
Anonymous Processors with Synchronous Shared
Memory: Monte Carlo Algorithms∗

Bogdan S. Chlebus1, Gianluca De Marco2, and Muhammed Talo3

1 Department of Computer Science and Engineering,
University of Colorado Denver, Denver, Colorado 80217, USA
bogdan.chlebus@ucdenver.edu

2 Dipartimento di Informatica, Università degli Studi di Salerno,
Fisciano, 84084 Salerno, Italy
demarco@dia.unisa.it

3 Bilgisayar Mühendisliği, Munzur Üniversitesi, 62000 Tunceli, Turkey
muhammedtalo@munzur.edu.tr

Abstract
We consider synchronous distributed systems in which processors communicate by shared read-
write variables. Processors are anonymous and do not know their number n. The goal is to assign
individual names by all the processors to themselves. We develop algorithms that accomplish
this for each of the four cases determined by the following independent properties of the model:
concurrently attempting to write distinct values into the same shared memory register either is
allowed or not, and the number of shared variables either is a constant or it is unbounded. For
each such a case, we give a Monte Carlo algorithm that runs in the optimum expected time and
uses the expected number of O(n logn) random bits. All our algorithms produce correct output
upon termination with probabilities that are 1−n−Ω(1), which is best possible when terminating
almost surely and using O(n logn) random bits.

1998 ACM Subject Classification C.1.4 Parallel Architectures, F.1.1 Models of Computation,
F.1.2 Modes of Computation

Keywords and phrases anonymous processors, synchrony, shared memory, read-write registers,
naming, Monte Carlo algorithms

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.15

1 Introduction

We study naming algorithms in distributed systems consisting of anonymous processors that
communicate by reading from and writing to shared memory. We say that a parameter of
an algorithmic problem is known when it can be used in a code of algorithm. We restrict
our attention to synchronous systems and do not assume that the number of processors n
is known.

The model of synchronous systems with read-write registers is known as the Parallel
Random Access Machine (PRAM). It is a generalization of the Random Access Machine
model of sequential computation [16] to the realm of synchronous concurrent processing.

We consider two categories of naming problems depending on how much shared memory
is available for a PRAM. In one case, a constant number of memory cells is available. This
means that the amount of memory is independent from the number of processors n but as

∗ The full version of this paper merged with [12] is available as [13], https://arxiv.org/abs/1507.02272.

© Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.15
https://arxiv.org/abs/1507.02272
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Anonymous Processors with Synchronous Shared Memory

Table 1 Four naming problems, as determined by the PRAM model and the available amount
of shared memory, with the respective performance bounds of their solutions as functions of the
number of processors n. When time is marked as “polylog” this means that the algorithm comes in
two variants, such that in one the expected time is O(logn) and the amount of used shared memory
is suboptimal nO(1), and in the other the expected time is suboptimal O(log2 n) but the amount of
used shared memory misses optimality by at most a logarithmic factor.

PRAM Model Memory Time Algorithm

Arbitrary O(1) O(n) Arbitrary-Bounded-MC in Section 3

Arbitrary unbounded polylog Arbitrary-Unbounded-MC in Section 4

Common O(1) O(n logn) Common-Bounded-MC in Section 5

Common unbounded polylog Common-Unbounded-MC in Section 6

large as needed in an algorithm’s design. In the other case, the amount of shared memory
cells is unlimited, and how much is used by an algorithm depends on n. When an unbounded
amount of memory cells is assumed to be available, then the expected number of memory
cells that are actually used is considered as a performance metric.

Independently of the amount of shared memory available, we consider the two versions
of the naming problems that are determined by the semantics of concurrent writing. This
is represented by the corresponding PRAM variants, which are either the Arbitrary PRAM
or the Common PRAM.

Naming in the PRAM model is also considered in a companion paper [12], which is about
the same problem to assign names for the anonymous processors, with the only difference
that n is assumed to be known in [12], while we assume in this paper that n is unknown.
Whether n is known or not is reflected in the classes of algorithms we develop in these two
papers: these are Monte Carlo algorithms for an unknown n in this paper, and Las Vegas
algorithms for a known n in [12].

A summary of the results

We consider four naming problems in synchronous read-write shared memory. They are
determined by two independent specifications the naming problems: the amount of shared
memory and the PRAM’s variant.

The naming algorithms we give terminate with probability 1 and are all Monte Carlo.
Each algorithm uses the optimum expected number O(n logn) of random bits. We show that
a Monte Carlo naming algorithm that uses O(n logn) random bits has to have the property
that it fails to assign unique names with the probability that is n−Ω(1). All Monte Carlo
algorithms that we give have the optimum polynomial probability of error. The list of the
naming problems’ specifications and the corresponding algorithms with their performance
bounds are summarized in Table 1. Most proofs are omitted; they can be found in [13].

Previous and related work

The naming problem for a synchronous PRAM has not been previously considered in the
literature, to the best of the authors’ knowledge, except for the companion paper [12].
The problem of concurrent communication in anonymous networks was first considered by

B.S. Chlebus and G. De Marco and M. Talo 15:3

Angluin [3]. That work showed, in particular, that randomization is needed in naming
algorithms when executed in environments that are perfectly symmetric; other related im-
possibility results are surveyed by Fich and Ruppert [18]. There is a voluminous literature
on various aspects of computing and communication in anonymous systems, we concentrate
on the related topics for anonymous asynchronous distributed shared-memory systems.

