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—— Abstract

The amortized step complexity of an implementation measures its performance as a whole, rather
than the performance of individual operations. Specifically, the amortized step complexity of an
implementation is the average number of steps performed by invoked operations, in the worst case,
taken over all possible executions. The amortized step complexity of a wide range of known lock-
free implementations for shared data structures, like stacks, queues, linked lists, doubly-linked
lists and binary trees, includes an additive factor linear in the point contention—the number of
processes simultaneously active in the execution.

This paper shows that an additive factor, linear in the point contention, is inherent in the
amortized step complexity for lock-free implementations of many distributed data structures,
including stacks, queues, heaps, linked lists and search trees.
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1 Introduction

Evaluating the complexity of lock-free implementations, in which an operation may never
terminate, is best done through their amortized step complexity, defined as the average
number of steps performed by invoked operations, in the worst case taken over all possible
executions [12]. Amortized step complexity measures the performance of the system as a
whole, rather than the performance of individual operations.

Ruppert [12] defined this complexity measure and observed that upper bounds on the
amortized step complexity of a wide range of lock-free implementations of shared data
structures has an additive factor of ¢(op); ¢(op) is the point contention during an operation
op, namely, the number of processes simultaneously active during the execution interval of
op. These objects include stacks and queues [14], linked lists [6], doubly-linked lists [13] and
binary search trees [5]. Ruppert asks whether the additive factor of ¢(op) in the expression
for amortized step complexity for lock-free distributed data structures is inherent.
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This paper answers this question in the affirmative, for a wide range of shared data
structures, in particular, stacks, queues, heaps, linked lists and search trees. We prove two
classes of lower bounds.

The first, bounds the amortized number of Remote Memory References (RMRs) and it is
done by reduction to a variant of the set object, called sack. A sack supports two operations:
one operation adds an element, while another atomically removes an element and returns it
(returning L if the sack is empty). We prove that the amortized RMR complexity of any
implementation of a sack using reads, writes and conditional primitives (such as CAS), is at
least €2(¢). The proof is by reduction to the lower bound for mutual exclusion [10], which
we extend to hold for amortized step complexity. We show that several shared objects (i.e.,
stacks, queues and heaps) can easily be used to implement a sack with an O(1) additional
cost. This proves that the amortized RMR complexity of these shared objects is also at least
Q(¢), when the point contention is in O(y/loglogn).

We prove another set of lower bounds on the amortized step complexity of monotone
objects that do not support an atomic remove operation. The proof holds for data structures
that are implemented by a connected graph of nodes, like linked lists, skip lists or search
trees. The proof is more self-contained, but it bounds only the step complexity—a measure
that is larger than the RMR complexity. The lower bound of Q(¢) for the amortized step
complexity holds for implementations using 1-revealing primitives, a class including reads,
writes, LL/SC, test&set and CAS [3].! The lower bound holds when the point contention is
in O(loglogn).

Ruppert [12] provides analysis showing that the known lock-free implementations of
stacks and queues [14] have O(¢(op)) amortized step complexity. In addition, he also observes
that:

The search, put and delete operations of the linked-list implementation presented in [6],

have O(n(op) + ¢(op)) amortized step complexity, where n(op) is the number of the

elements in the list when operation op is invoked.

The amortized step complexity of the search, put and delete on a non-blocking binary

tree [5] is O(h(op) + ¢(op)), where h(op) is the height of the tree at the beginning of the

operation op.

The amortized step complexity of put and delete in a doubly-linked list [13] is O(¢(op)).

The wait-free union-find implementation [2] has O(a(n)+¢(op)) amortized step complex-

ity, where n is the number of elements in the sets and «(n) is the inverse of Ackermann

function.

Our lower bounds show that the ¢(op) component in the amortized step complexity of
these implementations is inherent, except perhaps for the last one, the wait-free union-find,
which remains an interesting open problem.

2 The Computation Model

In the asynchronous shared-memory model [10], n processes, pg,...,Pn—1 communicate by
applying primitive operations (in short, primitives) to shared memory registers. Initially,
all shared registers hold the value 1. A process is described as a state machine, with a set
of (possibly infinitely many) states, one of which is a designated initial state, and a state
transition function.

Using primitives with more revealing power one can get a more efficient implementation of monotone
objects. For example, using swap primitive that is m/2-revealing [3], it is possible to implement an add
operation for a monotone linked list with O(1) step complexity.
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The executions of the system are sequences of events. In each event, based on its current
state, a process applies a primitive to a shared memory register and then changes its state,
according to the state transition function. An event ¢ in which a process p applies a
primitive op to register R is denoted by a triple (p, R,op). An execution « is a (finite or
infinite) sequence of events ¢g, ¢1, P2, .... There are no constraints on the interleaving of
events by different processes, reflecting the assumption that processes are asynchronous.
The value of variable v after « is denoted val(v, ). Without loss of generality, we assume
that the value of a shared register is never set to L during an execution.

For an execution « and a set of processes P, a|p is the sequence of all events in a by
processes in P; alp is the sequence of all events in « that are not by processes in P. If
P = {p}, we write af, instead of a|s,; and af instead of a|m. An execution «a is P-only
if @ = a|p, and it is P-free execution if o = a|p.

