
Mutual Exclusion Algorithms with Constant RMR
Complexity and Wait-Free Exit Code
Rotem Dvir1 and Gadi Taubenfeld2

1 The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel
rotem.dvir@gmail.com

2 The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

Abstract
Two local-spinning queue-based mutual exclusion algorithms are presented that have several de-
sired properties: (1) their exit codes are wait-free, (2) they satisfy FIFO fairness, (3) they have
constant RMR complexity in both the CC and the DSM models, (4) it is not assumed that the
number of processes, n, is a priori known, that is, processes may appear or disappear intermit-
tently, (5) they use only O(n) shared memory locations, and (6) they make no assumptions on
what and how memory is allocated.

The algorithms are inspired by J. M. Mellor-Crummey and M. L. Scott famous MCS queue-
based algorithm [13] which, except for not having a wait-free exit code, satisfies similar properties.
A drawback of the MCS algorithm is that executing the exit code (i.e., releasing a lock) requires
spinning – a process executing its exit code may need to wait for the process that is behind it in
the queue to take a step before it can proceed. The two new algorithms overcome this drawback
while preserving the simplicity and elegance of the original algorithm.

Our algorithms use exactly the same atomic instruction set as the original MCS algorithm,
namely: read, write, fetch-and-store and compare-and-swap. In our second algorithm it is possible
to recycle memory locations so that if there are L mutual exclusion locks, and each process
accesses at most one lock at a time, then the algorithm needs only O(L + n) space, as compared
to O(Ln) needed by our first algorithm.

1998 ACM Subject Classification C.2.4 Distributed Systems, F.1.1 Models of Computation

Keywords and phrases Mutual exclusion, locks, local-spinning, cache coherent, distributed
shared memory, RMR complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.17

1 Introduction

Concurrent access to resources shared among several processes must be synchronized in order
to avoid interference between conflicting operations. Mutual exclusion locks are still the de
facto mechanism for concurrency control on shared resources: a process accesses the resource
only inside a critical section code, within which the process is guaranteed exclusive access.
The popularity of this approach is largely due to the apparently simple programming model
of such locks, and the availability of lock implementations which are reasonably efficient.

Most of the mutual exclusion lock algorithms include busy-waiting loops. The idea is
that in order to wait, a process spins on a flag register, until some other process terminates
the spin with a single update operation. Unfortunately, under contention, such spinning may
generate lots of traffic on the interconnection network between the process and the memory,
which can slow other processes. To address this problem, it is important to distinguish

© Rotem Dvir and Gadi Taubenfeld;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

. . .

M

. . .

M M

(a)

C

. . .

M

(b)

C

(c)

P P P P P P

Figure 1 Shared memory models. (a) Central shared memory. (b) Cache Coherent (CC). (c)
Distributed Shared Memory (DSM). P denotes processor, C denotes cache, M denotes shared memory.

between remote access and local access to shared memory, and to try to reduce the number
of remote accesses as much as possible.

We consider two machine architectures models: (1) Cache coherent (CC) systems, where
each process (or processor) has it own private cache. When a process accesses a shared
memory location a copy of it migrates to a local cache line and becomes locally accessible until
some other process updates this shared memory location and the local copy is invalidated;
(2) Distributed shared memory (DSM) systems, where instead of having the “shared memory”
in one central location, each process “owns” part of the shared memory and keeps it in its
own local memory. These different shared memory models are illustrated in Figure 1.

A shared memory location is locally accessible to some process if it is in the part of the
shared memory that physically resides on that process local memory. Spinning on a remote
memory location while its value does not change, is counted only as one remote operation
that causes communication in the CC model, while it is counted as many operations that
causes communication in the DSM model. An algorithm satisfies local spinning (in the CC
or DSM models) if the only type of spinning required is local spinning.

An algorithm that satisfies local spinning in a DSM system, is expected to perform well
also when executed on a machine with no DSM. The reason is that each process spins only
on memory locations on which no other process spins, thus eliminating hot-spot contention
caused by busy-waiting.

The MCS lock, due to John Mellor-Crummey and Michael Scott, is perhaps the best-
known and most influential local-spinning lock algorithm [13]. This important algorithm and
several variants of it are implemented and used in various environments. For example, Java
Virtual Machines use object synchronization based on variations of the MCS lock [7].

A code segment in an algorithm is wait-free if its execution by a process should require
only a finite number of steps and must always terminate regardless of the behavior of the
other processes. A drawback of the MCS lock is that releasing it is not wait-free and requires
spinning – a process that is releasing the lock may need to wait for the process that is trying
to acquire the lock to take a step before it can proceed. Thus, when there is high contention,
a releasing process may have to wait for a long time until a process that is trying to acquire
the lock is schedule. We present two new local-spinning algorithms which overcome this
drawback while preserving the simplicity and elegance of the original MCS algorithm.

The two new mutual exclusion algorithms, which are inspired by the MCS algorithm,
have several desired properties. These properties, formally defined in the next section, are:
(1) their exit codes are wait-free, (2) they satisfy FIFO fairness, (3) they have constant RMR
(remote memory reference) complexity in both the CC and the DSM models, (4) they do not
require to assume that the number of participating processes, n, is a priori known, that is,



R. Dvir and G. Taubenfeld 17:3

processes may appear or disappear intermittently, (5) they use only O(n) shared memory
locations, and (6) they make no assumptions on what and how memory is allocated1.

Except for property 1 above, the other properties are satisfied also by the MCS algorithm.
No previously published algorithm satisfies all these properties together.

Our algorithms use exactly the same atomic instruction set as the original MCS algorithm,
namely: read, write, fetch-and-store and compare-and-swap. In our second algorithm it is
possible to recycle memory locations so that if there are L locks, and each process accesses
at most one lock at a time, then the algorithm needs only O(L + n) space, as compared to
O(Ln) needed by our first algorithm.

