a developer
and assist her in implementing a light-weight, approximate implementation of the
original code.

Afterwards, in Chapter 5 we demonstrate the use of a profiling- and model-based
approach to automatically discern the appropriate levels of approximation and con-
currency as well as CPU frequency for energy restricted execution of applications.
An offline analysis drives the decisions of an intelligent runtime system, which fine-
tunes the approximation degree of an application so that its energy consumption
remains within a budget that is specified by the end-user at execution time.

In Chapter 6 we introduce our methodology to automatically produce efficient

Programming model

Significance analysis Automatic error detection
using

Artificial Neural Networks

Significance annotated
source code

Approximate alternatives
to tasks

Lightweight error
correction

Approximate
Runtime System

Fault Tolerant
Runtime System

Error Detectors

Application specific
performance & energy modeling

Legend
Fault tolerant
computing
Approximate
computing
Significance aware
computing

FIGURE 1.2: Overview of the interaction of all techniques introduced in this Thesis
to facilitate the efficient implementation of applications using the significance aware

approximate and fault-tolerant computing paradigms.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 1. Introduction 9

error detectors for partially unreliably executed applications. The goal of the ap-
proximate error-detectors is to identify invalid intermediate computation outputs
which significantly differ from the expected ones while incurring a low execution
cost overhead.

Finally, we discuss previous related work in Chapter 7 and present our conclud-
ing remarks in Chapter 8.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

10

Chapter 2

Background

This Chapter outlines the necessary background to assist the reader in following
the discussion in the subsequent Chapters, which introduce the contributions of this
Thesis. Section 2.1 describes the benchmarks we used to evaluate our methodolo-
gies. In Section 2.2, we provide a detailed discussion regarding the mathematical
definition of the algorithmic property of significance. We use this information in
Chapter 4 to design a methodology for automatic significance analysis of applica-
tion codes.

Section 2.3 provides background information regarding fault, energy, and exe-
cution time modeling for the purpose of simulating execution of code on unreliable
environments through the use of software fault injection.

2.1 Benchmarks

This section describes the various benchmarks used throughout this document. The
benchmarks are implemented using our OpenMP-like programming model which
is introduced in Chapter 3.

2.1.1 DCT

Discrete Cosine Transformation (DCT) is used in image and video compression to
transform a block of 8x8 image pixels to a block of 8x8 frequency coefficients. Low
frequency coefficients are closer to the upper left corner of the 8x8 block, whereas
high frequency coefficients reside in the lower right corner. A single task computes
a 2x4 block of frequency coefficients. In order to produce an output and evaluate
its quality, we drive the output of DCT to a quantization kernel, the result of which
is then fed into a dequantization step. The dequantized DCT frequencies are then
processed by an Inverse DCT (iDCT) step which produces an image. This pipeline
effectively simulates the process of compressing and decompressing images. We
measure the output quality by computing the Peak Signal to Noise Ratio (PSNR)
between the input image and the decompressed image that was produced by iDCT.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 11

2.1.2 Sobel

Sobel filtering is used in image processing and computer vision to produce an image
emphasizing edges. It convolves the image with a 3x3 block filter, once in the hori-
zontal (tx) and once in the vertical (ty) direction. Afterwards, it combines the results
(tx and ty) of the two convolutions to compute an intermediate value t =

√
t2x + t2y.

The output pixels are then produced by clipping t to the range of [0, 255].

2.1.3 K-means

K-means is an iterative algorithm for grouping data points from a multi-dimensional
space into k clusters. Each iteration consists of two phases: Chunks of data points are
first assigned to different tasks, which independently determine the nearest cluster
for each data point. Then, another task group is used to update the cluster centers
by taking into account the position of the points that have moved.

2.1.4 Jacobi

Jacobi is an iterative solver for diagonally dominant systems of linear equations de-
scribed by the equation Ax = b.

2.1.5 Blackscholes

Blackscholes is a benchmark of the PARSEC suite [8]. It implements a mathematical
model for a market of derivatives, which calculates the buying and selling price of
assets so as to reduce the financial risk. A task uses the Black-Scholes mathematical
model to produce the price of N assets.

2.1.6 Fisheye

Fisheye [7] is an image processing application that transforms images distorted by
a fisheye lens back to the natural-looking perspective space. The exact algorithm
initially associates pixels of the output, perspective space image, to points in the dis-
torted image. Then, interpolation on a 4×4 window is applied to calculate each pixel
value of the output, based on the values of neighboring pixels of the corresponding
point in the distorted image.

2.1.7 N-Body

The N-Body (molecular dynamics) application simulates the kinematic behaviour
(position and velocity) of liquid Argon atoms within a bounded space, under the
effects of a force produced by a Lennard-Jones pair potential [42]. The potential is
defined as a function of distance (r) and two material specific constants (σ and ε):

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(2.1)

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 12

The significance of the interaction between atoms is strongly correlated with the
distance between them. The greater the distance between atom A and atom B, the
less the kinematic properties of A affect those of B (and vice versa). In the task-based
version of N-Body, the 3D container of the particles is partitioned into regions which
are updated every few time-steps to populate a list of the particles that reside inside
them. For each given atom, one task per region is instantiated to calculate the forces
that operate on the atom due to the particles contained in that specific region.

2.1.8 Lulesh

Lulesh [46] implements a solution of the Sedov blast problem for a material in three
dimensions. It defines a discrete mesh that covers the region of interest and parti-
tions the problem into a collection of elements where hydrodynamic equations are
applied. A single task performs the computations required to compute the hydro-
dynamic equations for eight elements.

2.1.9 Bonds

Bonds [25] is a computational finance benchmark of the QuantLib library. In finance,
a bond is an indication of indebtedness of the bond issuer to the holders. The issuer
is obligated to pay the holders a debt which increases by a specified interest and/or
pay the face amount at a pre-determined date which is referred to as the maturity
date. Interests payments are deposited in intervals. A single task processesN bonds.

2.1.10 MC

MC [103] applies a Monte Carlo approach to estimate the boundary of a sub-domain
within a larger partial differential equation (PDE) domain, by performing random
walks from points of the sub-domain boundary to the boundary of the initial do-
main. An MC task performs N random walks and to estimate a solution for the
walks’ point of origin.

2.1.11 Bodytrack

Bodytrack is a benchmark from the PARSEC suite [8]. It uses an annealed particle
filter to track the pose of a human subject in a series of frames which are captured
from multiple angles using multiple cameras. A single task processes a subset of the
particles associated with a particular frame.

2.1.12 Inversek2j

Inversek2j is a physics benchmark from the AxBench suite [107]. Inversek2j calcu-
lates the angles of a two joint arm using the kinematic equation. A task computes
the pair of angles for a single two joint arm.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 13

2.1.13 Barnes

Barnes [5] is a physics benchmark from the SPLASH2 suite [106]. It is an N-body
simulation. A single step of the simulation calculates the forces acting on each body
and subsequently updates the position, velocity and acceleration of each body. The
total workload is divided into N smaller workloads and each one is handled by a
single task.

2.1.14 Canneal

Canneal, a code from the Parsec benchmark suite [8], applies an annealing methodol-
ogy to optimize the routing cost of a chip design. This optimization method pseudo-
randomly swaps net-list elements. If the swap results in better routing cost it is
accepted immediately. Local minima are avoided by rarely accepting swaps that in-
crease the routing cost of the net-list. A single task processes a sub-set of the net-list.

2.2 Mathematical definition of the algorithmic property of
significance

In this section we present the mathematical definition of algorithmic significance [102].
We use this mathematical definition as the basis for our hybrid (profile driven, yet
mathematically rigorous) analysis which we discuss in Chapter 4.

2.2.1 Significance as an Algorithmic Property

The algorithmic property of computational significance denotes the contribution of
a computation to the final output result. Consider the following example. For an
input vector ~x ∈ IRn, the arithmetic evaluation of y = f(~x) can be written as a three
part evaluation procedure [26] with internal variables uj :

uk−n+1 = xk, k = 0, . . . , n− 1, (2.2)
uj = φj(ui)i≺j , j = 1, . . . , p, (2.3)
y = up. (2.4)

The input values ~x = (x0, . . . , xn−1)
T are copied in Eq. 2.2 to internal variables

u1−n, . . . , u0, and Eq. 2.4 stores the final result in y. In Eq. 2.3 the elementary function
φj(ui) represents an arithmetic operation (+,-,*,/), or an intrinsic function (sin, cos,
exp, . . .) of C++. Internal variables uj are used to store the result of each elementary
function evaluations, where i ≺ j denotes a direct dependence of uj on ui, i < j.

The evaluation of the compiled program for a specific input ~x ∈ IRn leads to a
unique sequence of elementary operations since all control flow decisions (branches,
number of loop iterations) are determined uniquely. This sequence of elementary
operations performed during such an evaluation is the basis of the three part evalu-
ation procedure.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 14

1 double f(double x0) {
2 return cos(exp(sin(x0) + x0) - x0);
3 }

LISTING 2.1: Implementation of example function.

1 u0 = x0
2 u1 = sin(u0) u2 = u1 + u0 u3 = exp(u2)
3 u4 = u3 − u0 u5 = cos(u4)
4 y = u5

LISTING 2.2: Elementary functions of Listing 2.1.

Listing 2.1 shows a concrete example for C++ function y = f(x0) with scalar
input x0 and scalar output y. The respective code, broken down to single elemen-
tary functions, is given in Listing 2.2, where the first line corresponds to Eq. 2.2, the
sequence of elementary functions in Eq. 2.3 is represented by lines 2–3 and line 4
corresponds to Eq. 2.4.

To evaluate the significance of variables uj , j = 1−n, . . . , p, for the final result y =

up, we need to answer two questions: (a) What is the influence of inputs ~x on uj , and
(b) what is the influence of uj on output y = up. Answering (a) requires analysing
the code which computes the variable uj from its inputs u1, . . . , uj−1 (Eq. 2.3). The
answer to (b) requires analyzing the use of uj in obtaining the final result y, through
the computation of uj+1, . . . , up. We denote this second part with y = f(~x;uj) to
represent the dependency of y on uj explicitly.

Interval arithmetic (IA) [66] is an appropriate tool to answer the first question:
Given the range of possible input values as the input interval vector [~x] = [x, x] =

{x ∈ IRn|x ≤ x ≤ x} with lower bound x ∈ IRn and upper bound x ∈ IRn, an evalu-
ation of f in interval arithmetic is obtained by replacing all variables and elementary
functions φj with their interval version in Eq. 2.2-2.4:

[uk−n+1] = [xk], k = 0, . . . , n− 1, (2.5)

[uj] = φj [ui]i≺j , j = 1, . . . , p, (2.6)

[y] = [up]. (2.7)

This will compute an interval enclosure f [~x] of all possible values of f(~x) for ~x ∈ [~x],
namely f [~x] ⊇ {f(~x)|~x ∈ [~x]}.

With IA, value ranges are propagated forward through the computation. For ev-
ery variable uj , j = 1, . . . , p, we calculate an enclosure [uj] of all possible values for
the given input range ~x. The impact of all inputs [xk], k = 0, . . . , n− 1, on a variable
uj is combined in [uj], and can be quantified by the width w([uj]) = uj − uj of in-
terval [uj]: if w([uj]) is narrow, variation of the input within the given range causes
only little variance in [uj] (small influence). On the other hand, if w([uj]) is wide, the
exact value of the input has large influence on variable uj .

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 15

1 u(1)5 = y(1)
2 u(1)4 = − sin(u4) · u(1)5
3 u(1)3 = 1 · u(1)4
4 u(1)2 = exp(u2) · u(1)3
5 u(1)1 = 1 · u(1)2
6 u(1)0 = (−1) · u(1)4 + 1 · u(1)4 + cos(u0) · u(1)1
7 x(1)0 = u(1)0

LISTING 2.3: Adjoint code for Listing 2.2.

But the significance of uj for the output y cannot be judged from this information
alone. Subsequent operations during the evaluation of y = f(~x;uj) by computing
uk, k = j + 1, . . . , p, may amplify or reduce the contribution of uj to y. There-
fore, we also need to evaluate how much y will change for different values of uj ,
or more formally, to quantify the impact of [uj] on y (question (b) above). Pure IA
evaluation of f(~x;uj) does not suffice, since in the final interval value [y] the individ-
ual impact of variables [uj] cannot be obtained separately. The answer to question
(b) is inspired by the fact that the first order derivative of a differentiable function
at a given point describes the function behavior in a neighborhood of that point.
For a given point x̂ ∈ IRn and a function f : IRn −→ IR differentiable at point x̂,
∇~xf(x̂) = (∂f(x̂)∂x0

, . . . , ∂f(x̂)∂xn−1
)T is the gradient of f at point x̂. The elements of gradi-

ent ∇~xf(x̂) quantify the rate of change in the function value near x̂: if the absolute
value of the partial derivative ∂f(~x)

∂xi
is small, a disturbance in xi will cause a small

change in the function value f(~x).
Consider a computer program implementing a differentiable function y = f(~x).

The gradient∇~xf of f at the evaluation point ~x can be obtained by Algorithmic Differ-
entiation (AD) [26, 67] in adjoint mode. Based on the three part evaluation procedure
Eq. 2.2-2.4, adjoint evaluation propagates the first order adjoint (denoted by sub-
script (1)) y(1) of output y backwards through the computation towards first order
adjoints x(1)k, k = 0, . . . , n− 1, of the inputs ~x:

u(1)p = y(1), (2.8)

u(1)i =
∑
j:i≺j

∂φj(ui)i≺j
∂ui

· u(1)j , i = p− 1, . . . , 1− n, (2.9)

x(1)k = u(1)k−n+1, k = 0, . . . , n− 1, (2.10)

where ∂φj(ui)i≺j

∂ui
denotes the partial derivative of elementary function φj with respect

to its argument ui. After a single adjoint propagation with y(1) = 1 the gradient
∇~xy = ∇~xf = (x(1)0, . . . , x(1)n−1)

T can be harvested from the adjoints u(1)k−n+1,
k = 0, . . . , n − 1, of input ~x. Moreover, derivatives ∇ujy =

∂f(~x;uj)
∂uj

= u(1)j of y with
respect to all internal variables uj , j = 1, . . . , p, are accumulated during the so-called
reverse sweep.

Note that adjoint propagation expects that the original code (Listing 2.2 for the
example in Listing 2.1) has been evaluated beforehand. Thus intermediate variables
uj , j = 1−n, . . . , p, hold the actual values. The first line in Listing 2.3 corresponds to

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 16

Eq. 2.8, while the gradient harvesting of Eq. 2.10 is represented by the last line. The
actual adjoint propagation (Eq. 2.9) is done in lines 2–4.

AD can be applied to interval functions [87] by replacing all variables and partial
derivatives of elementary functions in Eq. 2.8-2.10 with their interval version. There-
fore, we can compute an interval enclosure of the first order derivative ∇[uj][y] =
∂f [~x;uj]
∂[uj]

, namely the derivative of the function result [y] with respect to the internal
variable [uj]:

∇[uj][y] ⊇
{
∂f(~x; ûj)

∂uj

∣∣∣∣ûj ∈ [uj], x ∈ [x]

}
. (2.11)

In other words, the bounds of interval derivative∇[uj][y] are the steepest downward
and upward slopes, respectively, of y = f(~x;uj) in the interval [uj], which quantify
the impact of all possible values from [uj] on the final result y.

We can now define the significance Sy(uj) of variables uj , j = 1 − n, . . . , p, for
the final result y = f(~x) over the input interval [~x] as follows:

Sy(uj) = w
(
[uj] · ∇[uj][y]

)
, j = 1− n, . . . , p. (2.12)

Note that the interval product of [uj] and the interval derivative ∇[uj][y] is a worst
case scenario, that might introduce a considerable overestimation of the significance
of uj .

2.2.2 Limitations

This approach comes with some limitations. A simple transformation of code with
real variables into an interval version might fail for various reasons (overestimation
due to wrapping effect, special interval algorithms required, relational operators).
Moreover, AD computes derivatives for a given evaluation point. The elementary
function sequence in the implementation of function f is fixed and can be repre-
sented by a control flow free code. With IA, comparisons between values is no
longer unique: for c < [x] with c ∈ [x], the answer is neither true nor false, since
a part of interval [x] is less than c whereas the remaining part is not. Since a fixed
control flow is not guaranteed, in such scenarios the analysis is terminated and the
relevant condition statement is reported to the user. Circumventing this issue by an
automatic interval splitting approach is part of ongoing research.

This method allows the developer to utilize all language tools including arrays,
dynamically allocated memory, pointers, and nested loops. However, the analysed
code must be differentiable, which might not apply to codes universally. Currently
we consider that it is the responsibility of the developer to check the differentiability
of the code/function to be analyzed.

2.2.3 dco/scorpio Framework

The significance analysis of Section 2.2.1 is implemented in the profile-driven tool
dco/scorpio which is based on the template class library dco/c++ (Derivative

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 17

1 dco::ia1s::type f(dco::ia1s::type x0) {
2 return cos(exp(sin(x0) + x0) - x0);
3 }

LISTING 2.4: The example of Listing 2.1 with double being replaced with
dco::ia1s::type.

Code by Overloading in C++) [57, 68, 93] implementing tangent-linear and adjoint
Algorithmic Differentiation. For any C++ code implementing y = f(~x), dco/c++
exploits overloading of operators and intrinsic functions to compute derivatives
∇~xy = ∇~xf(x) of outputs y with respect to input ~x.

For the purpose of significance analysis, dco/c++ templates were specialized
with an interval base type [53] to obtain dco::ia1s::type, which enables AD on interval
functions. An interval enclosure of [y] = f [~x] can be obtained for a C++ implemen-
tation of f(~x) by defining all variables, required to compute the output y (including
y), as dco::ia1s::type instances (Listing 2.4, compare to Listing 2.1) and performing a
profile run. To compute the interval valued first order derivative ∇[x][y] = ∇[x]f [x],
the dco/scorpio internal recording mechanism needs to be activated. During the
evaluation of the code f [~x] (with variables of type dco::ia1s::type), an internal repre-
sentation of the computation sequence is stored within a Dynamic DFG (DynDFG).
A DynDFG is a directed acyclic graph G = (V,E), where each vertex uj corresponds
to a dynamically executed elementary function uj = φj(ui)i≺j , and an edge ei,j ∈ E
between vertex ui and uj means that ui provided an input operand to operation φj
during execution. Moreover, the edges are annotated with interval valued partial
derivatives ∂φj [ui]

∂[ui]
which are computed during forward sweep.

Figure 2.1a shows the annotated DynDFG of an interval evaluation of the exam-
ple function given in Listing 2.1 by the implementation given in Listing 2.4.

The scalar input [x0] of the user code will be associated with the internal vari-
able [u0]. Five internal variables [uj] = φj [ui]i≺j , j = 1, . . . , 5, are computed before
the final value is stored in the output value [y] of the user code. Edges towards a
vertex [uj] = φj [ui]i≺j are annotated with local partial derivatives of the operation
represented by [uj] with respect to its arguments [ui], i ≺ j. Note that the interval
operations, DynDFG recording, and adjoint propagation are hidden within the data
type dco::ia1s::type of dco/scorpio.

With first order adjoint mode, AD derivatives are computed by propagating an
initial adjoint y(1) = 1 backwards through the DynDFG using the internally stored
local partial derivatives according to Eq. 2.9. After the adjoint interval propaga-
tion (reverse sweep), the interval derivative ∇[x0][y] = ∇[x]f [x0] = ∇[u0][u5] can
be retrieved from dco/scorpio’s internal representation along with the interval
derivatives∇[uj][u5] = ∇[uj][y] of the final result with respect to all internal variables
[uj], j = 1, . . . , 5 (Figure 2.1b). Using this information and Eq. 2.12 we can compute
significances S[y][uj] of all variables [uj], j = 0, . . . , 5.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 18

[u0]

[u1]

[u2]

[u3]

[u4]

[u5]

∂[φ1]
∂[u0]

∂[φ2]
∂[u0]

∂[φ4]
∂[u0]

∂[φ2]
∂[u1]

∂[φ3]
∂[u2]

∂[φ4]
∂[u3]

∂[φ5]
∂[u4]

d
c
o
/
s
c
o
r
p
i
o

us
er

pr
og

ra
m

[x0]

[y]

(A)

[u0]

[u1]

[u2]

[u3]

[u4]

[u5]

∇
[u
3] [u

5]

∇
[u
2] [u

5]

∇
[u

1] [u
5]

∇
[u

0] [u
5]
=
∇

[x
0] [y] d

c
o
/
s
c
o
r
p
i
o

us
er

pr
og

ra
m

[x0]

[y]

(B)

FIGURE 2.1: Annotated DynDFG and adjoint propagation : (a) DynDFG of f(x) with
local partial derivatives. (b) Derivatives available after evaluating∇[x][y].

dco/scorpio offers a set of macros (Table 2.1) to annotate source code for signif-
icance analysis. They establish a link between variables in the code and their internal
representation in the tool and hide all implementation details from the user. All in-
puts need to be registered before the first intermediate user variable, intermediate
user variables need to be registered straight after their computation, and output vari-
ables last. Moreover, for a vector valued function ~y = F (~x) with F : IRn −→ IRm,
significances S~y(uj) =

∑m−1
i=0 Syi(uj) can be obtained by a single run by registering

all output ~y variables. .

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 19

Macro Description

INPUT(x,xl,xu, . . .) Register input variable x, increment the number of inputs
n, set [x] = [xl, xu], associate x with the internal input vari-
able [u−n].

INTERMEDIATE(z,
. . .)

Register intermediate variable z, associate it with last com-
puted internal variable [uj].

OUTPUT(y, . . .) Register output variable y, associate it with the last com-
puted internal variable [up], set the adjoint [up](1) = 1,

ANALYSE() Start adjoint propagation to obtain ∇[uj][y], j = p −
1, . . . , 1 − n, compute significance of all registered inputs
and intermediate user variables, report the significance of
registered variables.

TABLE 2.1: Macros of the dco/scorpio tool

2.3 Fault, Time, and Energy models to facilitate software fault
injection

This section discusses the models we use for unreliable execution which were intro-
duced in [71]. We discuss how we combine simulation-based and software-based
fault injection to map the fault rates derived from the model into actual errors at the
application level. We also present the time and energy models that we use in con-
junction with our software-based fault injection methodology. These models enable
us to simulate and evaluate the execution of computations under unreliable condi-
tions.

Note that it was impossible to conduct the full extent of our research using a
purely simulated execution platform, without resorting to software fault injection.
Given the vast number of fault injection experiments required to acquire statisti-
cally significant results, we would have to limit executions to non-realistic input
sizes, despite using a large compute farm for the simulations. Therefore, we adopt
a hybrid approach. Initially, we use detailed simulations for injecting faults at the
architectural level of an x86 CPU model, and observe the impact they have on each
of our benchmarks. Afterwards, we use these observations to drive fault-injection
via software when running the benchmarks and our runtime system natively, on our
platform.

2.3.1 Fault modeling

A key challenge is to associate the operation of a core in an unreliable configu-
ration envelope with the probability of hardware faults due to timing violations.
Besides undervolting (or overclocking), the number and distribution of faults in a
CPU also depends on the type of instructions executed. For example, instructions
which activate long paths, which are close to the critical path, tend to fail more fre-
quently [72]. The failure probability of each instruction is also closely related to

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 20

the micro-architectural design of the CPU, optimizations used by synthesis, place-
ment & routing CAD tools, the manufacturing process and process variability, am-
bient temperature, IR drops, aging etc. Even identical chips with the same micro-
architecture, using the same technology libraries, and running identical code, can
have highly different behavior [15]. Moreover, whether a fault manifests as an error
also depends on the paths which were activated in previous cycles [97].

It is almost impossible to model such complex phenomena in a practical way,
as the conclusions are specific to the particular system used to make the observa-
tions and create the model, and cannot be generalized to other systems. To the best
of our knowledge there is no modern-CPU fault model which combines all the ob-
servations in a unified and applicable method. For these reasons, we abstract out
the instruction mix of applications, and take into account only the effects of voltage
scaling.

The Point of First Failure (PoFF) is used to indicate the point at which circuits
start to exhibit massive errors (one error every ∼10 million cycles). Prior to this
point errors still occur, however at rates that are orders of magnitude lower [15].
If one goes beyond the PoFF, the fault rate increases exponentially, by one order of
magnitude for every 10mV drop of the supply voltage [9, 15].

To guarantee functional correctness, designers typically account for parameter
variations by imposing conservative margins that guard against worst case scenar-
ios. The extent of the voltage margins required for fault-free operation for all oper-
ating conditions of the chip is on average around 15% [29, 75, 39]. We determine the
PoFF based on Equation 2.13, where ρ is the percentage of the extra voltage margin
to guarantee fault-free operation, and Vn is the nominal supply voltage. A CPU part
with tight margins has a low ρ and, therefore, low energy benefits when using our
approach. We select the average case, ρ = 15%, which is consistent with several ob-
servations in the literature [29, 9, 15]. Based on the same reports, we model the fault
rate as shown in Equation 2.14. The parameters are the voltage VPoFF , which can be
obtained using equation 2.13 using as input argument the nominal voltage Vn and
the voltage of the requested (unreliable) operating point Vu. The model obtains the
constants β, γ via regression1 on the data provided in [9, 15]. The Equation 2.14 is
CPU agnostic and estimates the mean number of cycles between the manifestation
of two consecutive faults. Recall that, faults are the results of the unreliable opera-
tion of hardware because of the sub-nominal voltage supply Vu. The further away
Vu is from VPoFF the fewer the cycles between two consecutive faults.

VPoFF =
(100− ρ)

100
× Vn (2.13)

Err(VPoFF , Vu) = β × 10γ∗(Vu−VPoFF) (2.14)

1The resulting values are β = 107 and γ = 100.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 21

Vn(f) = δ × f + η (2.15)

Finally, the nominal supply voltage Vn is linearly dependent on the operating
frequency, as modeled by Equation 2.15. Parameters δ and, η depend on the system
configuration2. We deduce their values by monitoring the supply voltage of the CPU
of our x86 platform, while commanding changes of the operating frequency.

2.3.2 Simulation-based fault injection

We use the GemFI framework [70] to execute benchmarks on a simulated out-of-
order CPU supporting the x86 ISA. GemFI injects faults at different CPU pipeline
stages. In the fetch stage, a fault corrupts a single bit of the instruction. In the decod-
ing stage, the selection of registers is corrupted so that the instruction in question
reads from, or writes to a different register. In the execution stage, faults corrupt a
single bit of the computed result. Finally, faults in the memory stage corrupt a sin-
gle bit of the value being transferred from/to memory. Even though we only inject
faults to a subset of the CPU modules, these faults can be propagated to the major-
ity of the CPU modules. For example, when a fault is injected during the execution
stage of an integer instruction, the fault corrupts the result of the operation. If the
result is stored in a register, the fault propagates and corrupts the register file. Also,
when injecting a fault to a memory write, the fault can corrupt the data cache hier-
archy and even propagate to the main memory. Note that we model transient faults;
the injection of the fault only lasts for one clock cycle.

Simulated fault injection captures the “average” impact of faults on an appli-
cation executed on top of unreliable hardware, without employing any protection
mechanisms. The number of experiments for each application and pipeline stage
(see above) is determined based on the methodology described in [54], for a 99%
confidence level and 1% error margin.

For the purpose of our evaluation, we categorize the outcome of program execu-
tion in three classes: (i) crash if the program did not terminate normally, (ii) inexact
if the result is not bit-wise identical to that of a reliable execution, and (iii) exact if
the result is bit-wise identical to that of a reliable execution. The output of this phase
is the probability for a single fault to result in a crash,(Pcrash) for each benchmark.
This probability is used by the software fault injection mechanisms during native
execution.

2.3.3 Software-based fault injection during native execution

For the native (fast) executions of the benchmarks, we use software-based fault in-
jection. This is designed to have two possible effects: (i) it forces a crash, and (ii) it

2We obtain the values δ = 0.078170317 and η = 0.7706445993 via profiling.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 22

FIGURE 2.2: Effects of single fault injection, using the GemFI simulator at the architec-
tural CPU level, and the software-based approach during native execution.

V
o

lt
ag

e

Frequency

SlowRel(V
l,
f
l
)

FastRel(V
h,
f
h
)

FastUnrel(V
l,
f
h
)

DVFS
(slow)

Clock Stretching (fast)

nominal operating points

region of non-nominal operation

(more energy-efficient but also

potentially unreliable)

FIGURE 2.3: Hardware configurations with different reliability/performance trade-offs.

corrupts a randomly chosen register of the CPU. The former is done with the proba-
bilityPcrash computed in GemFI simulation, and the latter with probability 1−Pcrash.
As in the simulation experiments, we inject faults to the whole extend of an applica-
tion without the use of any protection mechanism. To validate that software-based
fault injection yields realistic results, we compare the outcome of the native execu-
tions with the respective outcomes of simulated executions on GemFI. Figure 2.2,
which presents the results for 5 benchmarks, shows that the software-based fault
injection has practically equivalent effects to simulation-based fault injections using
GemFI.

Hardware configurations

We consider three different configurations, FastRel, SlowRel and FastUnRel. The
FastRel configuration is a high-performance nominal point of operation, with high
voltage/frequency (Vh, fh), where a core executes code fast, whereas SlowRel is a
slower nominal operation point, with lower voltage/frequency (Vl, fl). Further-
more, cores can be set in the non-nominal and unsafe FastUnRel configuration
(Vl, fh), with the same (low) voltage as SlowRel and the same (high) frequency

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 23

as FastRel. Code execution in FastUnRel is equally fast as in FastRel yet more
energy-efficient. At the same time, execution is potentially unreliable due to tim-
ing faults, since FastUnRel is outside the nominal range of operation. We assume
that the runtime system can switch the configuration of cores dynamically. Due to
the difference in their voltage, the transition between FastRel and SlowRel requires
a voltage and frequency Scaling step, which introduces significant delay. In contrast,
given that SlowRel and FastUnRel have the same voltage, the transition between
them can be done quickly via clock stretching [12]. Figure 2.3 illustrates the principle
of operation.

The voltage and frequency settings for the FastRel and the FastUnRel config-
urations are decided as follows. We pick fh in order to maximize performance, and
derive the respective nominal voltage Vh from Equation 2.15. We then set Vl =

ε × Vh|ε < 1.0. Frequency fl is derived from Equation 2.15, and the fault rate of
the FastUnRel configuration is derived from Equation 2.14, using Vl and Vh as pa-
rameters. The rate increases for smaller values of ε. Given a target fault rate, we
randomly generate a set of fault injection intervals, expressed as number of cycles
between faults, using a uniform distribution with a mean value equal to the target
fault rate. We then use the performance counter infrastructure of x86 CPUs to in-
terrupt application execution at those intervals and invoke the software-based fault-
injection logic.

2.3.4 Execution Time and Energy Consumption Model

We use an analytical model for the performance and energy consumption of a pro-
gram that is implemented in a task-based fashion. We generate the analytical model
as a function of the core frequency, the voltage, the number of tasks that are exe-
cuted reliably and unreliably and the number of voltage and frequency transitions
that was introduced in [71]. The model is agnostic to the CPU structure and captures
the execution phases of an application. Therefore it accounts for both the core and
uncore components of the CPU.

2.3.5 Execution time modeling

As discussed, the runtime uses three different voltage/frequency configurations,
FastRel = (Vh, fh), SlowRel = (Vl, fl) and FastUnRel = (Vl, fh). Equation 2.16
expresses the time for executing a given piece of code N times, where C denotes the
number of cycles spent for code execution, and f is the frequency of the core depend-
ing on its configuration setting (fh for FastRel/FastUnRel and fl for SlowRel).