We begin with work on naming in shared-memory systems with read-write registers. Lip-
ton and Park [23] considered naming in asynchronous distributed systems with read-write
shared memory controlled by adaptive schedulers; they proposed a solution that terminates
with positive probability, and which can be made arbitrarily close to 1 assuming that n
is known. Eğecioğlu and Singh [15] proposed a polynomial-time Las Vegas naming algo-
rithm for asynchronous systems with known n and read-write shared memory with oblivious
scheduling of events. Kutten et al. [22] provided a thorough study of naming in asynchronous
systems of shared read-write memory. They gave a Las Vegas algorithm for an oblivious
scheduler for the case of known n, which works in the expected time O(logn) while using
O(n) shared registers, and also showed that a logarithmic time is required to assign names
to anonymous processes. Additionally, they showed that if n is unknown then a Las Ve-
gas naming algorithm does not exist, and a finite-state Las Vegas naming algorithm can
work only for an oblivious scheduler. Panconesi et al. [24] gave a randomized wait-free
naming algorithm in anonymous systems with processes prone to crashes that communicate
by single-writer registers. The model considered in that work assigns unique single-writer
registers to nameless processes and so has a potential to defy the impossibility of wait-free
naming for general multi-writer registers proved by Kutten et al. [22]. Buhrman et al. [11]
considered the relative complexity of naming and consensus problems in asynchronous sys-
tems with shared memory that are prone to crash failures, demonstrating that naming is
harder that consensus.

Now we review work on problems in anonymous distributed systems different from nam-
ing. Aspnes et al. [4] gave a comparative study of anonymous distributed systems with
different communication mechanisms, including broadcast and shared-memory objects of
various functionalities, like read-write registers and counters. Alistarh et al. [2] gave ran-
domized renaming algorithms that act like naming ones, in that process identifiers are not
referred to; for more or renaming see [1, 6, 14]. Aspnes et al. [5] considered solving con-
sensus in anonymous systems with infinitely many processes. Attiya et al. [7] and Jayanti
and Toueg [21] studied the impact of initialization of shared registers on solvability of tasks
like consensus and wakeup in fault-free anonymous systems. Bonnet et al. [10] considered
solvability of consensus in anonymous systems with processes prone to crashes but aug-
mented with failure detectors. Guerraoui and Ruppert [19] showed that certain tasks like
time-stamping, snapshots and consensus have deterministic solutions in anonymous systems
with shared read-write registers prone to process crashes. Ruppert [25] studied the impact
of anonymity of processes on wait-free computing and mutual implementability of types of
shared objects.

A systematic exposition of shared-memory algorithm can be found in [8], when ap-
proached from the distributed-computing perspective, and in [20], when approached from
the parallel-computing one. General questions of computability in anonymous message-
passing systems implemented in networks were studied by Boldi and Vigna [9], Emek et
al. [17], and Sakamoto [26].

OPODIS 2017

15:4 Anonymous Processors with Synchronous Shared Memory

2 Technical Preliminaries

Two operations are said to be performed concurrently when they are invoked in the same
round of an execution of a PRAM. We assume that concurrent reading from a memory
cell and writing to this same memory cell never occur. This can be made without loss of
generality for a synchronous PRAM because we can partition an execution into alternating
“writing” and “reading” rounds, which results in slowing the execution by at most a factor
of 2. The meaning of concurrent reading from the same memory cell is straightforward, in
that all the readers get the value stored in this memory cell.

Concurrent writing to the same memory location needs to be further clarified.
When multiple writers want to write the same value each in the same round to the same

memory cell, then we should assume that this value gets written. This scenario is so enticing,
that it leads to a PRAM variant called Common, for which it is assumed that only such
concurrent writes are legitimate, in that an attempt to write different values concurrently
to the same memory location results in a runtime error.

On the other hand, not having to worry about consistency of written values is also at-
tractive, which leads to a PRAM variant called Arbitrary. This model allows any admissible
value to be attempted to be written concurrently. A downside is that the model does not
determine the outcome of a write but only that one of the values gets written. A consequence
is that when we argue about correctness then all possible selections among the attempted
values as actually written successfully need to be considered.

Balls into bins

In the course of probabilistic analysis of algorithms, we will often model actions of processors
by throwing balls into bins. This can be done in two natural ways. One is such that memory
addresses are interpreted as bins and the values written represent balls, possibly with labels.
Then total number of balls considered will always be n, that is, be equal to the number of
processors of a PRAM. Another possibility is when bins represent rounds and selecting a
bin results in performing a write to a suitable shared register in the respective round.

Throwing balls into bins will be performed repeatedly in each instance of modeling the
behavior of an algorithm. Each instance of throwing a number of balls into bins is then
called a stage. There will be an additional numeric parameter β > 0, and we call the process
of throwing balls into bins the β-process, accordingly. This parameter β may determine
the number of bins in a stage and also when a stage is the last one in an execution of the
β-process.

When we sum up the numbers of available bins over all the stages of an execution of a β-
process until termination, then the result is the number of bins ever needed in this execution.
Similarly, the number of bits ever generated in an execution of a β-process is the sum of all
the numbers of random bits needed to be generated to place balls, over all the stages and
balls until termination of this execution.

Verifying collisions

We will use a randomized procedure for Common PRAM to verify if a collision occurs in
a bin. This procedure Verify-Collision was given in [12]; it is represented in Figure 1
for a direct reference. Bins are interpreted in two different ways. When algorithms use a
constant number of shared memory registers, then bins are typically interpreted as future
rounds during which verification for a collision will be performed, one verification in O(1)

B.S. Chlebus and G. De Marco and M. Talo 15:5

Procedure Verify-Collision (x)

initialize Heads[x]← Tails[x]← false
tossv ← outcome of tossing a fair coin
if tossv = tails

then Tails[x] ← true
else Heads[x] ← true

return Tails[x] = Heads[x]

Figure 1 A pseudocode for a processor v of a Common PRAM, where x is a positive integer.
Heads and Tails are arrays of shared memory cells. When the parameter x is dropped in a call
then this means that x = 1. The procedure returns true when a collision has been detected.

rounds. In such a scenario, procedure Verify-Collision is used without a parameter,
because just one shared memory register is needed to carry out one verification. When
algorithms use an unbounded array of shared registers, then bins are typically interpreted
as some designated shared registers. In such a scenario, procedure Verify-Collision is
invoked with a parameter indicating which bin is verified for collision, because multiple
verifications for collisions in different bins can be performed concurrently.