The basic primitives are read and write: A read(R) primitive returns the current value of
R and does not change its value. A write(v, R) operation sets the value of R to v, and does
not return a value. Every process can read from or write to every register, i.e., registers are
multi-writer multi-reader. A compare&swap (or CAS for short) primitive works as follows.
If the register R holds the value v, then after CAS (R, v, u) the state of R is changed to u
and true is returned (the CAS succeeds). Otherwise, the state of R remains unchanged and
false is returned (the CAS fails).

An implementation of a high-level object provides algorithms for each high-level opera-
tion supported by the object. Some transitions are requests, invoking a high-level operation,
or responses to a high-level operation. When a high-level operation is invoked, the pro-
cess executes the algorithm associated with the operation, applying primitives to the shared
registers, until a response is returned.

Let o be a finite prefix of an execution a. Process p; performing a high-level operation
op is active at the end of o, if o/ includes an invocation of op without a return from op.
The set of the processes active at the end of o’ is denoted active(a’). The point contention
at the end of o/, denoted ¢(a), is |active(a)|.

Consider an execution « of an algorithm A implementing a high-level operation op.
For process p; executing operation op;, step(A,«, op;) is the number events by p;, when
executing op; in a. The step complexity of A in «, denoted step(A, ), is the maximum of
step(A, a, op;) over all operations op; of all processes p;.

The amortized step complexity of A in an execution « is the total number of shared-
memory events performed by all the operations initiated in « (denoted initiated(c)) divided
by the number of invoked operations:

2 op,cinitiated(a) step(A, a, op;)

amortizedStep(A, o) = lindtiated()|

The amortized step complexity of A is the maximum of amortizedStep(A, «) over all possible
executions « of A:

amortizedStep(A) = max{amortizedStep(A, o)}
[0

Consider a bounded function S : N'— AN. The step complexity of an algorithm imple-
menting operation op is S-adaptive to point contention if for every execution a and every
operation op; with interval 3;, step(A, o, op;) < S(¢(B;)). That is, the step complexity of an
operation op; with interval §; is bounded by a function of the point contention during g;.

Similarly, the amortized step complexity of an algorithm A is S-adaptive to point con-
tention if for every execution «, amortizedStep(A,a) < S(¢(«)). That is, the amortized
step complexity of algorithm A in an execution « is bounded by a function of the point
contention during c.
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In this paper, we consider only the cache-coherent (CC) model. In the CC model, each
process has a local cache in addition to shared memory. A shared variable accessed by a
process is loaded to its local cache and remains locally accessible to the process until it is
modified by another process. Such a modification results with an update or an invalidation
of the cached variable, according to some cache-consistency protocol.

In many mutual-exclusion algorithms, a process busy-waits by repeatedly testing one or
more local “spin variables”. For such algorithms the number of shared memory operations
may be unbounded. Instead of counting the shared-memory operations, we count the number
of remote-memory-references (RMR) generated by the algorithm [1]. The RMR complexity
counts only events that cause process-memory interconnection traffic, and ignores events in
busy-wait loops on unchanged local variables.

Consider an execution prefix o/¢ of a, where ¢; = (p;, v, op;). Following [10], ¢; is an
RMR event if ¢; is the first event in « in which p; accesses v (that is, p; does not access v
in o) or ¢; is the first event in « in which p; accesses v after v was modified by another
process (that is, the last event in o/ that modifies v is performed by a process p; # p;).

The definition of RMR complezity is the same as the definition of step complexity, except
that we count only RMR events. Similarly, the definition of amortized RMR complexity is
the same as the definition of amortized step complexity, counting only RMR events.

3 Lower Bound for Sack Implementation and Related Objects

In this section we define a variation of set object, called sack, and use it to implement
mutual exclusion with additional O(1) cost (Algorithm 1). Then we show that sack can be
implemented from queues, stacks and heaps with additional O(1) cost (Lemma 7). An Q(¢)
lower bound for all these data structures then follows from the (¢) lower bound for mutual
exclusion [10], which we extend to amortized RMR complexity (Appendix A).
A sack object supports the put and draw operations, with the following specification:
S.put(v) adds element v to the sack S
S.draw() removes an arbitrary element from the sack S, and returns the removed element.
Note that we do not specify what element should be removed. If before the invocation
of the operation the sack is empty, the operation returns L.

The mutual exclusion algorithm shown in this section uses a sack object combined with
a few additional CAS and R/W variables. A process can enter the critical section either
through a fast lane, winning the mutual exclusion associated with a CAS variable fastLane,
or through a waiting room, implemented using a sack object waitingRoom. After passing the
fast lane or the waiting room, a process has to win a 2-process mutual exclusion implemented
with a CAS variable gate, in order to enter the actual critical section (see Figure 1).

In more detail (see Algorithm 1 in the appendix), to enter the critical section, process p;
sets wants[id;] to TRUE, and adds itself to the set of the waiting processes (Line 1.3). Then
it tries to win the fast lane, performing a CAS on the fastLane variable (Line 1.4). If the
CAS succeeds and p; successfully writes (OCCUPIED, id;) to fastLane, then p; accesses the
gate mutual exclusion from the fast lane side (Line 1.9). If CAS on fastLane fails (Line 1.4),
then p; busy waits until privateGate[id;] becomes OPEN (Line 1.7), and then it accesses the
gate mutual exclusion from the waiting room side (Line 1.9).

In the exit section, p; sets its variable wants[id;] to FALSE (Line 1.12) to indicate to other
processes that it is not interested to enter the critical section and thus does need help. To
complete clean-up, p; sets privateGate[id;] to CLOSED (Line 1.13). If p; previously entered
gate mutual exclusion through the fast line (in this case fastLane = (OCCUPIED, id)), then
it resets fastLane to OPEN performing a CAS (Line 1.14).
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Figure 1 Mutual exclusion using a sack object and CAS presented in Algorithm 1.