T (N, f, C) =
C

f
×N (2.16)

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 24

Tasks can be executed in parallel by the workers of the runtime system, on dif-
ferent cores. Besides task execution itself, the system software spends additional
time to schedule tasks and to manage unreliable task execution. The analytical time
model is shown in Equations 2.17:

TFastRel = T (Nr, C, fh)

TSlowRel = T (Nu, Cdc, fl)

TFastUnRel = T (Nu, C, fh)

Tvfs = NFR→SR × TFR→SR +NSR→FR × TSR→FR

(2.17)

The execution time for each worker in each configuration is expressed by TFastRel,
TSlowRel and TFastUnRel. Variable C is the average number of cycles required to ex-
ecute a task in FastRel/FastUnRel, while Cdc is the average number of cycles re-
quired by the runtime system to prepare for an unreliable task execution and to
execute the result-check/repair function in the SlowRel configuration. Variables
Nr and Nu express the number of reliable and unreliable tasks executed by the worker,
respectively. Tvfs captures the time required to switch between the FastRel and
SlowRel configurations. Variable NFR→SR denotes the number of times the runtime
system switches from the FastRel to SlowRel, and TFR→SR is the average time re-
quired to perform this transition. Similar parameters apply for the reverse direction.

2.3.6 Power and energy modeling

The total power dissipation of a CMOS circuit is given by Equations 2.18. Pdyn is
the dynamic power dissipation, Pleak is the power dissipation due to transistor leak-
age current, and PshortC is the power dissipation due to the short circuit formed
when both the PMOS and NMOS transistor tree momentarily conduct current dur-
ing CMOS switching. Since modern fabrication technologies which use high-k di-
electric materials can control leakage current, it is the Pdyn component that domi-
nates power dissipation. Therefore, our model considers the idle power consump-
tion of a processor as a constant Pidle and equal to the sum of Pleak and PshortC . The
uncore power consumption of the CPU is included in Pidle. Since the Pidle is a con-
stant all the energy gains are a result of the undervolted core part of the CPU. Pdyn
is approximately equal to the product of the effective switched capacitance (C), the
supplied voltage squared (V 2), the frequency (f), and a scaling factor (a). We use
regression to estimate the product a×C which we then plug into our power model3.

3For our Intel Quad Core i7 IvyBridge CPU we calculate that the product a×C, when using 4 cores,
is equal to 11.40e−09.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 25

PTotal = Pidle + Pdyn

Pidle = Pleak + PshortC

Pdyn(V, f) = a× C × V 2 × f

(2.18)

The total energy dissipation ETotal is given by Equations 2.19. In general, this
depends on the hardware configuration and the time spent to execute the runtime
management functions, the application tasks, and their result-check/repair func-
tions, as discussed above.

EFastRel = P (Vh, fh)×
Workers
max
i=1

(
TFastRel

)
EFastUnRel = P (Vl, fh)×

Workers
max
i=1

(
TFastUnRel

)
ESlowRel = P (Vl, fl)×

Workers
max
i=1

(
TSlowRel

)
Evfs = NFR→SR × TFR→SR × P (Vh, fh) +NSR→FR × TSR→FR × P (Vl, fl)

ETotal = EFastRel + ESlowRel + EFastUnRel + Evfs

(2.19)

2.3.7 Calibration and validation

We calibrate and validate the timing and energy models based on measurements
taken on our platform, for the benchmarks presented in Section 3.9.3. The param-
eters fh and fl are known while Nr, Nu, NFR→SR, NSR→FR can be measured. C

and Cdc are profiled using likwid [95] by accessing the x86 performance counters.
Similarly, TFR→SR and TSR→FR are profiled using the FTaLaT tool [59]. Finally, the
transition overhead between the SlowRel and FastUnRel configurations is negligi-
ble, since clock adjustment is very fast.

As a first step, we execute all tasks of each application reliably under different
configurations V, f , and measure the power consumption. We then perform linear
regression using least squares to derive the product a × C and the parameter Pidle
of the power model. Finally, we validate the accuracy of our model by forcing the
runtime system to execute tasks in different (V, f) configurations. To this end, we
execute half of the tasks of each application in the FastRel = (1.06V, 3.7GHz) con-
figuration, and the other half in various lower power but still reliable configurations.
The latter are different candidates for SlowRel. Cores enter these configurations,
which correspond to different P-states4, by applying a software-driven voltage and
frequency transition.

Figure 2.4 depicts the relative error of model-based estimates vs. the execution
time and energy that was measured using likwid. Our model closely matches the
real numbers for various SlowRel configurations, with the relative error ranging

4P-states are voltage-frequency pairs that specify the performance and power consumption of a
processor.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 2. Background 26

Energy Consumption Execution Time

0.86V
1.2Ghz

0.89V
1.5Ghz

0.92V
1.9Ghz

0.94V
2.2Ghz

0.97V
2.5Ghz

1.0V
2.9Ghz

1.02V
3.2Ghz

1.04V
3.5Ghz

0

1

2

3

 (V,f) Configurations

%
 R

el
at

iv
e

E
rr

o
r

0.86V
1.2Ghz

0.89V
1.5Ghz

0.92V
1.9Ghz

0.94V
2.2Ghz

0.97V
2.5Ghz

1.0V
2.9Ghz

1.02V
3.2Ghz

1.04V
3.5Ghz

0

1

2

(V,f) Configurations

%
 R

el
at

iv
e

E
rr

o
r

FIGURE 2.4: Relative error for the execution time and energy as predicted by our model
vs. a real execution, for our application benchmarks when half of the tasks execute
in the FastRel = (3.7GHz, 1.06V) configuration and the other half in a lower-power

SlowRel configuration. All SlowRel configurations are shown in x-axis.

from 0.004% to 2.7%. In Jacobi the increased error is due to load balancing issues.
Different executions of the benchmark result in different tasks to worker assignment.
This impacts the execution time of the benchmark, hence there is an increase in the
relative error.

Note that our x86 platform does not allow placing individual cores in a non-
nominal configuration, where actual timing violations and faults might occur. Thus
it is impossible to validate the execution time and energy consumption estimates
of the model for non-nominal FastUnRel configurations. Still, the accuracy of the
model for this wide range of real operating points gives us sufficient confidence to
use the model to extrapolate for non-nominal FastUnRel configurations as well.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

27

Chapter 3

Significance-aware computing
framework

As we discussed earlier, part of the energy inefficiency problem that current com-
puting systems are facing is that all computations are treated as equally important,
despite the fact that only a subset of these computations may be critical to achieve
an acceptable quality of service (QoS). A key challenge though, is how to identify
and tag computations of the program which must be executed accurately from those
that are of less importance and thus can be executed approximately.

This chapter presents our answer to the question of "How to execute code using
the principles of significance aware approximate and fault-tolerant computing?" In
the remainder of this chapter, we make the following contributions:

(i) We introduce a programming model which allows programmers to exploit the
algorithmic property of significance to optimize the execution of their applica-
tions. The programming model offers extensions to facilitate the development
of applications for two paradigms:

(a) Significance aware approximate computing: A software-only approach
which allows developers to utilize lightweight implementations for codes
which do not significantly impact the final output quality

(b) Significance aware fault tolerant computing: Application programmers
can exploit two levels of heterogeneity, at both the level of hardware as
well as software, to optimize the execution of their applications with min-
imal cost to the output quality.

(ii) The programming model is implemented in a source-to-source compiler. The
is accompanied with two runtime systems, one for each proposed significance
aware computing paradigm.

(iii) We present two case studies on how to efficiently trade-off quality of output
to optimize the execution of applications using our basic a) significance aware
approximate computing, and b) significance aware fault tolerant computing
frameworks.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 28

Our results show that it is possible to gracefully trade-off quality of output with
more efficient execution of applications. However, it becomes clear that the applica-
tion developer needs to spend effort in order to expose the algorithmic property of
significance to the underlying layers of system software.

3.1 Programming model objectives

Our vision is to elevate significance characterization as a first class concern in soft-
ware development, similar to parallelism and other algorithmic properties that are
traditionally the focus of programmers. To this end, there is a need for a program-
ming model which enables developers to efficiently expose of the algorithmic prop-
erty of significance. The main objectives of the programming model are the follow-
ing:

• to allow programmers to express the significance of computations in terms of
their contribution to the quality of the end-result;

• to allow programmers to express parallelism, beyond significance;

• to allow programmers to control the balance between energy consumption and
the quality of the end-result, without sacrificing performance;

• to enable optimization and easy exploration of trade-offs at execution time;

• to be user friendly and architecture agnostic.

The programming model requires a number of extensions to facilitate approxi-
mate and fault tolerant computing. The objectives for these two flavors are summa-
rized in the following list:

• to allow programmers to specify approximate alternatives for selected compu-
tations;

• to allow programmers to specify functions which perform error detection for
tasks which have been executed under unreliable conditions;

• to allow programmers to specify functions which correct/re-execute/approximate
the outputs of tasks which have been found to be erroneous by an error detec-
tor

3.2 Task instantiation

Programmers express significance semantics using #pragma compiler directives. Pro-
gramming models that are based on pragmas facilitate non-invasive and progressive
code transformations, without requiring a complete code rewrite. We adopt a task-
based paradigm, similarly to OmpSS [17] and the latest version of OpenMP [10].

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 29

Task-based models offer a straightforward way to express communication across
tasks, by explicitly defining inter-task data dependencies. Parallelism is expressed
by the programmer in the form of independent tasks, however the scheduling of the
tasks is not explicitly controlled by the programmer, but is performed at runtime,
also taking into account the data dependencies among tasks.

1 #pragma omp task [significant(expr(...))]

2 [label(...)] [in(...)] [out(...)]

3 [approxfun(function_ptr)]

4 [taskcheck(function_ptr)]

LISTING 3.1: #pragma omp task

Tasks are specified using the #pragma omp task directive (Listing 3.1), followed by
a function which is equivalent to the task body.

Significance takes values in the range [0.0, 1.0] and characterizes the relative im-
portance of tasks for the quality of the end-result of the application. Depending on
their (relative) significance, tasks may be approximated / dropped or executed on
energy efficient yet unreliable hardware at runtime. The special value 1.0 is used
for tasks that must be unconditionally considered as completely significant. For tasks
with significance values in the range [0.0, 1.0) the run-time system partitions tasks
into two bins as either the most-significant and the least-significant ones, depend-
ing on the significance values of tasks, the execution context, and the ratio() user-
supplied value that is discussed in Section 3.3.

Programmers explicitly specify data flow to the task through the in() and out()
clauses. This information is exploited by the runtime to automatically determine the
dependencies among tasks.

label() can be used to group tasks, and to assign the group a common identifier
(name), which is in turn used as a reference to implement synchronization at the
granularity of task groups (Section 3.3).

3.2.1 Approximate computing extensions to #pragma omp task

For tasks with significance less than 1.0, the programmer may provide an alternative,
approximate task body, through the approxfun() clause. This function is executed
whenever the runtime opts for a non-accurate computation of the task. It typically
implements a simpler, approximate version of the computation, which may even
degenerate to just setting default values to the output. If a task is selected by the
runtime system to be executed approximately, and the programmer has not sup-
plied an approxfun version, it is simply dropped by the runtime. It should be noted
that the approxfun function implicitly takes the same arguments as the function im-
plementing the accurate version of the task body.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 30

3.2.2 Fault-tolerant computing extensions to #pragma omp task

Significant computations need to be executed correctly on reliable hardware, while
non-significant ones may be executed on potentially unreliable hardware. During
unreliable execution, errors which manifest on non-significant tasks should be con-
trolled before they propagate to the rest of the computation. To this end, the devel-
oper can provide application-specific code for checking and repairing the output of
tasks that are executed unreliably, using the taskcheck() clause.

The taskcheck() clause specifies a result-check function, which is invoked only
if the task is executed unreliably. The result-check function is always executed re-
liably, and can be used by the developer to: (i) inspect the task status to see if it
completed its execution normally or has crashed; (ii) assess whether the task output
is wrong; (iii) assign meaningful default values to the task output; (iv) request a re-
execution of the task. The result-check function has implicitly access to all arguments
of the corresponding task, and may return either TRC_SUCCESS or TRC_REDO
to the runtime. In the latter case, the task is re-executed reliably. Task re-execution
is an acceptable error correction strategy only in the case of idempotent tasks. The
most common error recovery method for non-idempotent codes is checkpointing
and restarts. However, this incurs overhead – potentially significant – even in the
case errors do not eventually manifest. Therefore, we opted to focus only on idem-
potent tasks and error recovery through re-execution.

When designing the programming model, we made the educated decision to
organize computations in tasks with explicitly defined dataflow between tasks in the
form of task arguments. Moreover, we decided task arguments to be unidirectional,
either input (in) or output (out). We do not support bidirectional arguments (inout).
Both those decisions implicitly promote task idempotence.

3.3 Synchronization

1 #pragma omp taskwait [label(...)]

2 [ratio(...)]

3 [groupcheck(function_ptr)]

4 [time(...)]

LISTING 3.2: #pragma omp taskwait

The programming model supports explicit barrier-type synchronization through
the #pragma omp taskwait directive (Listing 3.2). A taskwait can serve as a global
barrier, instructing the runtime to wait for all tasks spawned up to that point in the
code. Alternatively, it can implement a barrier at the granularity of a specific task
group, if the label() clause is present; in this case the runtime system waits for the
termination of all tasks of that group.

Furthermore, the omp taskwait barrier can be used to control the minimum qual-
ity of application results. Through the ratio() clause, the programmer can instruct

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 31

the runtime to treat (at least) the specified percentage of all tasks – either globally or
in a specific group, depending on the existence of the label() clause – as significant
and the remaining tasks as non-significant. The runtime must also respect the rela-
tive ordering of tasks with respect to their significance. In other words, a task with
higher significance (value of the respective significant clause should not be treated as
non-significant while a task with lower significance is considered by the runtime to
be significant. The ratio takes values in the range [0.0, 1.0] and serves as a single,
straightforward knob to enforce a minimum quality in the performance / quality /
energy optimization space. Smaller ratios give the runtime more opportunities for
optimization, however at a potential quality penalty.

3.3.1 Synchronization for approximate computing

The ratio value is used to partition the tasks into two categories, the significant and
the non-significant ones. In the case of approximate computing, the runtime system
simply executes the approximate body of a task for all non-significant tasks instead
of the fully accurate one. The omp taskwait barrier simply waits for the execution of
all tasks.

3.3.2 Synchronization for fault-tolerant computing

Given that some of the non-significant tasks may be executed unreliably, taskwait
also allows for a more relaxed synchronization. Namely, the programmer can use
the time() clause to define a timeout after which execution will continue, provided
that the most significant tasks (as per the ratio() setting) have completed. If some
non-significant tasks have not completed their execution yet, they are stopped, and
the respective result-check functions are invoked (requests to re-execute a task are
ignored). Note that such timeouts are task-dependent, as is the case in most soft
real-time applications.

The programmer may introduce a result-check function for all tasks that have
been created so far via the groupcheck() clause. This function is called when the
conditions of taskwait are fulfilled, to perform checks and repairs on the aggregate
output produced by the tasks.

3.3.3 Compiler implementation

The compiler for the programming model is implemented based on a source-to-
source compiler infrastructure [108]. It recognizes the pragmas introduced by the
programmer and lowers them to corresponding calls of the respective runtime sys-
tem (supporting approximate or unreliable computing). Finally, the produced source
code is compiled into machine code using the standard gcc tool chain.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 32

3.4 Approximate computing example

1 int sblX(const unsigned char img[], int y, int x) {
2 return img[(y-1)*WIDTH+x-1] + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
3 - img[(y-1)*WIDTH+x+1] - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
4 }
5

6 int sblX_appr(const unsigned char img[], int y, int x) {
7 return /* img[(y-1)*WIDTH+x-1] Ommited taps */
8 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
9 /* - img[(y-1)*WIDTH+x+1] Ommited taps *//

10 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
11 }
12 /* sblY and sblY_appr are similar */
13 void sbl_task(unsigned char res[], const unsigned char img[], int i) {
14 unsigned int p, j;
15

16 for (j=1; j<WIDTH-1; j++) {
17 p = sqrt(pow(sblX(img, i, j),2) + pow(sblY(img, i, j),2));
18 res[i*WIDTH + j] = (p > 255) ? 255 : p;
19 }
20 }
21

22 void sbl_task_appr(unsigned char res[], const unsigned char img[], int i) {
23 unsigned int p, j;
24

25 for (j=1; j<WIDTH-1; j++) {
26 /* abs instead of pow/sqrt, approximate versions of sblX, sblY */
27 p = abs(sblX_appr(img, i, j) + sblY_appr(img, i, j));
28 res[i*WIDTH + j] = (p > 255) ? 255 : p;
29 }
30 }
31

32 double sobel(unsigned char img[], unsigned char res[]) {
33 /*img, and res contain WIDTH*HEIGHT elements*/
34 int i;
35

36 for (i=1; i<HEIGHT-1; i++)
37 #pragma omp task label(sobel) in(img) out(res) \
38 significant((i%9 + 1)/10.0) approxfun(sbl_task_appr)
39 sbl_task(res, img, i); /* Compute a single output image row */
40 #pragma omp taskwait label(sobel) ratio(0.35)
41 }

LISTING 3.3: Programming model use case: Sobel filter

Listing 3.3 presents the implementation of a task of the Sobel filter. In lines 36- 39 a
separate task is created to compute each row of the output image. The significance of
the tasks ranges between 0.1 and 0.9 in a round-robin way (line 38), which ensures
that there will not be extreme, apprehensible quality fluctuations across different
areas of the output image. Care has also been taken in this case to avoid using the
special value 1.0. Moreover, an approximate version of the task body is implemented
by the sbl_task_appr function (lines 22–30). This function implements a light-weight
version of the computation, substituting complex arithmetic operations with simpler
ones (line 27), while at the same time skipping some filter taps (lines 7, 9). All tasks
created in the specific loop belong to the sobel task group, using img as input and res
as output (line 37).

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 33

1 int dct_taskrescheck(...) { /* DCT task result-check function. */
2 if (task_crashed()) /* Takes the same arguments as the task, */
3 coeff = 0; /* returns int. */
4 else if (abnormal(coeff))
5 coeff = 0;
6 return TRC_SUCCESS;
7 }
8 void dct_task(...) { /* Calculate the coefficients for a specific 2x4 block */
9 ... /* over a number of different 8x8 blocks. */

10 }
11 void DCT(...,double taskratio){/*DCT calculation. The taskratio is an extra

parameter.*/
12 float sgnf[] = {1.0, 0.9, 0.7, 0.3, /* Significance look up table */
13 0.8, 0.4, 0.3, 0.1}; /*for each of the 2x4 sub-blocks */
14 for each 2x4 sub-block K {/* Iterate over the blocks of the DCT coefficient

space. */
15 #pragma omp task significance(sgnf[K]) taskcheck(dct_taskrescheck())
16 dct_task(...);/* Task to calculate the Kth 2x4 sub-block, over all 8x8

blocks */
17 }
18 #pragma taskwait ratio(taskratio) time(16)
19 }

LISTING 3.4: Programming model use case: DCT pseudo-code

3.5 Fault-tolerant computing example

Listing 3.4 presents a task based implementation of DCT using our programming
model for fault-tolerance. Line 15 defines a task to compute the frequency coeffi-
cients of a specific 2x4 sub-block. All tasks created in this loop have varying signifi-
cance depending on their position in the 8x8 block: upper left sub-blocks have higher
significance than lower right, as encoded in the sgnf array. In line 15, dct_taskrescheck()
is specified as the result-check function. This function checks whether the task
crashed (Line 2) or whether its output is suspicious to be wrong (Line 4). In both
cases a the corrections sets the respective coefficients to 0. Since this correction does
not require task re-execution the function returns TRC_SUCCESS (Line 6).

In Line 18 of Listing 3.4, the barrier for all dct tasks is specified with a timeout of
16 msec; this corresponds to a target frame rate of 30 fps, assuming DCT corresponds
to almost 50% of the computation time for each frame. Note that the taskratio is an
open parameter that is supplied when the program is invoked. In effect, it serves
as a knob, to set the “borderline” between the most-significant sub-blocks that have
to be computed reliably, and the less-significant sub-blocks that may be computed
unreliably. No group-level result-check function is used in the example, because
task-level result checks and repairs are sufficient.

3.6 Programmer Insight

The programming model assumes that the developer is sufficiently familiar with the
application to take good decisions as to how to structure the computation in tasks,
which tasks to characterize as more significant, and which result-check functions to
provide. Similar to parallelism, significance is a key algorithmic aspect that requires
the programmer’s full attention. Unlike parallelism however, the programmer is

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 34

not required to be familiar with the platform architecture to efficiently specify and
exploit task significance.

For any C code which implements y = f(x) the significance of intermediate
values x with respect to the output y can be defined using the interval arithmetic
and first order adjoint analysis. The significance of x with respect to y is the width
of the multiplication:

Sy(x) = [x] · ∇[x][y]

Intuitively, Sy(x) defines the value ranges of y given a specific value range for x. If
the range (width) of Sy is large then x highly affects the output value y. As such,
computing the value x is highly significant with respect to the accuracy of the fi-
nal output y. We have provided detailed background information regarding the
mathematical definition of significance in Section 2.2.1. Moreover, we present our
approach to performing automatic significance analysis of application code in Chap-
ter 4.

In the case of fault-tolerant computing, beyond the tagging of tasks with signif-
icance information, choosing result-check functions is also important. If the result-
check function is too complex, it is practically useless, as the same result could be
achieved simply by declaring the task as significant, and executing it reliably in the
first place. If too simple, the result-check function may erroneously mis-characterize
and destroy good task output, possibly deteriorating the end result of the compu-
tation. We present our approach to automating the process error detection through
the use of Artificial Neural Networks in Chapter 6.

Last but not least, the granularity of tasks is another important parameter that
should be considered when using this programming model. Fine-grained tasks may
allow for a richer (more diverse) significance characterization, which in turn can be
exploited to achieve a smoother degradation of output quality at increased energy
gains. The downside is that having many small tasks will also increase the task
management overhead of the runtime system, both in terms of time and energy con-
sumption.

Coarser task size granularity alleviates the overhead of the runtime to manage
and schedule tasks. On the other hand, larger tasks may reduce the number of signif-
icance levels, resulting into otherwise non-significant computation to be annotated
as significant, thus missing opportunities for aggressive energy optimizations.

3.7 Application Characteristics

As discussed in the introduction, several application domains offer the opportunity
to trade-off quality of output for significant improvements in energy consumption.
Such applications domains include:

Visualization applications: In our evaluation we use two benchmarks from this
category: DCT and Sobel.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 35

Streaming applications: Blackscholes, one of the benchmarks used in the experi-
mental evaluation, falls in this category.

Iterative methods: We include Jacobi and K-means in our evaluation.
Randomized algorithms: We use MC, a Monte Carlo PDE solver.
We wish to clarify that the proposed significance-based computing model does

not fit all applications. For instance, task significance may be highly input-dependent,
hard to specify at design time and difficult or costly to extract even at run time. Also,
some programs may require all tasks to be executed without any inaccuracy or any
chance of data corruption.

Finally, significance-based computing may be impractical for applications for
which all parts of the code should be executed precisely to produce a meaningful
output, or when task significance is input dependent and cannot be easily character-
ized by the programmer. Transactional-style applications in which the final output
is dependent on the correct execution of a sequence of decision making tasks is such
an example.

In the previous sections we discussed the design of a versatile significance aware
programming model which can facilitate the implementation of approximate and
fault tolerant computing applications through its extensions. In the remaining of
this chapter we will present the accompanying significance aware runtimes for ap-
proximate and fault tolerant computing.

3.8 Runtime support for significance aware approximate com-
puting

We demonstrate how to extend existing runtime systems to support our program-
ming model for approximate computing. To this end, we extend a task-based paral-
lel runtime system that implements OpenMP 4.0-style task dependencies [96].

Our runtime system is organized as a master/slave work-sharing scheduler. The
master thread starts executing the main program sequentially. For every task call
encountered, the task is enqueued in a per-worker task queue. Tasks are distributed
across workers in round-robin fashion. Workers select the oldest tasks from their
queues for execution. When a worker’s queue runs empty, the worker may steal
tasks from other workers’ queues.

The runtime system furthermore implements an efficient mechanism for identi-
fying and enforcing dependencies between tasks that arise from annotations of the
side effects of tasks with in(...) and out(...) clauses. Dependence tracking is how-
ever orthogonal to our approximate computing programming model. Therefore, we
provide no further details on this feature.

The job of the runtime system is to selectively execute a subset of the tasks ap-
proximately while respecting the constraints given by the programmer. The relevant
information consists of (i) the significance of each task, (ii) the group a task belongs
to, and (iii) the fraction of tasks that may be executed approximately for each task

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 36

Group tasks

Partition tasks into
most and least significant

Significance ratio
Most significant

tasks
Least significant

tasks

Invoke exact
implementation

Invoke approximate
implementation

Wait for all tasks to complete

Approximate
task alternative

FIGURE 3.1: The typical life of a group-of-tasks in the context of significance aware
approximate computing

group. Moreover, preference should be given to approximating tasks with lower
significance values as opposed to tasks with high significance values.

The runtime system has no a priori information on how many tasks will be issued
in a task group, nor what the distribution is of the significance levels in each task
group. This information must be collected at runtime. In the ideal case, the runtime
system knows this information in advance. Then, it is straightforward to execute
approximately those tasks with the lowest significance in each task group. We have
designed two runtime policies which work without this information, and estimate
it at runtime [98]. Global Task Buffering (GTB) is a globally controlled policy based
on buffering issued tasks and analyzing their properties. Local Queue History (LQH)
estimates the distribution of significance levels using per-worker local information.

3.8.1 Life of a group-of-tasks

Figure 3.1 illustrates the typical life of a group-of-tasks in an application imple-
mented using our significance aware approximate computing programming model.
For each group instantiated during the life of an application, the runtime system
receives a collection of tasks with varying significance values and a desired approx-
imation level in the form of a significance ratio. Afterwards, the runtime system
partitions the tasks into two sets, the most significant tasks and the least significant
ones. The most significant ones are executed in an accurate way, whereas the run-
time system invokes the approximate implementation for the least significant ones.

3.8.2 Experimental Evaluation

We performed a set of experiments to investigate the performance of the proposed
programming model and runtime policies, using different benchmark codes that

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 37

Benchmark
Approximate Approx Degree

Quality
or Drop Mild Med Aggr

Sobel A 80% 30% 0% PSNR
DCT D 80% 40% 10% PSNR
MC D, A 100% 80% 50% Relative Error

Kmeans A 80% 60% 40% Relative Error
Jacobi D, A 10−4 10−3 10−2 Relative Error

Fluidanimate A 50% 25% 12.5% Relative Error

TABLE 3.1: Benchmarks used for the evaluation. For all cases, except Jacobi, the approx-
imation degree is given by the percentage of accurately executed tasks. In Jacobi, it is
given by the error tolerance in convergence of the accurately executed iterations/tasks

(10−5 in the native version).

FIGURE 3.2: Different levels of approximation for the Sobel benchmark

were re-written using the task-based pragma directives. In particular, we evaluate
our approach in terms of: (i) The potential for performance and energy reduction;
(ii) The potential to allow graceful quality degradation; (iii) The overhead incurred
by the runtime mechanisms. In the sequel, we introduce the overall evaluation ap-
proach, and discuss the results achieved for various degrees of approximation under
different runtime policies.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 38

Approach

We use a set of six benchmarks, outlined in Table 3.1, where we apply different ap-
proximation approaches, subject to the nature/characteristics of the respective com-
putation.

The approximate version of the Sobel tasks uses a lightweight Sobel stencil with

just 2/3 of the filter taps. Additionally, it substitutes the costly formula
√
sblx

2 + sbl2y

with its approximate counterpart |sblx| + |sbly|. The way of assigning significance
to tasks ensures that the approximated pixels are uniformly spread throughout the
output image.

We assign higher significance to tasks that compute lower frequency coefficients
for the tasks of Discrete Cosine Transform (DCT) [102].

For Monte Carlo (MC) a modified, more lightweight, methodology is used to
decide how far from the current location the next step of a random walk should be.

Approximated K-Means tasks compute a simpler version of the euclidean dis-
tance, while at the same time considering only a subset (1/8) of the dimensions.
Only accurate results are considered when evaluating the convergence criteria.

In Jacobi, we execute the first 5 iterations approximately, by dropping the tasks
(and computations) corresponding to the upper right and lower left areas of the ma-
trix. This is not catastrophic, due to the fact that the matrix is diagonally dominant
and thus most of the information is within a band near the diagonal. All the fol-
lowing steps, until convergence, are executed accurately, however at a higher target
error tolerance than the native execution (see Table 3.1).

In Fluidanimate, each time step is executed as either fully accurate or fully ap-
proximate, by setting the ratio clause of the omp taskwait pragma to either 0.0 or 1.0.
In the approximate execution, the new position of each particle is estimated assum-
ing it will move linearly, in the same direction and with the same velocity as it did
in the previous time steps.

Three different degrees of approximation are studied for each benchmark: Mild,
Medium, and Aggressive (see Table 3.1). They correspond to different choices in the
quality vs. energy and performance space. No approximate execution led to abnor-
mal program termination. It should be noted that, with the partial exception of Ja-
cobi, quality control is possible solely by changing the ratio parameter of the taskwait
pragma. This is indicative of the flexibility of our programming model. As an exam-
ple, Figure 3.2 visualizes the results of different degrees of approximation for Sobel:
the upper left quadrant is computed with no approximation, the upper right is com-
puted with Mild approximation, the lower left with Medium approximation, whereas
the lower right corner is produced when using Aggressive approximation.

The quality of the final result is evaluated by comparing it to the output pro-
duced by a fully accurate execution of the respective code. The appropriate metric
for the quality of the final result differs according to the computation. For bench-
marks involving image processing (DCT, Sobel), we use the peak signal to noise ratio

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 39

(PSNR) metric, whereas for MC, Kmeans, Jacobi and Fluidanimate we use the relative
error.

In the experiments, we measure the performance of our approach for the differ-
ent benchmarks and approximation degrees, for the two different runtime policies
GTB and LQH. For GTB, we investigate two cases: the buffer size is set so that tasks
are buffered until the synchronization barrier (referred to as Max Buffer GTB) ; the
buffer size is set to a smaller value, depending on the computation, so that task exe-
cution can start earlier (referred to as GTB).

As a reference, we compare our approach against:

• A fully accurate execution of each application, using a significance agnostic
version of the runtime system.

• An execution using loop perforation [90], a simple yet usually effective com-
piler technique for approximation. Loop perforation is also applied in three
different degrees of aggressiveness. The perforated version executes the same
number of tasks as those executed accurately by our approach.

The experimental evaluation is carried out on a system equipped with 2 Intel(R)
Xeon(R) CPU E5-2650 processors clocked at 2.00 GHz, with 64 GB shared mem-
ory. Each CPU consists of 8 cores. Although cores support SMT execution (hyper-
threading), we deactivated this feature during our experiments. We use Centos 6.5
Linux Operating system with the 2.6.32 Linux kernel. Each execution pinned 16
threads on all 16 cores.

Finally the energy and power are measured using likwid [95] to access the Run-
ning Average Power Limit (RAPL) registers of the processors.

Experimental Results

Figure 3.3 depicts the results of the experimental evaluation of our system. For each
benchmark we present execution time, energy consumption and the corresponding
error metric.

The approximated versions of the benchmarks execute significantly faster and
with less energy consumption compared to their accurate counterparts. Although
the quality of the application output deteriorates as the approximation level in-
creases, this is typically done in a graceful manner, as it can be observed in Figure 3.2
and the ’Quality’ column of Figure 3.3.

