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Abstract

In Andy Weir’s novel The Martian, the characters encounter high-stakes, life-or-
death situations, in which they must make choices based on their assessment of
risk and likely outcomes. They have different reactions to risky situations, based
on their approaches to assessing risk and their perspectives on the stakes involved.
In this paper, we examine the ways that characters in The Martian intuitively
assess risk and compare them to mathematical analysis of the situations in the
book.
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1. Introduction

Andy Weir’s novel The Martian [2] opens with astronaut Mark Watney real-
izing that he has inadvertently been stranded on Mars. (Note that this paper
will contain significant spoilers for the novel.) He has supplies intended to
last six astronauts for a thirty-day mission, no way to leave the planet, and
no way to communicate with any other human. Over the next year and more,
Mark, his crewmates, and NASA work to find a way for him to survive on
Mars and ultimately return to Earth.

The decisions the characters make in this situation are high-stakes. A sig-
nificant mistake could result in Mark’s death, but the time and resources
available are too limited for extensive testing or tried-and-true strategies.

The characters respond to this pressure in a variety of ways. Teddy, NASA’s
administrator, tends to make the most cautious decisions he can and is reluc-
tant to try anything that might make the situation worse. Mark himself be-
comes willing to improvise, risking disasters in order to increase his chances
of ultimately surviving. Other astronauts in the book repeatedly express
their willingness to risk their lives if there is a chance to save Mark.

These differences stem from different approaches to assessing risk. Because
Mark’s situation presents so many new problems with so little time to inves-
tigate possible solutions, the outcomes of situations are highly unpredictable.
Mathematics provides tools to deal with uncertainty in careful, logical ways.

While assessment of risk in The Martian is driven by high-stakes, life-or-
death decisions, the practice of making decisions that weigh risks against po-
tential gains is universal. Whether making decisions about investing money,
considering whether to start a conversation with a stranger, or choosing be-
tween health care options, assessment of risk against reward is unavoidable.
As we make decisions, we develop intuition for dealing with risk. Mathemat-
ical assessment can help check and correct our intuitive approaches to risk
assessment.

In this paper, we examine the ways that characters in The Martian intuitively
assess risk and compare them to mathematical analysis of the situations in
the book.
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2. Expected Value

2.1. Intuition

Throughout The Martian, characters make choices about risky strategies.
Mark’s limited options lead him to jump into potentially risky decisions rela-
tively readily: his desperate need for water leads him to attempt to synthesize
water in the Hab, a decision that nearly kills him, but ultimately provides
him with enough water to survive. For the NASA team back on Earth, de-
cisions are made in meetings and consultations after weighing a much larger
range of options.

One memorable example is Teddy’s decision between two proposed uses of the
one large rocket NASA has available. One option is the Iris II supply probe,
designed to supply Mark with enough food to last until the next scheduled
Mars mission. According to NASA’s estimates, the Iris II mission has a
30% chance of success. The other possibility is the Rich Purnell maneuver,
which would send Mark’s five crewmates back to Mars to retrieve him instead
of returning directly to Earth. This maneuver has a higher probability of
success, but risks six lives instead of one. Teddy justifies his choice of Iris II
with the statement that he does not think Rich Purnell is “six times more
likely to work” (page 206).

Teddy’s math in this case is profoundly flawed: in order to be six times as
likely to work, the Rich Purnell maneuver would have to have a 180% chance
of success. So even if the maneuver had a 100% chance of success and was
therefore unambiguously a better choice, it would fail to meet Teddy’s casual
requirement.

There are a number of mathematical models and tools for more rigorously
assessing decisions containing an element of risk. One of these methods is
by computing expected value. We will examine Teddy’s decision using this
framework.

2.2. Computing Expected Value

Expected value is a useful tool for predicting average outcomes when the
results of any process are unpredictable. The concept developed in the 17th

century and was initially applied to gambling problems, though it did not
take its modern form until later.



Sarah C. Cobb and Jeff B. Hood 97

Any process whose results cannot be reliably predicted is called an experi-
ment. An experiment has a space of possible outcomes, each having its own
probability. Each probability is expressed as a number between 0 and 1, with
a probability of 0 representing an impossible outcome and a probability of 1
representing an outcome that will certainly occur. In general, the closer the
probability of an outcome is to 1, the more likely the event is.