Then p; tries to promote one of the processes from waitingRoom to enter the critical
section. The R/W variable promoted is used to keep track of the promoted process. If in the
exit section p; finds promoted equal to its own id;, then p; resets promoted to L (Line 1.16).
If p; finds no promoted process (promoted = 1, Line 1.18), then p; repeatedly removes a
process from waitingRoom, until it finds a process next that is still interested to enter the
critical section, or until waitingRoom is empty (Line 1.20). If the removed process next is
still interested to enter the critical section (wants[next] = TRUE), then p; promotes this
process by setting promoted = next (Line 1.22), and opens the next’s private gate by setting
privateGate[next] = OPEN (Line 1.23). Finally, p; releases the critical section associated
with gate by setting gate to TRUE (Line 1.26).

Below we prove the correctness and bound the RMR complexity of Algorithm 1.

The mutual exclusion property of the algorithm follows from the mutual exclusion prop-
erty of the gate block (Figure 1). A process p; enters critical section only after successful
CAS that sets gate to CLOSED (Line 1.9) and resets gate to OPEN, when it releases the
critical section (Line 1.26). Therefore, no two processes may be simultaneously inside the
critical section.

The following definition of a promoted process is used in the proof of deadlock freedom
and in the analysis of the RMR complexity of the algorithm.

A process p; is promoted if privateGate[id;] = OPEN. The next lemma shows that at
most one process is promoted at any point.

» Lemma 1. At any point of execution, if privateGate[id;] = OPEN, then promoted = id;.

Proof. Initially, for every process p;, privateGate[id;] = CLOSED and the lemma trivially
holds.

Suppose that the lemma holds for an execution prefix o', and let p; be the first process
that modifies privateGate after o’. Before p; sets privateGate[next] = OPEN in its exit
section (Line 1.23), p; sets promoted = next (Line 1.22). By the mutual exclusion property
of the algorithm, these steps are performed by p; in exclusion, and the lemma holds. |

The following technical lemma is used to prove that the algorithm has no deadlocks.

» Lemma 2. Let exit; be the execution interval corresponding to the exit section of a process
pi- Then one of the following holds:

16:5
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(a) at the end of exit; there is a promoted process p;, or
(b) pi’s invocation of waitingRoom.draw() returns L (Line 1.19).

Proof. If p; reads promoted = id; # L (Line 1.18), then by Lemma 1 and the mutual
exclusion property, privateGatelid;] = OPEN at this point, and p; remains to be promoted
until the end of exit;. In this case, condition (a) holds.

If p; reads promoted = L (Line 1.18), and succeeds to set privateGate[next] = OPEN
(Line 1.23) then process next is promoted at this point, and it remains promoted until the
end of exit;, and condition (a) holds.

If p; reads promoted = L (Line 1.18) but it does not perform privateGate[next] = OPEN
(Line 1.23), then waitingRoom.draw() returns L (Line 1.19), implying condition (b). <

The next lemma proves the deadlock-freedom property of the algorithm. For simplicity,
we assume that each process enters the critical section at most once. Since the lower bound
presented in [10] holds for one-shot mutual exclusion, this suffices for our proof.

» Lemma 3. Algoritm 1 is deadlock-free.

Proof. Suppose that there is an execution a with prefix o/, such that after o/ there is a
process p; in its entry section, and from that point on no process ever enters the critical
section in .

If p;’s CAS on fastLane succeeds (Line 1.4), then p; waits on the gate variable (Line 1.9).
This is a contradiction, since no process remains in the critical section associated with gate
forever.

Therefore, p; loses the fastLane in Line 1.4 and remains in waitingRoom forever, waiting
for privateGatelid] to be OPEN (Line 1.7).

Since p;’s CAS on fastLane fails, another process p; wins fastLane in its enter section
(Line 1.4) before p;’s CAS, and releases fastLane in its exit section (Line 1.14) after p;’s CAS.
Process p; performs waitingRoom.draw() (Line 1.19) after it releases fastLane (Line 1.14).
By assumption, p; remains in waitingRoom forever, and therefore, the waitingRoom.draw()
invocation of p; (Line 1.19) does not return L.

Therefore, statement (a) of Lemma 2 holds, implying that some process py, is promoted
at the end of p;’s exit interval. Eventually, p, accesses the gate mutual exclusion after it
reads privateGate[k] = OPEN (Line 1.23) or wins the fastLane (Line 1.4). Since gate mutual
exclusion has no deadlocks, eventually some process enters the critical section after o/, which
is a contradiction. <

Now we show that at any point, at most one process can access the gate mutual exclusion
from the fast lane, and at most one process from the waiting room side (Figure 1). This
implies that the gate mutual exclusion has constant RMR complexity (in addition to the
RMR complexity of the sack implementation for waitingRoom).

» Definition 4. A process p; is on fast lane if and only if fastLane = (OCCUPIED, id;).?

By the semantics of CAS and induction on the execution order, we have the following
lemma:

» Lemma 5. The execution intervals in which different processes p; and p; are on fast lane
are disjoint.