I Lemma 1 ([12, 13]). For an integer x, procedure Verify-Collision (x) executed by one
processor never detects a collision, and when multiple processors execute this procedure then
a collision is detected with probability at least 1

2 .

Properties of naming algorithms

Randomized naming algorithms are categorized as either Monte Carlo or Las Vegas, which
are defined as follows. A randomized algorithm is Las Vegas when it terminates almost surely
and the algorithm returns a correct output upon termination. A randomized algorithm is
Monte Carlo when it terminates almost surely and an incorrect output may be produced
upon termination, but the probability of error converges to zero with the size of input growing
unbounded. The naming algorithms we develop are all Monte Carlo and have the probability
of error converging to zero with a rate that is polynomial in n. Moreover, when incorrect
names are assigned, then the set of integers used as names makes a contiguous segment
starting from the smallest name 1 and the only possible kind of error is that duplicate
names are given.

A naming algorithm cannot be Las Vegas when n is unknown, as was observed by Kutten
et al. [22] for asynchronous computations against an oblivious adversary. An analogous fact
holds for synchronous computations.

I Proposition 1. There is no Las Vegas naming algorithm for a PRAM with n > 1 processors
that does not refer to the number of processors n in its code.

Proof. Let us suppose, to arrive at a contradiction, that such a naming Las Vegas algorithm
exists. Consider a system of n−1 ≥ 1 processors, and an execution E on these n−1 processors
that uses specific strings of random bits such that the algorithm terminates in E with these
random bits. Such strings of random bits exist because the algorithm terminates almost
surely.

OPODIS 2017

15:6 Anonymous Processors with Synchronous Shared Memory

Let v1 be a processor that halts latest in E among the n − 1 processors. Let αE be
the string of random bits generated by processor v1 by the time it halts in E . Consider an
execution E ′ on n ≥ 2 processors such that n processors obtain the same strings of random
bits as in E and an extra processor v2 obtains αE as its random bits. The executions E and E ′
are indistinguishable for the n−1 processors participating in E , so they assign themselves the
same names and halt. Processor v2 performs the same reads and writes as processor v1 and
assigns itself the same name as processor v1 does and halts in the same round as processor v1.
This is the termination round because by that time all the other processor have halted as
well.

It follows that execution E ′ results in a name being duplicated. The probability of
duplication for n processors is at least as large as the probability to generate two identical
finite random strings in E ′ for some two processors, so this probability is positive. J

We give algorithms that use the expected number of O(n logn) random bits with large
probability. The following fact allows to argue about their optimality with respect to the
number of random bits.

I Proposition 2 ([12, 13]). If a randomized naming PRAM algorithm executed by n anony-
mous processors is correct with some probability pn then it requires Ω(n logn) random bits
with the same probability pn.

If n is unknown, then the restriction O(n logn) on the number of random bits makes it
inevitable that the probability of error is at least polynomially bounded from below, as we
show next.

I Proposition 3. For unknown n, if a randomized naming algorithm is executed by n anony-
mous processors, then an execution is incorrect, in that duplicate names are assigned to
distinct processors, with probability that is at least n−Ω(1), assuming that the algorithm uses
O(n logn) random bits with probability 1− n−Ω(1).

Proof. Suppose the algorithm uses at most cn lgn random bits with probability pn when
executed by a system of n processors, for some constant c > 0. Then one of these processors
uses at most c lgn bits with probability pn, by the pigeonhole principle.

Consider an execution for n+1 processors. Let us distinguish a processor v. Consider the
actions of the remaining n processors: one of them, say w, uses at most c lgn bits with the
probability pn. Processor v generates the same string of bits with probability 2−c lgn = n−c.
The random bits generated by w and v are independent. Therefore duplicate names occur
with probability at least n−c · pn. When we have a bound pn = 1 − n−Ω(1), then the
probability of duplicate names is at least n−c(1− n−Ω(1)) = n−Ω(1). J

In gauging the optimality of performance of naming algorithms, we will refer to lower
bounds on time of such algorithms that can be found in [12, 13], we restate them here for
easy reference.

I Theorem 2 ([12, 13]). A randomized naming algorithm for a Common PRAM with n

processors and C > 0 shared memory cells operates in Ω(n logn/C) expected time when it
is either a Las Vegas algorithm or a Monte Carlo algorithm with the probability of error
smaller than 1/2.

I Theorem 3 ([12, 13]). A randomized naming algorithm for an Arbitrary PRAM with
n processors and C > 0 shared memory cells operates in Ω(n/C) expected time when it is
either a Las Vegas algorithm or a Monte Carlo algorithm with the probability of error smaller
than 1/2.

B.S. Chlebus and G. De Marco and M. Talo 15:7

The following fact holds for both Common and Arbitrary PRAMs.

I Theorem 4 ([12, 13])). A randomized naming algorithm for a PRAM with n processors
operates in Ω(logn) expected time when it is either a Las Vegas algorithm or a Monte Carlo
algorithm with the probability of error smaller than 1/2.

3 Arbitrary with Bounded Memory

We develop a naming algorithm for an Arbitrary PRAM with a constant number of shared
memory cells. The algorithm is called Arbitrary-Bounded-MC and its pseudocode is
given in Figure 2.