In any experiment, it is possible to compute the expected value of the out-
come, representing the average value of the outcome if the experiment is
repeated a large number of times. If the random variable can take on values
x1, x2, . . . xn with probabilities p1, p2, . . . pn respectively, the expected value
of the variable is given by

E = p1 · x1 + p2 · x2 + · · ·+ pn · xn.

As an illustrative example, suppose a box contains three $1 bills, two $5 bills,
and one $20 bill. If one bill is drawn from the box uniformly at random, what
is the expected value of the bill?

This experiment has three possible outcomes: draw a $1 bill (probability 3
6

or 1
2
), draw a $5 bill (probability 2

6
or 1

3
), and draw a $20 bill (probability

1
6
). Thus the expected value is

E =
1

2
· 1 +

1

3
· 5 +

1

6
· 20,

or 5.50.

It is noteworthy that the expected value $5.50 is not one of the possible
outcomes of the experiment. The expected value predicts the average value
of the variable if the experiment is repeated a large number of times, not the
likely outcome of any particular experiment. If 1,000 people draw one bill
each out of 1,000 identical boxes, each of them will get $1, $5, or $20, but
the average value of all their bills will be close to $5.50.

The nature of randomness makes it impossible to reliably predict the outcome
of any particular experiment. But using expected value, it is possible to
predict the average outcome. Therefore, using expected value as a guide for
decision-making does not guarantee the best decision in any particular case,
but it does guarantee the best average outcome in the long term.
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The overarching goal of most characters in The Martian is to save Mark
Watney’s life, but without costing lives of other astronauts. This invites the
use of expected value computations where the value is in lives lost, with the
goal of making the decision that has the lowest expected loss of life.

2.3. Expected Value Computations on Mars

Many of the decisions Mark makes during his time on Mars are easy to
understand when framed as problems of expected value. No matter how
dangerous a particular situation is, it is preferable to certain death—the fate
Mark faces if he refuses to engage in risky activities. Two parallel examples
of this dynamic are Mark’s decision to dig up the RTG for use as a heat
source and his decision to synthesize water in the Hab.

In each of these two cases, Mark has two possible choices: risk immediate
death (by radiation or explosion) in order to improve his chances of getting
back to Earth; or decline the risk and not implement his plan. Let p represent
the probability that Mark’s risky plan will work, resulting in 0 lives lost. Then
there is a probability of 1−p that the plan will fail, killing him and resulting
in 1 life lost. Thus the expected number of lives lost is

p · 0 + (1− p) · 1 = 1− p.

Since p is a number between 0 and 1, 1 − p is also between 0 and 1. If the
probability of success is small, the expected loss of life is near 1—Mark will
probably die.

It is even simpler to compute the expected value of declining to take the risk.
If Mark does not find a way to water his crops and to heat his rover during
his journey to Ares IV, he will certainly die. Therefore the expected number
of lives lost is 1, which is larger than the 1− p expected value for taking the
risk.

This kind of computation drives much of Mark’s fearless risk-taking through-
out his time on Mars. Any action that makes it possible for him to get back
to Earth is a gain compared with the certain death of taking no action.

2.4. Expected Value Computations on Earth

Teddy’s situation is somewhat different from Mark’s in that he has a larger
range of possible actions with a corresponding variety of outcomes. In par-
ticular, his decision about whether to send the Iris II probe to resupply Mark
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or to use the Rich Purnell maneuver to send the Hermes back to pick him
up is mathematically more complicated than the decisions Mark makes.

Iris II has two possible outcomes: success, in which case the total loss of life
is zero, with a probability of 30%; and failure, in which case the total loss of
life is one, with a probability of 70%. This means that the expected loss of
life from Iris II is

(.3)(0) + (.7)(1) = .7.

The Rich Purnell maneuver has an unspecified probability of success. Let p
represent this probability. The two possible outcomes, then, are success, in
which case the total loss of life is again zero, with probability p; and failure,
in which case the total loss of life is six, with a probability of 1 − p. The
expected loss of life, then is

(p)(0) + (1− p)(6) = 6− 6p.

Using these expected value numbers, Teddy should choose whichever of the
two plans has the lower expected loss of life, which will depend on the value of
p. Specifically, if p > .883, the Rich Purnell maneuver has the lower expected
loss of life. If p < .883, Iris II has lower expected loss of life.