2 That is, p; is on fast lane after it successfully sets fastLane to (QCCUPIED, id;) (Line 1.4) and before
it successfully resets fastLane to EMPTY (Line 1.14) in the exit section.
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Lemma 5 implies that at any point, at most one process accesses gate mutual exclusion
from the fast lane, and Lemma 1 implies that at most one process accesses the gate mutual
exclusion from the waiting room. We have that at most two processes simultaneously access
the gate mutual exclusion and therefore, waiting for gate (Line 1.9) has a constant amortized
RMR complexity (each event that generates RMR can be charged to a successful entry to
the gate critical section). Each process is added and removed from the waiting room sack
at most once, and the rest of the operations in the entry and exit sections have a constant
RMR complexity. This implies:

» Lemma 6. Given an implementation of sack with O(f(¢)) amortized RMR complexity.
Then there is a mutual exclusion algorithm with O(f(¢)) amortized RMR complexity, using
in addition, R/W and CAS.

The following lemma shows that sack can be implemented from several shared objects,
with a constant additional cost:

» Lemma 7. The following data structures: queues, stacks and heaps, can be used to im-
plement the sack object operations with O(1) additional steps.

Proof. (a) queue operations enqueue and dequeue trivially implement the put and draw
operations of sack; (b) stack operations push and pop trivially implement the put and draw
operations of sack; (c¢) heap operations add and removeMax trivially implement the put and
draw operations of sack. |

Theorem 20 (presented in Appendix A), Lemma 6 and Lemma 7 imply the next theorem:

» Theorem 8. Any implementation of queues, stacks and heaps, from reads, writes and
conditional primitives has at least Q(¢) amortized RMR complexity.

4 Lower Bounds for Graph-Based Set Implementations

This section defines graph-based implementations of the set object (denoted graph-based-set),
and proves that any implementation of graph-based-set from 1-revealing primitives has an
Q(¢) amortized step complexity. This is a generalization of data structures that can be rep-
resented by a connected graph of nodes, like linked lists, skip lists or search trees. The lower
bound on the amortized step complexity of graph-based-set holds also for implementation of
these data structures.

To emphasize the nature of the data structures based on a connected set of nodes,
this section assumes the following memory model. Each shared variable contains one data
structure node, which has a data field and a constant number d of pointers connecting it
to other nodes (Figure 2). A process can read or modify all the components of a node in a
single computational step.3

The state of the shared memory after an execution prefix a can be represented by a
memory graph G(a) = (V, E), where V is set of the shared variables in the system, and
there is an edge v; — v; € F if and only if after «, the shared variable corresponding to
v; € V contains a pointer to the shared variable corresponding to v; € V.

3 Many known implementations of linked data structures use a separate variable for each node com-

ponent, and a fixed memory offset to access different components of the node. These implementations
can be converted to graph-based-set preserving the asymptotic step complexity, by replacing each data
structure node with a linked list of graph-based-set nodes, having a separate node for each component.
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VO
C NN
Head Data
Lo o]
Data Data

Figure 2 A graph-based representation of a set. Each node of the graph is stored in a separate
shared variable v; and contains a data field and a constant number of pointers. The pointers between
the nodes form the edges of the graph. An element v; is in the set iff it can be traced following the
pointers starting from the head node.

A graph-based-set implementation specifies a special node, head, and supports one oper-
ation, add(e), which adds an element e to the set. It should satisfy the following invariant:

an element e is in the graph-based-set S after an execution prefix « if and only if there

is a directed path from S.head to a node v with v.data = e, in the memory graph G,.

Many linked-list and tree-based set implementations [4,7-9,11,16] satisfy this invariant.
In contrast to the RMR lower bound of Section 3, the lower bound for graph-based-set only
requires an add operation, and does not rely on an atomic remove operation.

We construct an execution of 3k processes, in which each process p; invokes add(id;) to
add its id to the set. We show that these 3k processes collectively perform Q(k?) steps,
implying that any implementation of graph-based-set has at least Q(k) = Q(¢) amortized
step complexity. The proof uses a technique similar to the Q(¢) lower bound on the step
complexity of adaptive collect [3].

We construct the execution in rounds, maintaining two disjoint sets of processes, the
inwvisible set P, initially containing all processes, and the wvisible set W, initially empty.
Intuitively, invisible processes are not aware of each other and do not detect each other’s
operations, while visible processes are possibly aware of other processes or vice versa.

In round r, each process that is still invisible after the previous round performs its next
event. These steps are scheduled so that after each round, at most 2 invisible processes
become visible. These processes cannot be erased from the execution. Instead, they are
stopped and take no steps in the later rounds. Some of the other invisible processes are
retroactively erased from the execution in order to keep the remaining processes invisible
after round r.

In each round, at most one process succeeds to add its id to the graph-based-set, and
at least k processes are invisible after k£ rounds. Since in each round each invisible process
takes one step, in k rounds the last k invisible processes collectively perform Q(k?) steps,
implying an Q(¢) lower bound on the amortized step complexity.

To guarantee that a process p; remains invisible during the execution, we need to show
that no other invisible process reads information stored by p;, and that p; does not modify
any variable previously modified by another invisible process. Otherwise, p; cannot be erased
from the execution without affecting other processes. To formalize the notion of variables
affected by a process, we define a set of evidence variables. Intuitively, the evidence variables
of process p; are the variables that may contain “traces” of p;’s events, so that the values of
these variables may change if p;’s events are deleted from the execution.
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» Definition 9 (Evidence Set of Variables). The evidence set of process p after execution
a, denoted evidence(p, ), is the set of the variables v whose values at the end of a would
change if the events of p are deleted from «, that is,

evidence(p, a) = {v | val(v, a) # val(v, olp)}
For a set of processes P, evidence(P, o) = Upep evidence(p, cv).