2 Preliminaries

2.1 Computational model
Our model of computation consists of an asynchronous collection of n deterministic processes
that communicate via shared registers (i.e, shared memory locations). Asynchrony means
that there is no assumption on the relative speeds of the processes. Access to a register is
done by applying operations to the register. Each operation is defined as a function that
gets as arguments one or more values and registers names (shared and local), updates the
value of the registers, and may return a value. Only one of the arguments may be a name of
a shared register. The execution of the function is assumed to be atomic. Call by reference
is used when passing registers as arguments. The operations used by all our algorithms are:

Read: takes a shared registers r and simply returns its value.
Write: takes a shared registers r and a value val. The value val is assigned to r.
Fetch-and-store (FAS): takes a shared register r and a local register `, and atomically
assigns the value of ` to r and returns the previous value of r. (The fetch-and-store
operation is also called swap in the literature.)
Compare-and-swap (CAS): takes a shared register r, and two values: new and old. If the
current value of the register r is equal to old, then the value of r is set to new and the
value true is returned; otherwise r is left unchanged and the value false is returned.

Most modern processor architectures support the above operations.

2.2 Mutual exclusion
The mutual exclusion problem is to design an algorithm that guarantees mutually exclusive
access to a critical section among n competing processes [3]. It is assumed that each process
is executing a sequence of instructions in an infinite loop. The instructions are divided into
four continuous sections: the remainder, entry, critical and exit. The entry section consists
of two parts: the doorway which is wait-free, and the waiting part which includes one or
more loops. A waiting process is a process that has finished its doorway code and reached
the waiting part, and a beginning process is a process that is about to start executing its
entry section. It is assumed that a process may crash2 in its remainder section, but may not
crash in its entry, critical or exit sections. It is also assumed that a process always leaves its
critical section.

1 For example, in [2] it is assumed that all allocated pointers must point to even addresses.
2 A process that fails by crashing is a process that stops its execution in a definitive manner.

OPODIS 2017



17:4 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

The mutual exclusion problem is to write the code for the entry and the exit sections in
such a way that the following two basic requirements are satisfied.

Deadlock-freedom: If a process is trying to enter its critical section, then some process,
not necessarily the same one, eventually enters its critical section.
Mutual exclusion: No two processes are in their critical sections at the same time.

Satisfaction of the above two properties is the minimum required for a mutual exclusion
algorithm. For an algorithm to be fair, satisfaction of an additional condition is required.

FIFO (First-in-first-out): A beginning process cannot execute its critical section before a
waiting process executes its critical section.
Strong FIFO: A process that has not completed its doorway cannot execute its critical
section before a waiting process executes its critical section.

All our algorithms satisfy the slightly stronger strong FIFO requirement. To simplify the
presentation, when the code for a mutual exclusion algorithm is presented, only the entry
code and exit code are described, and the remainder code and the infinite loop within which
these codes reside are omitted.

2.3 Counting Remote Memory References
As already mentioned, for certain shared memory systems, it makes sense to distinguish
between remote and local access to shared memory. Shared registers may be locally-accessible
as a result of coherent caching, or when using distributed shared memory where shared
memory is physically distributed among the processors.

We define a remote reference by process p as an attempt to reference (access) a memory
location that does not physically reside on p’s local memory. The remote memory location
can either reside in a central shared memory or in some other process’ memory.

Next, we define when remote reference causes communication. (1) In the distributed
shared memory (DSM) model, any remote reference causes communication; (2) in the coherent
caching (CC) model, a remote reference to register r causes communication if (the value
of) r is not (the same as the value) in the cache. That is, communication is caused only by
a remote write access that overwrites a different process’ value or by the first remote read
access by a process that detects a value written by a different process.

Finally, we define time complexity when counting only remote memory references. This
complexity measure, called RMR complexity, is defined with respect to either the DSM model
or the CC model, and whenever it is used, we will say explicitly which model is assumed.

The RMR complexity in the CC model (resp. DSM model) is the maximum number of
remote memory references which cause communication in the CC model (resp. DSM
model) that a process, say p, may need to perform in its entry and exit sections in order
to enter and exit its critical section since the last time p started executing the code of its
entry section.

3 The First Algorithm

Our first algorithm has the following properties: (1) its exit code is wait-free, (2) it satisfies
strong FIFO fairness, (3) it has constant RMR complexity in both the CC and the DSM
models, (4) it does not require to assume that the number of participating processes, n, is a
priori known, (5) it uses only O(n) shared memory locations, (6) it makes no assumptions
on what and how memory is allocated, and (7) it uses exactly the same atomic instruction
set as the original MCS algorithm.



R. Dvir and G. Taubenfeld 17:5

3.1 An informal description
The algorithm maintains a queue of processes which is implemented as a linked list. Each
node in the linked list is an object with pointer field called next, boolean field called locked,
and status bit called status. Each process p has its own two nodes (i.e., elements), called
qp[0] and qp[1], which in a DSM machine can be assumed to be stored in process p’s local
memory. In addition, a shared object called T (tail), points to the end of the queue.

Each time a process p wants to enter its critical section it uses alternately one of its
two nodes. In its entry code a process threads itself (i.e., its node) to the end of the queue.
Afterwards, p checks its state which can be one of the following: (1) it is alone in the queue,
(2) its predecessor is in its exit section, or (3) its predecessor is either in its entry or critical
section. In the first two cases, p can safety enter its critical section, in the later case p spins
locally on its boolean locked field until it gets a signal from its predecessor that it is now at
the head of the queue. Once p is at the head of the queue it can enter its critical section.

In its exit code, a process signals to its successor to enter its critical section. The main
challenge is in implementing the part of the algorithm in which a releasing process signals its
successor, since the threading cannot be done in one atomic operation and requires several
remote accesses to the shared memory. This includes making T point to this process’ node
and making the process’ predecessor know the threaded process is its successor.