The underlying idea is to have all processors repeatedly attempt to obtain tentative
names and terminate when the probability of duplicate names is gauged to be sufficiently
small. To this end, each processor writes an integer selected from a suitable “selection range”
into a shared memory register and next reads this register to verify whether the write was
successful or not. A successful write results in each such a processor getting a tentative
name by reading and incrementing another shared register operating as a counter. One of
the challenges here is to determine a selection range from which random integers are chosen
for writing. A good selection range is large enough with respect to the number of writers,
which is unknown, because when the range is too small then multiple processors may select
the same integer and so all of them get the same tentative name after this integer gets
written successfully. The algorithm keeps the size of a selection range growing with each
failed attempt to assign tentative names.

There is an inherent tradeoff here, since on the one hand, we want to keep the size of used
shared memory small, as a measure of efficiency of the algorithm, while, at the same time,
the larger the range of memory the smaller the probability of collision of random selections
from a selection range and so of the resulting duplicate names. Additionally, increasing
the selection range repeatedly costs time for each such a repetition, while we also want to
minimize the running time as the metric of performance. The algorithm keeps increasing
the selection range with a quadratic rate, which turns out to be sufficient to optimize all the
performance metrics we measure. The algorithm terminates when the number of selected
integers from the current selection range makes a sufficiently small fraction of the size of the
used range.

The structure of the pseudocode in Figure 2 is determined by the main repeat-loop. Each
iteration of this loop begins with doubling the variable k, which determines the selection
range [1, 2k]. This means that the size of the selection range increases quadratically with
consecutive iterations of the main repeat-loop. A processor begins an iteration of the main
loop by choosing an integer uniformly at random from the current selection range [1, 2k].
There is an inner repeat-loop, nested within the main loop, which assigns tentative names
depending on the random selections just made.

All processors repeatedly write to a shared variable Pad and next read to verify if the
write was successful. It is possible that different processors attempt to write the same value
and then verify that their write was successful. The shared variable Last-Name is used
to proceed through consecutive integers to provide tentative names to be assigned to the
latest successful writers. When multiple processors attempt to write the same value to Pad
and it gets written successfully, then all of them obtain the same tentative name. The
variable Last-Name, at the end of each iteration of the inner repeat-loop, equals the number
of occupied bins. The shared variable All-Named is used to verify if all processors have
tentative names. The outer loop terminates when the number of assigned names, which is

OPODIS 2017

15:8 Anonymous Processors with Synchronous Shared Memory

Algorithm Arbitrary-Bounded-MC

initialize k ← 1 /∗ initial approximation of lgn ∗/
repeat

initialize Last-Name← namev ← 0
k ← 2k
binv ← random integer in [1, 2k] /∗ throw a ball into a bin ∗/
repeat

All-Named ← true
if namev = 0 then

Pad ← binv
if Pad = binv then

Last-Name ← Last-Name + 1
namev ← Last-Name

else
All-Named ← false

until All-Named
until Last-Name ≤ 2k/β

Figure 2 A pseudocode for a processor v of an Arbitrary PRAM with a constant number of shared
memory cells. The variables Last-Name, All-Named and Pad are shared. The private variable name
stores the acquired name. The constant β > 0 is a parameter to be determined by analysis.

the same as the number of occupied bins, is smaller than or equal to 2k/β , where β > 0 is a
parameter to be determined in analysis.

I Theorem 5. Algorithm Arbitrary-Bounded-MC always terminates, for any β > 0.
For each a > 0 there exists β > 0 and c > 0 such that the algorithm assigns unique names,
works in time at most cn, and uses at most cn lnn random bits, all this with probability at
least 1− n−a.

Algorithm Arbitrary-Bounded-MC is optimal with respect to the following perfor-
mance measures: the expected time O(n), by Theorem 3, the expected number of random
bits O(n logn), by Proposition 2, and the probability of error n−O(1), by Proposition 3.

4 Arbitrary with Unbounded Memory

We develop a naming algorithm for Arbitrary PRAM with an unbounded amount of shared
registers. The algorithm is called Arbitrary-Unbounded-MC and its pseudocode is given
in Figure 3.

The underlying idea is to parallelize the process of selection of names applied in Sec-
tion 3 in algorithm Arbitrary-Bounded-MC so that multiple processes could acquire
information in the same round that later would allow them to obtain names. As algorithm
Arbitrary-Bounded-MC used shared registers Pad and Last-Name, the new algorithm
uses arrays of shared registers playing similar roles. The values read-off from Last-Name
cannot be used directly as names, because multiple processors can read the same values, so
we need to distinguish between these values to assign names. To this end, we assign ranks

B.S. Chlebus and G. De Marco and M. Talo 15:9

Algorithm Arbitrary-Unbounded-MC

initialize k ← 1 /∗ initial approximation of lgn ∗/
repeat

initialize All-Named← true
initialize positionv ← (0, 0)
k ← r(k)
binv ← random integer in [1, 2k/(βk)] /∗ choose a bin for the ball ∗/
labelv ← random integer in [1, 2βk] /∗ choose a label for the ball ∗/
for i← 1 to βk do

if positionv = (0, 0) then
Pad [binv]← labelv
if Pad [binv] = labelv then

Last-Name [binv]← Last-Name [binv] + 1
positionv ← (binv, Last-Name [binv])

if positionv = (0, 0) then
All-Named ← false

until All-Named
namev ← the rank of positionv

Figure 3 A pseudocode for a processor v of an Arbitrary PRAM, when the number of shared
memory cells is unbounded. The variables Pad and Last-Name are arrays of shared memory cells,
the variable All-Named is shared as well. The private variable name stores the acquired name. The
constant β > 0 and an increasing function r(k) are parameters.

to processors based on their lexicographic ordering by pairs of numbers determined by Pad
and Last-Name.