While the NASA scientists and administrators are readily able to give prob-
abilities of success on many occasions, this is not one of them. Because the
Rich Purnell maneuver is a closely-held secret, the scientists who work to
determine those probabilities cannot be asked for a detailed analysis. The
decision is not necessarily easier in light of this computation, but the thresh-
old is clearer: if the Rich Purnell manuever has at least an 88.3% chance of
working, Teddy should make that choice.

Note that both computations are somewhat simplified, since there are more
than two possible outcomes in each case. For example, even if Iris II is a
success, Mark could still die during his journey to the Ares IV site, or the
Hermes crew could execute the Rich Purnell maneuver perfectly and still
fail to rendezvous with Mark—in fact, this nearly happens. Still, this model
captures the essential features that Teddy is using in his computation and
frames them in a more mathematically rigorous way.

The mathematical analysis in each of these situations favors risky decision-
making: the expected outcome is improved by making decisions with high
levels of uncertainty and bad worst-case scenarios, but high probability of
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success. Mark’s intuitive assessment of risk leads him to adopt this risk-
friendly attitude easily, whereas Teddy’s more cautious nature leads him to
avoid as much risk as possible. The Martian presents a world in which risk
is rewarded and caution is the least safe option.

3. Markov Chains and Probability

3.1. Intuition

Throughout The Martian, the measures Mark takes to survive involve greater
and greater risk, seemingly putting him at such an extreme level of peril that
his salvation would seem unlikely in the extreme. But is it really, or is it just
our intuition that is tricking us?

Logic would dictate, for example, even in a rudimentary thought experiment,
that the probability of his surviving any one of the extreme risks he takes
in his endeavor to save his own life might have been low. But for the sake
of argument, let us assume that the probability of his surviving any one risk
is 50%. Mathematically speaking, we would say that is 1

2
, or one chance of

every two attempts. If he takes two such risks, standard mathematics would
dictate that the probability of surviving both such risks is 1

2
× 1

2
= 1

4
. One’s

intuition would then suggest that with greater number of such risks (Mark’s
risks might be reckoned at the order of about 30), the probability of survival
is an ever decreasing value, rapidly approaching 0; (1

2
)30 represents only a 1

in 1,073,741,824 chance of survival.

It is worth mentioning that even if we consider Mark’s probability of surviving
one risk to be much higher in this rationale, say 90%, after 30 risks we
would conclude that he has approximately a 4% chance of survival. This
suggests that the fallacy is not with the number we assign to the probability
of surviving one risk, but rather with the selection of the model we are using.
We therefore must find a better model to adequately measure the long-term
risk that Mark assumes.

We cannot assume that the outcomes of Mark’s risk-taking are always di-
vided into absolute success or utter failure (see Figure 1); this is where
our intuition is flawed. There are varying degrees of success or failure,
only a small fraction of which would result in his immediate demise, and a
slightly larger fraction implying his ultimate demise on Mars (see Figure 2).
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Figure 1: A typical intuitive interpretation of Mark’s risk assessment.

For the vast majority of outcomes classified as ‘failure’, there are things that
he can do to rectify the situation (albeit by taking further, usually more cau-
tious, risk). This is evidenced multiple times in the story, such as in Chapter
5, Sol 40, when an explosion occurs in the Hab while Mark is attempting
to synthesize water. Mark is soon able to continue the water synthesis by
assessing the reason for the explosion and cautiously proceed without the
problematic elements. Also, in Chapters 13 and 14, Sol 119, when the air-
lock blows off of the Hab and his faceplate is smashed, he is able to achieve
a lower level of risk by first increasing his risk: he must limit his mobility by
removing the arm of his suit and using it to create a seal on his broken face-
plate. In both situations, Mark’s risk-taking is vindicated when he salvages
a perilous situation, demonstrating that the probability of a catastrophic
outcome is much less than intuition might suggest.

Figure 2: A more realistic interpretation of Mark’s risk assessment.



102 Mathematical Arguments in Favor of Risk in The Martian

The second argument in favor of Mark’s continued risk-taking is that the
idea that these events are compounding in the way described above is also
flawed. It would be a more accurate measurement of his survivability to use
state-transitions in a Markov Chain to simulate his likelihood of survival.
This process is described in the following section.