In the MCS algorithm, to prevent a race condition, the releasing process is required in its
exit code to wait until the threading is completed, and only then it may signal its successor
and exit. As a result, the exit code of the MCS algorithm is not wait-free. To resolve this
problem, we had to deal with a situation where the releasing process is in its exit section,
but since the threading of its successor has not been completed yet the releasing process does
not know who is its successor and thus has no way to signal anything directly to its successor
(unless it waits for the threading to be completed, which is not an option in our case).

So, in its exit code p first assigns the value unlocked to its status variable. Since p may
not know who is its successor, this assignment leaves a signal for p’s successor that it may
enter its critical section. However, this signal is done in p’s memory space, so its successor
cannot simply spin and wait for this signal, and checks for this signal only once.

Then, p checks if the threading of its successor (if there is one) is completed. If it isn’t,
there are two possibilities: (1) p is alone in the queue in which case p completes its exit
code, or (2) p is not alone, in which case its successor will check and notice the signal p left
in p’s status variable. If the threading of its successor is completed, again there are two
options: (1) the successor has already noticed the signal in p’s status variable in which case
p completes its exit code, or (2) its successor is spinning locally on its locked bit, in which
case p terminates the waiting by setting its successor’s locked bit to false. There are several
race conditions which are resolved using compare-and-swap operations as explained later.
The reason for using two nodes for each process is explained in details in Subsection 3.3.

3.2 The code of the algorithm and a detailed description
In the algorithms, the following symbols are used: “∗” to indicate pointer of a specified type,
“&” to obtain an object’s address, and “.” (dot) for integrated pointer dereferencing and field
access. The code of the algorithm appears in Figure 1. A detailed explanation follows.

We start with the entry code. In line 1, out of its two nodes, p chooses the node to use
in the current iteration, by inspecting current’s value. We notice that when p finishes the
iteration, it toggles the value of current (in line 16). In line 2, p initializes its current node
next pointer to NIL. During the execution next points to p’s successor in the queue, and p

OPODIS 2017



17:6 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

Algorithm 1 Program for process p.
Type: QNode: {next: QNode*, locked: bool, status ∈ {LOCKED, UNLOCKED}}
Shared: T : type QNode*, initially NIL // T points to the last item in the queue

qp[0, 1]: type QNode, both nodes initially {NIL, false, LOCKED}
// queue nodes belong to process p, and local to process p in the DSM model

Local: pred: type QNode*, initial value immaterial // process’ predecessor
succ: type QNode*, initial value immaterial // process’ successor
mynode: type QNode*, initially value immaterial // currently used node
current: ∈ {0,1}, initial value immaterial // index to current node

Enter Code:
1 mynode := &qp[current] // current node for this round, doorway begins
2 mynode.next := NIL
3 mynode.status := LOCKED
4 pred := FAS(T, mynode) // enter the queue, doorway ends
5 if pred 6= NIL then // enter CS if no predecessor
6 mynode.locked := true // prepare to wait
7 pred.next := mynode // notify your predecessor
8 if CAS(pred.status, UNLOCKED, LOCKED) = false then
9 await (mynode.locked 6= true) fi fi // wait for your predecessor’s signal

Critical Section
Exit Code:

10 mynode.status := UNLOCKED // notify successor it can enter its CS
11 if mynode.next = NIL then // if you don’t have a successor
12 CAS(T, mynode, NIL) // set T back to NIL if you are last
13 else if CAS(mynode.status, UNLOCKED, LOCKED) then // there is a successor
14 succ := mynode.next

15 succ.locked := false fi fi // notify successor it can enter its CS
16 current := 1− current // toggle for further use

has no successor yet. Later, the successor of p, if there is one, will update p’s next pointer in
line 7, and p will identify whether it has a successor, when executing line 11. In line 3, p

initializes its current node status field to LOCKED. In line 4, p gets T ’s value, and assigns a
pointer to its node into T . This line is the last line of the doorway, and it is where p threads
its node to the queue and gets a pointer to its predecessor node (if there is one). In line 5,
p validates whether it has a predecessor. If it doesn’t, it means that p is first in the queue
and can safely enter its critical section. If p has a predecessor, say q, it continues to line 6,
where it initializes its locked variable to true, which means p cannot enter its critical section
at the moment. In line 7, p notifies q that p itself is its successor. In line 8, p checks if q

already enabled it to enter its critical section, by assigning UNLOCKED to status. If the
compare-and-swap operation succeeds, p knows q already executed line 10, and exited its
critical section, so p can enter its critical section. In case the compare-and-swap fails, p waits
for its turn to enter its critical section in line 9 by local-spinning on its locked variable,
waiting for q to assign false to it (line 15).

Next we explain the exit code. In line 10, p assigns UNLOCKED to its status variable
immediately after it finishes executing its critical section. At that time, p may not know who
is its successor, so the first operation in the exit code is to leave a signal for the upcoming



R. Dvir and G. Taubenfeld 17:7

successor, so that it will be able to enter its critical section when the time comes. In line 11,
p checks if its successor (if there is one) has already notified who it is (that is, if its successor
already executed line 7). If it didn’t, p may be the only one in the queue. In line 12 p

checks whether T equals mynode, which is the node p inserted to the queue in line 4. If the
compare-and-swap succeeds, p is indeed alone in the queue, so it assigns NIL to T , which
returns the queue to its initial state. If the compare-and-swap in line 12 fails, it means that
there must be another process in the queue after p. Since p assigned UNLOCKED to its
status variable, its successor should notice it and be able to enter its critical section later
on. If p’s successor has executed line 7 before p has executed line 11, p will know who its
successor is. In line 13, p checks whether its successor already let itself enter into its critical
section after reading p’s UNLOCKED value in line 8. If the successor hasn’t done so yet,
the compare-and-swap operation succeeds, and p lets its successor enter its critical section
in lines 14-15 by setting the bit its successor spins on to false. In line 16, p toggles its
current, for the next iteration. The toggle is necessary to avoid deadlock.