The GTB policies with different buffer sizes are comparable with each other.
Even though Max buffer GTB postpones task issue until the creation of all tasks
in the group, this does not seem to penalize the policy. In most applications tasks
are coarse-grained and are organized in relatively small groups, thus minimizing the
task creation overhead and the latency for the creation of all tasks within a group.
LQH is typically faster and more energy-efficient than both GTB flavors, except for
Kmeans.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 40

Execution time (secs) Energy (Joules) Quality
lower is better lower is better lower is better

So
be

l

Aggr Medium Mild
0

0.2
0.4
0.6
0.8

1
1.2
1.4

Aggr Medium Mild
0

10

20

30

40

50

Aggr Medium Mild
0

0.02

0.04

0.06

0.08

0.1

P
S
N
R
−
1

D
C

T

Aggr Medium Mild
0

0.5

1

1.5

2

Aggr Medium Mild
0

20

40

60

80

100

Aggr Medium Mild
0

0.01

0.02

0.03

0.04

0.05

P
S
N
R
−
1

M
C

Aggr Medium Mild
0

5

10

15

20

25

Aggr Medium Mild
0

200
400
600
800

1000
1200
1400

Aggr Medium Mild
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

R
el

.E
rr

or

K
m

ea
ns

Aggr Medium Mild
0

10

20

30

40

50

Aggr Medium Mild
0

500

1000

1500

2000

2500

Aggr Medium Mild
0

0.1

0.2

0.3

0.4

0.5

R
el

.E
rr

or

Ja
co

bi

Aggr Medium Mild
0

0.5
1

1.5
2

2.5
3

3.5

Aggr Medium Mild
0

50

100

150

200

Aggr Medium Mild
0

0.2

0.4

0.6

0.8

1

1.2

R
el

.E
rr

or

Fl
ui

da
ni

m
at

e

Aggr Medium Mild
0

5

10

15

20

25

30

Aggr Medium Mild
0

200
400
600
800

1000
1200
1400

Aggr Medium Mild
0

20

40

60

80

R
el

.E
rr

or

FIGURE 3.3: Execution time, energy and quality of results for the benchmarks used in
the experimental evaluation under different runtime policies and degrees of approxi-
mation. In all cases lower is better. Quality is depicted as PSNR−1 for Sobel and DCT,
relative error (%) is used in all others benchmarks. The accurate execution and the ap-
proximate execution using perforation are visualized as lines. Note that perforation was

not applicable for Fluidanimate.

In the case of Sobel, the perforated version seems to significantly outperform our
approach in terms of both energy consumption and execution time. However the
cost of doing so is unacceptable output quality, even for the mild approximation

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 41

FIGURE 3.4: Different levels of perforation for the Sobel benchmark. Accurate execu-
tion, Perforation of 20%, 70% and 100% of loop iterations on the upper left, upper right,

lower left and lower right quadrants respectively.

level as shown in Figure 3.4. Our programming model and runtime policies achieve
graceful quality degradation, resulting to acceptable output even with aggressive
approximation, as illustrated in Figure 3.2.

DCT is friendly to approximations: it produces visually acceptable results even
if a large percentage of the computations is dropped. Our policies, with the excep-
tion of the Max Buffer version of GTB, perform comparably to loop perforation in
terms of performance and energy consumption, yet resulting to higher quality re-
sults1. This is due to the fact that our model offers more flexibility than perforation
in defining the relative significance of code regions in DCT. The problematic perfor-
mance of GTB(Max Buffer) is discussed later in this Section, when evaluating the
overhead of the runtime policies and mechanisms.

The approximate version of MC significantly outperforms the original accurate
version, without suffering much of a penalty on its output quality. Randomized
algorithms are inherently susceptible to approximations without requiring much
sophistication. It is characteristic that the performance of our approach is almost
identical to that of blind loop perforation. We observe that the LQH policy attains

1Note that PSNR is a logarithmic metric

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 42

slightly better results. In this case, we found that the LQH policy undershoots the re-
quested ratio, evidently executing fewer tasks 2. This affects quality, which is lower
than that achieved by the rest of the policies.

Kmeans behaves gracefully as the level of approximation increases. Even in the
aggressive case, all policies demonstrate relative errors less than 0.45%. The GTB
policies are superior in terms of execution time and energy consumption in com-
parison with the perforated version of the benchmark. Noticeably, the LQH policy
exhibits slow convergence to the termination criteria. The application terminates
when the number of objects which move to another cluster is less than 1/1000 of
the total object population. As mentioned in the Section 3.8.2, objects which are
computed approximately do not participate in the termination criteria. GTB policies
behave deterministically, therefore always selecting tasks corresponding to specific
objects for accurate executions. On the other hand, due to the effects dynamic load
balancing in the runtime and its localized perspective, LQH tends to evaluate accu-
rately different objects in each iteration. Therefore, it is more challenging for LQH
to achieve the termination criterion. Nevertheless, LQH produces results with the
same quality as a fully accurate execution with significant performance and energy
benefits.

Jacobi is an application with unique characteristics: approximations can affect its
rate of convergence in deterministic, yet hard to predict and analyze ways. The blind
perforation version requires fewer iterations to converge, thus resulting to lower en-
ergy consumption than our policies. Interestingly enough, it also results to a solution
closer to the real one, compared with the accurate execution.

The perforation mechanism could not be applied on top of the Fluidanimate bench-
mark. This is because if the evaluation of the movement of part of the particles
during a time-step is totally dropped, the physics of the fluid are violated leading
to completely wrong results. Our programming model offers the programmer the
expressiveness to approximate the movement of the liquid for a set of time-steps.
Moreover, in order to ensure stability, in is necessary to alternate accurate and ap-
proximate time steps. In our programming model this is achieved in a trivial man-
ner, by alternating the parameter of the ratio clause at taskbarrier pragmas between
100% and the desired value in consecutive time steps. It is worth noting that Flu-
idanimate is so sensitive to errors that only the mild degree of approximation leads to
acceptable results. Even so, the LQH policy requires less than half the energy of the
accurate execution, with the 2 versions of the GTB policy being almost as efficient.

Following, we evaluate the overhead of the two runtime policies and mecha-
nisms. We measure the performance of each benchmark when executed with a
significance-agnostic version of the runtime system, which does not include the ex-
ecution paths for classifying and executing tasks according to significance. We then
compare it with the performance attained when executing the benchmarks with the

24.6% and 5.1% more that requested tasks are approximated for the aggressive and the medium
case respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 43

sobel DCT Monte Carlo Kmeans Jacobi FluidAnimate
0

0.2

0.4

0.6

0.8

1

Normalized execution time

GTB(MAX WINDOW) GTB (User Defined) LQH

FIGURE 3.5: The normalized execution time of benchmarks under different task catego-
rization policies, with respect to that over the significance-agnostic runtime system

significance-aware version of the runtime. All tasks are created with the same sig-
nificance and the ratio of tasks executed accurately is set to 100%, therefore eliminat-
ing any benefits of approximate execution. Figure 3.5 summarizes the results. It is
evident that the significance-aware runtime system typically incurs negligible over-
head. The overhead is in the order of 7% in the worst case (DCT under the GTB Max
Buffer policy). DCT creates many lightweight tasks, therefore stressing the runtime.
At the same time, given that for DCT task creation is a non-negligible percentage of
the total execution time, the latency between task creation and task issue introduced
by the Max Buffer version of the GTB policy results to a measurable overhead.

3.9 Runtime support for significance aware fault tolerant com-
puting

The runtime system is designed for a multicore shared memory platform, in which
cores can be set to operate in various voltage-frequency configurations (V, f), even
in ones below nominal values. Unsafe settings only apply to the cores of the CPU,
including the integer and FPU pipeline logic as well as the L1 and L2 caches. Mod-
ules critical to the correct operation of all cores, such as buses, memory controllers
and cache coherence mechanisms are set to a safe setting and thus always operate
reliably. Our power model takes this into account and all reported energy gains are
due to undervolting the core part.

3.9.1 Runtime Execution Management

As we discussed in Section 2.3.3, we consider three different configurations, FastRel,
SlowRel and FastUnRel. The FastRel configuration is a high-performance nomi-
nal point of operation, with high voltage/frequency (Vh, fh), where a core executes

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 44

V
o

lt
ag

e

Frequency

SlowRel(V
l,
f
l
)

FastRel(V
h,
f
h
)

FastUnRel(V
l,
f
h
)

DVFS
(slow)

Clock Stretching (fast)

nominal operating points

Region of non-nominal operation
(more energy-efficient but also

 potentially unreliable)

● low-power and fast but
unreliable task execution

● execution of main
application thread

● task scheduling
● power-hungry, fast and

reliable task execution

● protection mechanisms
● result-check functions
● low-power, slow and

reliable task re-execution

FIGURE 3.6: The configurations FastRel, SlowRel and FastUnRel used by the runtime
system, to reduce the energy footprint by exploiting the significance of computations.
Our approach exploits non-nominal configurations, that are energy-efficient but unreli-

able.

code fast, whereas SlowRel is a slower nominal operation point, with lower volt-
age/frequency (Vl, fl). Furthermore, cores can be set in the non-nominal and unsafe
FastUnRel configuration (Vl, fh), with the same (low) voltage as SlowRel and the
same (high) frequency as FastRel. Code execution in FastUnRel is equally fast
as in FastRel yet more energy-efficient. At the same time, execution is potentially
unreliable due to timing faults, since FastUnRel is outside the nominal range of
operation.

The main application thread and the master runtime thread are executed reliably
in the FastRel configuration. The tasks of the application can be executed reliably in
the FastRel configuration, or unreliably in the FastUnRel configuration, depending
on their relative significance and the user-supplied task ratio. Figure 3.6 illustrates
the principle of execution. Task execution is done using separate worker threads,
with each worker being placed in a different core. To reduce the number of volt-
age transitions, task scheduling is done in two alternating phases. In the first phase,
workers are configured to operate in FastRel, and the master thread schedules all
the tasks in the ready list that have been flagged for reliable execution. Before the
second phase starts, all workers soft-checkpoint crucial context information to use it
to recover in case of corruption from faults3. Afterwards, the main thread requests
the memory allocator to protect all the memory pages as well as the stack of the main
application thread. This actually forces all data, including non-significant output
data, to a read only state. Reliable task input/output data can be mixed with unreli-
able input/output data in the same memory page. However the Operating System
(OS) assigns privileges at the granularity of a page, therefore when locking a page
to read only state even unreliable tasks cannot write to their output data locations.
To overcome this, each worker allocates extra memory in which the non-significant

3We use the Linux getcontext() function. The state is copied to a read-only memory page to prevent
it from being written accidentally.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 45

tasks will store their results. These memory locations have read write permissions.
At this point the second phase starts. Workers switch from FastRel to SlowRel,

and the master thread proceeds with the scheduling of all the tasks that have been
flagged for unreliable execution. When a worker is assigned with a task, it switches
to the FastUnRel configuration and executes the task. If during task execution an
event causes the OS to take over (e.g. an I/O event), the worker switches to SlowRel
prior to executing the kernel code, and switches back to FastUnRel mode when it
resumes the execution of the application task. When the task completes or crashes,
the core is switched back to SlowRel, the previously saved state is restored, and the
result-check function of the task is invoked.

If the result-check function requests task re-execution, the worker repeats the ex-
ecution but maintains the core in the reliable SlowRel configuration. When all tasks
have finished their execution or the synchronization timing constraint is reached, the
main thread requests from the allocator to revert the protected memory privileges to
their previous state. Afterwards the main thread copies the computed output data
from unreliable tasks back to their original memory locations. In case the group
result-check function requests re-execution of the task group, the master thread con-
figures all workers to operate in FastRel. Then, all tasks in the group that have been
flagged for unreliable execution are re-scheduled from scratch, and are executed re-
liably. The overhead of switching to a different voltage level is amortized by the
execution of a large number of tasks. Consequently, the total execution time of the
application is computed using the components of Equation 2.17. It is the maximum
execution time among all workers for the first task scheduling phase (in the FastRel
configuration), plus the maximum execution time among all workers for the second
task scheduling phase (in the SlowRel/FastUnRel configurations), plus the time
spent on the respective voltage and frequency transitions (Equation 3.9.1).

TTotal =
Workers
max
i=1

(
TFastReli

)
+
Workers
max
i=1

(
TSlowReli + TFastUnReli

)
+ Tvfs (3.1)

The runtime supports the following levels of protection:
No Protection (NP): The runtime system does not employ any error detection/-

correction mechanism or significance information supplied by the programmer. All
tasks of the application are executed unreliably (FastUnRel configuration) and are
susceptible to faults. A task crash leads to the abrupt termination of the entire appli-
cation.

Basic Protection (BP): All applications tasks are executed unreliably as in NP,
but the runtime system identifies and handles errors using the standard proces-
sor/OS protection mechanisms, including the internal soft-checkpointing of critical
state and the memory protection mechanism. As a result, task crashes are properly
caught. However, the programmer-supplied result-check functions are ignored.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 46

Basic & Result Checking (B-RC): In addition to BP, when an application task
completes its execution normally or crashes, the runtime system invokes the result-
check function supplied by the programmer to detect and correct possible errors.

Basic & Significance (B-SF): On top of BP, the runtime system takes into account
the programmer-supplied significance of tasks and ratio, and schedules them for
execution accordingly. As a consequence, the most significant tasks are executed
reliably (in the FastRel configuration), while the less-significant tasks are executed
unreliably (in the FastUnRel configuration). Task crashes are caught and handled
as in BP, and the programmer-supplied result-check functions are ignored.

Full System (FS): The entire protection arsenal is employed, including basic run-
time system protection, task scheduling based on the programmer-supplied signifi-
cance information, and invocation of the result-check functions for unreliable tasks.

Full System & Re-Execution (FS-RE): Like FS, but if the task result-check func-
tions detect a task crash or invalid output, they request a full task re-execution, rather
than trying to repair the task output.

3.9.2 Life of a group-of-tasks

Figure 3.7 illustrates the typical life of a group-of-tasks in an application imple-
mented using our significance aware fault tolerant computing programming model.
For each group instantiated during the life of an application the runtime system re-
ceives a collection of tasks with varying significance values, a desired approximation
level in the form of a taskwait ratio. Based on the ratio value, the runtime system
partitions the tasks into two sets, the most significant tasks and the least significant
ones. The most significant ones are executed under reliable conditions, whereas
the runtime system schedules the least significant ones on hardware that is oper-
ating unreliably. Tasks which are executed unreliably are monitored for abnormal
behaviour (crashes, and infinite loops). In the event that they complete their execu-
tion without an obvious error their outputs undergo an error detection phase. Tasks
whose outputs are considered to be invalid may then be re-executed on undergo a
more elaborate error correction phase. Result checking may also be performed at the
granularity of group-of-tasks, this way we enable developers to assess the validity
of the aggregated result of a group-of-tasks.

3.9.3 Benchmarks

We use five benchmarks, listed in Table 3.2, and apply three different methodologies
to perform significance characterization on them. In DCT we use domain exper-
tise to identify the significance of different parts of the computation. The tasks that
compute low frequency coefficients are close to the upper left corner of each 8x8 fre-
quency block, and are more significant than the ones computing coefficients towards
the lower right corner of the block.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 47

Group tasks

Partition tasks into
most and least significant

Significance ratio

Most significant
tasks

Least significant
tasks

Execute
reliably

Execute
unreliably

Wait for all of the most significant tasks to
complete and some of the least significant ones

?

Errors
detected?

No
Yes

Correct errors
or

re-execute task

?

Did task
crash/hang?

No Yes

Taskwait time

Task result check function

Group result check function

Done

?

Errors
detected?

No

Yes

Correct errors
or

re-execute group

FIGURE 3.7: The typical life of a group-of-tasks in the context of significance aware fault
tolerant computing

In Blackscholes and the iterative benchmarks K-means, Jacobi we employed a profile-
driven approach. More specifically, in Blackscholes we injected bitflips in the input
data and observed the output quality. All parts of the code appear to be equally
significant, since faults had similar manifestations regardless or task computations.
Therefore, all tasks are assigned equal values of significance since all stock options
are considered equally important.

In Jacobi and K-means we injected bit-flips in the input data of a randomly chosen
iteration, and compared the relative error of the faulty execution with an error-free

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 48

Lines of Code

Benchmark Domain
Sgnf.
Characterization

Task TRC function

DCT Multimedia Domain expertise 39 34
Sobel Image Filter Randomly 54 42
Blackscholes Finance Profile-driven 117 105
K-means Data mining Profile-driven 141 57
Jacobi Numerical Solver Profile-driven 62 39

TABLE 3.2: Lines of code (LOC) for the tasks and corresponding result-check and correc-
tion functions for each benchmark. The result-check functions are implemented based
on the original task code, which was modified to reduce its computational complexity.

one. In both Jacobi and K-means we observe that errors in the last few iterations tend
to severely reduce the output quality, and thus infer that these are the most signif-
icant ones. Finally, in Sobel we exploit the perceptual properties of the human eye,
and randomly distribute the significance among tasks. This way errors are spread
across the entire output image and the loss of quality is not clustered in a specific
area of the image.

In all benchmarks we used a very simple result-check function. The result-check
function of DCT detects errors in the task output via a heuristic out-of-bounds check;
coefficients that do not respect the bounds are set to zero. In Sobel the task result-
check function corrects only tasks that crashed during their execution by running
an approximate version of the Sobel filter, using a lightweight stencil with just 2/3
of the filter taps. Blackscholes is a benchmark of the Parsec suite [8]. Results are
checked with the isfinite() macro. This is a glibc floating point classification macro,
it returns a non-zero value if the value under inspection is not NaN, or infinite. If
the check fails, the function uses a faster implementation of the Blackscholes formula,
by substituting costly mathematical operations (such as expr(), sqrt(), log()) with
approximate versions. In K-means the result-check function of non-significant tasks
is minimalistic, exploiting the error-tolerant nature of this iterative application: if a
point attempts to subscribe itself to cluster but miscalculates the cluster’s id then it
reverts to its previous cluster. Also, if the runtime system reports an error, then all
points computed by the task are subscribed back to their previous clusters. In Jacobi
it is hard to create an error detection mechanism, since assessment of the quality of
results is associated with the application in which the solver is used. We implement
a simple result-check function which uses the glibc isfinite() macro to detect obvious
errors to the output of tasks. In the event of detecting such an error, the current
solution estimate is replaced with that of the previous iteration.

In our benchmarks, the result-check part was simple, mostly based on range
checks. For the correction part, we reused the original task code and, in some cases,
modified it to perform the computation approximately. Table 3.2 shows that result-
check functions are almost as big as the tasks themselves. Nevertheless, since we
heavily reused the existing task code, the actual effort to implement the result-check

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 49

0.85 0.9 0.95 1 1.05
0

5

10

15

20

25

Energy Gain

Supply Voltage

%
 E

n
e

rg
y

 G
a

in

FIGURE 3.8: Energy gains of a sin-
gle task for Sobel executed at volt-
ages Vl < Vh for constant fre-

quency fh = 3.7GHz.

SlowRel FastUnRel

Freq. Voltage Freq. Voltage Fault
Rate

1.67 GHz 0.90V
3.7 GHz

0.90V 10−7

1.54 GHz 0.89V 0.89V 10−6

1.41 GHz 0.88V 0.88V 10−5

TABLE 3.3: SlowRel and FastUnRel con-
figuration settings used in our evaluation,
and average fault rates of the FastUnRel

configurations.

function was minimal.

3.9.4 Simulated Software Fault Injection

We evaluated our significance-centric framework on top of a Intel Quad Core i7 Ivy-
Bridge CPU platform. Our x86 platform does not allow placing individual cores in
a non-nominal configuration, where actual timing violations and faults might occur.
Thus, we rely on software fault injection to simulate the manifestation of errors dur-
ing the unreliable execution of selected tasks of a program. We provide a more de-
tailed discussion regarding our software fault injection methodology in Section 2.3.

Given a target fault rate, we randomly generate a set of fault injection intervals,
expressed as number of cycles between faults, using a uniform distribution with
a mean value equal to the target fault rate. We then use the performance counter
infrastructure of x86 CPUs to interrupt application execution at those intervals and
invoke the software-based fault-injection logic. For each application, combination
of protection mechanisms, and voltage level (fault rate) we perform 10, 000 multiple
fault injection experiments, for a confidence interval of 95% and an error margin of
2.5%.

We study the behavior of benchmarks for the different protection levels sup-
ported by our runtime system (Section 3.9.1), on our i7 4820K CPU which is clocked
up to 3.70 GHz. We fix the FastRel configuration to the highest performance config-
uration, with Vh = 1.06V, fh = 3.7GHz. To determine proper FastUnRel configura-
tions, we run our benchmarks for different values for Vl while keeping frequency to
fh, observe their behavior and compute the corresponding energy gains.

Figure 3.8 demonstrates the energy gains for a single task of Sobel when exe-
cuted at different FastUnRel configurations, in comparison with an execution in
the FastRel configuration. The “sweet spot” is around 0.89V . If we further un-
dervolt, inducing faults at higher rates, tasks are practically certain to crash. This
increases the overhead due to the activation of protection and task correction mech-
anisms in the SlowRel configuration, and cancels any energy gains. In contrast,
when a core operates in voltage regions higher than the PoFF, the failure rate is very

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 50

small, and the functionality of our framework is rarely activated. Since these ef-
fects are observed in all the application benchmarks in our evaluation , we focus
on the “promising” voltage range from 0.88V to 0.90V . In our evaluation we set
FastRel = (1.06V, 3.7GHz). Table 3.3 summarizes the configurations used in our
experiments.

Figure 3.9 breaks down the execution time of a task for each benchmark using
a fixed frequency of 3.7 GHz. The time spent by the runtime system to create and
schedule tasks, to protect the memory and to checkpoint the state of each task be-
fore execution is less than 5% of the total task execution time. Task creation and
scheduling overhead is practically constant, at about 5000 cycles. The same applies
to checkpointing, which costs approximately 2000 cycles. Noticeably, in Sobel and
Blackscholes the overhead of correction is comparable with task execution time. These
two benchmarks execute an approximate version of the computation as a correction
heuristic, whereas the rest simply discard the computed erroneous solutions, which
incurs almost zero overhead.

Figure 3.10 summarizes our experimental results for a range of voltage settings
and protection mechanisms. For each benchmark we present two diagrams. The
left one depicts the cumulative distribution function (CDF) of the percentage of exper-
iments (y-axis) achieving a specific quality threshold (x-axis) under different pro-
tection mechanisms (different lines). For the media benchmarks (DCT, Sobel) the
quality metric is PSNR (higher value is better). For the remaining benchmarks qual-
ity is quantified by the relative error w.r.t the fully reliable execution (lower value
is better). The two extreme bins of the x-axis correspond on the one side to experi-
ments which resulted in bitwise exact results, and on the other side to experiments
producing very bad output quality. The percentage of crashed experiments can be
deduced by subtracting the percentage of worst quality experiments from 100%. The
percentage of experiments which resulted in bitwise exact results are equal to the
percentage of experiments which provide the best quality in the CDF. For a specific
quality target, the height of each CDF line at the specific quality corresponds to the
percentage of experiments which achieve the specific quality of results. Intuitively,
the sooner (to the left) and the higher the lines raise, the better the respective protec-
tion configurations.

The diagrams to the right depict the average energy gains against a fully reliable

DCT Sobel Blschl. Kmeans Jacobi
0%

20%

40%

60%

80%

100%

Correct Error Detect Error Execute Task
Checkpoint Tag Significance Protect Memory
Create Task

Benchmarks

%
 E

xe
cu

ti
o

n
 T

im
e

FIGURE 3.9: Breakdown of task exe-
cution time, for each benchmark.

Bench. C Nr Nu NFR→SR NSR→FR

DCT 133K 4096 28672 1 1
Sobel 50K 410 3684 1 1
Blscls 197K 90 10 1 1

Kmeans 283K 1500 13500 83 83
Jacobi 594K 830 7470 83 83

TABLE 3.4: Average task execution time
in cycles (thousands), number of tasks ex-
ecuted reliably/unreliably, and number
of voltage and frequency transitions, for

each benchmark.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 51

% Experiments Resulted in Quality Energy Gain
D

C
T

E
x

a
c

t

4
5

3
5

2
5

1
0 0

E
x

a
c

t

4
5

3
5

2
5

1
0 0

E
x

a
c

t

4
5

3
5

2
5

1
0 0

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

Quality (db) PSNR
Voltage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-20%
-10%

0%
10%
20%
30%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

So
be

l

E
x

a
c

t

8
0

6
0

4
0

2
0 0

E
x

a
c

t

8
0

6
0

4
0

2
0 0

E
x

a
c

t

8
0

6
0

4
0

2
0 0

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

Quality (dB) PSNR
Voltage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

0%
5%

10%
15%
20%
25%
30%

Voltage - Error Rate

%
 E

n
er

g
y

G
ai

n

B
la

ck
sc

ho
le

s

E
x

a
c

t

1
E

-5

1
E

-3

1
E

-1

>
1

E
+

1

E
x

a
c

t

1
E

-5

1
E

-3

1
E

-1

>
1

E
+

1

E
x

a
c

t

1
E

-5

1
E

-3

1
E

-1

>
1

E
+

1

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

 Quality (%) Rel. Error
Voltage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-60%

-40%

-20%

0%

20%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

K
m

ea
ns

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

Quality (%) Rel. Error
Votlage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-45%

-30%

-15%

0%

15%

30%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

Ja
co

bi

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

0.88V 0.89V 090V

0%
20%
40%
60%
80%

100%

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

 Quality (%) Rel. Error
Voltage

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-60%

-40%

-20%

0%

20%

40%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

FIGURE 3.10: Experimental results for different Vl values for the SlowRel and FastUnRel
configurations. Percentage of experiments which achieved a certain quality (left), and

energy gains with each protection scenario (right).

execution (FastRel state) using our runtime in the NP configuration. The number
of voltage and frequency transitions, the average execution time of a task in cycles
as well as the number of reliable and non reliable tasks are given in Table 3.4. In
all scenarios where task significance information is taken into account, the task ratio
is fixed to 10%, except DCT in which the requested ratio is 13%. In DCT all tasks
which compute the upper left coefficient corner need to be executed reliably. These
tasks correspond to 13% of the total number of tasks. In scenarios that do not exploit
significance information, all tasks are executed unreliably.

When no protection mechanism is active, all experiments result in crashes. Basic
protection (BP) eliminates crashes, and can even lead to satisfactory behavior as long
as the fault rate remains moderate. As expected, error resilience increases as more

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 52

protection mechanisms are employed. As an exception, result-check functions (B-
RC) may produce worse results compared with BP, by discarding partially good
results produced by tasks before they crash. On the other hand, energy gains are
typically reduced as the amount of protection increases. Therefore, for the specific
evaluation we select naive result check (RC) functions, which do not spend a lot
of time to detect and correct an error. This increases the energy gains, however it
decreases the quality of the end result. A better solution is discussed in Section 6.
Another interesting observation is that task re-execution (FS-RE) does not guarantee
perfect results, as is clearly visible from the CDFs in Figure 3.10. A task is re-executed
reliably only if it crashes or the result check function requests a re-execution. Since
the result check functions are simple they miss silent data corruptions, which in
turn lead to imperfect results. Finally, when combining all protection mechanisms,
the application error resiliency is pushed to significantly higher fault rates. In the
following paragraphs, we discuss the behavior of each application in more detail.

The two image processing benchmarks demonstrate a similar behavior. The tran-
sition from NP to BP completely eliminates any program crashes. However, there is
no guarantee for the quality of the output. The produced outputs are of unaccept-
able quality when executed in all FastUnRel configurations. Even the addition of
a result check function (B-RC) does not increase the quality; the same is observed for
the B-SF scenario. In DCT B-RC the detection part of the result check function is
able to detect many errors, however, when errors corrupt tasks that should had been
significant, there is no efficient way to correct them. This motivates the usage of the
significance information by our runtime system.

On the other hand, in Sobel the detection part fails to detect many errors. In the B-
SF scenario significant tasks are protected by the software stack, however there is no
increase in the quality of the output. In the case of DCT the absence of a result check
function allows faults that manifest on non-significant tasks to negatively impact
the end quality. Figure 3.11 illustrates the output of four protection configurations
(excluding NP and FS-RE) for the DCT benchmark. The corrupted images show the
effect of faults when protection is not adequate, while the rightmost image shows
that even in a highly faulty environment, our approach almost eliminates visible
artifacts.

In Sobel the significance characterization of tasks simply spreads unreliability
uniformly within the output, however PSNR does not capture such effects. It is
interesting to note that for Sobel at 0.88V the B-RC leads to smaller energy gains than
B-SF. Under such high error rates tasks tend to crash frequently, which is detectable
by the runtime system and therefore the correction part is invoked. However in So-
bel the correction part of the result check function is almost as costly as the task itself
(Table 3.4), so correcting a large number of tasks incurs excessive overhead. The
combination of the result check function with the significance values (FS scenario)
results in increased quality. Even in the highest fault rates the FS scenario delivers
quality higher than 35 dB for DCT and 30 dB Sobel, respectively, for all experiments.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 53

BP B-RC B-SF FS

FIGURE 3.11: DCT output at 0.89V, with one fault injected every 100,000 cycles. The
images correspond (from left to right) to the BP, B-RC, B-SF and FS protection configu-
rations, resulting to PSNRs of 12, 13, 15 and 37 dB respectively. A fault free execution

leads results in a PSNR of 43 dB. NP deterministically leads to crashes.

Similar behavior is observed for the FS-RE scenario. In the case of Sobel, the detection
part of the result-check function is unable to detect most faults except the ones which
lead to task crashes. Therefore the correction part (re-execution in FS-RE) is rarely
executed. Consequently, the negative (energy-wise) impact of the re-execution is not
captured in this benchmark.

In the FS configuration when the voltage is decreased from 0.90V to 0.88, the en-
ergy gains of DCT slightly increase from 18% to 21% whereas in Sobel the energy gain
is reduced from 20.0% to 16.0% The result check function of DCT sets a default value
(0) to the faulty output. For Sobel, an approximate version of the task is executed.
Therefore, the energy gains due to undervolting are outweighed by executing the
result check function more frequently due to the higher fault rate. A similar trend
is observed for DCT in the FS-RE configuration. Re-executing the entire task every
time its output is detected as erroneous outweighs all energy savings and results in
energy losses.

The computationally intensive Blackscholes uses mathematical functions, such as
logarithms, square roots, etc. which return NaN or inf when arguments are outside
their definition range. Detecting such errors is easy. Since many faults can be de-
tected, FS-RE computes exact outputs 24% of the time when operating at 0.90V . The
resulting output quality is exceptional with a relative error less than 0.03% across
all experiments. However, at high fault frequencies the application results in energy
losses since a large number of tasks need to be re-executed in the SlowRel domain.

K-means and Jacobi demonstrate similar characteristics. At 0.90V , in all protection
scenarios, both applications result in a relative error less than 10−6%. In K-means the
quality decreases rapidly for higher fault rates. Neither the result check function
nor the significance values increase output quality. The result check function has no
efficient way to correct errors and the small subset of the last significant iterations is
unable to assign the points to the correct centers. For Jacobi, at 0.89V BP has better
quality than B-RC. In B-RC, when an error is detected, the current solution estimate is
replaced with that of the previous iteration. At high error rates faults are frequently
detected and therefore the respective iterations are discarded. In Jacobi it is better to
rely on the self healing attributes rather than correcting the result.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 3. Significance-aware computing framework 54

Sobel Blackscholes

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

0.88V 0.89V 0.90V

0%

5%

10%

15%

20%

20

40

60

80

Ratio-Votlage

E
n

e
rg

y
 G

a
in

 (
%

)

P
S

N
R

 (
d

b
)

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

0.88V 0.89V 0.90V

0%

5%

10%

15%

20%

0

0.1

0.2

0.3

0.4

Ratio-Votlage

E
n

e
rg

y
 G

a
in

 (
%

)

R
e

l.
E

rr
o

r
(%

)

FIGURE 3.12: Quality vs. energy trade-offs using the ratio parameter in the FS configu-
ration.

Figure 3.12 presents experiments in which we vary the ratio parameter and record
the energy savings and output quality for different values, for the Sobel and Blacksc-
holes benchmarks under the FS configuration. The ratio knob allows the user to se-
lect the percentage of reliably executed tasks and can effectively control the trade
off between energy savings and quality loss. A similar behavior is observed in all
benchmarks.