Now we define the notion of a set of processes that are invisible to each other. Intuitively,
erasing any subset of an invisible set of processes is undetectable by the remaining invisible
processes. To facilitate the inductive construction, we require some additional properties.

» Definition 10 (Invisible Set of Processes). A set P of processes is invisible in an execution
«a if the following hold:

(a) for any subset @ C P, processes P \ ) get the same responses in the executions o and

algs

(b) for any subset @ C P, and for any process p € P\ Q, evidence(p, o) = evidence(p, a|§);
(c) for any pair of processes p,q € P, evidence(p, «) N evidence(q, o) = ().

The corresponding set of wvisible processes are the active processes in « that are not in P,
ie., W = active(a) \ P.

Definition 10(a) means that erasing any subset @ of the invisible processes P is undetect-
able to the remaining invisible processes in P \ Q. Property (b) implies that erasing any
subset @ of invisible processes P does not affect the evidence sets of the remaining invisible
processes P\ @Q; it prevents an invisible process p € P from modifying a variable previously
modified by another invisible process ¢ € P, and ensures that erasing p will not make ¢
visible. Property (c) states that the evidence sets of invisible processes are disjoint, so each
variable belongs to evidence set of at most one process.

The next lemma (proved in [3]) states that after erasing any subset of an invisible set
from an execution, the remaining processes still form an invisible set.

» Lemma 11. If a set of processes P is invisible in an execution o, then for every subset
Q C P, the subset (P \ Q) is invisible in ag.

The following definitions of accessible variables and accessible processes are used to bound
the size of the underlying graph of graph-based-set.

» Definition 12 (Accessible Variables). A shared variable v is an accessible variable of a
process p; after an execulion prefix «, if there is a variable vy € evidence(p;, ), and there is
a directed path from v to v in the graph G, (Figure 3(a)).

The set of the accessible variables of p; after « is denoted accessibleVariables(p;, o).

» Definition 13 (Accessible Variables of a graph-based-set). The accessible variables of a
graph-based-set S after execution prefix «, denoted accessibleVariables(S, ), is the set of
variables v such that after « there is a directed path from S.head to v in the memory graph
G, (Figure 3(b)).

» Definition 14 (Accessible Processes of a graph-based-set). The accessible processes of a
graph-based-set S after execution prefix o, denoted accessibleProcesses(S, «), are those whose
evidence variables are in the set of the accessible variables of S :

accessibleProcesses(S, o) = {p; : evidence(p;, o) N accessibleVariables(S, ) # 0}

16:9
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Pi S
evidence(p) E

S.head

accessibleVariables(p) accessibleVariables(S)
(a) (b)

Figure 3 (a) The accessible variables of process p; are the shared variables that can be accessed
through a directed path in the memory graph Ga, starting from a variable in evidence(p;, o). (b)
The accessible variables for a graph-based-set S are the shared variables that can be accessed through
a directed path in the graph G, starting from S.head.

Assume, without loss of generality, that a constant number of primitive types Op,
Opy, ..., Op,_ is used, and each process applies primitives cyclically in this order during its
execution. That is, in its i-th step the process performs a primitive of type Op; o4+ Any
algorithm may be modified to follow this rule, by introducing dummy steps of the required
type. This increases the step complexity of the algorithm by a constant factor ¢, since the
algorithm uses a constant number of primitive types, and does not affect the asymptotic
step complexity.

Intuitively, the next definition implies that the events of invisible processes accessing the
same variable v with the same primitive Op can be ordered in such a way that at most m
of these processes are revealed, while the rest of the processes remain invisible.

» Definition 15 (m-Revealing Primitives [3]). Suppose that a set of processes P is invisible
in an execution « and consider a variable v € evidence( P, ). Suppose that there is a subset
P, C P of k processes whose next events ¢1, ..., ¢, apply the same primitive Op to the
variable v:

Vp € Py : next_event(p,a) = (p,v, Op)

We say that the primitive Op is m-revealing, for m > 0, if there is a permutation 7 of the
next events ¢1, ..., ¢ and a subset P, C Py of size < m, such that (P \ P,,) is invisible in
QT.

The next lemma provides the induction step for the lower bound proof, leading to a new
invisible set P,.y1, a corresponding visible set W,.;1 and a new state of the graph-based-set
S. Our goal is to keep the invisible set P11 as large as possible, and the graph-based-set S
as small as possible, in order to carry out the induction for as long as possible.

» Lemma 16. Suppose that there is an execution o, such that:

(a) there is an invisible set P, of size |P.| = m, > 2 and a corresponding visible set W, of
size |Wy| = wy;

(b) each process p; € P, performs exactly v steps in a.;

(c) for every pair of processes p;,p; € P,
accessibleVariables(p;, ;) N accessibleVariables(p;, o) = 0;
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(d) for each process p; € P, |evidence(p;, a,)| < r and |accessibleVariables(p;, o) < r(d+
1) (recall that d is the number of pointers that can be stored in a shared variable);

(e) for the graph-based-set S, |accessibleProcesses(S, a,.)| < r and
|accessibleVariables(S, o.)| = %.