3.3 Further explanations
In order to better understand the algorithm, we explain below three delicate design issues
which are crucial for avoiding deadlocks.
1. Why each process p needs two nodes qp[0] and qp[1]? The current variable is used to

avoid deadlock in the following execution: assume each process has one node instead of
two. Suppose process p is in its critical section, and process q finished its doorway. p

resumes and executes its exit code (lines 10, 11). p finishes its exit code while q is in
the queue, but q hasn’t informed p who it is yet. p leaves its status variable with the
value UNLOCKED, so that q will be able to enter its critical section. p starts another
iteration before q resumes and executes line 4. Another process q′ executes its entry code,
such that q′ is p’s successor. Notice that, in that execution, q and q′ share p’s node as
their predecessor (from two different iterations of p). If q′ executes line 7 before q, q can
override the assignment of q′ and assigns a pointer to its node into p’s next variable. q′

now moves on and waits in line 9, but there is no process to free q′ and a deadlock occurs.
This problem is resolved by having each process own two nodes. We only need two nodes
for each process, since the algorithm satisfies FIFO. p’s successor enters its critical section
before p enters its critical section in its next iteration. After p’s successor enters its
critical section, p’s node won’t be needed anymore, and p will be able to reuse it.

2. Is the order of lines 6 and 7 important? Line 6 must be executed before line 7, and their
order should not be changed. Assume we have two processes, p and q, where q is p’s
predecessor and we change the order of lines 6 and 7. We let p execute line 7 and suspend
it before executing line 6. In such a case, q can start executing its exit code. q will notice
it has a successor, and q will move on to execute line 15. Then, p will continue to execute
its code, and executes line 6. p assigns true to locked and misses q’s signal to enter its
critical section, and a deadlock occurs.

3. Is the order of lines 10 and the test in the if statement in line 11 important? Line 10
must be executed before the exited process checks in line 11 whether it has a successor.
If the UNLOCKED assignment is executed afterwards, a deadlock may occur. Assume
we have two processes, p and q, where q is p’s predecessor. q executes the first line of
the exit code, which is (after switching) “if mynode.next = NIL then”. Assume p hasn’t
executed line 7 yet, so the condition is true. Meanwhile, process p executes lines 5-9 and
waits at line 9. Process p cannot skip the compare-and-swap since q’s status variable is
LOCKED. q finishes its exit code without signaling to p, and thus p will spin in line 9
forever, causing a deadlock.

OPODIS 2017



17:8 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

3.4 Correctness proof
The following notions and notations are used in the proof.
1. Doorway: Process p is considered to be in its doorway while executing statements 1-4.
2. The ith iteration: Process p during its ith iteration (i.e, its ith attempt to enter its

critical section) is denoted by pi.
3. Follows, predecessor, successor: Consider an execution e. qj follows pi in e if and

only if pi finishes its doorway before qj . pi is the predecessor of qj in e if and only if
qj follows pi, and no other process finishes its doorway between the time pi finished its
doorway to the time qj finishes its doorway. If pi is the predecessor of qj then qj is said
to be the successor of pi.

I Lemma 1. For every process p at iteration i, pi has at most one predecessor.

Proof. The fact that a process may have only a single predecessor, follows from that fact that
the last step of the doorway (line 4) is an atomic fetch-and-store operation which updates T

and pred. J

I Lemma 2. Assume that for every pi and qj, if pi is the predecessor of qj then pi enters
its critical section before qj enters its critical section. Then, for every pi and qj, if pi is the
predecessor of qj then pi enters its critical section before any process that follows qj enters
its critical section.

Proof. Proof by induction on the number of processes m that follow qj . In the base case,
when m = 1, there is only one process, say rk, that follows qj . This means that qj is the
predecessor of rk. Therefore, according to the assumption made in the first part of the
lemma, qj enters its critical section before rk enters its critical section. Since pi enters its
critical section before qj , and qj enters its critical section before rk, by transitivity pi enters
its critical section before rk.

We assume that the lemma holds for m − 1 processes that follow qj , and prove that
it also holds for the mth process that follows qj . Let the mth process be rk. We denote
rk’s predecessor as r̂k. Notice that r̂k is the m − 1 process that follows qj . Thus, by the
induction hypothesis, pi enters its critical section before r̂k enters its critical section. r̂k is
the predecessor of rk, and thus, according to the assumption made in the first part of the
lemma, r̂k enters its critical section before rk enters its critical section. Since pi enters its
critical section before r̂k enters its critical section and r̂k enters its critical section before rk

enters its critical section, by transitivity pi enters its critical section before rk. J

I Lemma 3. For every pi and qj such that pi is the predecessor of qj , pi is the only process
that can assign false to qj’s mynode.locked.

Proof. By Lemma 1, qj has at most one predecessor. So, pi is qj ’s only predecessor. Clearly,
except for pi, any other process that qj follows will not be able to write to qj ’s mynode.locked.
Thus, throughout the algorithm, the only processes that write to qj ’s mynode.locked are qj

itself and pi. qj does it at line 6 and pi does it at line 15. At line 6, qj assigns true to locked,
thus, the only process that assign false is pi. J

I Lemma 4 (STRONG FIFO). If pi finishes its doorway before qj (begins or) finishes its
doorway, then pi enters its critical section before qj enters its critical section.

Proof. pi finished the doorway before qj finishes the doorway, therefore pi executes line 4
before qj does. There are two options:



R. Dvir and G. Taubenfeld 17:9

1. qj is pi’s successor.
2. qj follows pi, but qj is not pi’s successor.
According to Lemma 2, once we prove that pi enters its critical section before qj in case 1,
then it would immediately follow that pi enters its critical section before qj in case 2 as well.