The pseudocode in Figure 3 is structured as a repeat-loop. In the first iteration, the
parameter k equals 1, and in subsequent ones is determined by iterations of the increasing
integer-valued function r(k), which is a parameter. We consider two instantiations of the
algorithm, determined by r(k) = k + 1 and by r(k) = 2k. In one iteration of the main
repeat-loop, a processor uses two variables bin ∈ [1, 2k/(βk)] and label ∈ [1, 2βk], which
are selected independently and uniformly at random from the respective ranges.

We interpret bin as a bin’s number and label as a label for a ball. Processors write their
values label into the respective bin by instruction Pad [bin]← label and verify what value
got written. After a successful write, a processor increments Last-Name[bin] and assigns the
pair (bin, Last-Name [bin]) as its position. This is repeated βk times by way of iterating the
inner for-loop. This loop has a specific upper bound βk on the number of iterations because
we want to ascertain that there are at most βk balls in each bin. The main repeat-loop
terminates when all values attempted to be written actually get written. Then processors
assign themselves names according to the ranks of their positions. The array Last-Name
is assumed to be initialized to 0’s, and in each iteration of the repeat-loop we use a fresh
region of shared memory to allocate this array.

I Theorem 6. Algorithm Arbitrary-Unbounded-MC always terminates, for any β > 0.
For each a > 0, there exists β > 0 and c > 0 such that the algorithm assigns unique names
and has the following additional properties with probability 1 − n−a. If r(k) = k + 1 then

OPODIS 2017

15:10 Anonymous Processors with Synchronous Shared Memory

at most cn/ lnn memory cells are ever needed, cn ln2 n random bits are ever generated, and
the algorithm terminates in time O(log2 n). If r(k) = 2k then at most cn2/ lnn memory
cells are ever needed, cn lnn random bits are ever generated, and the algorithm terminates
in time O(logn).

The instantiations of algorithm Arbitrary-Unbounded-MC are close to optimality
with respect to some of the performance metrics we consider, depending on whether r(k) =
k + 1 or r(k) = 2k. If r(k) = k + 1 then the algorithm’s use of shared memory would be
optimal if its time were O(logn), by Theorem 3, but as it is, the algorithm misses space
optimality by at most a logarithmic factor, since the algorithm’s running time is O(log2 n).
Similarly, if r(k) = k+ 1 then the number of random bits ever generated O(n log2 n) misses
optimality by at most a logarithmic factor, by Proposition 2. On the pother hand, if
r(k) = 2k then the expected time O(logn) is optimal, by Theorem 4, the expected number
of random bits O(n logn) is optimal, by Proposition 2, and the probability of error n−O(1)

is optimal, by Proposition 3, but the amount of used shared memory misses optimality by
at most a polynomial factor, by Theorem 3.

5 Common with Bounded Memory

Algorithm Common-Bounded-MC, which we present in this section, solves the naming
problem for Common PRAM with a constant number of shared read-write registers. The
algorithm has its pseudocode in Figure 6. To make the exposition of this algorithm more
modular, we use two procedures Estimate-Size and Extend-Names. The pseudocodes
of these procedures are given in Figures 4 and 5, respectively. The private variables in
the pseudocode in Figure 6 have the following meaning: size is an approximation of the
number of processors n, and number-of-bins determines the size of the range of bins we
throw conceptual balls into.

The main task of procedure Estimate-Size is to produce an estimate of the number
n of processors. Procedure Extend-Names is iterated multiple times, each iteration is
intended to assign names to a group of processors. This is accomplished by the processors
selecting integer values at random, interpreted as throwing balls into bins, and verifying
for collisions. Each selection of a bin is followed by a collision detection. A ball placement
without a detected collision results in a name assigned, otherwise the involved processors
try again to throw balls into a range of bins. The effectiveness of the resulting algorithm
hinges of calibrating the number of bins to the expected number of balls to be thrown.

Balls into bins for the first time

The role of procedure Estimate-Size, when called by algorithm Common-Bounded-MC,
is to estimate the unknown number of processors n, which is returned as size, to assign
a value to variable number-of-bins, and assign values to each private variable bin, which
indicates the number of a selected bin in the range [1, number-of-bins]. The procedure tries
consecutive values of k as approximations of lgn. For a given k, an experiment is carried
out to throw n balls into k2k bins. The execution stops when the number of occupied bins
is at most 2k, and then 3 · 2k is treated as an approximation of n and k2k is the returned
number of bins.

I Lemma 7. For n ≥ 20 processors, procedure Estimate-Size returns an estimate size of
n such that the inequality size < 6n holds with certainty and the inequality n < size holds
with probability 1− 2−Ω(n).

B.S. Chlebus and G. De Marco and M. Talo 15:11

Procedure Estimate-Size

initialize k ← 2 /∗ initial approximation of lgn ∗/
repeat

k ← k + 1
binv ← random integer in [1, k 2k]
initialize Nonempty-Bins← 0
for i← 1 to k 2k do

if binv = i then
Nonempty-Bins ← Nonempty-Bins + 1

until Nonempty-Bins ≤ 2k
return (3 · 2k, k 2k) /∗ 3 · 2k is size, k 2k is number-of-bins ∗/

Figure 4 A pseudocode for a processor v of a Common PRAM. This procedure is invoked by
algorithm Common-Bounded-MC in Figure 6. The variable Nonempty-Bins is shared.