Then there is an execution au,.41 such that after c,41:

My

3403 and a corresponding visible set

(al) there is an invisible set P,.y1 of size myy1 >

Wiq1 of size w41 < wyp + 2
(b1) each process p; € P.y1 performs exactly v + 1 steps in qpi1;

(cl) for every pair of processes p;,p; € Py,

accessibleVariables(p;, ar11) N accessibleVariables(pj, ari1) = 0.
(d1) for every process p; € P.y1, |evidence(p;, ari1)| < r+1 and

|accessibleVariables(p;, ar41)| < (d+ 1)(r + 1);

(el) for the graph-based-set S, |accessibleProcesses(S, ar11)| < r+1 and

|accessibleVariables(S, ory1)| = w.

Proof. We show how to extend «, with one more round to obtain an execution a,.41, and
a set P.y1 invisible in .41, such that each process in P, performs (r + 1) steps in a;.41
and properties (al)—(el) hold.

By the induction hypothesis (e), |accessibleProcesses(S,a,)| < r. Hence, at most r
processes complete their add(id;) operations in .. Since the rest of the invisible processes
pi € (P \ accessibleProcesses(S, o)) do not complete their add(id;) operations in ., they
are poised to execute their next event ¢; = next_event(p;, o) in round r+1. By assumption
and property (b), all the events ¢1, ¢2, . .. of the processes P, in round r + 1 apply the same
1-revealing primitive.

Four issues must be addressed in order to keep many processes invisible and S small:

(1) Avoid conflicts between the events of round r+1 and the events performed in the previous
rounds that may violate the properties of invisible set. Otherwise, if process p; in round
741 accesses a variable in the evidence set of another process p;, then p; cannot be later
erased from the execution without affecting the execution of p;. To simplify the proofs,
we require not only the evidence sets of the invisible processes to be disjoint, but also
their accessible sets.

(2) Ensure that the accessibleVariables of the invisible processes are disjoint (c1). The last
two kinds of conflicts are eliminated using inductive hypothesis (¢) and applying Turdn’s
Theorem.

(3) Ensure there are no conflicts between events in round r + 1. These are eliminated by
using the properties of 1-revealing primitives.

(4) Keep the size of accessibleVariables(p;) small, for every invisible processes p;, in order to
keep the size of accessibleVariables(S) and accessibleProcesses(S) small.

(1) Eliminating conflicts with the previous rounds. Consider a wisibility graph G(V, E),
with vertices V' corresponding to the processes in P.. There are two kinds of edges in G
(see Figure 4): A solid edge p;, — p; € E exists if process p; accesses a variable v; €
evidence(p;, o), p; # pj, in round r + 1. A dashed edge p; --+ p; € E exists if a process
p; writes to a variable v; a pointer to a variable v; € accessibleVariables(p;, o), p; # p;, in
round 7 + 1.

We prove that for each process p;, there is at most one outgoing solid edge in the graph
Ga,.,- By Definition 10(c) of the invisible set P,., the evidence sets of the processes P, are
disjoint. Therefore variable v; belongs to evidence set of at most one process p; € P.. In
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Figure 4 Example of the visibility graph G(V, E) used in the proof of Lemma 16.

round r + 1, process p; accesses at most one variable v;. Therefore, for each process p; € V'
there is at most one outgoing solid edge p; — p; € E.

We also prove that for each process p;, there are at most d outgoing dashed edges
in Gy, i1
accessibleVariables(p;, o), for some process p; € P,. By inductive hypothesis (c), the
accessibleVariables of invisible processes are disjoint after «,.. Since each variable contains

If in round r, process p; writes to a variable v; a pointer to a variable v; €

at most d pointers, there are at most d such processes p;. This implies that for each process
pi, the graph G, , contains at most d outgoing dashed edges p; --» p; € E.
Therefore, |E| < (d+ 1)|V| and the average degree of G (as an undirected graph) is

Qg1
20E[/IVI <2(d+DV]/[VI < 2(d+1).

Next, we apply the Turdn’s theorem [15]:

» Theorem 17 (Turédn). Let G(V, E) be an undirected graph, where V is the set of vertices
and E is the set of edges. If the average degree of G is r, then G(V, E) has an independent
[V]

set with at least [m_‘ vertices.

It follows that G' has an independent set V' C V with at least [(2%3)-‘ vertices (rep-
resented by shaded circles on Figure 4). We leave the processes corresponding to V'’ in the
execution (along with the visible processes W, that cannot be erased), and erase all the
other invisible processes V' \ V’. That is, we define o/. = a,-|y uw,. By the construction of
V', if a process p € V' is about to access a variable v (in round r + 1 after o), then this
variable is not in the evidence set of any other process in V', and p; does not write to v a
pointer to a variable in the evidence set of another process in V’. Therefore, there are no
conflicts between the primitives of round r + 1 and the primitives of rounds 1,...,r.

It is still possible that two processes p,q € V' are about to access the same variable v
(not in the evidence set of any one of them) in round r + 1, violating Properties (a) and (b)
of an invisible set (Definition 10). Thus, in order to keep the set of the processes invisible,
we should eliminate conflicts between events in round r + 1. We do this separately for
processes that access the variables from accessibleVariables(S, «;.), and the processes that
do not access graph-based-set S.