Assume qj is pi’s successor and assume to the contrary that qj enters its critical section
before pi. There are two cases:
1. qj executes line 4 after pi executes line 12. In which case, pi entered its critical section

before qj , which contradicts the assumption.
2. qj executes line 4 before pi executes line 12. Therefore, T still points to pi’s qnode when

qj executes line 4 and qj gets pi’s qnode to its pred variable. Thus pred is not NIL, and
qj continues and executes line 8. Here we have two options as well:
a. The compare-and-swap operation in line 8 succeeds. The compare-and-swap succeeds

only if qj ’s pred.status is equal to UNLOCKED. pred is pi’s qnode, pi assigned its
status LOCKED value at the beginning of pi’s entry code. For it to change to
UNLOCKED, pi should execute line 10 in the exit code. This means that pi entered
its critical section before qj did, contradicting the assumption.

b. The compare-and-swap operation in line 8 fails. qj continues to line 9 and local-spins
on locked. The only way qj can enter its critical section is when some other process
writes false to locked. According to Lemma 3, pi is the only process that can assign
false to qj ’s locked. Notice that the only line where pi does this is at line 15, which is
in its exit code. In this case, pi entered its critical section before qj , contradicting the
assumption.

We proved that if pi finishes the doorway before qj finishes the doorway, then there is no
valid scenario where qj enters its critical section before pi. Therefore, pi enters its critical
section before qj does, implying that the algorithm satisfies strong FIFO. J

I Lemma 5. For every pi and qj, if pi is the predecessor of qj such that pi and qj are not
in their critical sections at the same time, then pi and rk are not in their critical sections at
the same time, for any other process rk that follows qj.

Proof. Proof by induction on the number of processes m that follow qj . In the base case,
m = 1: there is only one process, say rk, that follows qj . This means that qj is the predecessor
of rk. Assume pi is in its critical section. Since qj is not in its critical section at the same
time as pi and by Lemma 4 the algorithm satisfies strong FIFO, therefore qj enters its critical
section after pi. Also by Lemma 4, rk enters its critical section after qj . Therefore, rk cannot
be in its critical section at the same time as pi. Next, we assume that the lemma holds for
m− 1 processes that follow qj , and prove for m processes that follow qj . Let the mth process
be rk, and let rk’s predecessor be r̂k. Notice that r̂k is the m− 1 process following qj , and
therefore by the induction hypothesis pi and r̂k are not in their critical sections at the same
time. Thus, since by Lemma 4 the algorithm satisfies strong FIFO, rk is not in its critical
section at the same time as pi. J

I Lemma 6 (Mutual Exclusion). No two processes are in their critical sections at the same
time.

Proof. We assume that there are two processes, pi and qj at their critical sections at the
same time, and show it leads to a contradiction. Assume, without loss of generality, that
pi enters its critical section before qj . According to Lemma 4 the algorithm satisfies strong
FIFO, so pi finishes its doorway before qj , and therefore pi executes line 4 before qj . There
are two options:

OPODIS 2017



17:10 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

1. qj is pi’s successor.
2. qj follows pi, but qj is not pi’s successor.

By Lemma 5, once we prove that pi and qj are not in their critical sections at the same
time in case 1, then it would immediately follow that pi and qj are not in their critical section
at the same time in case 2. Let’s prove case 1: Assuming qj is pi’s successor, there are two
options:
1. qj executes line 4 after pi executes line 12. In this case, pi exits its critical section before

qj enters its critical section, which contradicts the assumption.
2. qj executes line 4 before pi executes line 12. Therefore, T still points to pi’s qnode when

qj executes line 4 and qj gets pi’s qnode assigned to its pred variable. Thus pred is not
NIL, and qj continues and executes line 8. In line 8, qj checks whether pi’s status is
UNLOCKED. Since pi executed line 4 before qj executed line 4, pi also executed line 3
before qj executed line 8. According to the assumption pi still hasn’t exited its critical
section, so its status is still LOCKED. Therefore the compare-and-swap fails and qj

continues to line 9. qj assigned true to its locked variable in line 6, and local-spins in line
9, waiting for some process to let it enter its critical section. By Lemma 3, pi is the only
process that can assign false to qj ’s locked. pi does this at line 15, which means that
for qj to enter its critical section, pi has to execute its exit code. This contradicts the
assumption that pi and qj are in their critical sections at the same time. J

I Lemma 7. For every pi and qj such that qj is pi’s predecessor, once qj assigned the value
false to pi’s locked variable, this value cannot be overwritten, until pi completes its exit code.

Proof. By Lemma 1, pi has only one predecessor, so qj is pi’s only predecessor. Throughout
the algorithm, the only processes that write to pi’s locked variable are pi itself and qj . pi

does this at line 6 and qj does this at line 15. We will show that if qj executes line 15, pi

must have already executed line 6 before that. qj executed line 15, therefore qj must have
executed the “else” clause of the “if” statement at line 11. So the “if” condition was false,
and qj ’s mynode.next was not equal to NIL. qj has only one successor which is pi. Since
qj ’s next variable was not NIL, pi has already executed line 7 and assigned its node to qj ’s
next. This implies that pi has already executed line 6, in which it assigns true to locked.
Therefore pi executed line 6 before qj executed line 15, and since there is no other process
that writes to pi’s locked variable, the (false) value was not overwritten. J

I Lemma 8 (Deadlock-freedom). If a process is trying to enter its critical section, then some
process, not necessarily the same one, eventually enters its critical section.

Proof. Assume to the contrary that some group of processes P are in their entry code and
none of them can ever access its critical section. Let pi be the first process in P to complete
its doorway. Thus, all the other processes in P follow pi. The fact that pi is not being
able to enter its critical section, means that pi is local-spinning at line 9, since all the other
lines in its entry code do not contain any loops, are wait-free and can be completed in a
constant number of pi steps. Any other execution path would lead pi to its critical section
and contradicts the assumption. From here it follows that:

When pi completed its doorway, pred was not NIL. Therefore, there exists process qj

such that qj finished the doorway before pi, but hasn’t executed line 12 that removes it
from the queue.
pi compare-and-swap operation at line 8 fails, therefore qj status was equal to LOCKED.
There are two options:
1. qj hasn’t executed line 10.
2. qj has already executed line 13, where the compare-and-swap operation ended success-

fully for qj .