Procedure Extend-Names’s behavior can also be interpreted as throwing balls into
bins, where a processor v’s ball is in a bin x when binv = x. The procedure first verifies the
suitable range of bins [1, number-of-bins] for collisions. A verification for collisions takes
either just a constant time or Θ(logn) time.

A constant verification occurs when there is no ball in the considered bin i, which is
verified when the line “if binx = i for some processor x” in the pseudocode in Figure 5 is
to be executed. Such a verification is performed by using a shared register initialized to 0,
into which all processors v with binv = i write 1, then all the processors read this register,
and if the outcome of reading is 1 then all write 0 again, which indicates that there is at
least one ball in the bin, otherwise there is no ball.

A logarithmic-time verification of collision occurs when there is some ball in the cor-
responding bin. This triggers calling procedure Verify-Collision precisely β lgn times;
notice that this procedure has the default parameter 1, as only one bin is verified at a time.
Ultimately, when a collision is not detected for some processor v whose ball is the bin, then
this processor increments Last-Name and assigns its new value as a tentative name. Other-
wise, when a collision is detected, processor v places its ball in a new bin when the last line
in Figure 5 is executed.

To prepare for the next round of throwing balls, the variable number-of-bins may
be reset. During one iteration of the main repeat-loop of the pseudocode of algorithm
Common-Bounded-MC in Figure 6, the number of bins is first set to a value that is
Θ(n logn) by procedure Estimate-Size. Immediately after that, it is reset to Θ(n) by the
first call of procedure Extend-Names, in which the instruction number-of-bins ← size
is performed. Here, we need to notice that number-of-bins = Θ(n logn) and size = Θ(n),
by the pseudocodes in Figures 4 and 6 and Lemma 7.

In the course of analysis of performance of procedure Extend-Names, we consider a
balls-into-bins process; we call it simply the ball process. It proceeds through stages so that
in a stage we have a number of balls which we throw into a number of bins. The sets of
bins used in different stages are disjoint. The number of balls and bins used in a stage are
as determined in the pseudocode in Figure 5, which means that there are n balls and the
numbers of bins are as determined by an execution of procedure Estimate-Size, that is,

OPODIS 2017

15:12 Anonymous Processors with Synchronous Shared Memory

Procedure Extend-Names

initialize Collision-Detected← collisionv ← false
for i← 1 to number-of-bins do

if binx = i for some processor x then
if binv = i then

for j ← 1 to β lg size do
if Verify-Collision then

Collision-Detected ← collisionv ← true
if not collisionv then

Last-Name ← Last-Name + 1
namev ← Last-Name
binv ← 0

if (number-of-bins > size) then
number-of-bins ← size

if collisionv then
binv ← random integer in [1, number-of-bins]

Figure 5 A pseudocode for a processor v of a Common PRAM. This procedure invokes procedure
Verify-Collision, whose pseudocode is in Figure 1, and is itself invoked by algorithm Common-
Bounded-MC in Figure 6. The variables Last-Name and Collision-Detected are shared. The
private variable name stores the acquired name. The constant β > 0 is to be determined in analysis.

the first stage uses number-of-bins bins and subsequent stages use size bins, as returned
by Estimate-Size.

The only difference between the ball process and the actions of procedure Extend-
Names is that collisions are detected with certainty in the ball process rather than being
tested for. In particular, the parameter β is not involved in the ball process (nor in its name).
The ball process terminates in the first stage in which no multiple bins are produced, so
that there are no collisions among the balls.

I Lemma 8. The ball process modeling the actions of procedure Extend-Names results in
all balls ending single in their bins and the number of times a ball is thrown, summed over
all the stages, being O(n), both events occurring with probability 1− n−Ω(logn).

The following Theorem 9 summarizes the performance of algorithm Common-Bounded-
MC (see the pseudocode in Figure 6) as a Monte Carlo one.

I Theorem 9. Algorithm Common-Bounded-MC terminates almost surely. For each
a > 0, there exists β > 0 and c > 0 such that the algorithm assigns unique names, works
in time at most cn lnn, and uses at most cn lnn random bits, each among these properties
holding with probability at least 1− n−a.

Proof. One iteration of the main repeat-loop suffices to assign names with probability 1−
n−Ω(logn), by Lemma 8. This means that the probability of not terminating by the ith
iteration is at most (n−Ω(logn))i, which converges to 0 with i growing to infinity.

The algorithm returns duplicate names only when a collision occurs that is not detected
by procedure Verify-Collision. For a given multiple bin, one iteration of this procedure

B.S. Chlebus and G. De Marco and M. Talo 15:13

Algorithm Common-Bounded-MC

repeat
initialize Last-Name← 0
(size, number-of-bins) ← Estimate-Size
for `← 1 to lg size do

Extend-Names
if not Collision-Detected then return

Figure 6 A pseudocode for a processor v of a Common PRAM, where there is a constant number
of shared memory cells. Procedures Estimate-Size and Extend-Names have their pseudocodes
in Figures 4 and 5, respectively. The variables Last-Name and Collision-Detected are shared.

does not detect collision with probability at most 1/2, by Lemma 1. Therefore β lg size
iterations do not detect collision with probability O(n−β/2), by Lemma 7. The number of
nonempty bins ever tested is at most dn, for some constant d > 0, by Lemma 8, with the
suitably large probability. Applying the union bound results in the estimate n−a on the
probability of error for sufficiently large β.