Interestingly, modern processors, with the assistance of our framework can pro-
duce acceptable results until they reach the Point of First Failure. Below that point,
both additional energy gains are too low and massive failure rates defeat any software-
based realistic protection mechanism. More importantly, our results indicate that the
energy gains are maximized when we schedule tasks on either reliable or unreliable
hardware depending on their significance values. In this scenario we instruct the
runtime system to exploit two types of heterogeneity. The first being hardware het-
erogeneity through the use of mixed-reliability configuration domains, and software
heterogeneity by means of exploiting the algorithmic property of significance.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

55

Chapter 4

Automating significance
characterization of tasks

In the previous chapter we introduced our basic framework to support the devel-
opment and optimize the execution of applications which employ the principles of
significance-aware approximate and fault-tolerant computing. In this chapter we
will provide a methodology to address three key challenges of the proposed com-
puting paradigms. More specifically, we will discuss our approach to answering the
questions of What/How to approximate? as well as What to execute unreliably? To
this end, we make the following contributions:

(i) We introduce a framework to exploit dco/scorpio (section 2.2.3), in order
to perform automatic significance analysis. More specifically, dco/scorpio
employs interval analysis [66] and algorithmic differentiation [26, 67] to auto-
matically quantify the significance of computations. Our framework processes
the outputs of dco/scorpio to detect variations in significance among parts
of code so that it may:

• Characterize tasks with significance information, which qualitatively de-
scribes the task’s impact to the final output quality.

• Provide hints to application developers in order for them to implement
lightweight approximate alternatives for tasks.

(ii) We evaluate our approach and its impact on the quality/accuracy of the end
result, on a set of five benchmarks from the domains of imaging, finance and
physics.

(iii) We compare our approach with loop perforation [90], a compiler technique for
skipping selected loop iterations.

Our results show that it is possible to perform automatic significance analysis
and produce similar results to a human domain expert. We also report that it is
possible to exploit the algorithmic property of significance to gracefully trade-off
application output quality with optimized execution of applications. In fact, our
case study resulted in better results in comparison with blindly applying loop per-
foration.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 56

4.1 Workflow for Systematic Significance Driven Program-
ming

In this section we show how significance analysis is systematically used to guide the
programmer to expose significance information at the level of a task through source
code annotation.

4.1.1 Significance Analysis Framework

Application developers traditionally focus on performance related concerns such
as parallelism, synchronization, load balancing, scheduling, and cache utilization
when designing the structure of their code. We observe that this approach may
conflict with the optimal application structure when the primary concern is the ex-
ploitation of the algorithmic property of computational significance. To this end,
we explore the use of dco/scorpio as the basis for a framework which assists de-
velopers in partitioning the computation to tasks, and at the same time it reveals
opportunities for approximation within the body of a task.

dco/scorpio performs significance analysis to estimate the impact of interme-
diate results to the output quality. This information, however, in its raw form is not
easily usable by a human. Recall that in section 2.2.3 we discussed the functionality
of dco/scorpio. The analysis of dco/scorpio produces an annotated Dynamic
Data Flow Graph (DynDFG). Nodes within the DynDFG represent the computation
of a single intermediate value. Unfortunately, it is often the case for dco/scorpio
to produce extremely large DynDFGs.

Our methodology processes a DynDFG that was the output of dco/scorpio
and produces a DynDFG of reduced complexity. It then identifies sibling nodes
within the new DynDFG whose significance varies significantly. Those points in
the DynDFG are good candidates for task boundaries. This information may then be
used by application developers to structure their code using our significance-aware
programming model. In turn, the runtime support system will take advantage of the
opportunities for program optimization that significance-aware approximate com-
puting creates. In addition to task partitioning, application developers may use the
results of the analysis to implement lightweight alternatives of tasks. The remainder
of this section discusses the details of our methodology (Algorithm 1).

We will be using a Taylor series computation (Listing 4.1) as a toy running exam-
ple to illustrate all aspects of the workflow:

f(x) =
n∑
i=0

xi ≈ 1

1− x
, x ∈ (−1, 1). (4.1)

We use the notation introduced in section 2.2.1. Nodes at the top are mapped to
input vector ~x, leaf nodes at the bottom to the output vector ~y and the remaining
nodes correspond to intermediate variables uj . Starting from the original source

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 57

1 double maclaurin_series(double x, int N)
2 {
3 double result = 0.0;
4

5 for (int i=0; i<N; ++i)
6 {
7 double term = pow(x, i);
8 result += term;
9 }

10

11 return result;
12 }

LISTING 4.1: The Taylor Series original implementation.

code of the application, we produce a simplified DynDFG along with significance
information for all nodes. An example DynDFG is shown in Figure 4.1.

Steps S1 and S2 identify the output and input data of the algorithm, respectively,
and register the input data ranges. To annotate Taylor Series (Listing 4.2) we register
~x as the input data and set its value width equal to 1 (~x ∈ [x − 0.5, x + 0.5] as seen

Algorithm 1: Significance Analysis Framework (dco/scorpio)
Input : Application source code
Output: Gout (DynDFG) along with significance tags

S1: ~y = (y0, . . . , ym−1)
T

S2: ~x = (x0, . . . , xn−1)
T

S3: G = dco/scorpio(~x, ~y)
S4: Gs = simplify(G)
S5: Gout = findSgnfV ariance(Gs)

def findSgnfVariance(DynDFG G) {
for (L = 1; L<G.height; ++L)

if (SgnfVariance(L) >δ)
call G.removeAbove(L+1)
break

return G
}
def simplify(DynDFG G) {

for (L=0; L<G.height; ++L)
nodes = G[L]
foreach(v in nodes)

inputs = v.InputDeps()
call simplifyDep(G, inputs, v)

return G
}
def simplifyDep(DynDFG G, nodes, parent) {

foreach (v in nodes)
if(v.AntiDependent(parent))

v.Parent = parent
call simplifyDep(G, v.InputDeps(), parent)

else
call G.SetDependency(v, parent)
call simplifyDep(G, v.InputDeps(), v)

}

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 58

x0 xn−1n Inputs

uL,0 uL,f−1f intermediate results at Level L

u3,0 u3,e−1

u2,0 u2,c−1 u2,0 u2,d−1

u1,0 u1,a−1 u1,0 u1,b−1

y0 ym−1

m output variables at Level 0

FIGURE 4.1: Dynamic DFG (DynDFG) of the application

1 double maclaurin_series(dco::ia1s::type x, int N)
2 {
3 dco::ia1s::type result = 0.0;
4

5 INPUT(x, x-0.5, x+0.5);
6 for (int i=0; i<N; ++i)
7 {
8 dco::ia1s::type term = pow(x, i);
9 result = result + term;

10 }
11

12 OUTPUT(result);
13 ANALYSE();
14

15 return result.toDouble();
16 }

LISTING 4.2: Listing 4.1 enhanced with dco/scorpio macros.

in line 5). Step S3 invokes the dco/scorpio analysis toolset described in section
2.2.3 to produce a graph following the format shown in Figure 4.1. Each node uj is
annotated with the significance value of the corresponding intermediate variable to
the output.

Step S4 post-processes the graph produced by the significance analysis tool to
eliminate internal nodes that express anti-dependencies such as: res = res+ term[i].
These operations aggregate results, and are not really part of the computation. We
illustrate these aggregation nodes using a darker color in Figure 4.2. Disregarding
them is important for the next step S5, which is the main step of Algorithm 1.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 59

Step S5 traverses Gs using Breadth First Search (BFS), starting from the output
nodes at level L = 0 and moving towards the input nodes, to construct Gout. The
algorithm detects the level L at which nodes have significance values with statistical
variance higher than δ.

Intuitively, when we detect nodes with high statistical variance in their signifi-
cance values, we have reached a level in the DynDFG which can be used to partition
the code into tasks of different significance. Nodes uL,k with high significance for
the program outputs ~y can be made to correspond to output variables of significant
tasks, and the programmer can restructure the code around this information. On the
other hand, if the algorithm terminates at the inputs ~x of the code without detect-
ing any significance variations, it is guaranteed that nodes which reside in the same
level are (almost) equally important. Parameter δ is dependent on application char-
acteristics and the sensitivity to significance variations required by the programmer.
When the analysis terminates, the method produces a DynDFG containing nodes up
to level L+ 1, along with their significance value.

In Figure 4.2 we show the DynDFGs produced in steps S3 and S4 respectively for
the Taylor Series. Figure 4.2b is the result of S5 as well. The last step of our analysis
terminates at L = 1 since there are large variations between node significances at
this level. Note that, the first term has a significance of 0. A significance value of 0
means that the respective computation can be substituted by a constant value, which
is 1 in this case since pow(x, 0) = 1. The most significant term is the second one and
every term computed afterwards is less significant than the one before it.

Figure 4.3 illustrates the boundaries of tasks for the Taylor benchmark. Notice
that a single task computes multiple terms and each term has a different significance
value. Given that it is neither intuitive nor possible for a task to carry multiple
significance values, we use a simple rule to decide the significance of a task that
computes multiple output elements: A task is as significant as its most significant
output. As a result Task 1 is tagged with the significance value of term1 and Task
2 carries the significance value of term3. Finally, note that the the computation of
the very first term, as the significance analysis results suggested, is substituted by a
constant value.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 60

result:

1

term4:

0.241

result:

0.759

term3:

0.245

result:

0.513

term2:

0.254

result:

0.259

term1:

0.259

result:

0

term0:

0
In:x

(A)

result:

1.0

term4:

0.241

term3:

0.245

term2:

0.254

term1:

0.259

term0:

0

In:x

(B)

FIGURE 4.2: Figure (a) illustrates the Graph containing the significance values of the el-
emental computations as produced by dco/scorpio during S3 and (b) The simplified

graph after S4 for the Taylor Series example.

In

term1 term2 term3 term4term0

Out

Task 1 Task 2

1

0
Significance

FIGURE 4.3: Task boundaries for the toy benchmark Taylor.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 61

4.2 Experimental Evaluation

We evaluate our approach with five applications, consisting of six different compu-
tational kernels. We intentionally include well-known kernels in our benchmark set,
so that we can exploit domain expertise to validate the results of the significance
analysis.

4.2.1 Method validation

Sobel

For the significance analysis of Sobel we use a set of images used in image compres-
sion benchmarking [6]. The analysis indicates that the first level of high variance
between the significance of computations in the DynDFG is the one at which convo-
lutions take place. Three distinct blocks of computations are identified. The first one
(A) uses the filter coefficients 2 and −2 and the other two (B, and C) use 1 and −1.
The analysis shows that A is twice as significant as the other two. Finally, the com-
putations which aggregate the outputs of convolutions and produce output pixels
show little significance variance across all pixels.

Discrete Cosine Transformation

Analysis reveals a variation in significance at level L = 1 of the DynDFG, which cor-
responds to the computation of individual frequency coefficients. We perform the
analysis on code which performs the invocation of DCT, quantization, de-quantization
of the DCT coefficients and finally inverse-DCT to decompress the image. The result-
ing coefficient significances are shown in Figure 4.4a. The diagonal zig-zag path cor-
responds to the importance of coefficients according to the wisdom of image/video
compression experts. The significance pattern that emerges from the analysis verifies
this domain expert wisdom, thereby validating our approach. In turn, we structure
DCT using 15 tasks in total as shown in Figure 4.4b. As a result, each task operates
on coefficients of the same or similar significance. Task significance gradually drops
with increasing distance from the top-left corner. We approximate the execution of
the least significant tasks using a default value: we set their outputs to zero.

Note that the significance analysis results of DCT indicate that there is a trade-
off between tasks that produce outputs of similar significance and work-balancing.
Indeed, we can observe that there are conflicting concerns when implementing ap-
plications for significance-aware computing. Consequently, in the future we plan
to investigate the relationship of significance and task-granularity as well as their
effects on application performance and output quality (see Section 8.3).

Fisheye Lens Image Correction (Fisheye)

Figure 4.5a depicts the output of the significance analysis for the InverseMapping ker-
nel applied on an image the dimensions of which in the natural looking space are

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 62

 0 1 2 3 4 5 6 7

0

1

0

1

2

3

4

5

6

7

(A) The DCT significance mapped on
the 8x8 block of DCT coefficients. The
top left corner has the highest value and
drops in a wave-like pattern towards the

opposite corner.

 0 1 2 3 4 5 6 7

0

1

0

1

2

3

4

5

6

7

(B) We partition the computation of DCT
into 15 tasks. Each task computes one
diagonal of all the 8x8 blocks of coeffi-

cients.

FIGURE 4.4: Significance analysis for DCT and task boundaries. Note that in both fig-
ures, the darker the color the higher the significance value.

0 1280X coordinates

Y
 c

oo
rd

in
at

es

0

960

0

1

(A) Significance values of the InverseMap-
ping kernel.

1

0
0 1280

960

X coordinates

Y
 c

o
o

rd
in

at
e

s

(B) Task boundaries and their respective sig-
nificance.

FIGURE 4.5: Significance analysis for Fisheye and the resulting task boundaries.

1280x960. The effect of fisheye-shaped lens is to expand the pixels closest to the
boundary, and push together pixels that are near the center. Thus, computing coor-
dinates for pixels near the border is more sensitive to imprecision than for those at
the center.

BicubicInterp uses weighted averages to produce the interpolated pixel value.
The grey rectangle of Figure 4.6i shows the area in which the interpolated pixel re-
sides. Figures 4.6a-4.6h show the corresponding significance values of the pixel-pairs,
mapped on the discretized input coordinate space. The results indicate that the inner
2x2 pixel block, which directly surrounds the coordinates of the input point, contains
the two most significant pairs of pixels (Figures 4.6 c and e).

We use the significance pattern of InverseMapping to assign higher significance

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 63

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(A) Pixels (0,1) and (0,2)

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(B) Pixels (0,0) and (0,3)

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(C) Pixels (1,1) and (1,2)

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(D) Pixels (1,0) and (1,3)

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(E) Pixels (2,1) and (2,2)

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(F) Pixels (2,0) and (2,3)

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(G) Pixels (3,1) and (3,2)

X coordinates

Y
 c

o
o

rd
in

a
te

s

0 1
0

1

(H) Pixels (3,0) and (3,3)

b a a b

h g g h

f e e f

d c c d

Interpolation
coordinates (input)

(x,y)

1

0
(I)

FIGURE 4.6: Significance graphs for the pixels in the 4x4 block of BicubicInterp with
respect to the interpolated output image; letters in (i) point to the corresponding graphs.

values to tasks which are closer to the image border, and lower to those near the
center as illustrated in Figure 4.5b. The approximate version of tasks invokes In-
verseMapping only for the pixels which lie on the border of the 128x64 block and
uses interpolation to compute the coordinates of internal pixels. For BicubicInterp
we exploit a transitive property of significance: it is sensible to opt for an approxi-
mate execution of computations which use approximate input data. In tasks where
InverseMapping was executed approximately, BicubicInterp uses only the pixels pairs
in Figures 4.6 c and e.

N-Body

We compute the significance of each atom’s state with respect to the state of all other
atoms. The results, once again, confirm domain expert wisdom: the significance is
strongly correlated with the distance between atoms. The greater the distance be-
tween atom A and atom B, the less the kinematic properties of one affect the other.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 64

0 0.2 0.5 0.8 1
0

20

40

60

80

0

100

200

300

400

500Sobel

Ratio

Q
u

al
it

y
(P

S
N

R
 (

d
B

))

E
n

er
g

y
(J

o
u

le
s)

0 0.2 0.5 0.8 1
0

10

20

30

40

0

100

200

300

400

500
DCT

Ratio

Q
u

al
it

y
(P

S
N

R
 (

d
B

))

E
n

er
g

y
(J

o
u

le
s)

0 0.2 0.5 0.8 1
0

10
20
30
40
50
60

0

50

100

150
Fisheye

Ratio

Q
u

al
it

y
(P

S
N

R
 (

d
B

))

E
n

er
g

y
(J

o
u

le
s)

Quality Sgnf

Quality Perf

Energy Sgnf

Energy Perf

0 0.2 0.5 0.8 1
0%

1%

2%

3%

4%

0

2000

4000

6000

8000

10000N-Body

Ratio

R
el

at
iv

e
E

rr
o

r
(%

)

E
n

er
g

y
(J

o
u

le
s)

0 0.2 0.5 0.8 1
0%

5%

10%

15%

0

50

100

150

200
Blackscholes

Ratio

R
el

at
iv

e
E

rr
o

r
(%

)

E
n

er
g

y
(J

o
u

le
s)

FIGURE 4.7: Output quality (blue bars, left y-axis) and energy consumption (blue lines,
right y-axis) for the 5 benchmarks, as a function of the ratio of accurately executed tasks

(x-axis). The results obtained by loop perforation are depicted in red.

We assign significance values to tasks based on the results of the significance analy-
sis. As such, tasks which compute forces between neighboring atoms receive higher
significance values than those involving distant atoms. The least significant tasks
are dropped.

Blackscholes

Significance analysis indicates that the computation of a stock price can be broken
down to 4 blocks of code A, B, C, D, with sig(A) > sig(B) � sig(C) > sig(D).
Each block produces the input to its successor block. Block C performs two Cu-
mulative Normal Distribution Functions (CNDFs) and block D produces the final
output by combining the outputs of C. The two least important parts (C and D)
are approximated using less accurate but faster implementations of mathematical
functions such as exp and sqrt [61].

4.2.2 Performance evaluation

Loop perforation

As a reference, we use versions of the benchmarks which apply loop-perforation [90]
to trade-off energy consumption with output quality. We perforate the loops in such
a way that the same percentage of computations is skipped as the percentage of

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 65

computations approximated by our runtime. Similarly to [90], we find that loop
perforation is not applicable on Blackscholes since the application does not have
any loops within the computation of a stock’s price. The perforated version of Sobel
skips the computation for a percentage of the rows of the image. In DCT we perfo-
rate the double nested loops which compute the coefficients of an 8x8 block of pixels.
In Fisheye we drop the computation of some of the output image rows similarly to
Sobel. Finally, the original version of N-body computes the forces affecting a particle
by iterating all other particles in a loop, whereas the perforated version skips some
iterations of the loop.

Quality, performance and energy quantification

We execute all applications for different degrees of approximation, varying the ratio
of tasks that are executed accurately. The blue-colored bars in Figure 4.7 show the
effects on output quality. For Sobel, DCT, and Fisheye we use Peak Signal to Noise
Ratio (PSNR) with respect to the fully accurate execution as a quality metric (higher
is better). Note that, PSNR is a logarithmic metric. For N-body and Blackscholes we
evaluate the relative error (lower is better) with respect to the fully accurate execu-
tion.

The quality of the output gradually increases with the number of tasks that are
executed accurately, in all benchmarks. This shows that the significance-driven ap-
proach can indeed lead to well-behaved approximate applications. Note that DCT
and N-body produce high-quality output even for relatively low accurate task ra-
tios. The more distinct the significance properties of an algorithm are, the smaller
the quality penalty due to approximation.

We measure performance and energy consumption for an Intel(R) Xeon(R) CPU
E5-2695 v3 @ 2.30GHz CPU with 14 cores and 128 GBs of RAM. The blue-colored
lines in Figure 4.7 show the energy cost of approximate executions (execution times
are not shown here for brevity, they follow the same pattern). The energy for a fully
accurate execution of each application corresponds to the rightmost data point of the
respective plot. The results of loop-perforation correspond to the red-colored bars
and lines in Figure 4.7.

Executing more tasks in (light-weight) approximate mode results in lower energy
consumption, as expected. In some applications (Sobel, Fisheye) perforated versions
are more energy efficient that the corresponding significance-based ones due to the
overhead of our task-based implementation. However, approximations driven by
the analysis results lead to higher quality of results compared with perforation at
the same ratio of accurate computations. This effect is more profound for DCT,
Fisheye and N-body. This difference in quality significantly outweighs overheads
of the task-based implementation. For example in N-body the significance-based
approximation achieves a relative error of 0.006% already with a fully approximate
execution, at an energy cost of 820 Joules. The perforated version requires 80% of the

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 4. Automating significance characterization of tasks 66

iterations to be executed accurately to achieve a relative error of 0.02%, at an energy
budget of 5475 Joules. The same effect is observed in Sobel.

Our methodology results in better quality for all benchmarks compared with
loop-perforation. On average, Sobel, DCT, and Fisheye produce images with 3.91

dB, 10.96 dB, and 6.9 dB higher PSNR compared to their perforated versions. Sim-
ilarly, N-body produces relative errors which are on average 6 orders of magnitude
lower than those introduced by the perforated version.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

67

Chapter 5

Modeling and Prediction of
Application Energy Footprint

In the previous chapter we answered two key question to approximate/fault-tolerant
computing (What and How to approximate?). This leaves us with the question of
When to actually perform the approximate computations in place of the exact/accu-
rate ones. In our programming model the controlling knob for approximation is the
ratio clause of taskwait. The lower its value the higher the degree of approximation.
It is the job of the programmer or the end-user to decide the value for the ratio knob.
Unfortunately, this is not a straightforward undertaking. Note that, even though in
this Chapter we focus on approximate computing, our methodology can be applied
to fault-tolerant computing with minimal modifications.

(i) We introduce an analytic model to predict the energy consumption of an ap-
plication under different input sizes and execution configurations in terms of
number of cores used, processor frequency, and the mix of accurately and ap-
proximately executed tasks.

(ii) During execution time, an intelligent runtime system uses the analytic model
to choose the appropriate configuration so that the application respects a user
specified energy budget.

(iii) We evaluate our approach and its impact on the quality/accuracy of the end
result, on a set of nine benchmarks.

(iv) We compare our approach with loop perforation [90], a compiler technique for
skipping iterations that are deemed less significant for the output quality while
keeping critical loop iterations that must always be executed. We also compare
our approach to an Oracle configurator who is always selecting the optimal
configuration.

We report that for 7 out of 9 benchmarks our analytical model enables the run-
time support system to select configurations which are very close to the optimal
ones. We also show that, in most cases, executions perform better in terms of output
quality when using significance aware approximation instead of blind perforation.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 68

Next we describe our modeling and prediction approach in more detail. As
an underlying platform, we assume a general-purpose shared-memory architecture
with multiple multi-core processors/CPUs. All cores within each CPU share the
same last level cache and operate at similar frequency levels. We start by presenting
the analytical model for the execution time of a multi-tasked computation on top of
such a platform, and the expected energy consumption. We then discuss the process
that we follow to train the model through an offline profiling and fitting phase.

5.1 Analytic Model of Execution Time

Let a computation employ m task-groups, with each group i consisting of ni tasks.
Let the ratio for group i, namely the minimum percentage of its tasks that need to
be executed accurately, be ri. Also, let the average execution time of accurate and
approximate task versions for group i be equal to Taccuratei and Tapproxi , respectively.
For simplicity, we assume that a task group is well-balanced, and that all tasks take
roughly the same time to execute, subject only to whether they are executed accu-
rately or approximately. Then, the time that is required for the computation to be
executed sequentially, is given by Equation 5.1, as a function of the input size s, the
CPU frequency f , the ratios ~r, and number of tasks ~n for each group.

Tseq(f, ~r, s, ~n) =
m∑
i=1

(
ni · (ri ·Taccuratei(f, s, ni)+ (1− ri) ·Tapproxi(f, s, ni))

)
(5.1)

Note that a larger problem size s may require a higher number of tasks in certain
groups, or more work per task, or both. Indeed, the number of tasks ni and the
time it takes for a task of group i to execute in its accurate or approximate version
(Taccuratei and Tapproxi) are open parameters of the model. This makes it possible to
implicitly account for effects that can significantly affect task execution time, such as
locality, caching and memory traffic due to different input, intermediate and output
data footprints associated with different problem sizes.

Equation 5.2 estimates the parallel execution time for the same computation, as a
function of the number of cores c that are used. The assumption is that all cores run
at the same frequency f , which is typically the case in many off-the-shelf platforms,
including the one we use in our evaluation.

Tpar(f, ~r, s, ~n, c) =
Tseq(f, ~r, s, ~n)

c · scaling(f, s, c)
(5.2)

The term scaling(f, s, c) captures the scalability of the computation as a function
of input size s, the frequency f at which (all) cores run, and the number of cores c.
On a multiprocessor with multi-core CPUs, we assume a “packed” CPU allocation
strategy, whereby the runtime exploits all cores in a given CPU before using the

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 69

cores in another CPU. Thus, at most one CPU can have unused cores, which is the
most energy efficient allocation strategy for common platforms.

5.2 Analytic Model of Power and Energy Consumption

The power consumption of the processing elements is given by Equation 5.3.

P (f, c, s, ~r) = Pidle(f, c) + Pdynamic(f, c, s, ~r)

Pidle(f, c) = Pleak(f, c) + PshortCircuit(f, c)
(5.3)

Pidle captures the power consumed by the number of active cores c running at
frequency f , when idle. The Pdynamic component corresponds to the “dynamic”
power consumption, which depends on the computation that is actually being exe-
cuted. This, in turn, is a function of the number of cores used, the frequency of these
cores, the input size and the mix of accurate/approximate tasks. The rationale be-
hind this is that the same task-group might behave differently for different values of
ratio. The actual accurate/approximate mix affects the instruction mix of the overall
application as well as the memory locality and access pattern.

Since Power and Time have been modeled we can now calculate the modeled
Energy footprint:

Energy(f, ~r, s, ~n, c) = Tpar(f, ~r, s, ~n, c) ∗ P (f, c, s, ~r) (5.4)

5.3 Offline Profiling and Model Fitting

In a profiling phase, the computation is executed with three different, representative
input data-sets, of varying size s (and thus also different memory footprints). To ac-
count for locality, caching and memory traffic effects, we execute with a small work-
ing set that fits in the last level cache (LLC) of a single processor, a large working set
that exceeds the total LLC capacity of all processors in the system1 and, finally, an
intermediate working set. For each input, we execute the computation for all possi-
ble configurations (varying the number of cores c, the frequency f and the task ratio
~r). We measure the average execution time of approximate and accurate tasks for
each task group, and the total execution time of each group.

We then perform a step-wise model fitting process, where the performance data
that was gathered in the profiling phase is used as input to a regression process.
The objective is to train the analytic models introduced earlier, so that they predict
execution time and energy consumption of a given computation for different, unseen
configurations.

The first step is to produce estimation functions for Taccuratei and Tapproxi in
Equation 5.1. We perform regression to map the average execution time of tasks in a

1We skip problem sizes which are unrealistic. This is done for the large data-set in the Monte Carlo
and MD benchmarks.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 70

given group i, for both their approximate and accurate versions, to the frequency f ,
problem size s, and number of tasks ni. A separate function is created for each of the
frequencies that are supported by the platform. We use the average execution time
of tasks that is observed when executing across all ratios. Exponential, polynomial
and linear fitting functions are all tested, and we use the one which minimizes the
prediction error with respect to profiling data used for training. Note that, the data
that we use to evaluate the efficiency of the analytic models are unseen during the
training phase.

Next, we produce the function for the scaling term in Equation 5.2, using the mea-
sured sequential and parallel execution times for different combinations of problem
sizes and number of cores (the latter for parallel execution times). We also experi-
ment with exponential, polynomial and linear fitting functions. The result is a sepa-
rate function for each frequency, which correlates scalability to problem size and the
number of cores used.

In a last step, a similar approach is followed to produce the function for the dy-
namic power consumption Pdynamic component used in Equation 5.3. Again, a sep-
arate function is produced for each frequency, which returns an estimation based on
problem size, ratio and the number of cores used. Note that Pidle can be computed
just once, measuring the power consumption as a function of the number of cores
that are turned on, without running any computation. Even though Pidle is a func-
tion of the number of cores, it essentially quantifies the cost of operating a socket
(and thus cores within that socket). In other words, utilizing a single core within the
socket, in terms of Pidle is just as expensive as utilizing all of the cores within that
socket.

The whole profiling and model-fitting process is repeated for each application,
yielding different functions for each case. We make this application-specific infor-
mation available to the runtime system, in order to enable it to proactively select the
best configuration for a given energy budget.

5.4 Benchmarks

We use nine benchmarks to validate our framework and its ability to execute appli-
cations with a pre-defined energy budget, while gracefully trading off output quality
with energy efficiency. The benchmarks have been manually ported to the proposed
significance-aware programming model. We compare our framework against loop
perforation [90] in terms of quality of results under the same energy constraints. We
apply different approximation approaches to each benchmark, subject to the algo-
rithmic characteristics of the underlying computation.

For the Sobel benchmark, significance is assigned to tasks in a round-robin man-
ner, which ensures that approximated pixels are uniformly distributed throughout
the output.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 71

In Discrete Cosine Transform (DCT) we assign higher significance to tasks that
compute lower frequency coefficients, as the human eye is more sensitive to those
frequencies. Should a task be executed approximately, the computation is dropped.

In accordance with the analysis presented in Section 4.2, Fisheye tasks which are
closer to the image border receive a higher significance value whereas those closer
to the center receive a lower value. The approximate task calculates output pixels
using the value of the nearest neighboring pixel instead of interpolating around the
corresponding point in the input.

Approximate tasks in K-Means compute a simpler version of the Euclidean dis-
tance while also considering only half of the total dimensions. The second phase is
significant, as it is harder to recover from a wrong estimate of a cluster center.

Approximate configurations for the MC benchmark (Monte Carlo) drop a per-
centage of the random walks and the corresponding computations. An approximate,
lightweight methodology is also used to decide how far from the current location the
next step of a random walk should move.

In Canneal, approximate tasks try less swaps (1/8) than accurate ones. All tasks
are assigned the same significance value, so the tasks to be approximated are ran-
domly selected by the runtime, according to the target ratio.

A single N-Body task evaluates the Coulomb forces which affect the particles
within a home region due to the existence of particles within a second foreign re-
gion. The magnitude of the forces between particles decreases the larger the distance
between the two particles. It follows that the larger the distance between the home
and the foreign regions, the lower the significance of the task.

In Blackscholes the computation of a stock price can be broken down to 4 blocks
of code A, B, C, D, with sig(A) > sig(B) � sig(C) > sig(D). Each block produces
the input to its successor block. Block C performs two Cumulative Normal Distri-
bution Functions (CNDFs) and block D produces the final output by combining the
outputs of C. The two least important parts (C and D) are approximated using less
accurate but faster implementations of mathematical functions such as exp and sqrt
[61].

In Lulesh, similarly to N-body we consider the significance of particles to be
diminishing when moving away from the impact site. Computations involving the
least significant particles can be dropped at execution time.

5.5 Experimental Methodology

The experimental analysis was carried out on a system equipped with two Intel(R)
Xeon(R) E5-2650 processor, and 64 GB shared DRAM. Each processor has 8 cores
and can be clocked at 1.2, 1.6, 2.0, 2.4, or 2.8GHz. Energy and power are measured
using the Running Average Power Limit (RAPL) registers of the processors.

The profiling phase uses a pool of representative input sets for each benchmark,
discussed in Section 5.3. At the end of the profiling and model fitting process, each

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 72

benchmark is associated with a model estimating its energy consumption according
to the input size and execution configuration. This formula is, in turn, used by the
runtime system to take online decisions on the execution configuration.

To evaluate our approach, we use for all benchmarks unseen input sets (and
input set sizes) which have not been used during the training phase. All benchmarks
are executed accurately, in all possible core and frequency configurations. From
those executions we identify the one that consumes the least energy. This is our
baseline scenario for each benchmark.

We then perform a number of experiments for each benchmark, while requesting
a gradually smaller energy budget, expressed as a percentage of the baseline. The
framework uses the model to decide, at execution time, the ratio, and concurrency
level with which it can achieve execution within the requested energy budget, while
minimizing the impact on output quality by maximizing the ratio of accurate tasks.

We present a comparison of the quality achieved using our framework with a
perforated execution of each benchmark targeting the same energy budget. We also
present the optimal (oracular) configuration (cores, ratio) for each case and compare
it to the one selected by our system.