R. Dvir and G. Taubenfeld 17:11

Since we assumed that pi is the first process to complete its doorway among the waiting
processes, and qj is pi’s predecessor, it follows that qj would eventually be able to enter
its critical section. Therefore, qj will necessarily exit its critical section and begin the exit
code. In both cases above, it is easy to see that the execution path of qj in the exit code
leads it to line 15, where qj writes false to pi’s locked variable. In addition, according to
Lemma 7, the value of pi’s mynode.locked field is never overwritten until pi completes it
exit code. Therefore, at some point pi will notice that mynode.locked = false and can
continue to its critical section. This contradicts the assumption that pi will not enter its
critical section. J

I Lemma 9 (Constant RMR complexity). The RMR complexity of Algorithm 1 is O(1) in
both the CC and DSM models.

Proof. By inspecting the algorithm, it is easy to count steps and see that except the busy-
waiting loop in line 9, it takes constant number of steps for a process to enter and exit its
critical section. Thus, it is sufficient to prove that, for every pi, pi performs O(1) RMRs at
line 9, because this is the only busy-waiting loop in the algorithm. We will prove that while
the process is executing the loop at line 9, it performs only a constant number of remote
memory references, in both models:

DSM model: pi spins on mynode.locked. mynode can be equal to either qp[0] or qp[1]
as follows from line 1 in the algorithm. Both of them initialized as local to process pi’s
memory and thus the algorithm performs O(1) RMRs in the DSM model.
CC model: We prove that in one iteration of a process, there is at most one cache
invalidation. Before spinning on mynode.locked, its value migrates to pi’s local cache,
since pi assigned to it at line 6. It is updated by another process only once, at line 15.
When a process updates mynode.locked, pi will have a cache invalidation and pi will
execute one remote memory reference to read the new value of mynode.locked. Since
the new value is necessarily equal to false, pi stops spinning on mynode.locked and
proceeds to its critical section. By Lemma 7, there is no other process that writes to pi’s
mynode.locked in the current iteration anywhere else in the algorithm. Therefore, there
is only one remote memory reference during the loop execution, and the algorithm has
O(1) RMR complexity in the CC model. J

I Lemma 10 (Wait-free exit code). Every process finishes its exit code within a bounded
number of its own steps.

Proof. Since the exit code is a straight-line code which does not contain either loops or await
operations, it immediately follows that any execution of the exit code will be completed in a
bounded number of a process’ own steps. J

I Theorem 11. Algorithm 1 satisfies mutual exclusion, deadlock freedom, wait-free exit,
strong FIFO fairness, and constant RMR complexity. Furthermore, it does not require to
assume that the number of processes, n, is a priori known, it uses only O(n) shared memory
locations, it makes no assumptions on what and how memory is allocated, and it uses exactly
the same atomic instruction set as the original MCS algorithm.

Proof. The properties mutual exclusion, deadlock freedom, wait-free exit, strong FIFO
fairness and constant RMR complexity, follows from Lemma 6, Lemma 8, Lemma 10, Lemma
4 and Lemma 9, respectively. The other properties are easily verified by inspecting the code
of the algorithm. J

OPODIS 2017



17:12 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

4 The Second Algorithm

The second algorithm satisfies the same properties as the first algorithm, as listed at the
beginning of Section 3. In addition, in the second algorithm it is possible to recycle memory
locations so that if there are L locks, and each process accesses at most one lock at a time, the
algorithm needs only O(L + n) space, as compared to O(Ln) needed by the first algorithm.

To simplify the presentation, we will assume that processes have unique identifiers.
However, for each process p, the value of one of its pointers is a unique number which can be
used as process p’s unique identifier instead of assuming that p itself is the unique identifier.
We elaborate more on this issue in Subsection 4.3, after the algorithm is presented.

4.1 An informal description

As in the previous case, the algorithm maintains a queue of processes which is implemented
as a linked list. Each process p has two different data elements that complete each other and
together represent a single node. The two data elements are called: qp which resides in p

local memory and access to it is considered local access, while nodep is handed over from
an exiting process to its successor at the end of the exit code, and access to it is considered
remote memory access. qp, which is not part of the queue, is a record with pointer field called
qnode which initially points to the nodep element, and boolean field called locked. nodep is
the element that initially p tries to thread into the linked list in its entry code.

In addition, a shared object called T (tail), points to the end of the queue. Initially, when
the queue is empty, T points to a dummy node, called node0, that enables the first process
which succeeds to enter the queue, to proceed to its critical section.

In its entry code a process threads itself (i.e., thread the element qp.qnode points to) to
the end of the linked list. A process has several ways to enter its critical section: it can enter
immediately if it is alone in the queue or if its predecessor is in its exit section, otherwise, it
has to spin locally until its predecessor assigns false to locked.

In the exit code p first assigns the value p (its ID which is different than 0) to its status
field of its node in the linked list. Since, p may not know who is its successor, this assignment
leaves a signal for p’s potential successor that it may enter its critical section. Then, p checks
if it has a successor. If it doesn’t then p completes its exit code. Otherwise, if p’s successor
has already noticed p’s status variable equals p, process p completes its exit code. If its
successor is spinning locally on its locked bit, p terminates the waiting by setting its successor
locked bit to false. In all the above cases, p always leaves its current node in the queue
(because this node includes the status field with the value p which indicates that its critical
section is free) and, before p completes its exit code, it removes from the queue and takes
ownership of the node of its predecessor (which is the current dummy node).

4.2 The code of the algorithm and a detailed description

We assume that each process has a unique identifier which is different than 0. The code of the
algorithm appears in Figure 2. It is important to notice that there are some statements in the
algorithm with multiple memory references. We use this style to keep the algorithm short and
simple. Only one shared memory location can be accessed in one atomic step! For example,
the statement in line 1, “qp.qnode.next := NIL” is equivalent to “localTemp := qp.qnode;
localTemp.next := NIL”, and the statement in line 7 “pred.next := qp.qnode” is equivalent
to “localTemp := qp.qnode; pred.next := localTemp”. A detailed explanation follows.