(2) Eliminating conflicts between events in the same round. We next order the events
of round 7 + 1 for the processes that do not access S. Let M (V') be the set of the variables
accessed by the processes in V' in round r + 1. Note that by the construction of V', if
distinct processes p,q € V' access a variable v € M (V”), then v is not in the evidence set of
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variables M(V")

Figure 5 Induction step in the proof of Lemma 16.

any one of them. We use the properties of 1-revealing primitives to keep as many processes
in V' invisible as possible, revealing only a small fraction of them. Suppose that after «/. all

processes in V' are about to perform a 1-revealing primitive of type OP(r41) mod t-

Let v1 € M (V') be the variable that is accessed by the largest number of processes. In
round r + 1, we keep all the processes accessing the variable v1, and exactly one process for
each variable in M (V') \ {v1}. Let V" be the set of these processes (Figure 5). We define
Oé;/ = O‘HV”UWT .

Now we will define the sequence of the next events of processes V" for round r + 1.
Since V" C P, is invisible in «,, Lemma 11 implies that V" is invisible in /. Let
P1,1,P1,2,-- .01, € V" be the processes that are about to access variable vq by performing
events ¢1,1,¢1,2,...,¢1,. Note that all these events apply the same 1-revealing primitive
to v1. By Definition 15 of a 1-revealing primitive, there is a permutation m; of the events
1.1, P12, -, ¢1, such that after o//m, at most one of the processes p11,p1,2,...,D1,, say
p(v1), becomes visible while the others remain invisible. By Definition 15, all other processes
that are invisible in o/ are also invisible in a//m.

Finally, we schedule the events ¢, ,...,¢;, of the processes that access the variables
M(V')\ {v1}, obtaining the execution a,4+1 = &/'me;,,...,d;,, in which each process in
V" performs exactly r + 1 steps.

In the execution segment 7 defined above, only one process, p(v;), becomes visible,
while all other processes remain invisible. Consider the events ¢;,, ..., ¢;, scheduled at the
end of round 7 + 1. By the construction, there is exactly one process accessing each of the
variables M (V') \ {v1}, and after /71, none of these variables belongs to evidence set of
the processes in V”. Therefore, after a1 = o/m1¢;,,..., ;. , processes V" \ {p(v1)} form
an invisible set, denoted P,;.

(3) Bounding the size of the invisible set P, ; from below. Since |V’| processes access

’

|M(V")| different variables, on average, % processes access the same variable. Note
[V’

that the number of processes that access the variable vy is more than the average R
As shown above, all the processes accessing v, remain invisible except one process p(v;).
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Therefore, the number of invisible processes after the execution o417 is
Pl = V7~ 12 VL vy -2
11| = > .
(M (V)]
For simplicity of notation, denote |[M(V')| = x. Using this notation, the number of processes
l‘; L2 —2.
Differentiating by = and equating to 0, we get m;. ,(z) =
x = /|V'|. Therefore, m,41 is minimized with
V'l

vidl

Taking [V'| = m,./(2d + 3) implies m, 1 > 2, /575 — 2 > | /5745, showing property (al).

that are invisible after round 7 + 1 is m,41 >
_ v
IZ

+ 1 = 0, implying

+VV-2=2/]V|-2.

(4) Bounding the size of the evidence set and the accessible nodes set. In round
r 4+ 1, each invisible process p; performs one step at which it accesses at most one variable
v & evidence(p;, ). Therefore, in round r + 1, at most one new variable is added to
the evidence set of p;, and the size of the evidence set grows at most by 1, showing that
evidence(p;, ar41)| < 7+ 1, as required by the first part of property (d1).

By inductive hypothesis (c), no variable v; € accessibleVariables(p;, «,-) \ evidence(p;, «;.)
is in the evidence set of another process p;. Therefore, no such variable v; is modified by
any process in «,., it remains in its initial state | and does not contain a pointer to another
variable. This implies that for every variable v € evidence(p;, ), there are at most d
variables v; € (accessibleVariables(p;, ) \ evidence(p;, a.)) accessible from v. This implies

|accessibleVariables(p;, o) \ evidence(p;, a.)| < d - |evidence(p;, a)|

that is, |accessibleVariables(p;, a.)| < (d + 1) - |evidence(p;, )| < (d 4 1)(r + 1), implying
the second part of property (d1).

Finally, we show that the set accessibleVariables(S) can be kept relatively small, while
keeping enough processes invisible. Consider the processes Ps, C F,, whose computational
events in round 7 + 1 access a variable in accessibleVariables(S, o).

Let v be the node of graph-based-set S accessed by the largest number of processes in
Ps , in round r+1. We keep the processes accessing v (denoting them Pg ,+1), and erase the
rest of the processes (P, \ Ps,+1) from the execution. Since all the processes Pg, perform
the same 1-revealing primitive in round r + 1, by Definition 15, there is a permutation of
the computation events such that only one of these processes, p;, becomes visible, and the
rest remain invisible.

By induction hypothesis (d), |accessibleVariables(p;, )| < r(d + 1). Therefore, in
round r + 1, the size of accessibleProcesses(S,a,.) grows by at most 1, and the size of
accessibleVariables(S, o) grows by at most 7(d + 1), implying property (el) (Figure 6). By
inductive hypothesis (e),

H(d+1
|accessibleVariables(S, c.)| < rr+d+1)

Therefore,

|Ps| 2| Ps|

Poiy| >
Psral 2 |accessibleVariables(S, o)| — r(r+1)(d+1)

The number of processes accessing .S decreases more slowly than the number of other invisible
processes. Property (al) bounds from below the number of invisible processes after a;.11. <
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= accessibleVariables(p_i)
S.head

accessibleVariables(S)

Figure 6 Bounding the size of graph-based-set in Lemma 16.