3.2. Risk Assessment with Markov Chains

In order to understand how we will calculate Mark’s likelihood of survival,
we must first examine what a Markov Chain is. We create a Markov Chain
by taking a state-transition matrix and multiplying it by itself a number of
times to determine the outcome of several iterations of connected events. To
explain:

A state-transition matrix is a square matrix of numbers that represent the
probabilities of certain events, given certain starting conditions. A simple
example would be: If it is raining today, there is a 50% (i.e., .5) chance it will
rain tomorrow, and a 50% chance it will be sunny; if it is sunny today, there
is a 75% chance it will be sunny tomorrow, and a 25% chance it will rain.
We arrange these probabilities in such a way that in a row, the probabilities
add to 1 (i.e., 100%).

A =

 will rain will sun
.50 .50 rain
.25 .75 sun


or, for mathematical usage, simply

A =

[
.50 .50
.25 .75

]
.

This matrix is usable in its pure form. For example, if we know whether or
not it is raining, that corresponds to a vector of the form

v =
[

rain sun
]
,

and if it is indeed currently raining, we get

v =
[

1 0
]
.
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So, if we multiply the state-transition matrix by this vector, we see that[
1 0

] [ .50 .50
.25 .75

]
=
[
.50 .50

]
,

which gives us the prediction as already dictated that there’s a 50/50 chance
of rain or sun.

Perhaps the idea is not terribly interesting just using it one time. What
makes it interesting is when we chain the matrices together. Let us say we
want to know, if it is raining today, what is the probability it will rain in
three days? We can simply take the matrix and multiply it by itself three
times, then by the vector:[

1 0
] [ .50 .50

.25 .75

] [
.50 .50
.25 .75

] [
.50 .50
.25 .75

]
=
[
.3438 .6563

]
,

which gives us a 34.38% chance of rain in three days.

This notation can tend to be clunky with larger numbers of state transitions,
so we can abbreviate it to[

1 0
] [ .50 .50

.25 .75

]3
=
[
.3438 .6563

]
.

What ends up happening though, is eventually (if you are predicting suffi-
ciently far into the future), the probability of rain or shine is independent
of whether it is currently raining, and the Markov chain reveals the trends
inherent in the system we are looking at. In other words, we would look
more deeply at the trend of multiplying the state-transition matrix by itself
as the number of multiples gets very large. Very large, being subjective, can
actually be as small as 30. Indeed, for our example,[

.50 .50

.25 .75

]30
=

[
.3333 .6667
.3333 .6667

]
and

[
.50 .50
.25 .75

]31
=

[
.3333 .6667
.3333 .6667

]
.

At this point, the chain has stabilized and we may say[
.50 .50
.25 .75

]n
n→∞−−−→

[
.3333 .6667
.3333 .6667

]
.

Thus on any random day, for that location, there is a roughly 1-in-3 chance
of rain, and 2-in-3 chance of sun.
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To apply this to Mark’s chances of survival, we will look at the risk not as a
chance of survival or death, but as differing states of safety versus un-safety,
and use Markov Chains to determine his long-term safety (survival). In this
scenario, we consider four different possible changes of state: Safe-to-Safe
(SS), Safe-to-Unsafe (SU), Unsafe-to-Safe (US), or Unsafe-to-Unsafe (UU).
So, for example, in any of his endeavors, if Mark starts out safe, but ends
unsafe, we would classify that as SU.

Assessing the number of these state transitions was a challenge in itself. We
noticed that one person’s assessment of Mark’s safe/unsafe levels was liable
to be biased one way or the other. So, we asked that a group of students
also render their counts of the number of times that Mark’s state changed.
Then, the average probability of each state-transition was found and used in
the appropriate position of the transition matrix:

M =

[
SS SU
US UU

]
=

[
.723477 .276523
.529157 .470843

]
.

When this matrix is subjected to repeated self-multiplication we find that

Mn =

[
.723477 .276523
.529157 .470843

]n
n→∞−−−→

[
.656783 .343217
.656783 .343217

]
.

This implies that while Mark’s situation is indeed dangerous, with an appre-
ciable probability of his eventual death on Mars, his long-term probability of
surviving Mars is more along the lines of 65.68%. This is certainly a better
chance of survival than the 1 in 1,073,741,824 chance supposed by intuition.