R. Dvir and G. Taubenfeld 17:13

Algorithm 2 Program for process p.
Type: QNode: {next: QNode*, local: LocalNode*, status: integer, pid: integer}

LocalNode: {qnode: QNode*, locked: bool}
Constant:

ZERO = 0 // it is assumed that 0 is not a process id
Shared: node0: type QNode, initially {NIL, NIL, 0, 0}

// a dummy node, enables the first process to enter its critical section
T : type QNode*, initially &node0 // T points to node0
nodep: type QNode, initial values are immaterial
qp: type LocalNode*, qnode initially &nodep, locked initial value is immaterial

// qp belongs to process p, and local to process p in the DSM model
Local: pred: type QNode*, initial value is immaterial // process’ predecessor

predP id: type integer, initial value is immaterial // process’ predecessor ID

Enter Code:
1 qp.qnode.next := NIL // initialization, doorway begins
2 qp.qnode.pid := p // process ids are unique and different than 0
3 qp.qnode.local = qp

4 qp.qnode.status := ZERO
5 qp.locked := true

6 pred := FAS(T, qp.qnode) // enter the queue, doorway ends
7 pred.next := qp.qnode // notify your predecessor
8 predP id := pred.pid

9 if CAS(pred.status, predP id, ZERO) = false then
10 await (qp.locked 6= true) fi // wait for your predecessor’s signal

Critical Section
Exit Code:

11 qp.qnode.status := p // notify successor it can enter its CS
12 if qp.qnode.next 6= NIL then // if you have a successor
13 if CAS(qp.qnode.status, p, ZERO) then
14 qp.qnode.next.local.locked := false fi fi // notify successor it can enter its CS
15 qp.qnode := pred // use predecessor’s node for the next iteration

We start with the entry code. In lines 1-5, p initializes its node. Notice p initializes all
of its fields except qp.qnode, which was already initialized before the execution began. In
line 6, p executes fetch-and-store to enter the queue. p gets T ’s value, which points to the
last item in the queue (which is also p’s predecessor), and assigns its qnode to T . Notice
that p assigns only its nodep to T , while qp can be accessed via nodep if needed. This is the
end of the doorway. In line 7, p notifies its predecessor that p is its successor. In line 8,
p copies its predecessor’s process ID to a local variable, to be used as an argument to the
compare-and-swap operation later. In line 9, p checks whether its predecessor has already
signaled p to enter its critical section. The predecessor does it by assigning its process ID to
its status in line 11. If the predecessor already assigned its process ID but did not change it
back to ZERO yet (line 13) then the compare-and-swap succeeds and p can enter its critical
section. If it fails, p continues to line 10 and starts spinning locally on its locked variable,
waiting for it to change to false so it can enter its critical section.

OPODIS 2017



17:14 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

Next we explain the exit code. In line 11, p assigns its process ID to its status variable,
and signals its potential successor that it can enter its critical section. In line 12, p checks
whether it has a successor. If next equals NIL it doesn’t have a successor and it continues
to line 15. If next is not NIL, it means that some process q already assigned itself as p’s
successor at line 7. In such a case, p continues to line 13, checking whether q has already
executed line 9 and let itself enter its critical section. If q executed line 9 and q’s compare-
and-swap ended successfully, p’s compare-and-swap in line 13 fails and p continues to line
15. If p’s compare-and-swap ends successfully, it means q hasn’t entered its critical section
yet. Since p assigned ZERO to its status in line 13, p must let q enter its critical section by
setting locked to false, and does so at line 14. In line 15, p assigns its predecessor’s node to
itself, and leaves its node to its successor. On p’s next iteration, it will use its predecessor’s
node, thus p will not override the status in its previous node when initializing its qnode at
the beginning of its next iteration. Therefore, p’s successor will be able to read and use p’s
status when needed and find out that it can enter its critical section.

4.3 Further explanations
In order to better understand the algorithm, we explain below several crucial design issues.
1. Do we really need to explicitly assume that the processes have unique identifiers? No, this

is done only to simplify the presentation. In the first algorithm, it is not assumed that
processes have unique identifiers. However, each process p has two unique memory nodes
qp[0] and qp[1], and it is possible to consider &qp[0] as the unique identifier of process p.
Similarly, in algorithm 2, the value of the pointer qp is a unique number which can be
used as process p’s unique identifiers. That is, in Algorithm 2, it is possible to replace p

with qp (assuming qp 6= 0) everywhere (i.e., in lines 2,11,13). This implies that also in
Algorithm 2 there is no need to explicitly assume that processes have unique IDs.

2. How does a process that does not need to spin know that it is at the head of the queue?
Whenever the values of the status field and of the pid field, of the first node (i.e.,
the dummy node) in the queue are equal, the process its node is the successor of the
dummy node can safely enter its critical section. Initially, node0 is the dummy node and
node0.status = node0.pid = 0, thus, the first process that threads itself into the queue,
can immediately enter its critical section. Also, when a process, say p, completes its
critical section, it always leaves its current node in the queue and takes ownership of the
node of its predecessor (which is the dummy node). Thus, its current node becomes the
new dummy node with both status and pid fields equal p, which will not block the next
process in line, since the compare-and-swap operation in line 9 would succeed.

3. Can’t we simply use UNLOCKED in lines 2,11 and 13, as done in algorithm 1, instead
of using the unique process identifier p? No, this is crucial for avoiding deadlocks. We
explain it by example. Consider the following scenario: There are two processes, p and q.

p starts first and enters its critical section;
q starts, run until after line 7 and becomes p’s successor in the queue;
p executes the code until after line 12. Since next 6= NIL, p enters the if statement;
q continues and enters its critical section;
q continues, finishes its exit code and takes p’s current qnode for its next iteration;
q starts its entry code, and executes until after line 11; p and q has the same qnode!