5.6 Experimental Evaluation and Discussion

Figure 5.1 summarizes our results. In all charts the horizontal axis represents the re-
quested energy budget, as a percentage of the energy consumed by the most energy-
efficient accurate execution. The Y-axis of the first set of charts corresponds to the
energy that was actually consumed by approximate executions as a percentage of
the energy consumed by the accurate execution. Note that the green dotted line also
shows the user requested energy budget. The second set of charts is used to quantify
output quality.

We use two references to assess the effectiveness of our methodology: a) loop
perforated versions of the benchmarks guided by an oracle and b) an oracle (opti-
mal) configurator for the approximate versions of the benchmarks.

The Oracles represent the best case scenarios for each user specified energy bud-
get. They cannot be actually implemented and are simply utilized to illustrate the
optimal choice. In practice, Oracle decisions are taken offline, after executing and
profiling all possible configurations. In more detail, the algorithms iterate through
the configuration space in the following dimensions: a) number of cores, b) loop-
perforation/approximation ratio value, c) energy consumption, and d) output qual-
ity. Their goal is to identify and report, the highest output quality configuration
among the configurations that consume energy within the user specified energy cap.
The only difference between the Approximate Oracle and the Loop-Perforation Or-
acle is that the first one exploits significance-aware approximate computing to op-
timize the execution of the benchmarks, whereas the second Oracle employs loop
perforation.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 73

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
Sobel

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
DCT

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
Fisheye

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0
5

10
15
20
25
30

Sobel

Target energy budget (% of baseline)

Q
u

a
li

ty
 (

P
S

N
R

 (
d

B
))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0

10

20

30

40
DCT

Target energy budget (% of baseline)

Q
u

a
li

ty
 (

P
S

N
R

 (
d

B
))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0

10

20

30

40
Fisheye

Target energy budget (% of baseline)

Q
u

a
li

ty
 (

P
S

N
R

 (
d

B
))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
N-Body

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
Monte Carlo

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
Lulesh

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

2%

4%

6%
N-Body

Target energy budget (% of baseline)Q
u

a
li

ty
 (

R
el

 E
rr

o
r

(%
))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
Monte Carlo

Target energy budget (% of baseline)Q
u

a
li

ty
 (

R
e

l
E

rr
o

r
(%

))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0.00%
0.01%
0.02%
0.03%
0.04%
0.05%

Lulesh

Target energy budget (% of baseline)Q
u

a
li

ty
 (

R
e

l
E

rr
o

r
(%

))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
Blackscholes

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
Canneal

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
K-means

Target energy budget (% of baseline)

E
n

e
rg

y
c

o
n

s
u

m
e

d

(%
 o

f
b

a
s

e
li

n
e

)

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%
2%
4%
6%
8%

10%
Blackscholes

Target energy budget (% of baseline)Q
u

a
li

ty
 (

R
e

l
E

rr
o

r
(%

))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

3%

6%

9%

12%
Canneal

Target energy budget (% of baseline)Q
u

a
li

ty
 (

R
e

l
E

rr
o

r
(%

))

10% 20% 30% 40% 50% 60% 70% 80% 90%
0%

20%
40%
60%
80%

100%
K-means

Target energy budget (% of baseline)Q
u

a
li

ty
 (

R
e

l
E

rr
o

r
(%

))

 Framework Energy Opt. Config Energy Perforation Energy
 Perforation Quality Framework Cores Opt. Config Cores
Target energy budget

FIGURE 5.1: Quality and energy metrics for different energy targets (as a percentage
of the most energy-efficient accurate execution). Energy & quality plots show the re-
sults achieved by our system, an oracle selecting the optimal configuration and loop

perforation.

For the first three applications (DCT, Sobel, Fisheye) output quality is quantified
using PSNR (higher is better). PSNR is a logarithmic metric. For Kmeans, the metric
of the quality of output is the relative difference of the average distance between
data points and the center of the cluster they are assigned to, compared with that of
the fully accurate execution (lower is better). For the remaining five benchmarks we
report the relative error with respect to an accurate execution (lower is better).

Our framework produces configurations with energy consumption very close
to the optimal one. Even in cases when the runtime opts for a non-optimal con-
figuration, the difference in the achieved energy footprint and quality of results is
negligible, with the exception of Canneal, Kmeans, and Lulesh which are discussed
in more detail later in this Section. Both our approach and the optimal tend to adapt

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 74

concurrency to utilize all cores of both CPUs. Activating the first core within a socket
results in a measurable increase of power consumption. However, subsequent acti-
vations of cores residing within the same socket come at a reduced cost. The runtime,
in most cases, succeeds in determining the appropriate number of cores to both ful-
fill the parallelism requirements of an application with a reasonable cost in power
consumption. Consequently, it is able to efficiently expend the user-specified energy
budget.

Imaging and media applications are well-suited for our programming frame-
work, as they take full advantage of the significance and approximation features
of the programming model. Moreover, the specific implementations scale to larger
inputs by adapting the number of tasks, instead of modifying the work per task.
Therefore it is easier for our model to predict their behavior with high accuracy. Fi-
nally, the execution of approximate tasks has a straightforward and easy to model
effect on execution time: more approximate tasks result in less computation and thus
more energy savings.

Sobel DCT, and Fisheye can execute with as little as 50% of the energy required by
the optimum accurate execution and match the quality achieved by the oracle. The
minimum energy required depends mainly on the complexity of the approximation
function we use. At the same time, the complexity and sophistication of the approx-
imation function determines output quality for the most aggressive degrees of ap-
proximation. When approximating all tasks we observe PSNRs equal to 18.70, 23.64,
22.09 dB for Sobel, DCT, and Fisheye respectively. Perforated executions capped at the
same amount of energy produce results of inferior quality, corresponding to PSNRs
of 10.75, 14.48 and 8.19 dB respectively. Our methodology clearly results in higher
quality of results with the same energy budget. However it sometimes slightly over-
shoots the energy budget constraints by picking ratio values which are higher than
the optimal. In the case of DCT we overspend, on average, by 6.2%, for Sobel by
2.1% and finally Fisheye overspends by 6.4%. This leads to a pitfall in Figure 5.1
where our framework seems to outperform the oracle, which is clearly not possible.
Figure 5.2 depicts the Lena portrait compressed and decompressed using DCT with
a ratio of 0.3. The resulting output has a PSNR of 34.62 dB (no visible quality loss),
at a 45% energy gain with respect to the most energy efficient accurate execution.

N-body is another well-behaved application for our framework. In most cases
we choose configurations which result in energy consumption that is very close to
what an oracle achieves. In fact, our estimations, excluding the energy budgets 10%
and 20% result in energy consumption which differs by 4.5% from the user specified
energy budget. Moreover, we always achieve a better quality of results than the
perforated version of the benchmark. With just 30% of the energy budget of the
most energy efficient accurate execution N-body computes results with a relative
error in the order of 0.0006%.

For Monte Carlo we observe that our framework makes optimal choices in al-
most every case. Approximation in Monte Carlo drops random walks, similarly to

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 75

FIGURE 5.2: Lena portrait compressed and decompressed using DCT with a ratio of 0.3.

perforation, therefore we observe similar results with both techniques. A lower en-
ergy budget results in pruning some of the random walks of the search space. This
reduces energy, albeit with a measurable impact in quality. We can achieve con-
sumption as low as 30% of the energy required by the most energy-efficient accurate
execution, using a ratio of 0.2 which results in a relative error of 5.9%.

Regarding Lulesh, we notice that for energy budgets higher than 10% the ver-
sion executed by our framework always produces results of higher quality than the
perforated one, but it tends to overshoot the energy budget. The case of the energy
budget being 10% of the optimal accurate is particularly interesting: the perforated
version is better in terms of quality and energy than both our framework and the
oracle. This is due to the fact that the approximate executions have to spend some
of their energy budget to compute the significance of tasks. Furthermore, approx-
imate tasks do not access the memory with a regular pattern. Elements are visited
according to their distance from the point of blast. Unfortunately, this access pat-
tern negatively affects memory locality. On the other hand, the perforated version
has a regular memory access pattern and the respective energy drops linearly with
respect to the number of dropped iterations. However, for higher – and realistic –
energy budgets our approach always produces results of better quality compared
with the perforated executions. We do have to note that the two issues described
above limit the accuracy of our framework’s estimations. Figure 5.3 depicts the po-
sitions of particles calculated by a small-scale approximate execution with ratio set
to 0.2. Particles are colored according to the relative error of their final position with

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 76

FIGURE 5.3: Final positions of particles for an approximate execution with ratio 0.2.
Particles have been colored according to the relative error of their position with respect

to an accurate execution.

respect to the fully accurate execution. The maximum relative error is negligible (in
the order of 10−8).

Blackscholes calculates prices for a number of assets. The main loop iterates
across different assets, however there is no loop involved in the calculation of each
particular asset [90]. As a result, perforation is not applicable and we limit our com-
parison between the proposed framework and the optimal configuration by an ora-
cle. Because of the computational cost of approximate tasks, the lowest energy bud-
get obtained by the Oracle is 60% of the accurate execution; our framework follows
closely at 63.3%. Once again, we produce results of higher quality than the oracle
for energy budgets higher than 60% due to slightly overshooting the target energy
budget by executing more accurate tasks.

Our model is less accurate in its predictions for Canneal. This is a consequence
of the bad, unpredictable locality pattern if the application. Canneal uses large data
structures to store information on net-list elements. The random way each task ac-
cesses memory locations increases cache misses, in particular false sharing misses
that introduce excessive data transfers between the last-level non-shared caches of
cores. This unpredictable behavior cannot be modeled accurately by our framework.
As a result, we underestimate the execution time of the application and often select
configurations that do not satisfy the energy constraints.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 5. Modeling and Prediction of Application Energy Footprint 77

K-means reveals the limitations of our approach. It can not be modeled effec-
tively, as it is iterative, with the number of iterations being heavily dependent on
the characteristics of the input set (and not just the input set size). Moreover, wrong
decisions in the approximate tasks (point classification) tend to increase point move-
ment between clusters, and thus the workload of accurate tasks (cluster center cal-
culation). In addition, even when we approximate 100% of the point classification
tasks, we can only reduce the energy footprint by at most 60% because our approx-
imation disregards half of the coordinates of each point. For such applications, a
blind approach such as loop perforation proves to be a viable solution for medium-
to-large energy budgets as it produces solutions which are as good as our framework
using less energy.

To summarize the results of our experimental campaign we note that there are
scenarios in which it is simply impossible to arbitrarily decrease the energy footprint
of an application, due to the fact that even the approximate versions of tasks come
with computational cost. We do observe however, that in the bulk of the test cases
our framework succeeds in gracefully trading quality to reduce the cost of executing
an application.

5.7 Conclusions

This chapter concludes the introduction of the necessary tools for approximate com-
puting. We first introduced a significance aware programming model for approx-
imate computing and its accompanying runtime system in Chapters 3. Then, in
Chapter 4 we presented a methodology for discovering the significance of computa-
tions as well as implementing approximate alternatives to code which are less costly
in terms of computational resources. Finally, in this Chapter we demonstrated the
use of application modeling to automate the process of deciding on a value for the
ratio clause of the taskwait directive which controls the level of approximation. An
application developer equipped with this arsenal of techniques and frameworks dis-
cussed earlier, is significantly assisted in using the significance aware approximate
computing programming paradigm.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

78

Chapter 6

Automatic result checking for
fault-tolerant computing

A major challenge is detecting errors before they irreversibly modify application
state. Ideally, a detection mechanism should be able to distinguish between cor-
rect and incorrect computation results, at a very low overhead. Lower levels of the
system such as circuit, micro-architecture and architecture largely mask hardware
faults before they incur changes to the application layer [105]. Unfortunately, er-
rors do manage to propagate to the higher levels of the system and they need to
be handled before they modify the outputs of applications. To this end, researchers
in the past have devised methodologies to automatically detect timing-errors at the
level of hardware through the use of extra circuitry [9, 15]. Their work focuses on
detecting and correcting timing errors before their effects propagate further into the
arhitecture state.

In our case, we follow a software-only approach to error detection. Note that,
we are not concerned about all possible errors. In fact, we are explicitly relaxing the
expectations of developers regarding the output quality of their applications so that
we can effectively trade-off output quality with improved performance. As such, out
of the errors which may modify the application state, our work involves detecting
the errors which significantly affect the output quality of the application, and correct
them before they propagate to the output. Depending on application characteristics,
minor deviations from correct intermediate results may not be worth paying the
correction cost.

In this Chapter we introduce our solution to the question of "How to detect
errors?". More specifically, we present a methodology for automatic error detec-
tion, based on Artificial Neural Networks (ANNs). ANNs have been successfully
deployed in pattern matching and classification problems, sometimes even outper-
forming human accuracy [32, 2]. Given the configurability of their architecture, one
can flexibly trade-off performance and classification accuracy by means of modify-
ing the number of layers and the number of nodes per layer. Moreover, ANNs are
highly parallel and can be designed to operate using only simple operations. In
particular, the ANNs used in our work employ at most five different operations:
floating point addition, subtraction and multiplication, as well as binary shift and

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 79

logical AND. This simplifies the automatic compiler-driven generation of vectorized
implementations of ANNs for improved performance. Of course, additional perfor-
mance improvements can be unlocked through the use of FPGAs [3], GPUs, or even
specialized processing units such as Google’s Tensor Processing Units (TPUs) [43].

This chapter makes the following contributions:

(i) We propose using ANNs to detect hardware errors during program execution.
To the best of our knowledge, this is the first work that uses ANNs for hardware
error detection.

(ii) We evaluate the overhead of our approach and its impact on the quality/ac-
curacy of the end result, on a set of eight applications from the domains of
imaging, finance and physics, via software fault injection experiments.

(iii) We compare our approach with Topaz, a state of the art approximate error de-
tection mechanism [1].

(iv) We introduce a metric for capturing the efficiency of different error detection
mechanisms (in this particular case, ANNs vs. Topaz).

(v) We present an indicative case study on how the overhead and error-detection
accuracy of ANNs vs. Topaz can affect performance and result quality, for
a system configuration where computations can be executed on overclocked
cores at the risk of unreliable hardware operation.

Our results show that ANNs can be quite effective for error detection purposes,
offering a good trade-off between accuracy and execution overhead. At the same
time, they can be generated in a highly automated manner with little effort from the
application developer.

6.1 Artificial Neural Networks for Error Detection

The manual implementation of accurate and low cost error detection is a time con-
suming and intricate process. The developer should be highly familiar with the
application, in order to be able to take educated decisions on how to detect errors in
the output of each task. Also, it can be quite hard to find the desired balance between
execution complexity/cost and error detection accuracy.

Previous work has mainly explored the use of manually implemented approxi-
mate error-detectors which are low-cost but may potentially produce wrong estima-
tions of error presence [31, 44, 27]. In contrast, we propose to use ANNs as automatic
and light-weight error detectors. The main advantage of ANNs is that they require
little manual intervention, and offer the opportunity to trade-off error detection ac-
curacy with performance overhead in a flexible way. In the following, we describe
our methodology for the generation of ANN-based error detectors for task-based
computations as illustrated in Figure 6.1.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 80

Task-based implementation

Execute reliably and Profile
Record inputs and outputs of tasks
to form 50% of the dataset
(feature-vectors of correct task outputs)

Generate ANN architectures Based on a structural template

Train

● Data-set augmentation for
incorrect task outputs

● Early stopping heuristic

Inspired by Generative Adversarial Networks

Reward epochs during which
the test loss decreases

Trained ANNs to C functions Generate vectorized C code
which performs ANN inference

Collect input data Different input data sets for
training, testing, and validation

FIGURE 6.1: Training Artificial Neural Network classifiers for online error detection

6.1.1 Application profiling

We begin by partitioning the application code into fine-grained tasks. The outputs of
those tasks are subjected to error detection. The motivation for fine-grained tasks is
that if the task size is rather small, then its output is more likely to exhibit a detectable
pattern. This, in turn, makes it feasible to train an ANN so that it can identify this
pattern (or deviations from it).

The data that is fed into the ANN to determine whether the output of a task is
correct or incorrect are referred to as feature vector. The feature vector always in-
cludes the task output. This can be sufficient for tasks with distinctive output pat-
terns, irrespectively of their input. If the output pattern is highly input-sensitive, the
feature vector may also have to include parts of the task input, or in the extreme case
the entire input. In the latter case the ANN essentially becomes an approximation
function for the code of the task. In our work, the feature vector is manually defined
by the application developer, although in principle this step could also be largely
automated.

The application is then executed in a reliable way for different inputs. In every
execution, we record the feature vector of each task. These data are aggregated for
each task across all executions to produce a so-called profile data set. We select 80 −
90% of the profile data set to construct the training set, while the remaining 10− 20%

of the profile set is used as the test set.
Both data sets are necessary for the training phase of the ANNs to minimize the

probability of over-fitting to the particular data set that was used for training. Over-
fit ANNs do not generalize well to unseen data because they have overly adapted

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 81

F

Features

IP

Inner ProductInner Product ReLU

IP R

Zero to two such pairs of layers

Output

FIGURE 6.2: Structural template for the generated ANNs. The input is the feature vector
of the task. The output consists of two values corresponding to the one-hot classification
of the task output as correct or incorrect. There can be zero up to two intermediate pairs

of IP and ReLU layers.

to the particular data sets that were used during their training. Training an ANN
is an iterative process; firstly, the training set is fed forward to the ANN so that it
generates some output. Afterwards, the output is compared against the labels of the
training data via the loss function1 and subsequently the weights of the ANN are
updated appropriately, via back-propagation of the loss, so that the output of the
loss function is optimized (minimized). The test set is only used to feed forward the
ANN and its loss is an indication of how the ANN performs on unseen data. The
above is repeated throughout the training phase as described in Section 6.1.3.

6.1.2 ANN structures

For online error detection, we consider the least complicated type of ANNs: Multi-
layer Perceptrons that consist of InnerProduct (IP) layers and Rectified Linear Units
(ReLUs) to serve as activation functions between IP layers.

IP layers accept M inputs and produce N outputs. Each such layer contains an
MxN matrix of weights (W) and a vector (~b) that stores N bias values. Assum-
ing vector ~x is input to an IP layer, the resulting output vector is ~y = W ∗ ~x + ~b.
ReLU activation layers are placed between two IP layers to introduce non-linearities
which improve the generalization of the ANN as well as its classification perfor-
mance. A ReLU with an input vector ~x and output vector ~y simply computes yi =
max(0, xi) ∀ xi ∈ ~x.

In terms of operations, IP layers comprise floating point additions, subtractions
and multiplications. ReLUs can be implemented via the gcc built-in function fmaxf(),
or using binary arithmetic. This relatively simple ANN template enables us to easily
produce vectorized C functions which can then be compiled into appropriate vec-
torized instructions for maximum performance.

1A loss function is some function of the difference between the output of an ANN and the test/train
data labels. The smaller the evaluation of the loss function, the closer the ANN’s predicted output to
the true output (data-labels) is

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 82

Notation Structure
N,2 f [N]→ IP [2]→ out[2]
N,B/2,2 f [N]→ IP [B/2]→ ReLU → IP [2]→ out[2]
N,B,2 f [N]→ IP [B]→ ReLU → IP [2]→ out[2]
N,B*2,2 f [N]→ IP [B ∗ 2]→ ReLU → IP [2]→ out[2]
N,B/2,B/2,2 f [N]→ IP [B/2]→ ReLU → IP [B/2]→ ReLU → IP [2]→ out[2]
N,B,B/2,2 f [N]→ IP [B]→ ReLU → IP [B/2]→ ReLU → IP [2]→ out[2]
N,B*2,B/2,2 f [N]→ IP [B ∗ 2]→ ReLU → IP [B/2]→ ReLU → IP [2]→ out[2]

TABLE 6.1: The seven different ANNs used for error detection. f is the feature vector of
the task, N is the size of the feature vector, B is the power of two closest to N , and out
is the 2-dimensional output. The dimension of the input/output vectors and IP layers

are given in brackets

For every task for which we wish to build an error detector, we experiment with
different ANN structures, according to the template shown in Figure 6.2. The first
IP layer always takes as input the feature vector for the task in focus (the size of the
vector depends on the task). The last IP layer produces exactly two values, which
encode information about whether the output of the task is considered to be correct
or incorrect. The ANNs we employ here work as so-called one-hot classifiers where
each component of the output vector gives a score for the correctness and the incor-
rectness of the input feature vector, respectively. The component with the highest
score is considered to be the output of the one-hot classifier. In the unlikely event
of a tie, we assume that the output is incorrect. With each ANN we explore a dif-
ferent combination for: (a) the number of IP layers and ReLUs, and (b) for the sizes
of these layers, where we try out different powers of two as this facilitates vector-
ization. These ANNs vary in their internal computational complexity and thus may
have different error-detection accuracy. More specifically, for each task we try out
seven ANNs listed in Table 6.1. As a shorthand notation, the structure of each ANN
can be encoded using a tuple of integers that represent the size of the feature vector,
the size of the (zero, one or two) intermediate IP layers (and ReLUs) and the size
of the output IP layer which is always two. These ANN structures are produced
automatically, based on the size of the feature vector.

6.1.3 Training the ANNs

We train the resulting ANNs using Caffe [41]. Training is done in so-called epochs:
an epoch is over when the training set has been fed-forward, the loss function for the
resulting ANN outputs has been evaluated, and the weights have been adjusted by
back-propagation of the loss on the test data. The completion of the training process
is decided using the following heuristic. Initially, when training starts, we issue 100
tickets. At the end of each epoch we check the loss of the ANN on the test data. If the
test loss has decreased compared to the previous epoch, then the number of tickets
is increased by one, else it is decreased by two. When there are no tickets left, the

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 83

ANN is assumed to have reached an acceptably low loss and training terminates.
Rewarding loss decrease enables recovery from local test-loss minima. Consecutive
training epochs can increase the test loss before it is eventually reduced beyond its
past minimal value.

For a task output that comprises N values, each one consisting of k-bits, there
can exist N ∗ (2k − 1) different incorrect output variants. If, during training, one
considers all possible incorrect values for a single correct output, this would bias
the ANN to always infer that a feature vector is incorrect, as that would minimize
the loss function. To counter-balance all the possible incorrect output patterns, one
could repeatedly feed the correct feature vector multiple times, but this would dra-
matically increase the size of the training and test data sets, leading to unacceptably
long training times.

As a more practical approach, we use data augmentation 2 to periodically gen-
erate data sets that contain an equal number of correct and incorrect instances of
the feature vector. Our approach is inspired by Generative Adversarial Networks
(GANs) [24]. A GAN comprises two NNs, the Generative Network (GN) and the
Discriminative Network (DN). Both NNs are trained simultaneously: the GN gener-
ates artificial data which appear to be realistic, whereas the DN determines whether
data has been produced by the GN or is an actual real-world sample. The ANNs
used for error detection play a similar role to a DN of a GAN. In our case, instead of
training a GN we perturbate the correct feature vectors (from the profile data) to pro-
duce incorrect ones, every few training epochs. This way the ANNs are trained to
classify feature vectors that have a strong similarity (but are not necessarily identical)
to the correct ones as correct, and to classify widely different patterns as incorrect.

6.1.4 Deployment

We have implemented a Caffe-to-C python script which takes an ANN model from
Caffe and produces C code that performs just the inference (feed-forward) operation.
The C code consists mostly of gcc vector extension intrinsics, and we rely on gcc to
automatically generate vectorized implementations for maximum performance.

The last step is to add the code of the ANN-based error-detectors in the appli-
cation, so that they are invoked after tasks complete, in order to check their output
and decide whether they need to be re-executed. However, recall that tasks are inten-
tionally fine-grained, and it is unrealistic for the application to be executed at such
an extremely fine level of granularity. Due to the system-level task management
overheads, this would incur significant performance penalty. To limit effects to per-
formance, we group a large number of independent tasks into large gangs, which are
the actual, much coarser scheduling unit for the underlying runtime system. When
a gang completes its execution, the output of each task is checked individually via

2Data augmentation is the practice of generating new data samples from old ones to increase the
training/testing data set.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 84

the corresponding ANN, and if it is classified as incorrect then the task is flagged for
re-execution.

We also explore the use of ANN-based error detectors over the aggregated out-
puts of several tasks, referred to as batches. A task batch typically comprises just a
few tasks (which may have dependencies), and for all practical purposes it can be
treated as if it was a single, coarser task. The process of producing the respective
ANNs for detecting erroneous outputs remains similar to the one described above.
Application profiling and ANN training are exactly the same. The only difference
is that the feature vector has to be defined to include the aggregated outputs of the
task batch and possibly parts of the aggregated inputs.

6.2 Evaluation approach

We evaluate the efficiency of ANNs acting as error detectors using the framework
described in [71]. The runtime system executes the main application thread under
reliable conditions and schedules tasks on 4 worker threads which are mapped on
the cores of an Intel i7 4820k CPU. Unreliable task execution is simulated by means
of software fault injection. Beyond measuring the number of cycles spent to execute
tasks unreliably, perform error detection, and error correction we also introduce a
metric to evaluate the efficiency of error detectors in terms of precision and error
detection overhead.

6.2.1 Fault injection approach

The programming model and runtime system require that at least one core always
operates under reliable conditions to boot the machine, run the OS, and execute the
heavyweight operations of the runtime system. We also assume that system configu-
ration parameters related to hardware reliability (such as CPU operating voltage and
frequency) may change while the machine is operating. Unfortunately, commodity
hardware does not support fine-grained dynamic reconfiguration outside the nom-
inal working envelope of the processor. Although sub-nominal voltage/frequency
configurations are attainable in x86 via BIOS configuration, they are effective for the
entire CPU instead of at a per-core granularity.

We resort to software fault injection to simulate the unreliable execution of code
using the methodology described in [71]. A fault-injection experiment injects ran-
dom, multiple bit-flip faults on CPU registers once every 107 cycles. We select the
fault-rate based on the findings of Section 3.9.4. Evidently, operation at the specific
configuration point leads to a nice trade-off between performance improvements
and the number of extra CPU cycles spent to correct erroneous outputs. Recall that,
a higher fault-rate translates to a higher CPU frequency with more frequent errors.
One the one hand, a high CPU frequency means increased performance for code
regions which execute unreliably. On the other hand, the higher the fault-rate the

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 85

fewer tasks execute till completion, and the larger the number of tasks which com-
pute erroneous outputs. A side-effect of which is increased overhead CPU cycles
that are spent to correct the erroneous task outputs.

For each fault-injection, we first generate a random mask which covers all bits
within a randomly chosen register and subsequently use this mask to flip the corre-
sponding bits. The total number of fault injection experiments is 256000 for a confi-
dence level of 99% and average margin of error 1.025% across the eight benchmarks.

6.2.2 Metrics

We measure the number of CPU cycles required to execute, error-check, and correct
tasks as well as the resulting output quality.

At the same time, we introduce a new metric, which can be used to evaluate the
relative effectiveness and efficiency of a set of error detection mechanisms in order
to select the most appropriate for each use-case. The goal of the metric is to quantify
and combine the application developer-apprehendable effects of performing error
detection and correction. The two most profound ways that an error detection mech-
anism affects the execution of an application are (i) its efficiency as a binary classifier
for Incorrect and Correct computation outputs and (ii) the overall overhead that it
introduces. These two properties are not independent. In fact, the total overhead a
mechanism introduces depends on both its computational complexity, as well as its
level of precision and recall. Each time a task output is considered to be Incorrect, the
cost of performing corrective action (task re-execution in our evaluation) is added
on top of the detection overhead itself.

From the perspective of binary classification, the goal of the error-detection mech-
anism is to discover the Incorrect ones out of all task feature vectors. To this end, we
use the terms true/false positive/negative for the case where the ANN, when used as a
binary classifier, rightly (true) / wrongly (false) identifies a feature vector as incorrect
(positive) / correct (negative). The True Positive Rate (TPR) indicates the probability
that the error detection mechanism properly characterizes a feature vector contain-
ing erroneous output values as positive (Incorrect). False Negative Rate (FNR) is the
probability that the detection mechanism will falsely tag a positive (Incorrect) feature
vector as negative (Correct). In the context of error detection, TPR is more intuitively
referred to as Detection Coverage.

The Expected Error quantity combines a detector’s FNR with its Missed Relative Error
(MRE). The latter denotes the average relative error across all of its false negative
outputs.

Expected Error = FNR ∗Missed Relative Error

Expected Error = (1−Detection Coverage) ∗Missed Relative Error
(6.1)

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 86

Intuitively, the Expected Error quantifies the average relative error of false negative,
thereby Incorrect, outputs. In other words, it expresses the extent of errors which are
missed by an error detector. To this end, the smaller the Expected Error, the better.

The Expected Error/Overhead Product (EEOP) combines the accuracy and the
overhead of a detection mechanism. It can be used to choose the fittest out of a set
of different result-checking mechanisms. The lower the EEOP of a mechanism the
better/more efficient it is.

Expected Error Overhead Product = Expected Error ∗Overhead (6.2)

We define overhead as the percentage of cycles spent to detect and correct errors
with respect to the cycles required to execute a benchmark under reliable conditions.
Note that both error detection and error correction are performed reliably. Unfortu-
nately, the EEOP metric treats the Expected Error quantity and the overall overhead
of a detector in the same way. As such, it does not consider error-detectors with ex-
treme overheads as exceptionally bad choices. Such overheads might occur due to
either the complexity of the error-checking mechanism or an abnormally high False
Positive Rate (FPR). Recall that, when an error detector produces a false positive de-
cision for a task it results in unnecessary re-execution of the respective task, which
increases the total overhead. We modify the metric so that it discards obviously
inefficient error-detectors using a user-supplied value (ε) that specifies the highest
tolerated error detection and correction Overhead:

Expected Error Overhead Product =

Expected Error ∗Overhead, for Overhead ≤ ε

∞, for Overhead > ε

(6.3)
In the rest of this chapter, we set ε equal to 33% in order to discard extremely

inefficient error detection mechanisms.
EEOP is a composite metric, which does not directly translate to a physical prop-

erty. Therefore, reasoning on individual metric scores is not valid. However, the
relative comparison of EEOP values for different error detectors enables develop-
ers to evaluate them using a single scalar value that combines both overhead and
error-detection related properties. This is particularly useful in our case, because we
automatically generate a number of ANN error detectors which typically represent
different trade-off points between output quality and execution overhead. EEOP en-
ables us to automatically select the fittest error detector out of multiple generated,
without requiring human intervention beyond specifying the maximum overhead
threshold (ε).

6.3 Evaluation

In this section, we discuss the experimental evaluation of the ANN error detection
methodology we introduce. Furthermore, we compare our methodology against

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 87

Topaz [1], both in terms of accuracy and performance. Topaz executes computations
using a heterogeneous computing platform that comprises a reliable main worker
thread and multiple unreliable worker threads. It includes an approximate out-
lier detector which checks for the existence of errors on Abstract Output Vectors
(AOVs). AOVs are constructed using either just the outputs of tasks or a developer
implemented function. The latter operates on both inputs and outputs of a task to
generate an AOV3 which encodes the output vector of a task in a space of lesser
dimension. Unlike ANNs, Topaz does not require an offline phase. When Topaz
detects an error at the output of a task (false/true positive) it re-executes the task
reliably, updates its error detection model, and then integrates the correct result in
the main computation.

Both Topaz and ANNs can use more sophisticated AOVs/feature vectors which
are generated via programmer provided functions that operate on the inputs and
outputs of tasks. This comes, however, at an increased cost in terms of human effort.
Because the focus of this work is error detection without the involvement of the pro-
grammer, we will not explore more intricate feature vectors beyond the inputs and
outputs of tasks. Furthermore, the authors of Topaz argue in favor of reducing the
number of AOV dimensions before performing the outlier detection test. In the spirit
of keeping the automation level as high as possible we resort to the simplest way of
dimensionality reduction, which involves batching the AOVs/Feature-Vectors of N
tasks into a single bundle, before checking for errors on an aggregate value produced
by the outputs of tasks. If the feature vector/AOV of the batch is found to be posi-
tive (is suspected to be erratic) by an error detector, all N tasks within the batch are
re-executed.