4. Mark the Invincible

Over the course of the story, Mark takes a more and more cavalier attitude
toward the risks he is taking. Initially, he makes risky decisions carefully
after considering the consequences; by the end of the book, he impulsively
proposes punching a hole in the glove of his space suit and using the air
pressure to fly like Iron Man.

Mark’s embrace of necessary risk may have led him to believe in his own
near-invincibility. In part, this may be because of what we called the intuitive
approach to risk that suggests an astronomically low probability of survival.
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Since he has survived so long in a seemingly unsurvivable situation, he de-
velops a sense of “luck” to explain it. What he needs to remember is that his
situation is not as immediately dire as it would seem, but it is indeed dire
throughout. As we see, even with our Markov Chain calculation, his chances
of surviving being stranded on Mars are still considerably lower than the
probability of surviving more than a year on Earth.

He is also trapped by the difficulty of computing expected value in dynamic
situations. Dan Gilbert, in his book Stumbling on Happiness [1, pages 235-
238], describes just why humans are particularly bad at assessing the ex-
pected outcome of a particular situation. Gilbert’s arguement is that while
the expected value formula is a useful tool for making decisions, it is of-
ten poorly used because people are bad at determining the two unknown
quantities involved. In other words, people do not know what something is
actually worth, and they do not know how to determine the probability of
its occurrence.

Since this calculation is difficult, Mark develops his own shortcut: if he takes
a risk, he might die; if he does not take risks, he will definitely die. This
leads him to impulsively take risks that would give pause to anyone in a less
grave situation.

Mark’s decision-making process comes into conflict with NASA’s when Mark’s
water reclaimer malfunctions. NASA would have had Mark wait to complete
the project while they debated millions of miles away about how he should
fix it, because it was not considered his field of expertise. Mark on the other
hand, standing two feet from the equipment, could see the obvious problem,
determine the method to fix it, and assess that the risk was minimal if any
that it would go wrong. So, he relied on his own judgement, ignored his
instructions from NASA, and fixed the water-reclaimer with no ill effects.
In this instance, Mark’s perception of the risk and NASA’s were different.
Mark takes a slightly riskier route, trusting his expertise and his “luck” and
taking the action he deems necessary.

Once the rest of the crew re-enters the situation, Mark’s computational short-
cut leads him astray. More people and more resources mean more choices.
It is not a matter of risk-or-death, but of choosing the best course among a
wider (but still limited) range of options. Mark’s “Iron Man” proposal relies
on his own resources and risks only his own life—the sort of decision that
becomes natural after a year spent in extreme isolation.
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Commander Lewis counters Mark’s “Iron Man” idea by blowing an airlock
on the ship that will take the crew back to Earth, causing the ship to deceler-
ate so that Mark can be retrieved. Commander Lewis has embraced Mark’s
willingness to take risks, but she has not relied on his computational short-
cuts. In fact, she is able to run simulations on the ship’s onboard computers
to determine the overall outcome and probability of success. She is therefore
able to propose a solution that has a high probability of success and uses the
available resources efficiently.

Lewis’ plan walks the boundary between Teddy’s over-cautious approach and
Mark’s wild improvisation. Here, as throughout The Martian, a willingness
to take risks is vindicated. Carefully assessing the risks of various options and
choosing the best one allows characters to make the best possible decisions.

5. Concluding Remarks

Mark Watney’s situation in The Martian provides a small, relatively un-
complicated setting in which to explore modeling techniques and the various
heuristic approaches people take for making decisions in risky situations.
These techniques provide a possible basis for risk assessment and decision-
making in real situations.

Many of the decisions that humans are faced with every day involve mea-
suring risk against potential reward. Two well-known proverbs speak to
opposite approaches to making risky decisions: “nothing ventured, nothing
gained” argues for Mark’s bold, risk-embracing strategy, while “better safe
than sorry” promotes Teddy’s inclination to avoid risk. The contradictory
nature of these two pieces of received wisdom illustrates the balance neces-
sary in making these decisions. As in The Martian, it is possible to err on
the side of too much caution or too much risk.

In our day-to-day life, using careful mathematical modeling is often imprac-
tical. We primarily make quick, low-stakes decisions, and pausing to do
extensive calculation for these everyday decisions would paralyze us. At
crucial moments, however, careful assessment is necessary, and mathematics
provides useful tools to conduct that assessment.
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