The duration of an iteration of the inner for-loop is either constant, then we call is short,
or it takes time O(log size), then we call it long. First, we estimate the total time spent
on short iterations. This time in the first iteration of the inner for-loop is proportional
to number-of-bins returned by procedure Estimate-Size, which is at most 6n · lg(6n),
by Lemma 7. Each of the subsequent iterations takes time proportional to size, which
is at most 6n, again by Lemma 7. We obtain that the total number of short iterations is
O(n logn) in the worst case. Next, we estimate the total time spent on long iterations. One
such an iteration has time proportional to lg size, which is at most lg 6n with certainty. The
number of such iterations is at most dn with probability 1 − n−Ω(logn), for some constant
d > 0, by Lemma 8. We obtain that the total number of long iterations is O(n logn), with
the correspondingly large probability. Combining the estimates for short and long iterations,
we obtain O(n logn) as a bound on time of one iteration of the main repeat-loop. One such
an iteration suffices with probability 1− n−Ω(logn), by Lemma 8.

Throwing one ball uses O(logn) random bits, by Lemma 7. The number of throws is
O(n) with the suitably large probability, by Lemma 8. J

Algorithm Common-Bounded-MC is optimal with respect to the following performance
metrics: the expected time O(n logn), by Theorem 2, the number of random bits O(n logn),
by Proposition 2, and the probability of error n−O(1), by Proposition 3.

6 Common with Unbounded Memory

We consider naming on a Common PRAM in the case when the amount of shared memory
is unbounded. The algorithm we propose, called Common-Unbounded-MC, is similar to
algorithm Common-Bounded-MC in Section 5, in that it involves a randomized experiment
to estimate the number of processors of the PRAM. Such an experiment is then followed by
repeatedly throwing balls into bins, testing for collisions, and throwing again if a collision is
detected, until eventually no collisions are detected.

OPODIS 2017

15:14 Anonymous Processors with Synchronous Shared Memory

Procedure Gauge-Size-MC

k← 1
repeat

k← r(k)
binv ← random integer in [1, 2k]

until the number of selected values of variable bin is ≤ 2k/β
return (d2k+1/βe)

Figure 7 A pseudocode for a processor v of a Common PRAM, where the number of shared
memory cells is unbounded. The constant β > 0 is the same parameter as in Figure 8, and an
increasing function r(k) is also a parameter.

Algorithm Common-Unbounded-MC has its pseudocode given in Figure 8. The algo-
rithm is structured as a repeat loop. An iteration starts by invoking procedure Gauge-Size,
whose pseudocode is in Figure 7. This procedure returns size as an estimate of the number
of processors n. Next, a processor chooses randomly a bin in the range [1, 3size]. Then it
keeps verifying for collisions β lg size, in such a manner that when a collision is detected
then a new bin is selected form the same range. After such β lg size verifications and pos-
sible new selections of bins, another β lg size verifications follow, but without changing the
selected bins. When no collision is detected in the second segment of β lg size verifications,
then this terminates the repeat-loop, which triggers assigning each station the rank of the
selected bin, by a prefix-like computation. If a collision is detected in the second segment of
β lg size verifications, then this starts another iteration of the main repeat-loop.

Procedure Gauge-Size-MC returns an estimate of the number n of processors in the
form 2k, for some positive integer k. It operates by trying various values of k, and, for a
considered k, by throwing n balls into 2k bins and next counting how many bins contain
balls. Such counting is performed by a prefix-like computation, whose pseudocode is omitted
in Figure 7. The additional parameter β > 0 is a number that affects the probability of
underestimating n.

The way in which selections of numbers k is performed is controlled by function r(k),
which is a parameter. We will consider two instantiations of this function: one is func-
tion r(k) = k + 1 and the other is function r(k) = 2k.

I Lemma 10. If r(k) = k + 1 then the value of size as returned by Gauge-Size-MC
satisfies size ≤ 2n with certainty and the inequality size ≥ n holds with probability 1 −
β−n/3.

If r(k) = 2k then the value of size as returned by Gauge-Size-MC satisfies size ≤
2βn2 with certainty and size ≥ βn2/2 with probability 1− β−n/3.

The following Theorem 11 summarizes the performance of algorithm
Common-Unbounded-MC (see the pseudocode in Figure 8) as a Monte Carlo one. Its
proof relies on mapping an execution of the β-process with verifications on executions of
algorithm Common-Unbounded-MC in a natural manner.

I Theorem 11. Algorithm Common-Unbounded-MC terminates almost surely, for a suf-
ficiently large β. For each a > 0, there exists β > 0 and c > 0 such that the algorithm
assigns unique names and has the following additional properties with probability 1 − n−a.

B.S. Chlebus and G. De Marco and M. Talo 15:15

Algorithm Common-Unbounded-MC

repeat
size← Gauge-Size
binv ← random integer in [1, 3 size]
for i← 1 to β lg size do

if Verify-Collision (binv) then
binv ← random number in [1, 3 size]

Collision-Detected ← false
for i← 1 to β lg size do

if Verify-Collision (binv) then
Collision-Detected ← true

until not Collision-Detected
namev ← the rank of binv among selected bins

Figure 8 A pseudocode for a processor v of a Common PRAM, where the number of shared
memory cells is unbounded. The constant β > 0 is a parameter impacting the probability of error.
The private variable name stores the acquired name.

If r(k) = k + 1 then at most cn memory cells are ever needed, cn ln2 n random bits are
ever generated, and the algorithm terminates in time O(log2 n). If r(k) = 2k then at most
cn2 memory cells are ever needed, cn lnn random bits are ever generated, and the algorithm
terminates in time O(logn).

The instantiations of algorithm Common-Unbounded-MC are close to optimality with
respect to some of the performance metrics we consider, depending on whether r(k) =
k + 1 or r(k) = 2k. If r(k) = k + 1 then the algorithm’s use of shared memory would
be optimal if its time were O(logn), by Theorem 3, but it misses space optimality by at
most a logarithmic factor, since the algorithm’s time is O(log2 n). Similarly, for this case of
r(k) = k+ 1, the number of random bits ever generated O(n log2 n) misses optimality by at
most a logarithmic factor, by Proposition 2. In the other case of r(k) = 2k, the expected
time O(logn) is optimal, by Theorem 4, the expected number of random bits O(n logn) is
optimal, by Proposition 2, and the probability of error n−O(1) is optimal, by Proposition 3,
but the amount of used shared memory misses optimality by at most a polynomial factor,
by Theorem 4.