6.3.1 Benchmarks

We use eight benchmarks from the domains of imaging, finance, and physics. For
all benchmarks but two (DCT and Sobel), the quality metric is the Relative Error be-
tween the output of the unreliable execution and the baseline error-free execution. In
DCT we measure the overall quality of the benchmark execution as the Peak Signal
to Noise Ratio (PSNR) between the input image and the image that is the outcome of
a sequence of DCT, Quantization, De-quantization and Inverse-DCT operations. For
the Sobel benchmark, we measure the PSNR of the output of the unreliable execu-
tion with respect to a baseline error-free execution. For all benchmarks, the baseline
error-free execution involves the scheduling of tasks on hardware which is config-
ured to operate under reliable conditions.

The remainder of this section presents and discusses, for each benchmark, output
quality and performance for the ANN and the Topaz error detection methodologies.
Performance overhead is calculated as the percentage of CPU cycles required for

3When it comes to using ANNs, the equivalent of an AOV is a feature vector

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 88

0 5 10 15 20 25 30

21

26

31

36

DCT
10,2
10,4,2
10,8,2
10,16,2
10,4,4,2
10,8,4,2
10,16,4,2
topaz

Overhead (%)

P
S

N
R

 (
d

B
)

(A) DCT Quality/Overhead

0 5 10 15 20 25 30

30

32

34

36

DCT (Batch)
10,2
10,4,2
10,8,2
10,16,2
10,4,4,2
10,8,4,2
10,16,4,2
topaz

Overhead (%)

P
S

N
R

 (
d

B
)

(B) DCT (Batch) Quality/Overhead

0.00

0.02

0.04

0.06

0.08
DCT

5.43 0.14

(C) DCT EEOP scores

0.00

0.02

0.04

0.06

0.08
DCT (Batch)

∞

(D) DCT (Batch) EEOP scores

0 5 10 15 20 25 30

35

40

45

50

Sobel
9,2
9,2,2
9,4,2
9,8,2
9,2,2,2
9,4,2,2
9,8,2,2
topaz

Overhead (%)

P
S

N
R

 (
d

B
)

(E) Sobel Quality/Overhead

0 5 10 15 20 25 30

35

40

45

50

Sobel (Batch)
9,2
9,2,2
9,4,2
9,8,2
9,2,2,2
9,4,2,2
9,8,2,2
topaz

Overhead (%)

P
S

N
R

 (
d

B
)

(F) Sobel (Batch) Quality/Overhead

0.00
1.00
2.00
3.00
4.00
5.00
6.00

Sobel

∞ ∞ ∞ ∞ ∞

(G) Sobel EEOP scores

0.00
1.00
2.00
3.00
4.00
5.00
6.00

Sobel (Batch)
∞∞

(H) Sobel (Batch) EEOP scores

FIGURE 6.3: Evaluation with DCT and Sobel. Figures (a) and (b) show the overhead
and quality measurements for the non-batched/batched version of DCT respectively
(similarly, Figures (e) and (f) for Sobel). The Overhead denotes the fraction of cycles
required to perform error detection and correction divided by the cycles required for
a fully reliable execution. The Y-axis for the PSNR metric increases going down. The
closer a data point is to the bottom left of the figure, the better the detector it represents
is. Figures (c) and (d) present the EEOP values for DCT (similarly, Figures (g) and (h) for
Sobel). Quality/Overhead figures always omit error detectors whose overhead is larger

than 33%; recall that their EEOP is Infinity (worst case scenario)

error detection and correction with respect to the cycles required to execute the ap-
plication reliably. Note that, both error detection and correction are executed under
reliable conditions.

DCT

We construct the train and test data sets using a set of images frequently found in the
literature [23], the validation data set contains images from the Image Compression
data set [6].

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 89

Each task feature vector contains the 8 DCT coefficients of the 2x4 block as well as
its offset within the 8x8 block of coefficients. All tasks but those which compute the
DCT coefficients residing in the upper left corner of the 8x8 block are computed un-
reliably. The upper left corner significantly affects the final output quality, as such, it
would be highly inefficient to subject the respective computations to unreliable exe-
cution conditions [102]. An error-free execution of DCT has an output PSNR 35.6916

dB. The Quality (PSNR) and Overhead of the benchmark for all 7 tested ANNs and
Topaz are illustrated in Figure 6.3a. The EEOP scores are shown in Figure 6.3c. We
use the notation described in Section 6.1.2 when we refer to a particular ANN. For
example, (10,8,4,2) operates on a feature vector of size 10 and has two intermediate
IP layers of sizes 8, and 4. Its output vector is the one-hot encoded vector of size 2.

All error checking mechanisms, with the exception of the least complex ANN
(10, 2), behave similarly in terms of quality. However, they incur different overheads
in terms of cycles spent to detect and correct errors. The best mechanism in terms of
EEOP is (10,8,4,2) which results in a near golden output PSNR at 35.6905dB; Topaz
closely follows at 35.6595dB.

For the batched version of DCT, we aggregate the AOVs/feature vectors of 8

tasks into a single batch. The resulting Quality/Overhead measurements are shown
in Figure 6.3b, Figure 6.3d presents the respective EEOP values for the result-checking
mechanisms.

The overhead of Topaz after batching decreases by a more than a factor of 3x,
down to 4.70%, without any penalty to output quality. Similar results are observed
for the efficiency of ANNs, however at a smaller magnitude. Overhead reduction
for the best ANN (10,8,4,2) is negligible when we resort to batching because the
False Positive Rate (FPR) increases by 1.49% compared to the non-batched version,
thus, nullifying any performance improvements. Note that Detection Coverage (i.e.
rate of correct positive prediction) is very high for both ANN and Topaz at 97, 7%
and 95, 5%, respectively. The MRE (i.e. the average non-detected error magnitude),
however, is very high at 14% and 15%, respectively. In other words, the very few
errors that escape detection, may be very detrimental to the output quality.

Sobel

The Sobel benchmark (Figures 6.3e - 6.3h) is a bad candidate for error detection using
lightweight ANNs as well as Topaz. Both the best ANN (9,2) and Topaz suffer from
relatively low Detection Coverage (67.3% and 64.7%), incur a high performance over-
head (27% and 25.3%), and result in high MRE (undetected errors skew the output
by 41.2% and 42.8% on average).

Performance and Quality improve when we consider a batch of 8 tasks, mainly
because using larger task sizes results in a better Detection Coverage and lower ag-
gregate overhead for most ANN configurations (but not for Topaz). EEOP for most
ANN configurations is much lower than in the non-batched version, and lower than
Topaz. In most cases, the batched ANN methodology performs better than Topaz

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 90

0 5 10 15 20 25 30
0E+0

1E-4

2E-4

3E-4

4E-4
Blackscholes

8,2
8,2,2
8,4,2
8,8,2
8,2,2,2
8,4,2,2
8,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(A) Blackscholes Quality/Overhead

0 5 10 15 20 25 30
0E+0

1E-4

2E-4

3E-4

4E-4
Blackscholes (Batch)

8,2
8,2,2
8,4,2
8,8,2
8,2,2,2
8,4,2,2
8,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(B) Blackscholes (Batch) Quality/Over-
head

0.000

0.001

0.002

0.003
Blackscholes

∞ ∞ ∞

(C) Blackscholes EEOP scores

0.000

0.001

0.002

0.003
Blackscholes (Batch)

(D) Blackscholes (Batch) EEOP scores

0 5 10 15 20 25 30
0E+0

5E-4

1E-3

2E-3
Bonds

6,2
6,4,2
6,8,2
6,16,2
6,4,4,2
6,8,4,2
6,16,4,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(E) Bonds Quality/Overhead

0 5 10 15 20 25 30
0E+0

5E-4

1E-3

2E-3
Bonds (Batch)

6,2
6,4,2
6,8,2
6,16,2
6,4,4,2
6,8,4,2
6,16,4,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(F) Bonds (Batch) Quality/Overhead

0.000

0.005

0.010

0.015

0.020
Bonds

(G) Bonds EEOP scores

0.000

0.005

0.010

0.015

0.020
Bonds (Batch)

∞

(H) Bonds (Batch) EEOP scores

FIGURE 6.4: Blackscholes and Bonds evaluation results. The Quality/Overhead figures
omit error detectors whose overhead is larger than 33%

both in terms of quality and performance overhead. Moreover, simpler ANNs such
as (9,2) are almost as good as higher complexity ANNs.

Blackscholes

In Blackscholes, the training data set contains 400,000 assets and the testing-data set
contains 40,000 assets. The validation data set comprises 100,000 assets. The three
data sets are generated using a modified version of the PARSEC [8] Blackscholes in-
put generator, which produces permutations of its bundled 2000 asset entries. Each
data set is constructed using different data-ranges, so that the training/testing data
and validation data are not the same. Each task is represented by a feature vector, of
8 values, which contains the task inputs and output.

Topaz imposes significant overhead (157.53%) to the execution time of the bench-
mark (note that figures showing the overheads of detectors such as Figure 6.4a omit

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 91

those with overheads larger than 33%). In contrast, all ANNs result in overheads
ranging from 18.43% to 40.22%, without sacrificing quality as they also outperform
Topaz in terms of output relative error. Even though both Topaz and the ANNs
feature an Detection Coverage higher than 99.98% they have high MREs; 56.59% for
Topaz, whereas for ANNs it ranges from 14.18% to 47.55%. The EEOP scores are
presented in Figure 6.4c. Even though the MRE is in the same scale as Sobel, error
detectors for Blackscholes are much better as is evident by their EEOP score, which
is orders of magnitude lower (better).

The batched implementation of Blackscholes combines 10 tasks into a batch. All
result-checking mechanisms get a reduction in overhead as shown in Figure 6.4b with
an unnoticeable effect in quality, due to the fact that Detection Coverage is greater than
99.98%. However, MRE increases to more than 54.22% for all ANNs and drops to
55.28% for Topaz. The EEOP scores are shown in Figure 6.4d. Due to the overhead
reduction and slight improvement of the MRE, Topaz outperforms all ANNs.

Bonds

Bonds includes a random bond generator used to generate 440,000 bonds for the
training and testing data sets. The validation data set is 100,000 bond prices. Simi-
larly to Blackscholes, we generate the input data using different value ranges. The
feature vector of a Bonds task comprises both its inputs and outputs. For this bench-
mark, an erroneous computation typically results in an infinite or NaN output. Fig-
ure 6.4e illustrates the quality/overhead measurements for Bonds. All mechanisms
result in output relative errors lower than 0.002%. For the few false negatives (less
than 0.34% of the total number of tasks) the MRE is relatively low, ranging from
1.27% to 6.8%.

This application is a prime candidate for fault-tolerant computing. It results in a
low overhead of error correction and detection with excellent output relative errors
that are lower than 0.002%. Figure 6.4g shows the EEOP scores for the error detection
mechanisms.

We implemented the batched version of Bonds by bundling 10 tasks into a batch
before error detection. The overhead of the ANNs slightly improves at the cost of
slightly worse MRE and Detection Coverage. The quality/overhead measurements
can be seen in Figure 6.4f. Even though batching reduces the overhead of the detec-
tors, their EEOP scores (Figure 6.4h) are slightly worse due to the slight deterioration
of their classification performance.

Lulesh

The training data set profiles the execution of 4 different problem sizes4 (N=5, 10, 15,
and 20). The testing data set contains profile data for a problem size equal to N=18.

4In Lulesh, the problem size determines the number of elements involved in the computation, e.g
the problem size of 10 involves 103 elements.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 92

0 5 10 15 20 25 30
0

1

2

3

4
Lulesh

25,2
25,2,2
25,4,2
25,8,2
25,2,2,2
25,4,2,2
25,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(A) Lulesh Quality/Overhead

0 5 10 15 20 25 30
0

0.5
1

1.5
2

2.5
3

Lulesh (Batch)
25,2
25,2,2
25,4,2
25,8,2
25,2,2,2
25,4,2,2
25,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(B) Lulesh (Batch) Quality/Overhead

0E+0

2E-5

4E-5

6E-5

8E-5

1E-4
Lulesh

0.032 ∞ ∞ ∞ ∞ ∞

(C) Lulesh EEOP scores

0E+0

2E-5

4E-5

6E-5

8E-5
Lulesh (Batch)

15E-3 ∞ ∞ ∞

(D) Lulesh (Batch) EEOP scores

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
Barnes

14,2
14,4,2
14,8,2
14,16,2
14,4,4,2
14,8,4,2
14,16,4,2
topaz

Overhead (%)

R
e

la
ti

v
e

 E
rr

o
r

(%
)

(E) Barnes Quality/Overhead

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
Barnes (Batch)

14,2
14,4,2
14,8,2
14,16,2
14,4,4,2
14,8,4,2
14,16,4,2
topaz

Overhead (%)

R
e

la
ti

v
e

 E
rr

o
r

(%
)

(F) Barnes (Batch) Quality/Overhead

0
0.01
0.02
0.03
0.04
0.05

Barnes
0.14 ∞ ∞

(G) Barnes EEOP scores

0
0.01
0.02
0.03
0.04
0.05

Barnes (Batch)
∞∞

(H) Barnes (Batch) EEOP scores

FIGURE 6.5: Lulesh and Barnes evaluation results. The Quality/Overhead figures omit
error detectors whose overhead is larger than 33%

The validation input-data is a problem size of N=50. Feature vectors for Lulesh
contain the output of a task, which is the computed forces for 8 bodies, along with
the time since the beginning of Sedov blast (which is just a task input parameter). In
this benchmark, all tasks are executed unreliably, apart from a random 10% which
are always executed reliably for improved numerical stability.

The Overhead/Quality measurements of Lulesh are shown in Figure 6.5a. Lulesh
tasks, much like those of Sobel, are too fine-grained for efficient error detection. Ex-
treme granularity is the reason why just three out of the eight error detection mecha-
nisms result in an overhead lower than 33%. Figure 6.5c presents the EEOP scores for
the error detection mechanisms. Topaz overhead skyrockets to 208.45% but it pro-
duces results of high quality with a relative error of 3.1∗10−42%. On the other hand,
(25,2,2) requires an additional 29.95% CPU cycles for error detection and correction
and results in an output quality of 2.66 ∗ 10−7%. Regardless of the overhead cost,
the Detection Coverage for all mechanisms is greater than 99.98%. Moreover, MRE of
(25,2,2) is 2.62% and Topaz has an average MRE of 4.45 ∗ 10−11%.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 93

The batched version of Lulesh aggregates 10 tasks into a single bundle prior
to checking for errors. The output quality for (25,4,2) and Topaz are 3.32 ∗ 10−7%
and 1.95 ∗ 10−28% respectively. With batching the cost of error detection is reduced,
thereby driving the total Overhead in acceptable levels for all eight mechanisms
(Figure 6.5b). The output relative error of the best six mechanisms is bellow 10−6%.
Interestingly, batching does not affect the MRE, which remains below 3.5% for the
top 6 mechanisms. The EEOP scores are shown in Figure 6.5d, with (25,4,2) being the
top option.

Barnes

The distribution of Barnes [5] includes a number of input data sets. We use inputs
describing systems with 1K, 2K, and 4K bodies as the training data set and the input
of 8K bodies as the testing data set. The input set of 16K is used as the validation
input data. A Barnes feature vector contains the outputs and inputs of the task. We
present the Quality/Overhead measurements for Barnes in Figure 6.5e and the EEOP
scores in Figure 6.5g. The best performing error detection mechanism is (14,4,4,2). It
leads to an output relative error of 1.37% and an 10.33% overhead. Topaz, results in
a relative error of 2.25% at a lower overhead of 7.89%.

The batched version of Barnes, combines 10 feature vectors/AOVS together prior
to performing error detection. The results are shown in Figures 6.5f and 6.5h. The
best mechanism is (14,4,4,2) with an output quality of 1.3%, overhead of 12.13% and
MRE of 32.13. Topaz, follows closely, with an output quality of 1.36%, overhead of
7.55% and MRE of 33.55%. Note that, batching tasks in Barnes decreases the detec-
tion overhead, however it results in higher correction overheads due to a decreased
recall rate for Correct tasks.

Inversek2j

We generate 1.1 million starting points to construct the training and testing data
sets. For Inversek2j we include the inputs and outputs of each task in the feature
vector. Figure 6.6a illustrates the Overhead/Quality measurements for the differ-
ent error detection mechanisms. Because tasks of this application are exceptionally
lightweight, Topaz detector leads to an overhead of 185.13%. On the other hand, all
but one ANNs result in overheads lower than 33%. In all cases the average relative
error is bellow 1 ∗ 10−4%. Figure 6.6c illustrates the EEOP scores for the different
mechanisms. The best scoring ANN (4,4,2,2) results in an overhead of 25.45%, a rel-
ative error of 5.17 ∗ 10−6% and its MRE is 4.87%. Topaz, leads to a 1.17 ∗ 10−5%
relative error, and has an MRE of 10.12%. All result-checking mechanisms detect
more than 99.99% of the errors. This is also illustrated in their EEOP scores: they are
the best out of all the benchmarks.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 94

0 5 10 15 20 25 30
0E+0

1E-5

2E-5

3E-5

4E-5

5E-5
Inversek2j

4,2
4,2,2
4,4,2
4,8,2
4,2,2,2
4,4,2,2
4,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(A) Inversek2j Quality/Overhead

0 5 10 15 20 25 30
0.00

0.01

0.02

0.03

0.04
Inversek2j (Batch)

4,2
4,2,2
4,4,2
4,8,2
4,2,2,2
4,4,2,2
4,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(B) Inversek2j (Batch) Quality/Overhead

0E+0

2E-5

4E-5

6E-5

8E-5
Inversek2j

∞ ∞

(C) Inversek2j EEOP scores

0.000
0.001
0.002
0.003
0.004
0.005
0.006

Inversek2j (Batch)

(D) Inversek2j (Batch) EEOP scores

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Bodytrack

5,2
5,2,2
5,4,2
5,8,2
5,2,2,2
5,4,2,2
5,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(E) Bodytrack Quality/Overhead

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Bodytrack (Batch)

5,2
5,2,2
5,4,2
5,8,2
5,2,2,2
5,4,2,2
5,8,2,2
topaz

Overhead (%)

R
el

at
iv

e
E

rr
o

r
(%

)

(F) Bodytrack (Batch) Quality/Overhead

0E+0

1E-3

2E-3

3E-3

4E-3
Bodytrack

∞

(G) Bodytrack EEOP scores

0E+0

1E-3

2E-3

3E-3

4E-3
Bodytrack (Batch)

0.036

(H) Bodytrack (Batch) EEOP scores

FIGURE 6.6: Inversek2j and Bodytrack evaluation results. The Quality/Overhead fig-
ures omit error detectors whose overhead is larger than 33%

The batched version of this benchmark, aggregates 10 tasks into a bundle prior
to checking for errors. The results of the fault-injection campaigns are shown in Fig-
ures 6.6b and 6.6d. Because the error detection overhead is amortized across 10 tasks,
the overhead is significantly reduced; for ANNs it ranges from 7.68% to 9.28%. With
task-batching, Topaz becomes a viable choice for error checking as well. It imposes
an overhead of 19.52%. Unfortunately, this performance improvement comes at the
expense of the output quality of the application. The MRE for the ANNs ranges
from 22.67% up to 27.15%, whereas Topaz performs slightly worse at 28.59%. Addi-
tionally, the Detection Coverage remains relatively unchanged, at more than 99.9% for
all mechanisms.

Bodytrack

We use 40 such frames to construct the training data set and 4 for the testing data
set. As validation input data we use a single frame. All frames are extracted from

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 95

a sequence of 262 frames that is distributed with the benchmark. Even though both
Topaz and the ANNs detect nearly none of the Incorrect outputs, the output quality
is only mildly affected. Specifically, the Detection Coverage score for all mechanisms
ranges from 0.019% to 0.025% and the resulting relative error is less than 1% in all
cases, as shown in Figure 6.6e. Moreover, true positives typically have a relative er-
ror of 17.16%-22.1% whereas false negatives, have an average relative error of 0.36%
- 0.53%. This fact leads to low Expected Error scores, which translates to low out-
put relative error. The latter, coupled with overheads less than 1.6% results in the
relatively good EEOP scores shown in Figure 6.6g.

For the batched implementation we bundle 10 tasks together before checking
for errors. Batching slightly deteriorates Detection Coverage, and reduces the overall
overhead of ANNs by a factor of 10 but increases the overhead of Topaz to 2.78%

(Figure 6.6f). The increased overhead of Topaz is mainly attributed to an increase
of 5.9% to the number of false positives. Moreover, batching negatively affects the
MRE increasing it to 1.4%− 2.1%. As a result, the EEOPs for the batched version of
Bodytrack are worse than the original version (Figure 6.6h).

In 7 out of our 8 benchmarks (excluding Bodytrack) the best scoring ANNs de-
livered an average Detection Coverage of 94.85% whereas Topaz scored marginally
worse at 94.11%. Bodytrack, is an outlier because it mostly produces Incorrect task
outputs which escape error detection due to them only slightly deviating from their
respective Correct values. Consequently, neither the ANNs nor Topaz detect the ma-
jority of the errors but the end-result of the application has high quality (less than
1% relative error).

Both ANNs and Topaz are most efficient for applications with tasks that handle
few data and execute for a long time. One good example of such an application
is Bonds. Applications with tasks that handle large sets of data and require little
execution time (i.e. Sobel) tend to behave poorly with this type of error detection,
as their large feature vectors lead to an increased overhead for error detection. For
such applications we expect that there are more appropriate alternatives to Multi-
layer Perceptrons, like Convolutional Neural Networks (CNNs) [51]. CNNs have
been designed to exploit the spatial information of data contained within a feature
vector. This information is implicitly defined by the indices of the data within the
vector. A great use case scenario for CNN error detectors Layers would be multime-
dia applications.

6.3.2 Case study - Analysis for an unreliable configuration at the PoFF

Section 6.3.1 presented and discussed the performance overhead for error detection
and correction by the ANN and Topaz methodologies. This subsection discusses a
case study, deploying these methodologies in a fault-tolerant computing environ-
ment to speed up computation through CPU overclocking.

Figure 6.7 illustrates the voltage and frequency settings for a variety of opera-
tional configurations. A CPU operates nominally (i.e. error free) on a (V, f) line.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 96

The CPU may dynamically move to multiple configurations between a lower per-
formance point (Vlow, flow) and a higher performance point (Vhigh, fhigh) under the
control of the Operating System (OS). For example, when the workload is low or
memory-bound, the OS can switch the CPU core(s) closer to the (Vlow, flow) point to
save power.

For our experiments on the Intel i7 4820k CPU, we set (Vhigh, fhigh) = (1.06 V, 3.7
GHz) and (Vlow, flow) = (0.9 V, 1.67 GHz). The latter point is the reliable configu-
ration, whereas the (Vlow, fhigh) = (0.9 V, 3.7 GHz) point is set to be the PoFF (note
that 0.9 ≈ 0.85 ∗ 1.06) and falls well into the unreliable area (Figure 6.7) due to over-
clocking. Overclocking provides lower execution time under unreliable conditions,
which may result in crashes or SDCs. Error detection and correction mechanisms are
then deployed to alleviate the effects of unreliable configurations, at the expense of
performance (as shown in 6.3.1). It is this interplay between output quality and per-
formance (faster clock vs. correction/detection overhead) that we evaluate in this
subsection. Note that, in Section 3.9 we evaluated the use of unreliably configured
hardware to optimize the power and energy efficiency of applications. In this Sec-
tion we utilize unreliability in a slightly different way. We evaluate whether we can
reliably operate the CPU below the line of nominal operation to reduce execution
time using the proposed error detection technique.

We also present the speedup obtained through the use of an unrealistic oracle-
like error detection mechanism. We synthetically calculate the expected speedup
of the Oracle using three simple rules: the Oracle has a) perfect Detection Coverage
(TPR), b) zero FNR, and c) zero detection overhead. Consequently, the Oracle re-
sults in the best possible speedup assuming that all errors are corrected. Table 6.2
compares the best ranking ANNs and Topaz against the Oracle for each benchmark.

The speedup baselines are error-free executions of the applications using the
fully reliable voltage/frequency configuration of (Vlow, flow). Mixed-reliability ap-
plications schedule the unreliable tasks on cores which operate under the unreliable

V
o

lt
ag

e

Frequency

Rel(V
low,

f
low

) Overclocked
Unrel(V

low,
f

high
)

Clock Clock
StretchingStretching
(low cost)(low cost)

non-nominalnon-nominal
domaindomain

Overclocked and
Overvolted

Rel(V
high,

f
high

)

nominal operating points

FIGURE 6.7: Reliable and Unreliable configurations

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 97

DCT Sobel Blackscholes Bonds Lulesh Barnes Inversek2j Bodytrack
0.00%

10.00%

20.00%

30.00%

40.00%
ANN
Topaz

155.13% 212.57% 168.05%

FIGURE 6.8: The overhead of performing error detection defined as the number of cycles
spent to perform error detection over the number of cycles required for a fully reliable

execution of the application

voltage/frequency configuration of (Vlow, fhigh). The average speedup of the theo-
retical Oracle error detector is 1.99x and the resulting output is by definition bitwise
exact since the Oracle always detects an Incorrect task output. Even though both
ANNs and Topaz exhibit similar behavior in terms of Detection Coverage, the ANNs
exhibit higher speed up at 1.51 vs. 1.15 for Topaz. The difference is mainly due to the
higher error-detection overhead in Topaz (which is true also in the batched version
of the benchmarks). Note that Bodytrack, is the only benchmark for which an ANN
results in higher speedup than the Oracle error detector, because neither ANNs nor
Topaz perform task re-execution to correct the majority of the Incorrect task outputs.

The best scoring ANNs in batched configuration, on average, achieve an exe-
cution speedup of 1.72x which is larger than the 1.44x achieved by Topaz. Again,
the difference is mainly due to the high error detection overhead of Topaz for most
benchmarks. Figure 6.8 shows that the average error detection overhead with respect
to the execution time of the application on a reliable CPU is 13.83% and 72.98% for
the optimal ANN (the one with the lowest EEOP), and Topaz, respectively. Three
benchmarks (Blackscholes, Lulesh, inversej2k) have such a high detection overhead,
that the whole application is slowing down as shown in Table 6.2. For these bench-
marks, Topaz is only a viable approach if task-batching is utilized to amortize the
cost of error detection. A similar trend is observed across all benchmarks: perform-
ing error detection at a coarser level via batching reduces the average overhead of
error detection. More specifically, the cost of error detection for ANNs after batching
comes to 6.45% and for Topaz to 12.81%.

We showed that it is possible to rely on using ANNs for automatic result-checking
which outperforms the previous state of the art approximate outlier detector Topaz [1].
For most applications evaluated, an ANN incurs less computation overhead and re-
sults in either better or equivalent output quality compared to Topaz. This is re-
flected in the EEOP scores of the error-detectors. ANNs score better (lower) com-
pared to Topaz for 7 out of the 8 non-batched versions of the benchmarks. The trend
is also present in the batched version of the benchmarks: ANNs outperform Topaz
in 6 out of 8 benchmarks.

Moreover, we observed that batching can significantly reduce the overhead of
error detection. Unfortunately, that comes with a cost to the MRE. This increased
MRE does not severely affect the overall output quality of applications because

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 6. Automatic result checking for fault-tolerant computing 98

Original Batched
Benchmark Oracle ANN Topaz ANN Topaz
DCT 1.88 1.54 1.42 1.51 1.74
Sobel 2.16 1.36 1.40 1.53 1.40
Blackscholes 2.11 1.17 0.51 1.72 1.62
Bonds 2.14 2.03 1.99 2.10 1.20
Lulesh 1.93 1.21 0.35 1.48 1.16
Barnes 1.82 1.49 1.77 1.64 1.75
Inversek2j 2.06 1.39 0.43 1.85 1.41
Bodytrack 1.82 1.90 1.31 1.92 1.26
Average 1.99 1.51 1.15 1.72 1.44

TABLE 6.2: Comparison between the execution speedups achieved through overclock-
ing in conjunction with Artificial Neural Networks, Topaz, and Oracle error detector.
The baseline is the time required to complete an error-free execution under the reliable
configuration (Vlow, flow) = (0.9 V, 1.67 GHz). Overclocking results in the execution of

unreliable tasks under the configuration (Vlow, fhigh) = (0.9 V, 3.7 GHz)

the Detection Coverage of the error detectors tends to remain very high even after
aggregating multiple feature vectors into a single one via batching.

Our methodology enables a number of interesting future research directions for
designing dynamic runtime systems. For example, one can automatically generate
a number of error detectors which vary in terms of overhead and resulting output
quality. At execution time, the runtime system can choose the best error detector
out of many, depending on a) their EEOP, b) MRE scores, and c) user supplied
constraints such as a maximum energy budget for error detection. Another possi-
ble research direction would exploit the low execution overhead and small size of
ANNs for error-detection. At execution time a runtime system could choose appro-
priate occasions to fine-tune an ANN in order to trade-off additional overhead for
increased Detection Coverage. The overhead of fine-tuning the ANN can be limited
using the principles of Elastic Weight Consolidation [48] (EWC). EWC would allow
an ANN to only change some of its weights to improve its classification performance
at a reduced computational cost.

Finally, recall that the ANNs that we employ comprise a small number of dif-
ferent operations. Additionally, we need ANNs to be executed reliably so that the
runtime system can trust ANNs to detect errors at the outputs of tasks which have
been executed under unreliable conditions. Interestingly, the ANNs that we employ
involve a rather small number of different operations. As such, it would be possible
to harden this subset of computations and as a result reduce the computational cost
of error detection even further.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

99

Chapter 7

Related work

This chapter discusses related work and the differentiation between our research
and previous efforts. As approximate and unreliable computing have been very
hot research subjects lately, we organize literature discussion across three different
axis: Approximate computing, Unreliable computing, and Power & energy-aware
optimization.

7.1 Approximate computing

Quickstep [62], is a tool that approximately parallelizes sequential programs. The
parallelized programs are subjected to statistical accuracy tests for correctness. Quick-
step tolerates races that occur after removing synchronization operations that would
otherwise be necessary to preserve the semantics of the sequential program. Quick-
step thus exposes additional parallelization and optimization opportunities via ap-
proximating the data and control dependencies in a program. However, QuickStep
does not enable algorithmic and application-specific approximation and does not
include energy-aware optimizations in the runtime system.

Variability-aware OpenMP [73] and variation tolerant OpenMP [74], are sets of
OpenMP extensions that enable a programmer to specify blocks of code that can
be computed approximately. The programmer may also specify error tolerance in
terms of the number of most significant bits in a variable which are guaranteed to
be correct. We follow a different scheme that allows approximate –in our context,
not significant– tasks to be selectively dropped from execution and dynamic error
checks to detect and recover from errors via selective task restarting. Variability-
aware OpenMP applies approximation only to specific FPU operations, which ex-
ecute on specialized FPUs with configurable accuracy. In contrast, we explore se-
lective approximation at the granularity of tasks, using the significance abstraction.
Our programming and execution model thus provides additional flexibility to drop
or approximate code, while preserving output quality. Furthermore, our framework
for significance aware approximate computing does not require specialized hard-
ware support and runs on commodity systems.