By Lemma 16, the number of invisible processes after round r + 1 is m,41 > /5575.

To prove the lower bound on the amortized step complexity, we start with the empty
execution «q that satisfies the inductive hypothesis of Lemma 16 with the invisible set Py
containing all the n processes in the system. Then, we inductively construct execution «.
containing r rounds, using Lemma 16. We require that after ;. there are |P,.| = r invisible
processes, i.e., m, = r. Solving this recurrence, we get mo = (2d + 3)2&17‘27‘ = %.
Since d is a constant, the total number of the processes in the system should be n > mg =
Q(((2d 4 3)r)?"), or r = O(loglogn).

By Lemma 16(al), in each of r rounds of the execution «;., at most 2 process becomes
visible and stopped, and r processes remain invisible after a,.. The rest of the processes are
erased from the execution. Therefore, ¢(ay.) = | Py + |W,| < 3r = O(loglogn).

By Lemma 16(el), at most one process p; € P, completes its operation add(id;) in round
r, and each invisible process takes one step in each round, until it becomes visible. Therefore,
the total number of steps performed by the processes P, in «. is at least 7| P,| = r? = Q(¢?).

We have constructed an execution of ¢ processes that collectively take Q(¢?) steps. There-
fore, the amortized step complexity of an operation add is in Q(¢%/¢) = Q(¢é), provided the
contention of the execution is in O(loglogn). This implies the next theorem:

» Theorem 18. Any implementation of graph-based-set using any combination of 1-revealing
primitives has an execution of ¢ processes, each performing one add operation, such that the
processes collectively take (¢?) steps, implying that the amortized (and hence, worst-case)
step complexity of the add operation is Q(¢), provided ¢ € O(loglogn).

A data structure using a connected set of nodes is a graph-based-set, and therefore,
Theorem 18 implies the lower bound also for these data structures.

» Theorem 19. Any implementation of linked lists, skip lists, search trees and other data
structures based on graph-based-set, using any constant set of 1-revealing primitives, has an
execution of ¢ processes, each performing one add operation, such that the processes collect-
ively take Q(¢?) steps. Therefore, the amortized (and hence, worst-case) step complexity of
the implementation is Q(¢), provided ¢ € O(loglogn).
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Algorithm 1 Adaptive mutual exclusion using a set object and CAS

waitingRoom: a sack object, initially empty
promoted : a RW register, initially L
fastLane: CAS register, initially EMPTY
gate: CAS register, initially OPEN
privateGate|0, . ..n — 1]: initially CLOSED
wants|0,...,n — 1] : initially FALSE

1: procedure enterCS(id)

2 wants[id] = TRUE > announce that the process needs to enter CS

3 waitingRoom.put(id) > add itself to the set of the waiting processes

4: if CAS (fastLane, EMPTY, (OCCUPIED, id)) then > try to occupy the fast lane

5: continue > p; successfully passed the fast lane, continue to the gate mutual exclusion

6 else

7 wait until privateGate[id] == OPEN > wait until another process
> will open p;’s private gate

8: end if

9: wait until CAS (gate, OPEN, CLOSED) > try to win 2-process mutual exclusion

10: end procedure

11: procedure exitCS(id)
12: wants|id] = FALSE

13: privateGate[id] = CLOSED > clean-up
14: CAS (fastLane, (OCCUPIED, id), EMPTY) > if the fast lane occupied by p;, release it
15: if promoted = id then > if p; was the promoted process
16: promoted = L > the reset promoted to L
17: end if
18: if promoted = L then > if there is no promoted process, promote one
19: do next = waitingRoom.draw() > remove some process from the sack
20: until (wantsnext]==TRUE or next == 1) > until the removed process is interested
> to enter CS, or until waitingRoom is empty
21: if wants[next]==TRUE then > process next is interested to enter CS
22: promoted = next > promote next
23: privateGate[next] = OPEN > signal to mezt by opening its private gate
24: end if
25: end if
26: gate = OPEN > release the 2-process mutual exclusion

27: end procedure

In each round of the proof of [10, Lemma 7], at most two processes are added to the set
of finished processes Fin(H). Before a process p is added to Fin(H) in round j, it performs
7 steps. The execution H has k rounds, and there is at least one process that is not in
Fin(H) at the end of round k; this process performs at least k steps. Let 2 be the number
of the processes in Fin(H) at the end of the execution: x = |Fin(H)|. The processes Fin(H)
are simultaneously active in H, therefore ¢(H) > x. The total number of steps performed
by all processes in H is equal to the number of steps performed by the processes Fin(H),
which is at least Z;i 21 2j > 2%/4, plus k steps performed by the last process. Thus, the total
number of steps is #2/4+k, and the amortized step complexity is t(z) = (z%/4+k)/(z+1) =
Q(z) = Q(¢(H)). Differentiating the last expression by x and equating to 0, we get that the
amortized step complexity is minimized at mint(z) = § (V4k +1—1) for z = V4k + 1 — 1.
That is, the construction guarantees amortized step complexity t(z) > x/2 = Q(¢(H)).

The maximal number of processes in the system required for the construction is N (k) =
(2k+4)22" =1 implying k = O(loglog N). Since z = O(v/k), we have that z = O(y/Iog log IV).
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This gives the next observation:

» Theorem 20. For any given x, there is an execution H, with point contention ¢(H)
x and RMR amortized step complexity amortizedStep(H) = Q(¢(H)), provided that x
O(Vloglog N), where N is the total number of the processes in the system.

v
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