7 Conclusion

We considered four variants of the naming problem for an anonymous PRAM, when the
number of processors n is unknown, and developed Monte Carlo naming algorithms for
each of them. The two algorithms for a bounded number of shared registers are provably
optimal with respect to the following three performance metrics: expected time, expected
number of generated random bits and probability of error. It is an open problem to develop
Monte Carlo algorithms for Arbitrary and Common PRAMs for the case when the amount
of shared memory is unbounded, such that they are simultaneously asymptotically optimal
with respect to these same three performance metrics: the expected time, the expected
number of generated random bits and the probability of error.

OPODIS 2017

15:16 Anonymous Processors with Synchronous Shared Memory

References
1 Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid Guerraoui.

Tight bounds for asynchronous renaming. Journal of the ACM, 61(3):18:1–18:51, 2014.
2 Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. Fast

randomized test-and-set and renaming. In Proceedings of the 24th International Symposium
on Distributed Computing (DISC), volume 6343 of Lecture Notes in Computer Science,
pages 94–108. Springer, 2010.

3 Dana Angluin. Local and global properties in networks of processors. In Proceedings of the
12th ACM Symposium on Theory of Computing (STOC), pages 82–93, 1980.

4 James Aspnes, Faith Ellen Fich, and Eric Ruppert. Relationships between broadcast
and shared memory in reliable anonymous distributed systems. Distributed Computing,
18(3):209–219, 2006.

5 James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with infinite arrivals. In
Proceedings of the 34th ACM Symposium on Theory of Computing (STOC), pages 524–533,
2002.

6 Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming
in an asynchronous environment. Journal of the ACM, 37(3):524–548, 1990.

7 Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally anonymous asyn-
chronous shared memory systems. Information and Computation, 173(2):162–183, 2002.

8 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. John Wiley, 2nd edition, 2004.

9 Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anony-
mous networks. In Proceedings of the 15th International Conference on Distributed Com-
puting (DISC), volume 2180 of Lecture Notes in Computer Science, pages 33–47. Springer,
2001.

10 François Bonnet and Michel Raynal. The price of anonymity: Optimal consensus despite
asynchrony, crash, and anonymity. ACM Transactions on Autonomous and Adaptive Sys-
tems, 6(4):23, 2011.

11 Harry Buhrman, Alessandro Panconesi, Riccardo Silvestri, and Paul Vitanyi. On the im-
portance of having an identity or, is consensus really universal? Distributed Computing,
18(3):167–176, 2006.

12 Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo. Anonymous processors
with synchronous shared memory: Las Vegas algorithms. Submitted.

13 Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo. Anonymous processors
with synchronous shared memory. CoRR, abs/1507.02272, 2015.

14 Bogdan S. Chlebus and Dariusz R. Kowalski. Asynchronous exclusive selection. In Proceed-
ings of the 27th ACM Symposium on Principles of Distributed Computing (PODC), pages
375–384, 2008.

15 Ömer Eğecioğlu and Ambuj K. Singh. Naming symmetric processes using shared variables.
Distributed Computing, 8(1):19–38, 1994.

16 Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complexity (A), pages 1–66. The MIT Press,
1990.

17 Yuval Emek, Jochen Seidel, and Roger Wattenhofer. Computability in anonymous net-
works: Revocable vs. irrecovable outputs. In Proceedings of the 41st International Col-
loquium on Automata, Languages, and Programming (ICALP), Part II, volume 8573 of
Lecture Notes in Computer Science, pages 183–195. Springer, 2014.

18 Faith E. Fich and Eric Ruppert. Hundreds of impossibility results for distributed comput-
ing. Distributed Computing, 16(2-3):121–163, 2003.

B.S. Chlebus and G. De Marco and M. Talo 15:17

19 Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-memory com-
puting. Distributed Computing, 20(3):165–177, 2007.

20 Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
21 Prasad Jayanti and Sam Toueg. Wakeup under read/write atomicity. In Proceedings of

the 4th International Workshop on Distributed Algorithms (WDAG), volume 486 of Lecture
Notes in Computer Science, pages 277–288. Springer, 1990.

22 Shay Kutten, Rafail Ostrovsky, and Boaz Patt-Shamir. The Las-Vegas processor identity
problem (How and when to be unique). Journal of Algorithms, 37(2):468–494, 2000.

23 Richard J Lipton and Arvin Park. The processor identity problem. Information Processing
Letters, 36(2):91–94, 1990.

24 Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, and Paul M. B. Vitányi.
Randomized naming using wait-free shared variables. Distributed Computing, 11(3):113–
124, 1998.

25 Eric Ruppert. The anonymous consensus hierarchy and naming problems. In Proceedings of
the 11th International Conference on Principles of Distributed Systems (OPODIS), volume
4878 of Lecture Notes in Computer Science, pages 386–400. Springer, 2007.

26 Naoshi Sakamoto. Comparison of initial conditions for distributed algorithms on anony-
mous networks. In Proceedings of the 18th ACM Symposium on Principles of Distributed
Computing (PODC), pages 173–179, 1999.

OPODIS 2017

	Introduction
	Technical Preliminaries
	Arbitrary with Bounded Memory
	Arbitrary with Unbounded Memory
	Common with Bounded Memory
	Common with Unbounded Memory
	Conclusion