Several frameworks for approximate computing discard parts of code at runtime,
while asserting that the quality of the result complies with quality criteria provided

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 7. Related work 100

by the programmer. Green [4] is an API for loop-level and function approximation.
Loops are approximated with a reduction of the loop trip count. Functions are ap-
proximated with multi-versioning. The API includes calibration functions that build
application-specific QoS models for the outputs of the approximated blocks of code,
as well as re-calibration functions for correcting unacceptable errors that may incur
due to approximation. Sloan et al. [92] provide guidelines for manual control of
approximate computation and error checking in software. These frameworks del-
egate the control of approximate code execution to the programmer. Emeuro [60]
efficiently breaks down an application into subroutines of varying granularity and
automatically generates approximate alternatives for said subroutines through the
use of Artificial Neural Networks (ANNs). At execution time, an intelligent run-
time system explores the high-dimension subroutine space and generates a graph of
computations which comprises nodes that are either accurate versions of the subrou-
tines approximate ones through the use of ANNs. Additionally, Emeuro employs a
denoising autoencoder-based heuristic to detect ANNs which are incapable of pro-
ducing outputs of acceptable quality for a given input. To this end, each ANN is
coupled with a denoising autoencoder (DAE) whose aim is to reconstruct the input
of the ANN. If the difference, between the actual input of the ANN and the one
reconstructed by its DAE, is larger than some user specified constraint the ANN is
considered to be a sub-optimal choice. In this scenario, a different subroutine graph
is investigated. We explore an alternative approach where the programmer uses a
higher level of abstraction for approximation, namely computational significance,
while the system software translates this abstraction into energy- and performance-
efficient approximate execution.

Loop perforation [90] is a compiler technique that classifies loop iterations into
critical and non-critical ones. The latter can be dropped, as long as the results of
the loop are acceptable from a quality standpoint. Input sampling and code ver-
sioning [110] also use the compiler to selectively discard inputs to functions and
substitute accurate function implementations with approximate ones. Similarly to
loop perforation and code versioning, our framework benefits from task dropping
and the execution of approximate versions of tasks. However, we follow a different
approach whereby these optimizations are driven from user input on the relative
significance of code blocks and are used selectively in the runtime system to meet
user-defined quality criteria energy savings and performance gain. While these ap-
proaches demonstrate aggressive performance optimization thanks to approxima-
tion, they do not consider parallelism in execution. Furthermore, these techniques
operate at a granularity different than parallel tasks or specific runtime energy opti-
mization opportunities which are exposed through approximation.

Several software and hardware schemes for approximate computing follow a
domain-specific approach. ApproxIt [109] is a framework for approximate iterative
methods, based on a lightweight quality control mechanism. Unlike our task-based
approach, ApproxIt uses coarse-grain approximation at a minimum granularity of

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 7. Related work 101

one solver iteration.
Other tools automate the generation and execution of approximate computa-

tions. SAGE [85] is a compiler and runtime environment for automatic generation of
approximate kernels in machine learning and image processing applications. Para-
prox [84] implements transparent approximation for data-parallel programs by rec-
ognizing common algorithmic kernels and then replacing them with approximate
equivalents. ASAC [81] provides sensitivity analysis for automatically generated
code annotations that quantify significance. Contrary to our work on automatic sig-
nificance analysis, ASAC systematically perturbates the variables of a program and
observers the results. It then, applies a hypothesis tester to check against a correct
output and subsequently score each variable to rank its contribution to the output
of the program. In our work, we rely on interval analysis in conjunction with auto-
matic algorithmic differentiation to qualitatively estimate the contribution of differ-
ent parts of a code to the application output quality.

Hardware support for approximate computation has taken the form of programmable
vector processors [104], neural networks that approximate the results of code re-
gions in hardware [21], and low-voltage probabilistic storage [82]. These frame-
works assume non-trivial, architecture-specific support from the system software
stack, whereas our approximate computing work depends only on compiler and
runtime support for task-parallel execution, which is already widely available on
commodity multi-core systems.

7.2 Fault tolerant computing

Gschwandtner et al. [28] use a similar iterative approach to execute error-tolerant
solvers on processors that operate with near-threshold voltage (NTC) and reduce en-
ergy consumption by replacing cores operating at nominal voltage with NTC cores.
Schmoll et al. [88] present algorithmic and static analysis techniques to detect vari-
ables that must be computed reliably and variables that can be computed approxi-
mately in an H.264 video decoder. Although we follow a domain-agnostic approach
in our framework, we provide sufficient abstractions for implementing the afore-
mentioned application-specific approximation methods.

Topaz [1] is a task-based framework which executes computations unreliably.
An online outlier detection mechanism detects and then re-computes unacceptable
task results reliably. Chisel [63] selects approximate kernel operations to minimize
an application’s energy consumption while satisfying its accuracy specification.

Rinard et al. [79], in one of the chronologically earlier efforts on task-based error-
tolerant computing, propose a software mechanism that allows the programmer to
identify task blocks and then creates a profile-driven probabilistic fault model for
each task. This is accomplished by injecting faults at task execution and observing
the resulting output distortion and output failure rates. Task Level Vulnerability
(TLV [74]) captures dynamic circuit-level variability for each OpenMP task running

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 7. Related work 102

in a specific processing core TLV meta-data are gathered during execution by cir-
cuit sensors and error detection units to provide characterization at the context of
an OpenMP task. Based on TLV meta-data, the OpenMP runtime apportions tasks
to cores aiming at minimizing the number of instructions that incur errors. TLV
does not consider error recovery and user-specified approximate execution paths.
Although, similar to our approach, this work does not consider error recovery and
user-specified approximate execution paths.

Rehman et al. [76] present a framework for reliable code generation and execu-
tion using reliability driven compilation. A compiler generates multiple, function-
ally equivalent, versions of a given function which differ in terms of vulnerability
and execution time. Upon profiling the versions, the runtime system selects one
that both increases the reliability of the system and meets the application’s real-time
constraints. Their work enforces functional correctness but does not exploit the al-
gorithmic characteristic of significance. [83] introduces a system that selects a relia-
bility robustness mechanism (Triple or Double Modular Redundancy, DMR/TMR)
as well as the CPU operating voltage and frequency. Its goal is to minimize power
consumption while achieving the reliability and timing requirements of the system.
In our work, we do not seek functional correctness, but we offer a mechanism to ex-
ploit the algorithmic significance to allow errors to manifest only on non-significant
computations.

[77] introduces the instruction vulnerability index (IVI) for software reliability
estimation. Vulnerability indexes at the granularity of the function (FVI) and the
application (AVI) is computed based on IVI. Given a user specified tolerable perfor-
mance overhead constraint they perform compiler transformation to enhance code
reliability. In our work we do not take into account the instruction vulnerability. We
consider the algorithmic property of significance to steer application execution on
reliable and unreliable cores. Relax [49] is an architectural framework that lets pro-
grammers turn off recovery mechanism as well as annotate regions of code for which
hardware errors can occur. The hardware supports error detection and a C/C++
language-level recovery mechanism provides error recovery from hardware faults
at different levels of code granularity.

Hardware support for error-tolerant and approximate computing spans designs
to novel architectures. Razor [18] is a processor design which is based on dynamic
detection and correction of timing failures of the critical paths due to below-nominal
supply voltage. The key idea is to tune supply voltage by monitoring the error rate
during operation using shadow latches controlled by delayed clocks. The observa-
tion that the sequence of instructions in an application binary can have a significant
impact on timing error rate is studied in [33]. A number of simple, yet effective code
transformations that reduce error rate are introduced.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 7. Related work 103

In [38] a hardware module monitors the processor pipeline, and checks for pos-
sible control flow violations (infinite loops). This module is used by the OS/compil-
er/application to detect errors and take corrective action. ERSA is a multi-core archi-
tecture where cores are either fully reliable or have relaxed reliability [52]. ERSA uses
an explicit and application-specific mapping of code to cores with different levels of
reliability. Our work follows a different approach, the programmer uses significance
to indicate code with relaxed correctness semantics and the framework implements
error detection and recovery, potentially approximating the task output.

EnerJ [86] proposes a programming model which explicitly declares data struc-
tures that may be subject to unreliable computation in return for increased perfor-
mance or fault tolerance. EnerJ allows operations to be computed in aggressively
voltage-scaled processors and data structures to be stored in DRAM with low re-
fresh rate and SRAM with low supply voltage. Exposing such computing to the pro-
grammer requires expanding the processor ISA with instructions that offer only an
expectation, rather than a guarantee that a certain operation will be performed cor-
rectly [19]. Contrary to our framework EnerJ specifies significance in the granularity
of data and does not consider task-parallel execution, whereas we use as vehicle the
granularity of a task. Furthermore, EnerJ does not explore the idea of error detection
and correction, whereas we provide a systematic approach to using Artificial Neural
Networks to automate the process of error detection.

There has also been a large amount of work which aims to solve the problem
of efficient error detection. Current state of the art approaches to online error de-
tection rely on duplicating the instructions of selected application parts which are
considered error-prone. Unsafe instructions are first identified via compiler-analysis
and/or profiling. Subsequently, a compiler pass hardens the application by du-
plicating the unsafe instructions and inserting checks [22, 58, 16, 50]. The checks
typically involve redundancy in the form of instruction duplication. When a check
detected an error it proceeds to restore an earlier checkpoint. IPAS [50] expects the
user to include a verification function that is used to check whether an injected fault
has propagated to the output of the code which is targeted for software-hardening
against soft-errors. This function is only used to train an Artificial Neural Network
to drives the selection of instructions prior to their duplication. Other works [31, 27,
44] rely on manually implemented Light-Weight Checks (LWCs) to detect errors at
the outputs of computations. [27] use manual LWCs to determine when an approx-
imate alternative to a function computes outputs which severely differs from the
exact implementation. [44] relies on manually implemented LWCs to detect errors
on the output of unreliably executed code. [31] falls back to instruction duplication
whenever light-weight error detectors result in low Detection Coverage.

Two offline debugging mechanisms and three online monitoring mechanisms
for approximate programs are presented in [80]. Among the offline mechanisms,
the first one identifies correlation between QoR and each approximate operation by
tracking the execution and error frequencies of different code regions over multiple

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 7. Related work 104

program executions with varying QoR values. The second mechanism tracks which
approximate operations affect any approximate variable and memory location. The
online mechanisms complement the offline ones and they detect and compensate
for QoR loss while maintaining the energy gains of approximation. The first mech-
anism compares the QoR for precise and approximate variants of the program for
a random subset of executions. This mechanism is useful for programs where QoR
can be assessed by sampling a few outputs, but not for those that require bounding
the worst-case errors. The second mechanism uses programmer-supplied "verifica-
tion functions" that can check a result with much lower overhead than computing
the result. The third mechanism stores past inputs and outputs of the checked code
and estimates the output for current execution based on interpolation of the previ-
ous executions with similar inputs. They show that their offline mechanisms help
in effectively identifying the root of a quality issue instead of merely confirming the
existence of an issue and the online mechanisms help in controlling QoR while main-
taining high energy gains. Our method could also be applied to detect errors due to
approximation but we chose to evaluate our automatic error detectors to check for
errors at the output of code which executes under unreliable conditions.

[47] presents an output-quality monitoring and management technique which
can ensure meeting a given output quality. Based on the observation that simple
prediction approaches, e.g. linear estimation, moving average, and decision trees
can accurately predict approximation errors, they use a low-overhead error detec-
tion module which tracks predicted errors to find the elements which need correc-
tion. Using this information, the recovery module, which runs in parallel to the
detection module, re-executes the iterations that lead to high-errors. This becomes
possible since the approximable functions or codes are generally those that simply
read inputs and produce outputs without modifying any other state, such as map
and stencil patterns. Our approach differs in that we use an ANN to detect error
whereas [47] uses hardware accelerated ANNs to approximate code whose output
is subsequently error checked. Large errors on the approximated computations are
corrected by means of executing the accurate code using the CPU.

7.2.1 Power and Energy-Aware Optimization

Dynamic quality control of non-functional application properties including power
and energy has been explored in HeartBeats [34], a framework for user-directed exe-
cution steering; PowerDial [35], an environment for adapting applications to execute
efficiently under power and load fluctuations; Metronome [91], an operating system
substrate for dynamic performance and power management; and the Angstrom pro-
cessor [36], which provides hardware support for monitoring performance, power,
energy and temperature with user-controlled settings.

Dynamic power and energy optimization in the runtime system has been ex-
plored in several parallel programming models including OpenMP [14], message

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 7. Related work 105

passing and hybrid models [55, 56], new parallel programming languages that na-
tively support transparent adaptation to dynamic execution conditions such as [94]
as well as distributed programming frameworks [40].

Cohen in Energy types [11] used a type-based system for expressing phases of
computation which were then executed in different energy states, to optimize overall
energy-efficiency. However, this system did not consider approximation or dynamic
parallel execution as techniques for saving energy.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

106

Chapter 8

Concluding remarks

8.1 Retrospective

In the previous chapters we discussed our work on significance aware approximate
and fault tolerant computing. We began by identifying the core challenges for both
computing paradigms and formulating them into two sets of intuitive questions.

The very first challenge is to answer the question of "How to implement and
execute applications for significance-aware computing?". We designed and imple-
mented a programming model which is user friendly but is also expressive enough
to support the implementation of applications using the principles of significance-
aware computing. We chose to base our design on the popular OpenMP task-based
programming model. Tasks are an intuitive vehicle of computations, and they also
facilitate the compartmentalization of code. This particular characteristic is extremely
helpful especially in the fault-tolerant flavor of significance-aware computing. After
all, the significant portions of an applications must not be affected from errors which
occur during the execution of the least significant ones.

A versatile programming model must also be accompanied by intelligent run-
time system support, which efficiently exploits the opportunities to gracefully trade-
off output quality with program optimization. To this end we designed and imple-
mented two runtime systems, for significance-aware approximate as well as fault-
tolerant computing.

Beyond the framework enabling the implementation and execution of significance-
aware applications we also introduce methodologies which aim to reduce the human
effort involved in implementing such applications for approximate and fault tolerant
computing. One of the key challenges that we targeted is "What to approximate/ex-
ecute unreliably?" and "How to approximate?". Answering these questions requires
an automatic significance analysis methodology which is applied on the code of ap-
plications. To this end, we showed that it is possible to automatically provide a
qualitative assessment of different parts of a code with respect to their contribution
to final output quality, for applications whose code is differentiable.

Our work to that point provided the means to implement and execute applica-
tions – significance-characterized at the granularity of tasks – using either software-
only approximations or unreliable hardware to optimize their execution. We then

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 8. Concluding remarks 107

considered when significance-aware approximate/fault-tolerant computing is actu-
ally necessary. It makes sense to resort to significance-aware computing when a
user specified constraint, i.e. energy budget, cannot be met with conventional com-
puting paradigms. This, in turn, raises the question "How much of an application
should be approximated/executed unreliably to meet a specified user constraint?"
We modeled the performance of applications to deduce the minimum degree of ap-
proximation so that the resulting energy footprint is a fraction of the footprint when
executing the application in the most efficient and fully accurate configuration. Of
course, our approach can be augmented by including energy models for fault toler-
ant computing and is thus applicable to this computing paradigm as well.

Finally, we targeted the last key challenge of significance-aware fault tolerant
computing, which is also arguably the most difficult one. How to detect errors? To
this end, we use a runtime system which uses OS standard services, as well as run-
time watchdogs to identify “noisy” indications of errors (such are crashes, hangs
etc.). Silent Data Corruptions (SDCs), on the other hand, are much more challeng-
ing; they can propagate through computations and potentially to the output without
producing “noisy” symptoms. Therefore, the application developer, or ideally the
runtime system, need to actively monitor for such errors in appropriate places of
the computation graph. The solution to this problem is difficult to automate in a
generic way. In this Thesis we focused on automatically generating error detectors
to detect errors at the outputs of application tasks. Our methodology trains Artificial
Neural Networks (ANNs) which automatically detect errors that have propagated at
the outputs of tasks. Our approach involves only limited human effort, has proven
highly effective, and resulted in low computation overhead.

8.2 Conclusions

Significance of computations is an algorithmic property which can serve as the sup-
porting basis for effective approximate and fault-tolerant computing. One of the
goals of this Thesis was to elevate significance to a first-class concern during al-
gorithm and application development, in par with, for example, parallelism. The
challenges of these computing paradigms can be largely addressed by frameworks
which make intelligent dynamic decisions which would otherwise have to be made
statically by humans. In fact, we have shown that it is possible to automate the pro-
cess of selecting the appropriate level of approximation to meet user constraints, as
well as the process of detecting errors in intermediate results using machine learning
techniques.

Investing in approximate computing eases the transition to fault-tolerant com-
puting for future systems. Unless assisted by software, the task of implementing al-
gorithms using the fault-tolerant computing programming paradigm can be excep-
tionally taxing on the application developer. Therefore, novel software framework-
s/tools are required to lift some of the burden of implementing algorithms which

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 8. Concluding remarks 108

are expected to execute under partially unreliable conditions.
Much of software development is performed today in the form of reusing pre-

packaged software components. Essentially, unreliable computing requires tools to
facilitate the implementation and adoption of software in the form of libraries. Be-
yond custom developer code, libraries also need to carry extra information such as
their robustness guarantees, methods for error-checking, energy/performance effi-
cient mechanisms for error-correction, and functions to judge the quality of output
of library functions.

This thesis, concludes with the following suggestion towards the realization of
fault-tolerant computing on next generation hardware:

The transition to fault-tolerance requires effort from the side of application devel-
opers, to design their algorithms to operate under unreliable conditions. Of course,
not all parts of an application are amenable to fault-tolerant execution. There are
critical regions of software which would significantly deter software behavior and
expected output in the event that they exhibit some kind of error. Examples of such
kinds of software are critical regions of operating systems, runtime systems, multi-
threaded synchronization, etc. Such software regions need to be executed in a re-
liable way, even if such a decision implies that their execution suffers in terms of
performance/energy/power. Fortunately, there are classes of applications the bulk
of computations of which have inherent fault-tolerance characteristics. The largest
portions of such software can benefit from execution on hardware which is config-
ured beyond its nominal point and rely on principles of fault-tolerant computing to
deliver acceptable outputs.

To this end, computations need to be executed using a heterogeneous platform
which comprises mixed-reliability hardware. Ideally the hardware should be con-
figurable in two reliability modes:

a) best-effort mode of (pseudo-)reliable operation. Similar to the reliability level
of modern commodity hardware, errors are highly improbable and infrequent
and the hardware/software stack detects and corrects all those errors so that the
execution of code is predictable.

b) fault tolerant operation. At this configuration the hardware operates at its highest
potential of energy efficiency/performance but may result in the manifestation of
errors.

Figure 8.1 illustrates our approach towards realizing our vision of significance
aware fault tolerant computing. We consider a computing platform that comprises
two kinds of processors. One type operates reliably, much like current commodity
hardware. However, the second type of hardware is optimized for performance-
and energy-efficient fault-tolerant computing. In other words, it will enable devel-
opers to dynamically change its configuration between nominal and points beyond

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 8. Concluding remarks 109

for (i=0; i<N; ++i)
 task(output[i], i, input[i])

User defined constraints
(QoS, performance)

Automatic Significance
Characterization

Application behavior
modeling

Compiler Significance aware
runtime system

Energy & Recovery
policies

for (i=0; i<N; ++i)
 #pragma omp task significance(func_significance(i))
 task(output[i], i, input[i])
#pragma omp taskwait ratio(ratio_func(energy_budget))

Cores operating
at nominal V

dd

Cores operating
at sub-nominal V

dd

Error Detection and Correction

S
ig

n
if

ic
an

ce
-a

w
ar

e
p

ro
g

ra
m

m
in

g
 m

o
d

el
p

ar
ad

ig
m

S
ys

te
m

 s
o

ft
w

ar
e

H
ar

d
w

ar
e

FIGURE 8.1: Envisioned design for significance-aware fault tolerant computing on
mixed-reliability heterogeneous platforms.

its nominal operation. This way it will be possible to create opportunities for im-
proved performance and power, as well as energy consumption, using intelligent
significance aware system software.

All critical software regions, including the bulk of the operating system, and
fault-tolerant runtime system, will execute on the reliable processor(s). The compu-
tation intensive regions of a program which are amenable to fault-tolerant comput-
ing can be executed using the unreliable processor(s). This approach is similar to
how GPU-assisted heterogeneous computing works. GPUs are used to optimize the
performance of applications by executing code which is embarrassingly parallel. In
analogy, in our case we propose the use of unreliable hardware for the least signif-
icant parts of applications. The main difference is that it takes a few more steps to
harden applications so that they always produce results of acceptable quality.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 8. Concluding remarks 110

8.3 Future work

There are several open research opportunities regarding our work on significance
aware approximate and fault tolerant computing. We intend to investigate the fea-
sibility of significance analysis of source code at the level of libraries. This kind of
improvement would enable developers to reuse code already annotated for signifi-
cance.

Another interesting research direction is the relationship of significance, task
granularity, quality of results, and overhead of error detection & correction. This is a
problem similar to choosing the appropriate granularity for parallel code to optimize
the resulting performance. It is important that application developers can make ed-
ucated decisions regarding the granularity of their application tasks. Otherwise, the
resulting implementations might underutilize the hardware or even produce output
of lesser quality.

During the early stages of our automatic error detection methodology we opted
to use re-execution to correct the detected errors at the outputs of idempotent tasks.
It makes sense to pay the cost of re-executing a task as long as its output contains
errors which would significantly reduce the final output quality unless corrected.
However, the selection of the error correction methodology is also an opportunity to
explore the output quality vs program optimization trade-off. If the error-correction
is too complex (with reliable re-execution being the worst case scenario) and too fre-
quent the benefits of unreliable execution can be significantly hindered. Given that
we have explored the use of approximate error-detectors we also aim to investigate
the use of approximate task-alternatives as a form of error correction to reduce the
overall cost of error-detection and correction.

We are also considering ways to extend our methodology for automated error
detection using Artificial Neural Networks (ANNs). For example, we plan to mod-
ify our approach to target errors which occur when executing code on a specific
hardware architecture. Architecture-specific ANNs could then be more effective in
capturing the effects of executing code on that particular hardware platform. We
also plan to study a stronger integration of ANNs with runtime systems for sig-
nificance aware fault tolerant computing. Our current approach, treats all detected
errors as equally important. We want to investigate whether it is possible to relax
the requirements of error detection even more, to further optimize the execution of
applications. To this end, we envision a runtime policy which takes into account
the confidence of the error detector together with the user specified energy/quality
constraints.

Finally, we are also planning to study the effects of unreliability on the quality
and performance of approximate alternatives to exact code. We have shown that it is
possible to optimize the execution of applications at a small penalty to their output
quality via either significance aware approximate or fault tolerant computing. We
wish to explore the scenario of executing the approximate alternatives of tasks under

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

Chapter 8. Concluding remarks 111

unreliable conditions and analyse the resulting behavior of applications.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

112

Related publications

[1] Vassilis Vassiliadis, Konstantinos Parasyris, Christos D. Antonopoulos, Spyros
Lalis, and Nikolaos Bellas. Artificial Neural Networks for online error detection.
(Under review)

[2] Konstantinos Parasyris, Vassilis Vassiliadis, Christos D. Antonopoulos, Spyros
Lalis, and Nikolaos Bellas. Significance-Aware Program Execution on Unreliable
Hardware. ACM Transactions on Architecture and Code Optimization, TACO 2017,
14(2):12:1–12:25

[3] Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Chris-
tos D. Antonopoulos, Nikolaos Bellas, Spyros Lalis, and Uwe Naumann. To-
wards automatic significance analysis for approximate computing. In Proceed-
ings of the 2016 International Symposium on Code Generation and Optimization, CGO
2016

[4] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. Exploiting significance of computations and profile-
driven regression for energy-constrained approximate computing. International
Journal of Parallel Programming, IJPP 2016, 44(5):1078–1098

[5] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. A Significance-driven Programming Framework for Energy-
constrained Approximate Computing In Proceedings of the 12th ACM International
Conference on Computing Frontiers, CF 2015

[6] Vassilis Vassiliadis, Konstantinos Parasyris, Charalampos Chalios, Christos D
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. A programming model and runtime system for significance-
aware energy-efficient computing. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, volume 50, pages
275–276. PPOPP 2015 (poster abstract)

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

113

Contribution to Joint Publications

The results presented in this Thesis have been partially published in [100, 71, 102,
101, 99, 98]. This appendix discusses my contribution to each of the aforementioned
publications.

In [98] and [71] I contributed to the design of the significance aware program-
ming model for fault tolerance computing. Additionally, I contributed to the process
of benchmarking, as well as the analysis of the results. I also modified an existing
source-to-source compiler [108] to augment it with significance-related extensions.
These extensions facilitate the development of applications using the significance
aware programming model.

In [102] I designed a methodology to utilize the dco/scorpio tool and exploit
the significance analysis of computations to automatically partition computation
graphs into tasks when significance characterization at the task granularity is the
primary concern, as well as to provide hints to an application developer about re-
gions of code which are amenable to approximation. The resulting method is de-
scribed in detail under Section 4.1. Furthermore, I implemented the benchmarks as
well as the supporting runtime system, applied our methodology, and evaluated it.

For [101, 99], I contributed the analytical models, designed and applied the ma-
chine learning approach, performed benchmarking, and analysed the results of the
experimental campaigns. I also contributed to the design of the approximation ex-
tensions for our significance aware computing programming model.

Finally, in [100] I was responsible for designing the methodology and training
the Artificial Neural Networks. I also modified the significance aware fault-tolerant
computing runtime system of [71] so that instead of simulating undervolted hard-
ware configurations it simulates overclocked ones. Finally, I was in charge of per-
forming the benchmarking and analysis on the results of the software fault injection
experiments.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

114

Bibliography

[1] Sara Achour and Martin C. Rinard. “Approximate Computation with Outlier
Detection in Topaz”. In: Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA 2015. New York, NY, USA: ACM, 2015, pp. 711–730. ISBN:
978-1-4503-3689-5. DOI: 10.1145/2814270.2814314. URL: http://doi.
acm.org/10.1145/2814270.2814314.

[2] Yannis M Assael et al. “LipNet: Sentence-level Lipreading”. In: arXiv preprint
arXiv:1611.01599 (2016).

[3] Utku Aydonat et al. “An OpenCL™ Deep Learning Accelerator on Arria
10”. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’17. New York, NY, USA: ACM, 2017, pp. 55–
64. ISBN: 978-1-4503-4354-1. DOI: 10.1145/3020078.3021738. URL: http:
//doi.acm.org/10.1145/3020078.3021738.

[4] Woongki Baek and Trishul M. Chilimbi. “Green: A Framework for Support-
ing Energy-conscious Programming Using Controlled Approximation”. In:
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’10. New York, NY, USA: ACM, 2010, pp. 198–
209. ISBN: 978-1-4503-0019-3. DOI: 10.1145/1806596.1806620. URL: http:
//doi.acm.org/10.1145/1806596.1806620.

[5] Josh Barnes and Piet Hut. “A hierarchical O (N log N) force-calculation algo-
rithm”. In: nature 324.6096 (1986), pp. 446–449.

[6] Axel Becker et al. Image Compression benchmark. 2015. URL: http://imagecompression.
info/test_images (visited on 09/18/2015).

[7] Nikolaos Bellas et al. “Real-time fisheye lens distortion correction using au-
tomatically generated streaming accelerators”. In: Proceedings of the 17th IEEE
Symposium on Field Programmable Custom Computing Machines. FCCM ’09. IEEE
Press, 2009, pp. 149–156. ISBN: 978-0-7695-3716-0. DOI: 10.1109/FCCM.
2009.16. URL: http://doi.org/10.1109/FCCM.2009.16.

[8] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Prince-
ton University, 2011.

[9] David Blaauw et al. “Razor II: In Situ Error Detection and Correction for PVT
and SER Tolerance”. In: IEEE Int. Solid-State Circuits Conference, ISSCC , Digest
of Technical Papers. 2008.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1145/2814270.2814314
http://doi.acm.org/10.1145/2814270.2814314
http://doi.acm.org/10.1145/2814270.2814314
http://dx.doi.org/10.1145/3020078.3021738
http://doi.acm.org/10.1145/3020078.3021738
http://doi.acm.org/10.1145/3020078.3021738
http://dx.doi.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/1806596.1806620
http://imagecompression.info/test_images
http://imagecompression.info/test_images
http://dx.doi.org/10.1109/FCCM.2009.16
http://dx.doi.org/10.1109/FCCM.2009.16
http://doi.org/10.1109/FCCM.2009.16

BIBLIOGRAPHY 115

[10] OpenMP Architecture Review Board. OpenMP Application Program Interface
(version 4.0). Tech. rep. 2013.

[11] Michael Cohen et al. “Energy Types”. In: Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’12. New York, NY, USA: ACM, 2012, pp. 831–850. ISBN: 978-1-4503-
1561-6. DOI: 10.1145/2384616.2384676. URL: http://doi.acm.org/
10.1145/2384616.2384676.

[12] Jeremy Constantin et al. “Exploiting Dynamic Timing Margins in Micropro-
cessors for Frequency-over-scaling with Instruction-based Clock Adjustment”.
In: Proc. of the Design, Automation & Test in Europe Conference & Exhibition.
2015.

[13] C. Constantinescu. “Trends and challenges in VLSI circuit reliability”. In:
IEEE Micro 23.4 (2003), pp. 14–19. ISSN: 0272-1732. DOI: 10.1109/MM.2003.
1225959.

[14] Matthew Curtis-Maury et al. “Prediction Models for Multi-dimensional Power-
performance Optimization on Many Cores”. In: Proceedings of the 17th Inter-
national Conference on Parallel Architectures and Compilation Techniques. PACT
’08. New York, NY, USA: ACM, 2008, pp. 250–259. ISBN: 978-1-60558-282-5.
DOI: 10.1145/1454115.1454151. URL: http://doi.acm.org/10.
1145/1454115.1454151.

[15] Shidhartha Das et al. “A self-tuning DVS processor using delay-error detec-
tion and correction”. In: Solid-State Circuits, IEEE Journal of 41.4 (2006).

[16] Moslem Didehban and Aviral Shrivastava. “nZDC: A Compiler technique for
near Zero Silent data Corruption”. In: Proceedings of the 53rd Annual Design
Automation Conference. ACM. 2016, p. 48.

[17] Alejandro Duran et al. “Ompss: A Proposal for Programming Heterogeneous
Multi-core Architectures”. In: Parallel Processing Letters 21.02 (2011), pp. 173–
193.

[18] Dan Ernst et al. “Razor: A Low-Power Pipeline Based on Circuit-Level Tim-
ing Speculation”. In: Proc. of the 36th Annual IEEE/ACM Int. Symposium on
Microarchitecture. 2003.

[19] Hadi Esmaeilzadeh et al. “Architecture Support for Disciplined Approximate
Programming”. In: Proc. of the Seventeenth Int. Conference on Architectural Sup-
port for Programming Languages and Operating Systems. 2012.

[20] Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling”. In:
ACM SIGARCH Computer Architecture News. Vol. 39. 3. ACM. 2011, pp. 365–
376.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1145/2384616.2384676
http://doi.acm.org/10.1145/2384616.2384676
http://doi.acm.org/10.1145/2384616.2384676
http://dx.doi.org/10.1109/MM.2003.1225959
http://dx.doi.org/10.1109/MM.2003.1225959
http://dx.doi.org/10.1145/1454115.1454151
http://doi.acm.org/10.1145/1454115.1454151
http://doi.acm.org/10.1145/1454115.1454151

BIBLIOGRAPHY 116

[21] Hadi Esmaeilzadeh et al. “Neural Acceleration for General-Purpose Approx-
imate Programs”. In: Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. MICRO-45. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 449–460. ISBN: 978-0-7695-4924-8. DOI: 10.
1109/MICRO.2012.48. URL: http://dx.doi.org/10.1109/MICRO.
2012.48.

[22] Shuguang Feng et al. “Shoestring: probabilistic soft error reliability on the
cheap”. In: ACM SIGARCH Computer Architecture News. Vol. 38. 1. ACM. 2010,
pp. 385–396.

[23] Frequently found test images in literature. URL: http://www.imageprocessingplace.
com/downloads_V3/root_downloads/image_databases/standard_

test_images.zip.

[24] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran Asso-
ciates, Inc., 2014, pp. 2672–2680. URL: http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf.

[25] Scott Grauer-Gray et al. “Accelerating financial applications on the GPU”.
In: Proceedings of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units. ACM. 2013, pp. 127–136.

[26] A. Griewank and Andrea Walther. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. 2nd. SIAM, 2008.