Now, here is the difference between using process identifiers and UNLOCKED: p continues,
When process identifiers are used, the compare-and-swap operation in line 13 fails and
p takes its predecessor’s qnode for its next iteration and completes its exit code.



R. Dvir and G. Taubenfeld 17:15

When UNLOCKED is used, the compare-and-swap operation in line 13 succeeds for p

and the shared qnode for p and q now contains the status ZERO. p will continue to
line 14, and p will complete its exit code. q executes its exit code and since it has no
successor, it skips lines 12-14 and exits. We got into a situation where the queue is
empty, and T points to a dummy node with status value ZERO! The next process to
enter will be spinning in line 10 forever.

The structure of the correctness proof of Algorithm 2 is similar to that of Algorithm 1.

5 Related Work

Mutual exclusion algorithms were first introduced by Edsger W. Dijkstra in [3]. Since
then, numerous implementations have been proposed [15, 7, 17]. The first queue-based
local-spinning mutual exclusion algorithms for the CC model were presented in [1, 6]. The
algorithm from [1] used the fetch-and-increment operation, while the algorithm from [6]
used the fetch-and-store (swap) operation. In these two algorithms different processes
may spin on the same memory location at the different times. Their RMR time complexity
in the CC model is a constant, while their time complexity in the DSM model is unbounded.

The famous MCS algorithm is from [13]. Unlike the previous two algorithms, the MCS
algorithm satisfies local spinning in both the CC model and the DSM model. In [9], a simple
correctness proof of the MCS lock is provided. An extension of the MCS Algorithm that
solves the readers-writers problem is presented in [14]. In [16] queue-based algorithm is
presented, which uses unbounded space, in which it is possible for a spinning process to
“become impatient” and leave the queue before acquiring the lock. A recoverable version of
the MCS algorithm, in which processes can fail and recover, was presented recently [4].

Another queue-based lock was developed by Craig [2] and, independently by Magnusson,
Ladin and Hagersten [11, 12]. As the MCS lock, the queue is implemented as a linked list,
but with pointers from each process to its predecessor. The algorithm uses fetch-and-set
operations and may outperform the MCS lock on cache-coherent machines. Its time complexity
in the CC model is a constant, while its time complexity in the DSM model is unbounded.

A variant of the above algorithm from [2], with constant time complexity in both the
CC and the DSM models was presented in [2]. For this variant to work, it must be assumed
that all allocated pointers point to even addresses. This assumption enables to pack two
shared registers into a single 32-bit word so that it is possible to atomically swap the two
registers as a unit. In [10], four local-spin mutual exclusion algorithms for the DSM model
using fetch-and-set operations were presented; all these algorithms use arrays of fixed size,
assume that the number of processes is a priori known, and are not suitable for a model
where processes may appear or disappear intermittently.

6 Discussion

We have presented two new mutual exclusion algorithms, that overcome a drawback of the
famous MCS algorithm, while preserving its simplicity, elegance and properties. It would be
interesting to design additional new algorithms, which would be based on our algorithms,
that implement other types of locks, such as readers-writers locks [14], abortable locks [8, 16]
and recoverable locks [4, 5], and would have constant RMR complexity, satisfy the wait-free
exit code property and other desired properties.

OPODIS 2017



17:16 Mutual Excl. Algorithms with Constant RMR Complexity and Wait-Free Exit Code

References
1 T. E. Anderson. The performance of spin lock alternatives for shared-memory multiproces-

sor. IEEE Trans. on Parallel and Distributed Systems, 1(1):6–16, January 1990.
2 T.S. Craig. Building FIFO and priority-queuing spin locks from atomic swap. Technical

Report TR-93-02-02, Dept. of Computer Science, Univ. of Washington, February 1993.
3 E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications

of the ACM, 8(9):569, 1965.
4 W. Golab and D. Hendler. Recoverable mutual exclusion in sub-logarithmic time. In

Proceedings of the 2017 ACM Symposium on Principles of Distributed Computing, pages
211–220, 2017.

5 W. Golab and A. Ramaraju. Recoverable mutual exclusion. In Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, pages 65–74, 2016.

6 G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiproces-
sors. IEEE Computers, 28(6):69–69, June 1990.

7 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers, 2008. 508 pages.

8 P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proc. 22nd ACM Symp.
on Principles of Distributed Computing, pages 295–304, July 2003.

9 T. Johnson and K. Harathi. A simple correctness proof of the MCS contention-free lock.
Information Processing Letters, 48(5):215–220, 1993.

10 H. Lee. Local-spin mutual exclusion algorithms on the DSM model using fetch&store
objects. Mater thesis, University of Toronto, 2003.

11 P.S. Magnusson, A. Landin, and E. Hagersten. Efficient software synchronization on large
cache coherent multiprocessors. Technical Report T94:07, Swedish Institute of Computer
Science, February 1994.

12 P.S. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent multiproces-
sors. In Proc. of the 8th International Symposium on Parallel Processing, pages 165–171,
April 1994.

13 J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. on Computer Systems, 9(1):21–65, 1991.

14 J.M. Mellor-Crummey and M.L. Scott. Scalable reader-writer synchronization for shared-
memory multiprocessors. ACM SIGPLAN Notices, 26(7):106–113, 1991.

15 M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986. Translation of: Algo-
rithmique du parallélisme, 1984.

16 M.L. Scott. Non-blocking timeout in scalable queue-based spin locks. In Proc. 21th ACM
Symp. on Principles of Distributed Computing, pages 31–40, July 2002.

17 G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, 2006. ISBN 0-131-97259-6, 423 pages.


	Introduction
	Preliminaries
	Computational model
	Mutual exclusion
	Counting Remote Memory References

	The First Algorithm
	An informal description
	The code of the algorithm and a detailed description
	Further explanations
	Correctness proof

	The Second Algorithm
	An informal description
	The code of the algorithm and a detailed description
	Further explanations

	Related Work
	Discussion