[27] Beayna Grigorian and Glenn Reinman. “Dynamically adaptive and reliable
approximate computing using light-weight error analysis”. In: Adaptive Hard-
ware and Systems (AHS), 2014 NASA/ESA Conference on. IEEE. 2014, pp. 248–
255.

[28] Philipp Gschwandtner et al. “On the potential of significance-driven execu-
tion for energy-aware HPC”. English. In: Computer Science - Research and De-
velopment (2014), pp. 1–10. ISSN: 1865-2034. DOI: 10.1007/s00450-014-
0265-9. URL: http://dx.doi.org/10.1007/s00450-014-0265-9.

[29] Meeta S. Gupta et al. “Tribeca: Design for PVT Variations with Local Recovery
and Fine-grained Adaptation”. In: Proc. of the 42Nd Annual IEEE/ACM Int.
Symposium on Microarchitecture. 2009.

[30] Nikos Hardavellas et al. “Toward dark silicon in servers”. In: IEEE Micro 31.4
(2011), pp. 6–15.

[31] Siva Kumar Sastry Hari, Sarita V Adve, and Helia Naeimi. “Low-cost program-
level detectors for reducing silent data corruptions”. In: Dependable Systems
and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on.
IEEE. 2012, pp. 1–12.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48
http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip
http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip
http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://dx.doi.org/10.1007/s00450-014-0265-9
http://dx.doi.org/10.1007/s00450-014-0265-9
http://dx.doi.org/10.1007/s00450-014-0265-9

BIBLIOGRAPHY 117

[32] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[33] Giang Hoang, Robby Bruce Findler, and Russ Joseph. “Exploring Circuit Timing-
aware Language and Compilation”. In: Proc. of the 16th Int. Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. 2011.

[34] Henry Hoffmann et al. “Application Heartbeats: A Generic Interface for Spec-
ifying Program Performance and Goals in Autonomous Computing Environ-
ments”. In: Proceedings of the 7th International Conference on Autonomic Comput-
ing. ICAC ’10. New York, NY, USA: ACM, 2010, pp. 79–88. ISBN: 978-1-4503-
0074-2. DOI: 10.1145/1809049.1809065. URL: http://doi.acm.org/
10.1145/1809049.1809065.

[35] Henry Hoffmann et al. “Dynamic Knobs for Responsive Power-aware Com-
puting”. In: Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS XVI. New
York, NY, USA: ACM, 2011, pp. 199–212. ISBN: 978-1-4503-0266-1. DOI: 10.
1145/1950365.1950390. URL: http://doi.acm.org/10.1145/
1950365.1950390.

[36] Henry Hoffmann et al. “Self-aware Computing in the Angstrom Processor”.
In: Proceedings of the 49th Annual Design Automation Conference. DAC ’12. New
York, NY, USA: ACM, 2012, pp. 259–264. ISBN: 978-1-4503-1199-1. DOI: 10.
1145/2228360.2228409. URL: http://doi.acm.org/10.1145/
2228360.2228409.

[37] SI ITRS. “International technology roadmap for semiconductors: Executive
summary”. In: Semiconductor Industry Association, Tech. Rep (2013).

[38] Ravishankar K Iyer et al. “Recent Advances and New Avenues in Hardware-
Level Reliability Support”. In: IEEE Micro 25.6 (2005).

[39] Norman James et al. “Comparison of split-versus connected-core supplies in
the POWER6 microprocessor”. In: 2007 IEEE Int. Solid-State Circuits Confer-
ence. Digest of Technical Papers. 2007.

[40] Myeongjae Jeon et al. “Adaptive Parallelism for Web Search”. In: Proceedings
of the 8th ACM European Conference on Computer Systems. EuroSys ’13. New
York, NY, USA: ACM, 2013, pp. 155–168. ISBN: 978-1-4503-1994-2. DOI: 10.
1145/2465351.2465367. URL: http://doi.acm.org/10.1145/
2465351.2465367.

[41] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Em-
bedding”. In: arXiv preprint arXiv:1408.5093 (2014).

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1145/1809049.1809065
http://doi.acm.org/10.1145/1809049.1809065
http://doi.acm.org/10.1145/1809049.1809065
http://dx.doi.org/10.1145/1950365.1950390
http://dx.doi.org/10.1145/1950365.1950390
http://doi.acm.org/10.1145/1950365.1950390
http://doi.acm.org/10.1145/1950365.1950390
http://dx.doi.org/10.1145/2228360.2228409
http://dx.doi.org/10.1145/2228360.2228409
http://doi.acm.org/10.1145/2228360.2228409
http://doi.acm.org/10.1145/2228360.2228409
http://dx.doi.org/10.1145/2465351.2465367
http://dx.doi.org/10.1145/2465351.2465367
http://doi.acm.org/10.1145/2465351.2465367
http://doi.acm.org/10.1145/2465351.2465367

BIBLIOGRAPHY 118

[42] J. E. Jones. “On the Determination of Molecular Fields. I. From the Variation
of the Viscosity of a Gas with Temperature”. In: Proceedings of the Royal Soci-
ety of London A: Mathematical, Physical and Engineering Sciences 106.738 (1924),
pp. 441–462. ISSN: 0950-1207. DOI: 10.1098/rspa.1924.0081.

[43] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Pro-
cessing UnitTM”. In: Proceeding of the 44th Annual International Symposium on
Computer Architecture. ISCA ’17. 2017.

[44] Edin Kadric, Kunal Mahajan, and André DeHon. “Energy reduction through
differential reliability and lightweight checking”. In: Field-Programmable Cus-
tom Computing Machines (FCCM), 2014 IEEE 22nd Annual International Sympo-
sium on. IEEE. 2014, pp. 243–250.

[45] Georgios Karakonstantis et al. “Significance driven computation on next-
generation unreliable platforms”. In: Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE. IEEE. 2011, pp. 290–291.

[46] Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 Updates and Changes.
Tech. rep. LLNL-TR-641973. 2013, pp. 1–9.

[47] Daya S. Khudia et al. “Rumba: An Online Quality Management System for
Approximate Computing”. In: SIGARCH Comput. Archit. News 43.3 (2015),
pp. 554–566.

[48] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-
works”. In: Proceedings of the National Academy of Sciences (2017), p. 201611835.

[49] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. “Relax:
An Architectural Framework for Software Recovery of Hardware Faults”. In:
Proc. of the 37th Int. Symposium on Computer Architecture. 2010.

[50] Ignacio Laguna et al. “Ipas: Intelligent protection against silent output cor-
ruption in scientific applications”. In: Proceedings of the 2016 International Sym-
posium on Code Generation and Optimization. ACM. 2016, pp. 227–238.

[51] Yann LeCun et al. “LeNet-5, convolutional neural networks”. In: URL: http://yann.
lecun. com/exdb/lenet (2015).

[52] Larkhoon Leem et al. “ERSA: Error Resilient System Architecture for Proba-
bilistic Applications”. In: Proc. of the Conference on Design, Automation and Test
in Europe. 2010.

[53] Michael Lerch et al. “FILIB++, a fast interval library supporting containment
computations”. In: ACM Trans. Math. Softw. 32.2 (2006), pp. 299–324.

[54] Régis Leveugle et al. “Statistical fault injection: quantified error and confi-
dence”. In: Design, Automation & Test in Europe Conference & Exhibition, 2009.
2009.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1098/rspa.1924.0081

BIBLIOGRAPHY 119

[55] Dong Li et al. “Strategies for Energy-Efficient Resource Management of Hy-
brid Programming Models”. In: IEEE Trans. Parallel Distrib. Syst. 24.1 (Jan.
2013), pp. 144–157. ISSN: 1045-9219. DOI: 10.1109/TPDS.2012.95. URL:
http://dx.doi.org/10.1109/TPDS.2012.95.

[56] Min Yeol Lim, Vincent W. Freeh, and David K. Lowenthal. “Adaptive, Trans-
parent CPU Scaling Algorithms Leveraging Inter-node MPI Communication
Regions”. In: Parallel Comput. 37.10-11 (Oct. 2011), pp. 667–683. ISSN: 0167-
8191. DOI: 10.1016/j.parco.2011.07.001. URL: http://dx.doi.
org/10.1016/j.parco.2011.07.001.

[57] Johannes Lotz et al. “Higher-order Discrete Adjoint ODE Solver in C++ for
Dynamic Optimization”. In: Procedia Computer Science 51 (2015). International
Conference On Computational Science, ICCS 2015, Computational Science at
the Gates of Nature, pp. 256–265. ISSN: 1877-0509. DOI: 10.1016/j.procs.
2015.05.237. URL: http://www.sciencedirect.com/science/
article/pii/S1877050915010455.

[58] Qining Lu et al. “SDCTune: a model for predicting the SDC proneness of an
application for configurable protection”. In: Compilers, Architecture and Syn-
thesis for Embedded Systems (CASES), 2014 International Conference on. IEEE.
2014, pp. 1–10.

[59] Abdelhafid Mazouz et al. “Evaluation of CPU Frequency Transition Latency”.
In: Comput. Sci. 29.3-4 (2014).

[60] Lawrence McAfee and Kunle Olukotun. “EMEURO: A Framework for Gen-
erating Multi-purpose Accelerators via Deep Learning”. In: Proceedings of the
13th Annual IEEE/ACM International Symposium on Code Generation and Op-
timization. CGO ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 125–135. ISBN: 978-1-4799-8161-8. URL: http://dl.acm.org/citation.
cfm?id=2738600.2738616.

[61] Paul Mineiro. fastapprox. http://code.google.com/p/fastapprox/.
2012.

[62] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. “Parallelizing Sequen-
tial Programs with Statistical Accuracy Tests”. In: ACM Trans. Embed. Com-
put. Syst. 12.2s (2013), 88:1–88:26. ISSN: 1539-9087. DOI: 10.1145/2465787.
2465790. URL: http://doi.acm.org/10.1145/2465787.2465790.

[63] Sasa Misailovic et al. “Chisel: Reliability- and Accuracy-aware Optimization
of Approximate Computational Kernels”. In: SIGPLAN Not. 49.10 (2014), pp. 309–
328. ISSN: 0362-1340. DOI: 10.1145/2714064.2660231. URL: http://
doi.acm.org/10.1145/2714064.2660231.

[64] Sparsh Mittal. “A survey of techniques for approximate computing”. In: ACM
Computing Surveys (CSUR) 48.4 (2016), p. 62.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1109/TPDS.2012.95
http://dx.doi.org/10.1109/TPDS.2012.95
http://dx.doi.org/10.1016/j.parco.2011.07.001
http://dx.doi.org/10.1016/j.parco.2011.07.001
http://dx.doi.org/10.1016/j.parco.2011.07.001
http://dx.doi.org/10.1016/j.procs.2015.05.237
http://dx.doi.org/10.1016/j.procs.2015.05.237
http://www.sciencedirect.com/science/article/pii/S1877050915010455
http://www.sciencedirect.com/science/article/pii/S1877050915010455
http://dl.acm.org/citation.cfm?id=2738600.2738616
http://dl.acm.org/citation.cfm?id=2738600.2738616
http://code.google.com/p/fastapprox/
http://dx.doi.org/10.1145/2465787.2465790
http://dx.doi.org/10.1145/2465787.2465790
http://doi.acm.org/10.1145/2465787.2465790
http://dx.doi.org/10.1145/2714064.2660231
http://doi.acm.org/10.1145/2714064.2660231
http://doi.acm.org/10.1145/2714064.2660231

BIBLIOGRAPHY 120

[65] Debabrata Mohapatra, Georgios Karakonstantis, and Kaushik Roy. “Signif-
icance Driven Computation: A Voltage-scalable, Variation-aware, Quality-
tuning Motion Estimator”. In: Proceedings of the 2009 ACM/IEEE International
Symposium on Low Power Electronics and Design. ISLPED ’09. San Fancisco,
CA, USA: ACM, 2009, pp. 195–200. ISBN: 978-1-60558-684-7. DOI: 10.1145/
1594233.1594282. URL: http://doi.acm.org/10.1145/1594233.
1594282.

[66] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to In-
terval Analysis. 1st ed. Society for Industrial and Applied Mathematics, 2009.
ISBN: 9780898716696. URL: http://amazon.com/o/ASIN/0898716691.

[67] Uwe Naumann. The Art of Differentiating Computer Programs: An Introduction
to Algorithmic Differentiation. Vol. 24. Siam, 2012.

[68] Uwe Naumann et al. “Algorithmic Differentiation of Numerical Methods:
Tangent and Adjoint Solvers for Parameterized Systems of Nonlinear Equa-
tions”. In: ACM Trans. Math. Softw. 41.4 (2015), 26:1–26:21. ISSN: 0098-3500.
DOI: 10 . 1145 / 2700820. URL: http : / / doi . acm . org / 10 . 1145 /
2700820.

[69] George Papadimitriou et al. “Harnessing Voltage Margins for Energy Effi-
ciency in Multicore CPUs”. In: (2017).

[70] K. Parasyris et al. “GemFI: A Fault Injection Tool for Studying the Behavior of
Applications on Unreliable Substrates”. In: Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP Int. Conference on. 2014.

[71] Konstantinos Parasyris et al. “Significance-Aware Program Execution on Un-
reliable Hardware”. In: ACM Trans. Archit. Code Optim. 14.2 (2017), 12:1–12:25.
ISSN: 1544-3566. DOI: 10.1145/3058980. URL: http://doi.acm.org/
10.1145/3058980.

[72] Abbas Rahimi, Luca Benini, and Rajesh K Gupta. “Analysis of instruction-
level vulnerability to dynamic voltage and temperature variations”. In: De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), 2012. 2012.

[73] Abbas Rahimi et al. “A Variability-aware OpenMP Environment for Efficient
Execution of Accuracy-configurable Computation on shared-FPU Processor
Clusters”. In: Proceedings of the Ninth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis. CODES+ISSS ’13. Piscat-
away, NJ, USA: IEEE Press, 2013, 35:1–35:10. ISBN: 978-1-4799-1417-3. URL:
http://dl.acm.org/citation.cfm?id=2555692.2555727.

[74] Abbas Rahimi et al. “Variation-tolerant OpenMP Tasking on Tightly-coupled
Processor Clusters”. In: Proceedings of the Conference on Design, Automation and
Test in Europe. DATE ’13. San Jose, CA, USA: EDA Consortium, 2013, pp. 541–
546. ISBN: 978-1-4503-2153-2. URL: http://dl.acm.org/citation.cfm?
id=2485288.2485422.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1145/1594233.1594282
http://dx.doi.org/10.1145/1594233.1594282
http://doi.acm.org/10.1145/1594233.1594282
http://doi.acm.org/10.1145/1594233.1594282
http://amazon.com/o/ASIN/0898716691
http://dx.doi.org/10.1145/2700820
http://doi.acm.org/10.1145/2700820
http://doi.acm.org/10.1145/2700820
http://dx.doi.org/10.1145/3058980
http://doi.acm.org/10.1145/3058980
http://doi.acm.org/10.1145/3058980
http://dl.acm.org/citation.cfm?id=2555692.2555727
http://dl.acm.org/citation.cfm?id=2485288.2485422
http://dl.acm.org/citation.cfm?id=2485288.2485422

BIBLIOGRAPHY 121

[75] Vijay Janapa Reddi et al. “Voltage smoothing: Characterizing and mitigating
voltage noise in production processors via software-guided thread schedul-
ing”. In: 2010 43rd Annual IEEE/ACM Int. Symposium on Microarchitecture.
2010.

[76] Semeen Rehman et al. “Cross-layer software dependability on unreliable hard-
ware”. In: IEEE Trans. on Computers (2016).

[77] Semeen Rehman et al. “Reliable Software for Unreliable Hardware: Embed-
ded Code Generation Aiming at Reliability”. In: Proc. of the 7th IEEE/ACM/I-
FIP Int. Conference on Hardware/Software Codesign and System Synthesis. 2011.

[78] George A. Reis et al. “SWIFT: Software Implemented Fault Tolerance”. In:
Proceedings of the International Symposium on Code Generation and Optimization.
CGO ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 243–254.
ISBN: 0-7695-2298-X. DOI: 10.1109/CGO.2005.34. URL: http://dx.
doi.org/10.1109/CGO.2005.34.

[79] Martin Rinard. “Probabilistic Accuracy Bounds for Fault-tolerant Computa-
tions That Discard Tasks”. In: ICS ’06. ACM, 2006, pp. 324–334.

[80] Michael Ringenburg et al. “Monitoring and Debugging the Quality of Results
in Approximate Programs”. In: ASPLOS ’15. ACM, 2015, pp. 399–411.

[81] Pooja Roy et al. “ASAC: Automatic Sensitivity Analysis for Approximate
Computing”. In: Proceedings of the 2014 SIGPLAN/SIGBED Conference on Lan-
guages, Compilers and Tools for Embedded Systems. LCTES ’14. New York, NY,
USA: ACM, 2014, pp. 95–104. ISBN: 978-1-4503-2877-7. DOI: 10.1145/2597809.
2597812. URL: http://doi.acm.org/10.1145/2597809.2597812.

[82] Mastooreh Salajegheh et al. “Half-Wits: Software Techniques for Low-Voltage
Probabilistic Storage on Microcontrollers with NOR Flash Memory”. In: ACM
Trans. Embed. Comput. Syst. 12.2s (May 2013), 91:1–91:25. ISSN: 1539-9087. DOI:
10.1145/2465787.2465793. URL: http://doi.acm.org/10.1145/
2465787.2465793.

[83] Mohammad Salehi et al. “DRVS: Power-efficient reliability management through
Dynamic Redundancy and Voltage Scaling under variations”. In: Proc. of the
IEEE/ACM Int. Symposium on Low Power Electronics and Design. 2015.

[84] Mehrzad Samadi et al. “Paraprox: Pattern-based Approximation for Data
Parallel Applications”. In: Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems. ASP-
LOS ’14. New York, NY, USA: ACM, 2014, pp. 35–50. ISBN: 978-1-4503-2305-5.
DOI: 10.1145/2541940.2541948. URL: http://doi.acm.org/10.
1145/2541940.2541948.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1145/2597809.2597812
http://dx.doi.org/10.1145/2597809.2597812
http://doi.acm.org/10.1145/2597809.2597812
http://dx.doi.org/10.1145/2465787.2465793
http://doi.acm.org/10.1145/2465787.2465793
http://doi.acm.org/10.1145/2465787.2465793
http://dx.doi.org/10.1145/2541940.2541948
http://doi.acm.org/10.1145/2541940.2541948
http://doi.acm.org/10.1145/2541940.2541948

BIBLIOGRAPHY 122

[85] Mehrzad Samadi et al. “SAGE: Self-tuning Approximation for Graphics En-
gines”. In: Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO-46. New York, NY, USA: ACM, 2013, pp. 13–24.
ISBN: 978-1-4503-2638-4. DOI: 10.1145/2540708.2540711. URL: http:
//doi.acm.org/10.1145/2540708.2540711.

[86] Adrian Sampson et al. “EnerJ: Approximate Data Types for Safe and General
Low-power Computation”. In: Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI ’11. New York,
NY, USA: ACM, 2011, pp. 164–174. ISBN: 978-1-4503-0663-8. DOI: 10.1145/
1993498.1993518. URL: http://doi.acm.org/10.1145/1993498.
1993518.

[87] Hermann Schichl and Arnold Neumaier. Interval Analysis on Directed Acyclic
Graphs for Global Optimization. Tech. rep. J. Global Optimization, 2004.

[88] Florian Schmoll et al. “Improving the Fault Resilience of an H.264 Decoder
Using Static Analysis Methods”. In: ACM Trans. Embed. Comput. Syst. 13.1s
(2013), 31:1–31:27. ISSN: 1539-9087. DOI: 10.1145/2536747.2536753. URL:
http://doi.acm.org/10.1145/2536747.2536753.

[89] P. Shivakumar et al. “Modeling the effect of technology trends on the soft
error rate of combinational logic”. In: Proceedings International Conference on
Dependable Systems and Networks. 2002, pp. 389–398. DOI: 10.1109/DSN.
2002.1028924.

[90] Stelios Sidiroglou-Douskos et al. “Managing Performance vs. Accuracy Trade-
offs with Loop Perforation”. In: Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineer-
ing. ESEC/FSE ’11. ACM, 2011, pp. 124–134. ISBN: 978-1-4503-0443-6. DOI:
10.1145/2025113.2025133. URL: http://doi.acm.org/10.1145/
2025113.2025133.

[91] Filippo Sironi et al. “Metronome: Operating System Level Performance Man-
agement via Self-adaptive Computing”. In: Proceedings of the 49th Annual De-
sign Automation Conference. DAC ’12. New York, NY, USA: ACM, 2012, pp. 856–
865. ISBN: 978-1-4503-1199-1. DOI: 10.1145/2228360.2228514. URL: http:
//doi.acm.org/10.1145/2228360.2228514.

[92] Joseph Sloan, John Sartori, and Rakesh Kumar. “On Software Design for Stochas-
tic Processors”. In: Proceedings of the 49th Annual Design Automation Confer-
ence. DAC ’12. New York, NY, USA: ACM, 2012, pp. 918–923. ISBN: 978-1-
4503-1199-1. DOI: 10.1145/2228360.2228524. URL: http://doi.acm.
org/10.1145/2228360.2228524.

[93] Software and Germany Tools for Scientific Engineering RWTH Aachen Uni-
versity. Derivative Code by Overloading in C++ (dco/c++). http://fsnew.
stce.rwth-aachen.de/research/software/dco-c.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1145/2540708.2540711
http://doi.acm.org/10.1145/2540708.2540711
http://doi.acm.org/10.1145/2540708.2540711
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518
http://dx.doi.org/10.1145/2536747.2536753
http://doi.acm.org/10.1145/2536747.2536753
http://dx.doi.org/10.1109/DSN.2002.1028924
http://dx.doi.org/10.1109/DSN.2002.1028924
http://dx.doi.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://dx.doi.org/10.1145/2228360.2228514
http://doi.acm.org/10.1145/2228360.2228514
http://doi.acm.org/10.1145/2228360.2228514
http://dx.doi.org/10.1145/2228360.2228524
http://doi.acm.org/10.1145/2228360.2228524
http://doi.acm.org/10.1145/2228360.2228524
http://fsnew.stce.rwth-aachen.de/research/software/dco-c
http://fsnew.stce.rwth-aachen.de/research/software/dco-c

BIBLIOGRAPHY 123

[94] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. “Adaptive, Efficient,
Parallel Execution of Parallel Programs”. In: Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. PLDI
’14. New York, NY, USA: ACM, 2014, pp. 169–180. ISBN: 978-1-4503-2784-8.
DOI: 10.1145/2594291.2594292. URL: http://doi.acm.org/10.
1145/2594291.2594292.

[95] Jan Treibig, Georg Hager, and Gerhard Wellein. “Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments”. In: Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on. IEEE. 2010, pp. 207–
216. ISBN: 978-0-7695-4157-0. DOI: 10.1109/ICPPW.2010.38. URL: http:
//dx.doi.org/10.1109/ICPPW.2010.38.

[96] George Tzenakis et al. “BDDT:: Block-level Dynamic Dependence Analysis
for Deterministic Task-based Parallelism”. In: Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP
’12. New York, NY, USA: ACM, 2012, pp. 301–302. ISBN: 978-1-4503-1160-1.
DOI: 10.1145/2145816.2145864. URL: http://doi.acm.org/10.
1145/2145816.2145864.

[97] G. Tziantzioulis et al. “b-HiVE: A Bit-level History-based Error Model with
Value Correlation for Voltage-scaled Integer and Floating Point Units”. In:
Proc. of the 52Nd Annual Design Automation Conference. 2015.

[98] Vassilis Vassiliadis et al. “A programming model and runtime system for
significance-aware energy-efficient computing”. In: ACM SIGPLAN Notices.
Vol. 50. 8. ACM. 2015, pp. 275–276.

[99] Vassilis Vassiliadis et al. “A significance-driven programming framework for
energy-constrained approximate computing”. In: Proceedings of the 12th ACM
International Conference on Computing Frontiers. ACM. 2015, p. 9.

[100] Vassilis Vassiliadis et al. “Artificial Neural Networks for online error detec-
tion”. In: ACM Trans. Archit. Code Optim. xx.x (2017), 0:0–0:0. ISSN: 0000-0000.
DOI: 10.1145/0. URL: http://doi.acm.org/10.1145/0.

[101] Vassilis Vassiliadis et al. “Exploiting significance of computations and profile-
driven regression for energy-constrained approximate computing”. In: Inter-
national Journal of Parallel Programming 44.5 (2016), pp. 1078–1098.

[102] Vassilis Vassiliadis et al. “Towards Automatic Significance Analysis for Ap-
proximate Computing”. In: Proceedings of the 2016 International Symposium on
Code Generation and Optimization. CGO 2016. New York, NY, USA: ACM, 2016,
pp. 182–193. ISBN: 978-1-4503-3778-6. DOI: 10.1145/2854038.2854058.
URL: http://doi.acm.org/10.1145/2854038.2854058.

[103] Manolis Vavalis and George Sarailidis. Hybrid-numerical-PDE-solvers: Hybrid
Elliptic PDE Solvers. http://dx.doi.org/10.5281/zenodo.11691.
2014. DOI: {10.5281/zenodo.11691}.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1145/2594291.2594292
http://doi.acm.org/10.1145/2594291.2594292
http://doi.acm.org/10.1145/2594291.2594292
http://dx.doi.org/10.1109/ICPPW.2010.38
http://dx.doi.org/10.1109/ICPPW.2010.38
http://dx.doi.org/10.1109/ICPPW.2010.38
http://dx.doi.org/10.1145/2145816.2145864
http://doi.acm.org/10.1145/2145816.2145864
http://doi.acm.org/10.1145/2145816.2145864
http://dx.doi.org/10.1145/0
http://doi.acm.org/10.1145/0
http://dx.doi.org/10.1145/2854038.2854058
http://doi.acm.org/10.1145/2854038.2854058
http://dx.doi.org/10.5281/zenodo.11691
http://dx.doi.org/{10.5281/zenodo.11691}

BIBLIOGRAPHY 124

[104] Swagath Venkataramani et al. “Quality Programmable Vector Processors for
Approximate Computing”. In: Proceedings of the 46th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. MICRO-46. New York, NY, USA:
ACM, 2013, pp. 1–12. ISBN: 978-1-4503-2638-4. DOI: 10.1145/2540708.
2540710. URL: http://doi.acm.org/10.1145/2540708.2540710.

[105] Nicholas J. Wang et al. “Characterizing the Effects of Transient Faults on
a High-Performance Processor Pipeline”. In: Proceedings of the 2004 Interna-
tional Conference on Dependable Systems and Networks. DSN ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 61–. ISBN: 0-7695-2052-9. URL:
http://dl.acm.org/citation.cfm?id=1009382.1009722.

[106] Steven Cameron Woo et al. “The SPLASH-2 programs: Characterization and
methodological considerations”. In: Computer Architecture, 1995. Proceedings.,
22nd Annual International Symposium on. IEEE. 1995, pp. 24–36.

[107] Amir Yazdanbakhsh et al. “AXBENCH: A Multi-Platform Benchmark Suite
for Approximate Computing”. In: IEEE Design & Test (2016).

[108] Foivos S. Zakkak et al. Inference and Declaration of Independence: Impact on
Deterministic Task Parallelism. New York, NY, USA, 2012. DOI: 10.1145/
2370816.2370892. URL: http://doi.acm.org/10.1145/2370816.
2370892.

[109] Qian Zhang et al. “ApproxIt: An Approximate Computing Framework for
Iterative Methods”. In: Proceedings of the The 51st Annual Design Automation
Conference on Design Automation Conference. DAC ’14. New York, NY, USA:
ACM, 2014, 97:1–97:6. ISBN: 978-1-4503-2730-5. DOI: 10.1145/2593069.
2593092. URL: http://doi.acm.org/10.1145/2593069.2593092.

[110] Zeyuan Allen Zhu et al. “Randomized Accuracy-aware Program Transfor-
mations for Efficient Approximate Computations”. In: Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’12. New York, NY, USA: ACM, 2012, pp. 441–454. ISBN: 978-1-
4503-1083-3. DOI: 10.1145/2103656.2103710. URL: http://doi.acm.
org/10.1145/2103656.2103710.

Institutional Repository - Library & Information Centre - University of Thessaly
04/06/2020 23:29:16 EEST - 137.108.70.13

http://dx.doi.org/10.1145/2540708.2540710
http://dx.doi.org/10.1145/2540708.2540710
http://doi.acm.org/10.1145/2540708.2540710
http://dl.acm.org/citation.cfm?id=1009382.1009722
http://dx.doi.org/10.1145/2370816.2370892
http://dx.doi.org/10.1145/2370816.2370892
http://doi.acm.org/10.1145/2370816.2370892
http://doi.acm.org/10.1145/2370816.2370892
http://dx.doi.org/10.1145/2593069.2593092
http://dx.doi.org/10.1145/2593069.2593092
http://doi.acm.org/10.1145/2593069.2593092
http://dx.doi.org/10.1145/2103656.2103710
http://doi.acm.org/10.1145/2103656.2103710
http://doi.acm.org/10.1145/2103656.2103710

	Abstract
	Περίληψη
	Acknowledgements
	Introduction
	Problem
	Motivation
	Contributions
	Significance aware approximate computing
	Significance aware fault tolerant computing

	Outline

	Background
	Benchmarks
	DCT
	Sobel
	K-means
	Jacobi
	Blackscholes
	Fisheye
	N-Body
	Lulesh
	Bonds
	MC
	Bodytrack
	Inversek2j
	Barnes
	Canneal

	Mathematical definition of the algorithmic property of significance
	Significance as an Algorithmic Property
	Limitations
	dco/scorpio Framework

	Fault, Time, and Energy models to facilitate software fault injection
	Fault modeling
	Simulation-based fault injection
	Software-based fault injection during native execution
	Hardware configurations

	Execution Time and Energy Consumption Model
	Execution time modeling
	Power and energy modeling
	Calibration and validation

	Significance-aware computing framework
	Programming model objectives
	Task instantiation
	Approximate computing extensions to #pragma omp task
	Fault-tolerant computing extensions to #pragma omp task

	Synchronization
	Synchronization for approximate computing
	Synchronization for fault-tolerant computing
	Compiler implementation

	Approximate computing example
	Fault-tolerant computing example
	Programmer Insight
	Application Characteristics
	Runtime support for significance aware approximate computing
	Life of a group-of-tasks
	Experimental Evaluation
	Approach
	Experimental Results

	Runtime support for significance aware fault tolerant computing
	Runtime Execution Management
	Life of a group-of-tasks
	Benchmarks
	Simulated Software Fault Injection

	Automating significance characterization of tasks
	Workflow for Systematic Significance Driven Programming
	Significance Analysis Framework

	Experimental Evaluation
	Method validation
	Sobel
	Discrete Cosine Transformation
	Fisheye Lens Image Correction (Fisheye)
	N-Body
	Blackscholes

	Performance evaluation
	Loop perforation
	Quality, performance and energy quantification

	Modeling and Prediction of Application Energy Footprint
	Analytic Model of Execution Time
	Analytic Model of Power and Energy Consumption
	Offline Profiling and Model Fitting
	Benchmarks
	Experimental Methodology
	Experimental Evaluation and Discussion
	Conclusions

	Automatic result checking for fault-tolerant computing
	Artificial Neural Networks for Error Detection
	Application profiling
	ANN structures
	Training the ANNs
	Deployment

	Evaluation approach
	Fault injection approach
	Metrics

	Evaluation
	Benchmarks
	DCT
	Sobel
	Blackscholes
	Bonds
	Lulesh
	Barnes
	Inversek2j
	Bodytrack

	Case study - Analysis for an unreliable configuration at the PoFF

	Related work
	Approximate computing
	Fault tolerant computing
	Power and Energy-Aware Optimization

	Concluding remarks
	Retrospective
	Conclusions
	Future work

	Related publications
	Contribution to Joint Publications
	Bibliography

